
UNIVERSITAS

S
A

R A V I E N S

I S

Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science

Master’s thesis

Verifying the Internet Access of
Android Applications

submitted by

Erik Derr

submitted December 22, 2011

Supervisor
Prof. Dr. Michael Backes

Dr. Matteo Maffei

Reviewer
Prof. Dr. Michael Backes

Dr. Matteo Maffei

Advisor
Sebastian Gerling

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwen-
det habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit veröffentlicht
wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,
Datum/Date Unterschrift/Signature

Abstract

Google’s mobile operating system Android has become the top-selling operat-
ing system on current smartphones. Its increasing popularity makes it also an
attractive target for malware authors. Although Android’s security model con-
tains sophisticated mechanisms to harden attacks, the built-in security features
often turn out to be insufficient to protect users from malicious applications
or from undesired data leakage. This master’s thesis presents a novel analysis
approach to provide network communication transparency in Android applica-
tions. It performs comprehensive offline certification to verify Internet access
that is commonly required by malicious applications to silently transmit sensi-
tive user data to remote servers. To provide full transparency of the Internet
usage of applications, the analysis recovers destinations and payload for any net-
work connection and provides them in a comprehensive way to the user. This
clearly helps users to understand application behavior and to decide whether a
certain application is safe to be installed.

Contents

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Motivation & Thesis Objectives 2
1.2 Outline . 3

2 The Android Operating System 5
2.1 Kernel & Middleware . 6
2.2 Android Runtime and the Dalvik Virtual Machine 7

2.2.1 The dx compiler . 8
2.2.2 The Zygote . 8
2.2.3 Register-based Virtual Machine 9
2.2.4 Bytecode for the Dalvik VM 9

2.3 Application Framework . 11
2.3.1 Permission Model . 11

3 Bati - A high-level overview 15
3.1 System Overview . 15
3.2 Modular Design & Generic Approach 17

4 Information Flow Analysis Primer 19
4.1 Static versus dynamic Program Analysis 19
4.2 Symbolic Execution . 20
4.3 Control Flow Graph . 21
4.4 The Static Single Assignment Form 22

4.4.1 Creation of the SSA form 23

5 Information Flow Analysis on Android 25
5.1 How to analyze Android Applications? 25

5.1.1 Definition of Sinks . 27
5.1.2 Backwards Symbolic Execution 28

5.2 Building the Control Flow Graph 28
5.2.1 Connecting the Basic Blocks 29

5.3 The SSA Form on Dex Bytecode 31
5.3.1 Translating Dex Bytecode into SSA Form 32

5.4 Backwards Symbolic Execution 34

i

ii CONTENTS

5.4.1 Resolving Class Fields . 37
5.4.2 Resolving Arrays . 38
5.4.3 Resolving Method Invocations 39

5.5 Assembling & Encoding of Results 41
5.5.1 Encoding Expressions . 42
5.5.2 Encoding Arrays . 44
5.5.3 Encoding Method Invocations 46
5.5.4 Multi-path Encoding . 48

5.6 Decoding and Evaluation . 51
5.6.1 Decoding Expressions . 51
5.6.2 Decoding Arrays . 52
5.6.3 Decoding Method Invocations 53

6 Implementation 57
6.1 Disassembling and Parsing . 58
6.2 The SSA Builder Module . 60

6.2.1 Determining Node Relationship 61
6.2.2 Modifying Dex Bytecode 64

6.3 Resolver Implementation . 66
6.3.1 Loop Detection . 66
6.3.2 Incorporating Expert Knowledge 69
6.3.3 Handling special Method Invocations 70

6.4 The Decoder Module . 72

7 Evaluation 75
7.1 Resolving Basic Constructs . 75
7.2 Evaluating Class Fields . 77
7.3 Evaluating Arrays . 79
7.4 Evaluating Method Invocations 80

7.4.1 Call Histories . 81
7.4.2 Fully Resolvable Methods 82
7.4.3 Recursive Method Invocations 83

7.5 The Translation App . 85

8 Related Work 89
8.1 Dynamic Analysis . 90
8.2 Static Analysis . 91

9 Conclusion & Future Work 95
9.1 Limitations . 95

9.1.1 Approach Limitations . 95
9.1.2 Implementation Limitations 96

9.2 Conclusion . 98
9.3 Future Work . 99

A Syntax Diagram Notation 103

References 105

List of Figures

2.1 High-level view on the Android architecture 6
2.2 Inter-process communication . 7

3.1 High-level view on the analysis tool 16

4.1 An example control flow graph 21
4.2 SSA form before and after placing the Phi function. 23

5.1 Syntax tree for the method control flow graph 29
5.2 Basic cases for connecting nodes 30
5.3 Connecting basic blocks in a switch statement 30
5.4 Connecting basic blocks in try-catch statements 31
5.5 CFG of a nested if-conditional . 33
5.6 Expression encoding . 43
5.7 Array and array access encoding 45
5.8 Encoding of method invocations 47
5.9 Target graph construction . 49
5.10 Example target graph . 49
5.11 Target graph that shows a simple multi-path encoding 50

6.1 High-level view on the static analyzer 57
6.2 Phi loop during resolution of a method argument register 67

9.1 Multi-path encoding via target graph 98

A.1 Linear syntax diagrams . 103
A.2 Loop syntax diagrams . 104

iii

List of Tables

2.1 Size comparison of common Android system libraries and appli-
cations . 8

2.2 Dalvik bytecode instruction examples 10

5.1 Resolver semantics in backwards symbolic execution 35
5.2 New custom opcodes for encoding type information 44
5.3 Selected templates for expressions 51
5.4 Reconstruction of an array . 53
5.5 Set of invocations to form a call history 54

6.1 Register classification table . 65
6.2 StringBuilder invocation sequence 70

7.1 Evaluation of custom method invocations 83

v

Chapter 1

Introduction

In 2008, Google published its mobile operating system Android. In contrast to
competing operating systems like Apple’s iOS or Microsoft’s Windows Mobile,
the Android system is completely open-source. Any manufacturer that is about
to enter the smartphone market can use and customize Android without having
to spent massive amounts of money for license fees. As a result, Android became
very popular in short time. In the same year, the Open Handset Alliance [2], a
consortium of various hardware and software companies, was founded to develop
Android as open mobile platform.

With its increasing popularity, Android has become the top-selling operating
system on current smartphones. Its market share has grown constantly over
the last years to finally surpass Nokia’s Symbian in 2011, which has been the
market leader for years [32, 33, 42, 16].

Another important factor for the popularity of a mobile operating system is the
distribution platform for applications. Shortly after publishing Android, Google
announced the Android Market1 as primary software store for Android appli-
cations. Current market statistics estimate a number of 340,000 applications in
the official market in December, 20112. Recently, Google announced that the
Android market exceeded 10 billion app downloads with a growth rate of one
billion app downloads per month [10]. With these numbers, Android reached a
44% worldwide share of mobile app downloads and overtook the current leader
Apple [1].

Google’s liberal application policy does also allow third-party marketplaces.
Among the most popular ones is the Amazon Appstore, which opened in March,
20113. Users and application developers benefit from this market diversity com-
parably. Developers reach a wider audience and can choose the market that
provides the best conditions. On the other side, users are not bound to a single
market. Competing markets have to offer attractive application prices to attract
new customers. Users also benefit from special features like Amazon’s free app

1https://market.android.com
2http://www.appbrain.com/stats/number-of-android-apps
3http://www.amazon.com/appstore

1

https://market.android.com
http://www.appbrain.com/stats/number-of-android-apps
http://www.amazon.com/appstore

2 CHAPTER 1. INTRODUCTION

a day actions. However, the great popularity also has some downsides. The An-
droid operating system and its application landscape have quickly moved into
the focus of attackers and malware authors.

1.1 Motivation & Thesis Objectives

In the last years, the number of smartphone users has increased quickly. Cur-
rently, every fourth sold mobile device is a smartphone [33]. With increasing
hardware capabilities, modern smartphones are no longer solely used for tradi-
tional tasks like phone calls and transmission of messages. They are increasingly
often used for a wide range of functions that have previously been exclusive to
computers like the usage of video portals, social networking, and even online
banking. This also implies that users store more and more personal data on
their smartphones.

A careful handling of sensitive user information is therefore essential for appli-
cations. However, most applications lack transparency and do not fully reveal
what information is accessed and how it is processed or even is transmitted to
remote servers. In order to prevent malicious applications from being uploaded
in app stores, companies like Apple or Microsoft apply an application review
process. Any submitted application that does not comply with their official con-
tent policy is declined. These reviews certainly do not detect all applications
with malicious functionality, but they provide a basic security check.

Google does not apply any application vetting. Instead, the Android system
uses a mechanism called mandatory access control to provide application se-
curity. Applications have to require permissions in order to access extended
functionality or sensitive data. By omitting the manual review process, this
approach allows a faster deployment of new applications and creates a more
dynamic market landscape. But then, malware developers can register multiple
accounts and can easily upload and publish malicious application packages.

The quickly rising Android application landscape also resulted in a dramatic
increase of malicious code in the app store. With the constantly growing preva-
lence of Android smartphones, the market of mobile applications has evolved
to a lucrative market for malware developers [24, 44]. In 2011, the number
of malware reports escalated. Malware like DroidDream, Plankton, or Droid-
KungFu and its variants have impacted hundreds of thousands of Android users.
Their common functionality includes the retrieval and subsequent transmission
of sensitive user data.

The lack of application vetting along with the increasing popularity of Android,
makes the official market a popular target for new malware. Since Google
itself can not prevent malicious code from being uploaded and published, they
installed a reporting mechanism. This way, users can inform Google about
potential malware. Once confirmed, the concerning applications are removed
from the market. In addition, Google can trigger a kill switch to remove the
concerning software on all smartphones [45, 9, 41].

However, similar to signature-based detection systems, this only fights the ef-

1.2. OUTLINE 3

fects and does not prevent zero-day malware. Therefore, it is crucial to detect
malware before it is deployed to smartphones. Current Android malware reports
[61, 44] state that many malicious applications require the Internet permission
to communicate via the network and to transmit sensitive user data to remote
servers. Thus, analyzing the Internet usage of Android applications would pro-
vide great benefit by making network communication completely transparent to
users.

The goal of this thesis is to develop an analysis method for Android applica-
tions that performs a comprehensive verification of the Internet access. The
first essential task is to devise a suitable analysis approach. Android’s per-
mission model and, in particular, the Internet permission is to be analyzed to
check how applications can establish connections to remote servers. Finding a
method for analyzing the Dalvik bytecode included in the application packages
is then required to perform the actual application analysis. All network data
sinks within the application have to be identified. Then, any data that reaches
these methods has to be recovered. The most important information is the des-
tination of outgoing requests. In order to provide full transparency to the user,
another task includes the reassembly of data that leaves the smartphone via the
network communication. Sensitive user data within a request payload is often a
strong indicator for malicious intent or undesired data leakage. The revelation
of the entire network communication is then used to verify the Internet usage
of Android applications.

Another thesis objective constitutes the implementation of the analysis ap-
proach. A concrete tool, Bati, is to be developed to perform comprehensive
offline-certification for Android applications. The analysis results are to be pre-
sented to the user in an informative and understandable manner. Based on the
output, the user can then decide whether or not it is safe to install the analyzed
application.

1.2 Outline

The remaining thesis describes in detail the analysis framework and the ap-
proaches used within. It is organized as follows:

Chapter 2 introduces the mobile operating system Android. It gives a rough
overview of the core system and important features. The runtime environment
with Android’s virtual machine and its bytecode are highlighted in particular,
as they are essential basics for the analysis framework.

A high level overview of Bati, the analysis framework developed in this thesis,
is then presented in Chapter 3. It briefly describes the functionality and tasks
of components that are used within the analysis tool.

Before the actual information-flow analysis approach is described in detail,
Chapter 4 gives a brief introduction on common concepts of data-flow analysis,
which will be used within the analysis framework. To facilitate understanding,
each concept is illustrated with a descriptive example.

Chapter 5 represents the core part of this thesis. It explains in detail how

4 CHAPTER 1. INTRODUCTION

information-flow analysis techniques are applied to Android applications. In or-
der to accomplish a comprehensive verification of the Internet access, multiple
steps have to be performed. It starts with processing the application byte-
code and generating the necessary data structures for the analysis. Backwards
symbolic execution is then used to resolve register values that reach methods
for network communication. Finally, this chapter describes how data is stored
during analysis and is later assembled and output to the user.

The theory about the application analysis approach was presented in the last
chapters. One goal of this thesis is to implement the devised techniques in
a concrete tool that can be used for offline-certification. Chapter 6 provides
information about important implementation-specific details. This includes all
third-party tools and algorithms that are used to perform certain tasks within
the framework. Furthermore, necessary bytecode modifications and problems
that occurred during bytecode processing are described in detail.

In order to show the effectiveness of the analysis framework, Chapter 7 presents
common programming paradigms and describes how Bati processes and evalu-
ates them. Further, concrete analysis results are presented and their benefit to
network communication transparency is highlighted.

Chapter 8 presents current research that targets the conceptual improvement
of the Android operating system and the detection of malware and information
leakage. Chapter 9 concludes this thesis by showing approach and implementation-
specific limitations of the framework. It continues by summarizing the results
and emphasizing the contributions of this thesis. Finally, topics for future work
are proposed.

Chapter 2

The Android Operating
System

Android is an operating system for mobile devices such as smartphones and
tablet computers. It was originally developed by Android, Inc., which was
acquired by Google back in July 2005. In November 2007, the Open Handset
Alliance [2] was founded to develop Android as open mobile platform. Currently,
the alliance is a consortium of 84 hardware, software, and telecommunication
companies. In cooperation with the foundation, the first initial version of the
SDK was published by Google. Most of the Android code is released under the
Apache License in version two.

It took about one year until HTC released the first smartphone running Android.
The HTC Dream, in the USA and parts of Europe also marketed as T-Mobile
G1, became available in October 2008. At that time, Google also released most
of the source code of Android (some Google apps were omitted). The software
is hosted at the Android Open Source Project and the source code is freely
available from a central Git repository1.

The first official Android software version 1.0 was published in 2008. Since its
original release there have been a number of updates. These updates typically
target either the base operating system or the system applications that are
shipped with Android. They include bugfixes, add new features or enhance
existing ones. Each Android version has an official code name that is based on
the name of a dessert. Examples include Cupcake (1.5), Eclair (2.0/2.1) and
the latest release Ice Cream Sandwich (4.0).

The actual Android software stack comprises a Linux kernel, a middleware with
libraries, a runtime environment, and an application framework for executing
applications (commonly abbreviated by apps). Figure 2.1 depicts a high-level
view on the Android architecture.

1https://android.git.kernel.org

5

https://android.git.kernel.org

6 CHAPTER 2. THE ANDROID OPERATING SYSTEM

Android Runtime

Android Middleware

Linux Kernel

Application Framework

Native Libraries

Reference
 Monitor

Policies

Dalvik VM

Core Libraries

Figure 2.1: High-level view on the Android architecture

2.1 Kernel & Middleware

Current versions of Android use a customized version of the open-source Linux
kernel series 2.6. By choosing Linux as base component, Android itself does
not have to provide and implement core functionality, like process and thread
management. It additionally benefits from the memory management and the
proven driver model. The original Android is an ARM-based platform but there
is ongoing work on porting it to the MIPS and x86 [63] architecture.

Android’s security framework features a sandboxing mechanism to provide ap-
plication security. This mechanism is implemented on operating system level
in the underlying Linux. Each application in the user-space runs in its own in-
stance of the virtual machine Dalvik, which itself is running in its own process.
The Linux kernel assigns each VM process a unique user ID which allows the
process to access only its own data and a very limited set of system features. It
cannot interfere with data of other applications.

In order to support complex systems, applications must be able to communi-
cate and share data. Because of the sandboxing approach, direct communication
between processes is not possible. To enable controlled inter-process commu-
nication (IPC), Android uses the Binder framework2. Binder is a driver to
facilitate IPC and has been integrated into the custom Android Linux kernel.
It minimizes the processing overhead of IPC by supporting shared memory.
Furthermore, it allows synchronous calls between processes.

Applications in Android are composed of components to provide modularity and
to facilitate component reuse. Figure 2.2 shows the communication between
application components via Binder. Thereby, a reference monitor mediates the
communication between components by using mandatory access control. The
access control mechanism is based on permissions, which applications can re-
quest via a special manifest file (see Section 2.3.1).

The Android middleware includes libraries and APIs written in C and a runtime
environment with the virtual machine Dalvik. In contrast to other Linux-based

2Android uses a custom implementation of OpenBinder[49]

2.2. ANDROID RUNTIME AND THE DALVIK VIRTUAL MACHINE 7

systems, Android uses a custom libc implementation called Bionic, which is not
compatible to the GNU libc. All native code must be compiled against Bionic.

Sandbox Sandbox

Application A Application B

Binder

C CA1 A2 CB1 CB2

Figure 2.2: Inter-process communication

There are several reasons for not using the common libc library. Google wants to
keep GPL-licensed software out of the Android user-space because this would
restrict licensing of derivative works. Bionic is published under a permissive
BSD license which only places minimal restrictions on how the software can
be redistributed. It’s a lightweight libc implementation optimized for a small
memory footprint and embedded processors.

Since the application security is completely enforced on operating system level,
the Dalvik VM itself is not concerned with runtime security. The virtual ma-
chine is not limited to executing dex bytecode. Through mechanisms like the
Java Native Interface (JNI) or traditional Unix FIFOs, native code can be exe-
cuted and thus the application can pop out of the virtual machine.

2.2 Android Runtime and the Dalvik Virtual
Machine

The Android runtime consists of the Dalvik virtual machine [12] and some core
libraries, which inherit almost all features provided by core libraries of the Java
programming language. The virtual machine was originally written by Dan
Bornstein and named after an Icelandic fishing village in which some of his
ancestors lived.

There are some reasons on why Google prefers a custom virtual machine im-
plementation for application virtualization to a well proven Java VM. Given
the design decision to run each application in its own virtual machine and the
natural resource limits from embedded devices, the VM must keep the memory
footprint rather small. Furthermore, it needs to react quickly as applications
are started and closed frequently. It should keep a high performance even if
multiple instances are running. In order to meet these requirements, several
optimizations have been devised and implemented.

Dalvik is capable of executing applications written in Java. It does not support
Java directly, but the SDK provides a tool called dx which takes Java class
files and converts them into dalvik executable (dex) bytecode. As of Android

8 CHAPTER 2. THE ANDROID OPERATING SYSTEM

2.2, Dalvik contains a JIT-Compiler for runtime bytecode optimization [14].
Performance tests showed that the Just-In-Time compiler delivers a speed gain
up to 5 times faster in cpu-intensive workloads.

The Dalvik VM is not limited to executing dex bytecode. It is also capable of
executing native code. Google offers a Native Development Kit3 which can be
used to generate native code for Android from C/C++ sources. In general, na-
tive code runs faster than bytecode executed by a virtual machine. Thus, it is a
suitable choice for time-critical applications or for speeding up heavy computa-
tional tasks that appear for example in complex games. Intensive benchmarking
[6] showed that native code runs up to 10 times faster than plain Java code.
In Android applications, native code can be executed via JNI or named pipes.
The JNI approach is preferable in data-intensive tasks, since the code runs in
the same thread as the main application. No new process has to be spawned
and the expensive Java I/O bottleneck is avoided.

2.2.1 The dx compiler

The dx compiler is the main tool to convert Java bytecode into dex bytecode.
Given a set of class files, the dx compiler generates a single dex file named
classes.dex. It uses the concept of shared constant pools to efficiently eliminate
duplicates in the Java bytecode. Dex bytecode stores constant values only once,
which dramatically reduces the size of the resulting bytecode.

Table 2.1 shows a comparison of bytecode sizes of common system libraries and
applications that are shipped with Android. The concept of shared constant
pools results in a significant size reduction of the final bytecode[12].

Code
Uncompressed JAR Compressed JAR Uncompressed Dex
File (Bytes) File (Bytes) File (Bytes)

Common System Libraries 21,445,320 (100%) 10,662,048 (50%) 10,311,972 (48%)
Web Browser App 470,312 (100%) 232,065 (49%) 209,248 (44%)
Alarm Clock App 119,200 (100%) 61,658 (52%) 53,020 (44%)

Table 2.1: Size comparison of common Android system libraries and applications

2.2.2 The Zygote

Another optimization concept targets the memory usage and reaction times of
the virtual machine. Traditional Java VM instances hold an entire copy of core
library classes and associated heap objects. There is no memory sharing across
VM instances. Additionally, a cold startup of virtual machines always takes
excruciating long time. Cold startup means, that core libraries always have
to be loaded before the actual application can be executed. In the context of
mobile devices, it is common to start/stop applications and to switch between
them. Long pre-loading sequences are not accepted by users.

3The NDK is available at http://developer.android.com/sdk/ndk/index.html

http://developer.android.com/sdk/ndk/index.html

2.2. ANDROID RUNTIME AND THE DALVIK VIRTUAL MACHINE 9

Since every application runs in its own VM instance, new virtual machines
must be spawned quickly. In addition, the memory footprint must be kept
minimal, as memory is always a very limited resource in mobile devices. Android
uses a concept called Zygote [12, 23] to solve these issues. It provides both
code sharing across VM instances and fast startup times of new VM instances.
Zygote assumes that there are several core library classes and corresponding
heap structures that are used by many applications. These structures are kept
in memory and are usually accessed read-only, which means that applications
will read this data, but never modify it. This observation is exploited to optimize
the memory sharing across applications.

Zygote itself is also a VM process and is started by the init process at system
boot time. During startup, Zygote spawns a Dalvik VM which pre-loads and
pre-initializes common core library classes. Afterwards, it opens a socket and
waits for requests from the runtime process to fork new child VMs for applica-
tions. This dramatically reduces the time necessary to fully initialize and start
a new virtual machine.

The Zygote concept also offers mechanisms to handle rare cases in which ap-
plications write to shared memory. It uses a copy-on-write technique to allow
such write operations. The concerning memory region is copied to the applica-
tion VM process, that wants to write data to it. This prevents processes from
interfering with each other and provides security across process boundaries.

2.2.3 Register-based Virtual Machine

Traditional JVMs, that operate on Java Bytecode, are usually stack-based vir-
tual machines. Stack-based architectures are easier to implement but suffer
from a weak performance and a larger memory overhead, since the stack data
structure needs to be held in memory.

Shi et al. [59] compared stack-based JVM architectures against a register-based
architecture. They pointed out that register-based architectures require an av-
erage of 47% less executed VM instructions compared to a stack-based architec-
ture. On the other hand, the code size for the register-based VM is about 25%
larger than the corresponding code for the stack-based VM. After executing
some standard benchmarks, they concluded that, on average, the register-based
VM takes 32.3% less time to finish.

Given these results, the decision to implement a register-based virtual machine
for Android seems to be appropriate. Android reduces the code size through the
concept of shared constant pools. The resulting code reduction of 50% offsets
the larger instruction size. Taking all aspects into consideration, the Dalvik VM
ends up with an improved memory usage as compared to a stack-based VM.

2.2.4 Bytecode for the Dalvik VM

Android’s custom register-based Dalvik VM also introduces a new bytecode
format. As the remainder of this thesis will focus on the static analysis of
this bytecode, it is necessary to introduce the basics of the bytecode format.

10 CHAPTER 2. THE ANDROID OPERATING SYSTEM

The dex bytcode currently includes 218 Instructions [52]. They can be grouped
semantically, for example in move, invoke, or binary operation instructions.

Dex bytecode instructions are identified via an unique 2-digit hexadecimal ID.
For user convenience there also exist human-readable mnemonics (see Table 2.2).
Furthermore, the instruction format follows a strict argument ordering, i.e. the
destination register is always placed before any source registers.

The default register size in Dalvik is 32-bit. Adjacent register pairs are used for
64-bit values of type long and double. In general, dex bytecode instructions do
not necessarily preserve the data type. For example instruction 14 does specify
an arbitrary 32-bit constant, which can be either an integer or a float value.

Op Mnemonic / Syntax Arguments

01 move vA, vB A: destination register (4 bits)
B: source register (4 bits)

14 const vAA, #+BBBBBBBB A: destination register (8 bits)
B: arbitrary 32-bit constant

9b add-long vAA, vBB, vCC A: destination register (8 bits)
B: first source register (8 bits)
C: second source register (8 bits)

bb add-long/2addr vA, vB A: destination and first source register (4 bits)
B: second source register (4 bits)

Table 2.2: Dalvik bytecode instruction examples

For further optimization, the bytecode specification includes 2-address instruc-
tions for binary operations, indicated by a trailing 2addr. These size-optimized
instructions perform a binary operation with two registers. The destination
register in which the result of the operation is stored, is also the first source
register.

Binary operations on integers are very common in applications. The default
binary instructions suffer from the fact that numeric constants have to be put
into registers before they can be processed. Dalvik developers realized that
this area has potential for optimization and thus implemented some additional
opcodes.

Through dedicated binary operation opcodes, the Dalvik VM can execute in-
teger operations with one literal operand directly. The literal value does not
have to be put in an extra register first. This usually reduces the total number
of registers used within a method. Furthermore, the performance is improved,
since the additional move operation for the literal value can be omitted. These
dedicated binary operations are allowed for 8-bit and 16-bit integer values and
are labeled with a trailing lit8 and lit16.

Working directly with the compact dex bytecode format is usually infeasible and
inconvenient. Therefore, there exist disassembler, that translate the compact
bytecode into a more convenient assembly language. The Android SDK comes
with a default disassembler called dexdump, but there also exist some open-
source dex disassembler which provide more functionality. More information

2.3. APPLICATION FRAMEWORK 11

about these tools is provided in Section 6.1.

2.3 Application Framework

Applications for Android are written in Java and are composed of a set of
components. The most important component types are activities, intents, ser-
vices, and content providers. An activity is a user interface screen. Android
applications usually consist of several activities that differ in functionality and
possibilities for user interaction. An intent is a mechanism for describing a spe-
cific action like ”open a URL in the web browser”. Services are tasks that run
in the background without the user’s direct interaction. A content provider is
a set of data that can be accessed and modified by use of a previously defined
custom API.

This component-based architecture provides a modular application structure
and enhances component reuse. The definition and relationship of these com-
ponents is specified in a manifest file called AndroidManifest.xml. Application
developers must also use this file to specify any permission that extends the
feature set of the application.

Another security feature used in Android is application signing. It allows the
verification of the origin of an application. Developers use self-signed certifi-
cates to sign their application code. Applications signed with the same key are
executed with the same user ID and are thus able to share information without
additional permissions. Furthermore, the certificates ensure that application
updates really come from the original application developer.

2.3.1 Permission Model

The official Android Market is not based on application vetting. Instead, An-
droid uses a permission model called mandatory access control to protect ap-
plications and data provider. By default, applications cannot access sensitive
information that is stored on the phone. The default policy also prevents com-
munication between components that are not signed with the same key. Ap-
plications that need more than the basic set of features can explicitly request
additional permissions via the Android manifest file. There exists a predefined
set of permissions, but application developers are free to define new custom
permissions.

Android’s security model provides four different protection levels of permissions:

• normal permissions are low-risk permissions, which give an application
access to some features that have minimal potential to cause damage to
other applications, to the system, or to the user. During installation,
this type of permission is automatically granted to the requesting ap-
plication without asking the user for acknowledge. An example is the
SET WALLPAPER permission which allows an application to set the
wallpaper.

12 CHAPTER 2. THE ANDROID OPERATING SYSTEM

• dangerous permissions give a requesting application access to an API
which provides functionality to access private user data or to potentially
dangerous control mechanisms. These permissions need the user’s explicit
approval when being requested during the application installation. An
example is the INTERNET permission, which allows an application to
open arbitrary network sockets that can be used to make connections and
send data to remote servers.

• signature This type of permission is only granted by the system, if the
requesting application is signed with the same certificate as the app that
declared the permission. If the certificates match, the permission is auto-
matically granted without asking for confirmation.

• signatureOrSystem This special type of permission is only granted to
packages in the Android system image or to packages that are signed with
the same certificates. This protection level is generally used by Google or
vendors only.

Permissions declared in the manifest file are set at application install time. Dur-
ing runtime, the permissions are enforced by the Reference Monitor. After the
installation of an application, there is no way to change or revoke permissions.
Permissions can also not be granted dynamically at runtime. The following of-
ficial statement gives some insight on why Google does not implement a more
sophisticated permission management:

”Android has no mechanism for granting permissions dynamically
(at run-time) because it complicates the user experience to the detri-
ment of security.”[21]

MAC-based permission models are used in other mobile platforms as well, e.g.
in the Java ME Platform (formerly known as J2ME). In contrast to Android, the
Java ME model is slightly more flexible. It does not only offer a hybrid model
of mandatory access control and application vetting, it does also allow the user
to select permission options such as always and ask every time to provide access
control at runtime.

The Internet Permission

The main target of this thesis is the analysis of the Internet access of Android
applications. The Internet permission is the main prerequisite for any applica-
tion that transmits and receives data from servers in the Internet. Among the
set of dangerous permissions, the Internet permission is handled in a special
way. Network connectivity is exposed via API calls executed by the virtual
machine, as well as via native code compiled with Bionic. In order to be able
to control both cases, the permission is enforced through the underlying Linux
kernel. Therefore, Android developers added a new Unix group inet to the sys-
tem. Each executed application, that has been granted the Internet permission
during install time, is added to this group. The Android kernel has been mod-
ified to perform the runtime checks by probing whether an application, that is
trying to access the Internet, is member of this group.

2.3. APPLICATION FRAMEWORK 13

The Internet permission is also a permission with a huge potential for misuse.
Once granted to an application, the app can set up an arbitrary number of
connections to remote servers. Data can even be sent and received without the
user being aware of it at all.

Many applications require the Internet permission to be able to show advertise-
ments to users, even if the application does not necessarily need connectivity
for its core functionality. Other applications require the permission for offer-
ing cloud services or for communication with web applications that are hosted
on remote servers, which especially makes sense for mobile devices with very
limited computing power.

Several research studies did not only confirm that the Internet permission is
often a prerequisite for malicious behaviour, they also showed that it is the
most requested permission among the set of all permissions. Barrera et al. [5]
analyzed 1,100 applications for their empirical study which included the top 50
free applications of all 22 categories in the Android Market. They found out
that 62% of all applications request the Internet permission. An even more
comprehensive analysis was done by the mobile security company SMobile Sys-
tems in June 2010 [61]. They collected information about 48,700 applications
in the Android Market and reported that even 71% of all apps requested this
permission.

This clearly shows that focusing on the Internet permission will give the most
benefit, as it targets the security of almost three out of four apps in the Android
Market.

14 CHAPTER 2. THE ANDROID OPERATING SYSTEM

Chapter 3

Bati - A high-level overview

In general, it should be assumed that applications never transmit sensitive user
data without the user being aware of it. However, reality shows, that even
non-malicious applications leak user data, for example to advertising servers.
Providing network transparency for applications mitigates that problem, as po-
tential leakage becomes apparent to users. This thesis takes on that problem by
verifying the Internet access of Android applications. This includes the analysis
of network connections that can be established by an application. Besides de-
veloping a theoretical model for the analysis, another task includes providing a
concrete tool that applies the approach on applications. This chapter presents
an abstract high-level description of the analysis tool, Bati, to be implemented.

Since the application source code is not available in general, the verification must
be performed on the application binary. Android applications are written in Java
and compiled to dex bytecode that is executed in the Dalvik virtual machine.
Thus, the analysis must be applied on dex bytecode to recover information
about the application’s behavior. It is part of the application package and can
therefore be easily extracted.

The analysis of applications using Bati comprises multiple steps. In a first
step, it is to be checked whether the application includes routines to make
connections to servers in the Internet at all. This is the necessary prerequisite
for an application to exchange data with remote servers.

Once it is verified that the application contains network sinks, it is important to
know the destination of outgoing requests. The destination usually comprises
an IP address or domain name, a transmission protocol like HTTP or HTTPS,
and an optional port specification. Furthermore, the analysis should verify the
type of data that is exchanged with the remote server.

3.1 System Overview

Figure 3.1 shows the high-level design of the system to perform the application
analysis. Bati, the actual bytecode analyzer, is composed of several modules

15

16 CHAPTER 3. BATI - A HIGH-LEVEL OVERVIEW

to increase flexibility and to ease reuse of components, for example in different
analysis tools. Bati is the Icelandic word for recovery and was chosen in the
style of the Icelandic fishing village Dalvik, which denotes the virtual machine
used in Android. The tool implements a static analysis which is described in
detail in the following chapters.

Application

URL

Parser

SSA BuilderStatic Analysis

Decoder

Dex Bytecode

Bati - App Analysis

Disassembler

A

B C

D E

Figure 3.1: High-level view on the analysis tool

Working directly on the compact dex bytecode format is usually infeasible and
inconvenient. Therefore, a disassembler translates in a pre-processing step the
application bytecode into a more convenient assembly language. The disassem-
bler is not part of the actual implementation. There exist some open-source
disassembler for dex bytecode that offer comprehensive functionality and gen-
erate high quality assembly language. The output is a set of files containing the
assembly language that is used as input for the analysis tool.

Bati comprises several modules, which perform the pre-processing of bytecode,
the actual analysis, and the preparation of results that are output to the user.

The task of the first module is to parse the bytecode. Thereby, instructions
are dissected into segments and stored for further processing. Within this step,
lookup tables and acceleration structures are generated to improve the perfor-
mance of the analysis. Furthermore, the bytecode is searched for locations at
which the application creates connections to the Internet. These locations are
considered as data sinks and are the starting point of the actual analysis. Before
the verification of the Internet access takes place, the bytecode is transformed
into data structures that facilitate the static analysis. In a first step, a control
flow graph is generated from the bytecode. A control flow graph is a repre-
sentation that shows, depending on certain conditions, how information flows
through different parts of the application. In a subsequent step, the graph is
used to generate a static single assignment form of the dex bytecode. This form
is an intermediate representation that is generally used for optimization and
validation. It requires modification of the bytecode by renaming registers and
injecting custom instructions that provide additional information about data
flow.

3.2. MODULAR DESIGN & GENERIC APPROACH 17

The static analysis starts at the data sinks found during parsing. Data sinks
are method invocations used for initialising and establishing outgoing network
connections. In order to open a connection, arguments for destination and
payload have to be passed to the invocation. Resolving any data that reaches
these network sinks is the main objective of the analysis algorithm. In order
to accomplish this task, properties of the static single assignment form are
exploited to trace information from predefined data sinks backwards towards
data sources. Data sources might be data provider on the mobile phone, user
input, or constant values in the bytecode.

All data fragments that are collected during the analysis, are assembled during
the decoding step. The results are URLs including a host part that is usually
followed by an argument string containing the concrete values that are to be
sent to the remote server. Finally, the results are output to the user, who can
in turn check whether sensitive information leaves the phone without previous
authorization.

3.2 Modular Design & Generic Approach

The current system design provides benefit even beyond the actual objective of
making application network usage transparent to the user. Its modular design
enhances component reuse in other tools. Furthermore, modules can simply
be replaced by components implementing a different technique or components
offering optimized functionality.

The control flow graph is a common data structure that is used for many data
flow analysis techniques. The static single assignment form constitutes the
basis for various optimization and validation tasks, for example in the area of
compiler construction. It could also form the basis for advanced dex bytecode
optimization algorithms.

Backwards flow analysis is one of many techniques for static analysis. By re-
placing the analysis module with a different algorithm, the system can easily
be modified to support other types of data analysis. All modules can thereby
access and benefit from data structures created by preceding modules.

Another advantage of the system’s static analysis module is that it implements
a very generic approach. Tracing data back to its source does not depend on a
certain data type. It’s only a matter of defining data sinks, which represent the
starting points of the analysis. The system’s core task is to verify the Internet
access of applications, however it can simply be extended to check the sending
of SMS or to verify the destination of phone calls. It is only required to define
the corresponding data sinks as new entry points for the algorithm.

18 CHAPTER 3. BATI - A HIGH-LEVEL OVERVIEW

Chapter 4

Information Flow Analysis
Primer

The basic idea behind data flow analysis is to derive information about the
behavior of a program by only examining its static source code. Data flow
analysis is a well-known approach to gather information about possible values
calculated at various points in an application. It collects information about
selected variables defined in the program and the way they are used. Values
of variables are monitored while they propagate through parts of the program.
Thereby, the control flow graph, a common data structure, is created to provide
a high-level data flow representation of the target application. In particular,
spots at which the control flow is split, like at conditionals or loops, can then
easily be identified.

There exists a great range of approaches to perform data flow analysis. The
following sections describe high-level approaches and concepts used in the area
of flow analysis algorithms.

4.1 Static versus dynamic Program Analysis

The highest abstraction level for program analysis algorithms is the partition
into static and dynamic analysis approaches. In dynamic program analysis, the
target program is executed on a real or virtual processor. In general, it’s very
difficult to test all paths through a program, in particular if the source code is
not available. For dynamic analysis to be effective, the applications must be
executed with a large set of test inputs to achieve a high code coverage. API
calls and expressions are executed by the host system during program execution,
thus the dynamic analysis can precisely monitor modifications of values as they
propagate through the application. Such a real-time analysis always incurs a
non-negligible performance overhead that slows down the running application.

The second kind of program analysis is static analysis. In contrast to dynamic
analysis, static approaches do not execute the target application. Instead, these

19

20 CHAPTER 4. INFORMATION FLOW ANALYSIS PRIMER

algorithms work either on the source code or, if not available, on machine or
bytecode. Static analysis is not able to evaluate or monitor third-party code
that is not available, e.g. method invocations in private APIs. By exclusively
working on source code, this kind of analysis is independent of the architecture
and the system. It can be done both online and offline. The offline analysis
approach can usually benefit from high-performance systems that accelerate
the actual analysis.

In contrast to dynamic analysis, static analysis algorithms can report more
detailed and comprehensive results on an application’s data flow, because branch
structures are often not available in dynamic analysis.

4.2 Symbolic Execution

Symbolic execution [39] is a common strategy that is used in program testing
and validation. It refers to the analysis of programs by tracking symbolic rather
than actual values. This kind of abstract interpretation is used to reason about
all inputs that take the same path through a program. It’s a common technique
in static analysis that is used if no concrete values are provided and/or it is
infeasible to test large sets of input values to get a satisfying coverage. Therefore,
abstract symbolic values, which represent an entire class of input data, are used
for traversing paths.

Symbolic execution is used to reason about a program path-by-path. It does not
indicate if multiple inputs take the same path through the program. Compared
to the input-by-input analysis done in dynamic program analysis, this approach
might lead to superior results, due to improved performance and input coverage.
A drawback of this kind of algorithms is the chance of a path explosion. Com-
plex applications include many control structures like if-statements or loops and
therefore generate a huge amount of paths that need to be analyzed. Symbolic
execution techniques can be applied in both forwards and backwards direction.

Forward symbolic execution is a common approach that is taken for program
analysis. Entry points of a program have to be defined and in subsequent steps
all paths are analyzed until either predefined sinks are found or until some ter-
mination criteria is reached. It is usually unknown which paths contain a sink.
Therefore, a forward-flow analysis algorithm needs to traverse all possible paths
and filter out any path that does not end in a predefined sink. In complex appli-
cations this may lead to large graphs, whose processing is very time-consuming
and resource-intensive.

The reverse way is taken in backwards symbolic execution. In a preprocess-
ing step, the program code is searched for any predefined sinks. Once found,
these locations are the starting point of the analysis. The control flow graph is
then traversed backwards towards data sources like a file input or towards entry
points of the program. This approach narrows down the set of paths dramati-
cally, as only a subset of the program needs to analyzed. As compared to the
forward analysis approach, each path that is processed, starts at a predefined
sink and therefore produces a valid result.

4.3. CONTROL FLOW GRAPH 21

4.3 Control Flow Graph

The control flow graph (CFG) is an essential building block for many static
analysis techniques, e.g. in compiler optimization. A CFG is a directed graph
that represents all paths that might be traversed through an application dur-
ing its execution. In a CFG, each node represents a basic block, which is a
straight-line piece of code or a set of instructions without any jumps or labels.
Basic blocks end with a statement that splits the control flow, like if or switch
conditionals, and a new basic block is created at a jump target/label. Most
control flow graphs additionally have an unique entry node and an unique exit
node.

Figure 4.1 shows a control flow graph of a simple program. Starting at the
conditional at the end of the first basic block, the control flow of the program
is split into multiple paths. Depending on the value of x, either the left then-
branch or the else-branch on the right is executed.

Figure 4.1: An example control flow graph

In the domain of control flow graphs there exist a number of concepts that
describe the relationship between nodes. Important concepts include dominator
and dominance frontiers which have applications in compilers and for computing
the static single assignment form. The concept of dominator was first introduced
by Reese T. Prosser in 1959 [54]. A formal definition of dominance is given by:

Definition 4.1 (Dominance) Dom(b): A node n in the CFG dominates b if
n lies on every path from the entry node of the CFG to b. Dom(b) contains every
node n that dominates b. For x, y ∈ Dom(b), either x ∈ Dom(y) or y ∈ Dom(x).
By definition, for any node b, b ∈ Dom(b). A node n strictly dominates b if n
dominates b and n 6= b.

Often, it is also useful to know the immediate dominator of a node b. Intuitively
speaking, this is the node of the dominator set, which is closest to b.

Definition 4.2 (Immediate Dominator) IDom(b): For a node b, the set
IDom(b) contains exactly one node, the immediate dominator of b. If n is b’s

22 CHAPTER 4. INFORMATION FLOW ANALYSIS PRIMER

immediate dominator, then every node in {Dom(b)− b} is also in Dom(n).

Another concept, especially important for computing the static single assign-
ment form, is called dominance frontiers. Cytron et al. define the dominance
frontier of a node b as

”.. the set of all CFG nodes, y, such that b dominates a predecessor
of y but does not strictly dominate y.”[19]

The dominance frontier is not only important for finding the exact places for
φ-functions in the SSA form (see Section 4.4), it has applications in other algo-
rithms as well. It is also used to determine postdominance frontiers, which is
an efficient method to compute control dependence.

4.4 The Static Single Assignment Form

In many forms of static analysis the choice of the data structure for input data
has direct influence on the efficiency and power of the chosen algorithm. A
poor choice of the data structure can have many negative implications. It can
slow down the analysis dramatically or even inhibit forms of optimization or
advanced analysis techniques. The static single assignment (SSA) form has been
introduced [3, 56] to provide an improved representation of data and control flow
of programs.

The SSA form is kind of an intermediate representation that is often used in
compiler design for optimization and validation. A property of this form is that
each variable is assigned exactly once. This is achieved by renaming variables.
Each new definition of a variable is renamed by appending a sequential numeric
index to its original name. Typically, an assignment instruction is considered
a new definition. All variable uses are renamed by appending the index of the
last definition of that variable. In the final SSA form, each use of a variable has
exactly one definition. This means, that use-def chains are explicit in the SSA
form because each chain only contains a single element. Figure 4.2a shows the
previous control flow graph example with rewritten variable names.

The second essential step for translating a program into its static single assign-
ment form is to place Phi functions. Just renaming all variables possibly creates
ambiguity in join nodes at which control flow from multiple paths is merged. In
the last basic block in Figure 4.2a, it is obviously not clear which definition of y
is used for the following operations, either y1 from the then-branch or y2 from
the else-branch.

In order to resolve this ambiguity, the concept of Phi functions is used. Phi
functions are special assignment statements that are inserted at the beginning
of join nodes. A φ-function has the form V ← φ(W, X, ..) where V,W,X are
variables. The number of operands of the function directly corresponds to the
number of immediate predecessor nodes of the node containing the φ-function.
As φ-functions are placed in join nodes only, each function has at least two
arguments. Thereby, the i-th operand of φ is associated with the i-th predecessor
node. If the control flow reaches a φ-function from the i-th predecessor, variable

4.4. THE STATIC SINGLE ASSIGNMENT FORM 23

(a) (b)

Figure 4.2: SSA form before and after placing the Phi function.

V is assigned the i-th operand. Each execution of a φ function only uses one of
the operands, depending on the control flow.

Figure 4.2b shows the program after being fully translated into the SSA form.
The inserted φ-function resolves the ambiguity in the last basic block.

4.4.1 Creation of the SSA form

The static single assignment form is a powerful and attractive data structure
in data flow analysis. It usually facilitates and accelerates analysis algorithms.
However, the creation of the SSA form is difficult and tends to be inefficient.
Over the years there has been a lot of research in making the generation of the
SSA form more efficient and easier to implement. But besides all optimizations,
each algorithm to translate an input into its SSA form includes the following
two essential steps:

1. Placement of φ-functions

2. Renaming of variables

A SSA algorithm starts with the placement of phi functions for merging the
information flow of multiple paths. There exist various approaches to place φ-
functions at join nodes. Many algorithms use a control flow graph and compute
the dominance frontier set to determine all target spots. This concept is based
on the work of Cytron et al. [18, 19]. Computing dominance on the flow graph
has been the bottleneck in first implementations. By using approved and more
efficient algorithms to compute dominance information [40, 37, 17], the per-
formance of the SSA generation could be increased significantly. Thereby, the

24 CHAPTER 4. INFORMATION FLOW ANALYSIS PRIMER

concept of the SSA form has become a default technique in static program anal-
ysis. There also exist other techniques for placing φ-functions, like approaches
based on DJ graphs [60, 20] and merge sets [8].

The second step targets the renaming of variables such that each variable is
defined exactly once. Typically, an assignment to a variable is considered a new
definition. The renaming procedure is pretty straightforward and can be done
in linear time. Only the current index per variable needs to be recorded.

Chapter 5

Information Flow Analysis
on Android

The current state of the Internet permission allows an application to create an
arbitrary number of connections to arbitrary remote servers. There is no limita-
tion, neither in the number of connections, in the destination of the connections,
nor in the kind of data that can be sent via connections. Unless the network traf-
fic is monitored, apps can also establish connections in the background without
the user being able to notice it.

The Internet permission is a necessary prerequisite for many malicious apps
that try to send private user data to servers or to interfere with security critical
applications like online-banking apps. However, there are also many applications
that use this permission for legitimate reasons.

Unfortunately, there is no way for a user to decide whether a program uses
the Internet permission correctly or not. Even at runtime, it is often not ob-
vious which data leaves the phone and where it is sent. There is currently no
transparency for the Internet usage of Android apps.

The goal of this thesis is to provide a tool to verify the Internet access of Android
applications. Given an application, the tool’s task is to retrieve information
about connections that are established to servers in the Internet. In particular,
the destination of the connections, that are host names and IP addresses, are
from great interest. Finally, the user is interested in the kind of data that is sent
to remote servers. Such an analysis tool will help users to detect malicious apps
easier and faster, since the entire network communication of an application is
revealed.

5.1 How to analyze Android Applications?

The first and most important step towards the verification tool is to choose an
appropriate analysis technique. A possible approach could be based on dynamic
program analysis. This includes executing the app on a real or virtual device.

25

26 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

One kind of dynamic analysis is used in TaintDroid [25]. Data originating from
sensitive data sources are flagged with a taint marker to follow its propagation
through the application (see also Section 8.1). The advantage of this kind of
dynamic runtime analysis is that data which leaves the phone, for example via
network, can be monitored precisely.

API calls and expressions do not have to be evaluated, the result is just to be ob-
served and reported. But this convenience has also some drawbacks. Dynamic
analysis usually requires a modification of the Android SDK to implement the
monitoring mechanism. Furthermore, real-time analysis always incurs a non-
negligible performance overhead, especially on mobile devices with very limited
resources. TaintDroid only tracks explicit data flows to minimize this perfor-
mance overhead.

Static analysis algorithms are directly applied on the application’s bytecode.
Algorithms that work directly on source or bytecode are not capable of ana-
lyzing libraries for which no code is available. However, there are also several
advantages as opposed to dynamic approaches. By using symbolic execution
and analyzing path information obtained by the control flow graph, static anal-
ysis algorithms can give detailed and comprehensive information about the data
flow through a program.

Static analysis can also be done offline on high performance computers to accel-
erate the analysis. Executing Android applications on a x86 system is currently
only possible by using the simulator that is shipped with the official SDK. This
virtual device is quite slow and not meant to be used for heavy computation
tasks. Being able to apply an analysis algorithm offline offers the possibility to
even analyze a large number of applications in a short amount of time.

This kind of analysis also does not incur any runtime performance overhead.
When used on a real device, the analysis just runs once without using resources
during the application’s runtime. Bytecode analysis also does not require mod-
ifications to the system image1. There is no need to implement functionality
into the core system.

Dynamic analysis always suffers from the problem that the program needs to be
executed. If an application is executed on a real device, there is always a chance
that malicious actions take place. These actions can be monitored and reported,
but not prevented in the first place. On the other side, static analysis takes
place during installation-time of an application. If some malicious behaviour is
detected, the user can still abort the installation without having experienced
any negative effects.

Taking all these aspects into consideration, static bytecode analysis seems to be
the appropriate choice to achieve the objectives of this thesis.

1Modifications are not necessary for the actual analysis. However, the Android security
mechanism does not allow applications to access data of other apps. Therefore, a mechanism
to access the bytecode of other applications must be implemented to run the analysis on an
Android device.

5.1. HOW TO ANALYZE ANDROID APPLICATIONS? 27

5.1.1 Definition of Sinks

The static analysis algorithm directly operates on the dex bytecode. Before the
analysis is executed, the starting points have to be specified. In the context
of this thesis, these are data sinks at which data can leave the phone towards
the Internet. In bytecode the sinks are usually method invocations of certain
classes.

The Android/Java API contains several classes that can be used to create con-
nections to remote servers. These classes also provide functionality to exchange
data. The classes which are considered as a sink are:

• java.net.URI

• java.net.URL

• org.apache.http.client.methods.HttpGet

• org.apache.http.client.methods.HttpPost

URI and URL are both generic classes which are used to specify an Uniform
Resource Identifier/Locator including an optional argument string to be sent.
Instances of these classes can then be used to create HTTP, HTTPS, or FTP
connections. The Apache classes can be used to create HTTP GET and POST
requests as well. Instances of the Apache classes can not only be created using
an existing URI instance, but also via a textual representation of a URI. Thus,
these classes must also be considered a data sink to capture all cases.

After the specification of sinks is fixed, a technique is required to find these sinks
in bytecode. Given a disassembled Android application and the predefined set
of sinks, it is to be checked whether or not the application contains any of these
sinks. Furthermore, their exact location needs to stored, as they are the starting
point of the analysis.

The dx compiler translates any method call into an invoke bytecode instruction.
There exist several types of invoke instructions to differentiate for example
between static methods or super class methods. Bytecode Listing 5.1 shows the
dex bytecode that is generated for a new URL object that is initialized with the
domain http://www.foo.com .

new-instance v0, Ljava/net/URL;
const-string v1, "http://www.foo.com"
invoke-direct {v0, v1}, Ljava/net/URL;-><init>(Ljava/lang/String;)V

Bytecode Listing 5.1: Dex bytecode for a URL instance

The dex bytecode instructions new-instance and const-string define new objects.
The instruction of interest is the invoke-direct instruction. invoke-direct is used
to invoke a non-static, non-overridable method–in this case the constructor of
the URL class.

The invoke instruction format slightly differs from other instructions that have
been explained in Section 2.2.4. The first argument is a set of registers. In non-
static method calls, the first register of this set is the object instance on which

28 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

the method is invoked. All subsequent registers are method argument registers.
The URL constructor has a single argument of type String. It is passed via
register v1 that refers to the constant string http://www.foo.com .

5.1.2 Backwards Symbolic Execution

In a first step, all classes that can be used to make outgoing connections have
been identified. Furthermore, it has been described how these sinks can be
located in dex bytecode. Finally, an approach is required to recover all informa-
tion that reaches the sinks. This does not only include the domain or host part
of the URL, but also data that is sent to this destination. Symbolic execution
is a good choice, because no concrete test inputs have to be generated. This
approach uses symbolic values to traverse the paths through the program. It
can be applied both in forward and backward direction.

In symbolic execution an entry point needs to be specified indicating the starting
point of the analysis. In forward symbolic execution this is typically the main
function of a program. However, Android applications do not have a single entry
point. Instead, an application can have arbitrary entry points. Any onCreate
constructor of an Activity, that can be displayed to the user, is considered
an entry point. Furthermore, forward analysis potentially traverses the whole
control flow graph of a program, since the paths that contain sinks are not known
in advance. This slows down the analysis significantly, even more if the analysis
is done on real devices whose ARM processors have very limited performance.

Backwards symbolic execution can exploit the fact that the location of sinks
has already been determined. Thus, the control flow graph can be traversed
backwards starting at the predefined sinks. This narrows down the search tree
dramatically, since only a subset of the CFG needs to be analyzed. In many
cases, backwards analysis will also output fragments of the final result faster
than the forward approach. Usually, parts of the URL are created close to the
sink, which is close to the connection that is used for data transmission. Thus,
information about the destination can often be output quite fast, whereas parts
of the argument string usually origin at various parts of the application and
therefore require advanced analysis.

5.2 Building the Control Flow Graph

As explained in Chapter 4, an appropriate data structure is essential for any
data flow analysis approach. The control flow graph is a well approved data
structure for representing the control flow through a program.

For the actual analysis, the control flow graph is created on a per method
level. This is also the granularity provided in dex bytecode. The resulting
CFGs are relatively small in size (usually less than 100 basic blocks) and have
therefore manageable complexity. The control flow graph is an intermediate
representation that is used in subsequent steps as basis for the static single
assignment form and for the actual backwards symbolic execution.

5.2. BUILDING THE CONTROL FLOW GRAPH 29

Figure 5.1 depicts a syntax diagram that describes how a control flow graph is
created from dex bytecode. The notation for the syntax diagram can be found
in Appendix A. A control flow graph is composed of at least one basic block.
An empty block is the simplest form of a basic block. A block may also start
with exactly one label, which is usually the target of a jump instruction. An
arbitrary number of normal statements can follow. Thereby, any instruction
other than an end statement or a label is considered as a normal statement.

Basic Block

Basic Block

CFG

Normal Statement

Basic Block

End StatementLabel

Try-End Marker

End of Method

goto statement

switch statement

IF-conditional

End Statement

Figure 5.1: Syntax tree for the method control flow graph

There are several statements that end a basic block. A try-end marker indicates
the end of the try block in a try-catch statement. When the end of a method
is reached, the current basic block is considered to be complete, because the
CFG is built on a per method basis. This is also the case if an exit instruction
is encountered. These are instructions that leave the current method; either
a return or a throw statement. Furthermore, goto and switch statements as
well as if -conditionals end the current basic block. Usually, a single statement
ends the current basic block. However, there are rare cases in which a throw
statement is followed by a try-end marker. To cover these cases as well, the
grammar has to allow more than one end statement.

5.2.1 Connecting the Basic Blocks

After having assembled a set of basic blocks from dex bytecode, the blocks have
to be connected to create the control flow graph. There are multiple ways to link
nodes. Figure 5.2 depicts three basic cases. Nodes without special statements
as last instruction are linked with their respective next node. Basic blocks

30 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

that end with a goto jump instruction are linked with the block marked with
the corresponding target label. If-conditionals have always a true and a false
branch, thus if the current basic block ends with an if-conditional, it is linked
to the associated then and else block.

node n

node n+1

(a) sequential

goto :label

:label

(b) goto

if

then else

(c) if-conditional

Figure 5.2: Basic cases for connecting nodes

Basic blocks that contain a switch statement have to be handled differently.
Switch statements are statements that select among pieces of code–the cases–to
be executed next, based on a given integral value. If no integral value matches,
a default statement is executed. Therefore, the node ending with the switch
statement has to be linked to all nodes representing a case, including the default
case.

switch

default case case 1 ... case x

Figure 5.3: Connecting basic blocks in a switch statement

Applications in Android are written in Java. The Java programming language
has a concept called try-catch that is used for error handling. A piece of code,
the try-block, can be marked as guarded area. Whenever an error is thrown
within this area, a previously defined catch-block is executed. A catch-block is
a custom error handler for specific or generic errors, written by the developer.
Figure 5.4a shows the control flow graph for a try-catch block. The try-node is
linked to all error-handling catch-nodes, as well as to its successor node in case
that no error occurs.

There also exists an extended version of try-catch, the try-catch-finally state-
ment. The developer can include an additional finally-block, whose statements
are always executed after try and catch-blocks. In programming languages with-
out garbage collection and automatic destructor calls, the finally extension is
important to guarantee the release of memory, regardless of what happens in
the try-catch code. In Java, developers do not have to take care of memory,
but the finally statement allows to do cleanup of parts other than memory, e.g.
closing network connections or file handles.

Thus, the control flow graph needs to be created slightly different in presence
of a finally-block (see Figure 5.4b). Instead of linking the try-block to its suc-

5.3. THE SSA FORM ON DEX BYTECODE 31

cessor, it is linked to the finally-block. In addition, all catch-blocks are linked
to the finally-block as well, because its execution is guaranteed under any cir-
cumstances.

try

suc(try) catch 1 ... catch x

(a) try-catch

try

finally

catch 1 ... catch x

(b) try-catch-finally

Figure 5.4: Connecting basic blocks in try-catch statements

In a final step, a unique end node is added to the graph. Any basic block that
includes a statement to leave the current method, that is a return or a throw
statement, is linked to that unique end node. This end node facilitates the
backwards symbolic execution of custom methods. When a method is resolved
backwards, the algorithm needs to look for any node with a return statement.
Instead of storing the node indices, all return statements can be found in the
predecessor nodes of the unique end node.

5.3 The SSA Form on Dex Bytecode

Given a set of predefined sinks as described in Section 5.1.1, the target argument
registers are to be resolved during analysis. An example is the register associated
with the string that is used in the URL class constructor. Starting from the
location of the sink, the algorithm’s task is to find the last instruction that
assigned a new value to that target register.

The control flow graph provides information about the various paths through
the application. However, finding the last assignment statement for a target
register isn’t an easy task. In high-level programming languages, variables are
defined and used for a specific instruction or operation. In dex bytecode there
are no variables. Instead, any operation is performed on registers. Thereby,
registers are not chosen individually. The dx compiler generates the bytecode
automatically. Register reuse is common within larger methods to keep the
number of registers in use as small as possible. Reuse is even more encouraged
through the fact that registers can hold values of arbitrary type.

Usually, it is not sufficient to stop when the last assignment of the target register
is found. The values that reach a data sink could also be assembled by a series
of computations. The analysis algorithm must know which register definitions
belong to the current computation or if a certain definition is used in a totally
different context.

32 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

Facing these problems, it becomes apparent that the CFG data structure is
not sufficient for backwards symbolic execution. In contrast, the static single
assignment form (see Section 4.4) provides this extra information about register
definitions and uses. When resolving a register in the SSA form, there is exactly
one definition and no register ambiguity. No context is required for the analysis
algorithm to verify whether a certain register definition is associated with the
currently resolved expression or with some completely different expression.

Bytecode Listing 5.2 shows two dex bytecode snippets that are executed to
create a new URL instance. The first version in Bytecode Listing 5.2a depicts
default bytecode, as generated by the dx compiler. The string that is used
in the constructor is defined multiple times in the code before, but the value
is always stored in register v1. Without additional verification, it is not clear
which definition is actually used for the URL instantiation.

The second code snippet in Bytecode Listing 5.2b shows the same bytecode
after being translated into the SSA form. Each new definition of register v1 is
renamed by appending a unique numeric index. The use of v1 in the constructor
is renamed accordingly. The algorithm is now able to determine the correct value
explicitly and efficiently.

const-string v1, "www.foo.com"
[...]
const-string v1, "www.bar.com"
invoke-direct {v0, v1}, Ljava/net/URL;-><init>(Ljava/lang/String;)V

(a) Normal dex bytecode

const-string v1_1, "www.foo.com"
[...]
const-string v1_2, "www.bar.com"
invoke-direct {v0_1, v1_2}, Ljava/net/URL;-><init>(Ljava/lang/String;)V

(b) Dex bytecode in SSA form

Bytecode Listing 5.2: Dex bytecode with/-out SSA form

5.3.1 Translating Dex Bytecode into SSA Form

In order to translate dex bytecode into a SSA form, phi functions need to be
placed in join nodes of the CFG. Furthermore, all registers have to be renamed.
The exact locations at which phi functions are required, can be determined by
computing the dominance frontier for each node in the CFG. If a new variable
or register is defined in a node N, then only that definition or redefinitions will
reach every node which is dominated by N. Definitions of the same variable,
originating from other paths, must only be accounted, if the dominated nodes
are left and the dominance frontier is entered.

To integrate the theoretical concept of phi functions directly into dex bytecode,
a new phi bytecode instruction had to be devised. A phi function normally has
the form vA ← φ(vB , vC , ..) where vA, vB , vC are registers. Transformed into a
dex bytecode instruction, the phi function is defined as follows: phi vA, vB, vC ,
.. . Similar to other instructions, the first register is the destination register.

5.3. THE SSA FORM ON DEX BYTECODE 33

It is followed by a number of argument registers, which directly corresponds to
the number of immediate predecessor nodes. A phi function for a register v2,
placed in a node with two predecessor nodes, looks as follows: phi v2, v2, v2.
The renaming of the argument registers is done in a dedicated renaming step.

After all φ-functions are placed, the renaming step is performed to complete the
SSA form. New definitions of a register, that is if the register is assigned a new
value, are renamed by appending a sequential numeric index that is recorded per
register. Register uses are renamed by appending the index of the last definition
of that register. Registers within a phi instruction are renamed the same way.
Taking up the previous example, the phi instruction phi v2, v2, v2 could be
renamed to phi v2 5, v2 3, v2 4. This means that the last definition of register
v2 is v2 3 in the path starting with the first predecessor and v2 4 in the path
starting with the second predecessor. Note, that the phi instruction itself is a
new definition of the target register and therefore the destination register gets
a new unique index.

In general, the SSA form is applied on high-level languages that use variables. In
these languages, arguments of the phi function can always be renamed properly,
because variables have to be defined before they can be used. In register-based
bytecode this is different. Registers do not have to be defined, they are just used.
Additionally, temporary values sometimes need to be stored in extra registers
to perform certain operations. In more complex constructs, it can happen that
registers are only used in some of the paths that end in a common join node.
In a nested if-conditional as depicted in Figure 5.5, some target registers might
be present in path if-2 because of some extra operations that require temporary
registers. The same register might not necessarily be used in the then-1 branch.

if-1

then-1 if-2

phi

then-2 else-2

Figure 5.5: CFG of a nested if-conditional

In this case, the resulting phi function would look as follows: phi vA i, vA ?,
vA j, vA k. The renamed registers vA j and vA k directly correspond to the
predecessors then-2 and else-2, respectively. But since register vA is not defined
in then-1 or in any of its predecessors, it cannot be rewritten. Such cases are
then marked with a capital X to indicate that this register does not have a
definition in the respective path. The resulting φ-function is rewritten to phi
vA i, X, vA j, vA k. An algorithm reaching such a phi instruction will not enter

34 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

predecessor nodes marked with X when resolving register vA.

In order to complete the renaming step, a last bytecode modification needs to
be done. In invoke instructions the first argument is a set of registers which
includes the method arguments. In case of a non-static method invocation,
it additionally includes the object instance register. The number of registers
is important since the dex bytecode specification defines a maximum of five
registers in this set.

If more than five registers are present, for example if the method has many
arguments, a special set of invoke instructions is used. These instructions use
a range representation for registers and are labeled with a trailing range. The
range representation is defined as {vA .. vB}, where vA and vB are the start
and end register, respectively.

When ranges are processed, only the start and end registers are rewritten. Dur-
ing analysis, the rewritten names of the registers within the range are not avail-
able. The basic name of the registers is known, however, this information is
not sufficient for the analysis algorithm to proceed. Therefore, range notations
are expanded in a pre-processing step. Instead of renaming a range {vA .. vF }
directly, it is first expanded to {vA, vB, vC , vD, vE, vF } and then renamed
in a subsequent step. This way, all information necessary to fully resolve all
argument registers is available during analysis. Since the resulting bytecode is
not executed by the Dalvik VM and is used for the analysis only, it doesn’t
matter if a set of argument registers contains more than five elements.

5.4 Backwards Symbolic Execution

The actual analysis starts at predefined sinks that have been previously located
in the bytecode. The sinks are usually invoke instructions that have one or
more argument registers. In case of the URL sink, the target register is the
one associated with the string that is used in the constructor. The analysis
algorithm starts with the rewritten target registers and searches the bytecode
backwards for the corresponding definitions.

When the instruction with the matching destination register is found, the algo-
rithm must make a decision on how to proceed with the analysis. This strongly
depends on the type of instruction. If an instruction is found that assigns a
constant value, the algorithm stops. Does the instruction again contain some
source registers, the static analysis has to proceed and the corresponding values
have to be resolved as well.

Table 5.1 shows the resolver semantics that is used in the backwards symbolic
execution algorithm. It includes all opcodes that can occur during register
resolving. A trailing op denotes an entire family of instructions, for example
const-op represents the set of all instructions that define a constant value. The
resolver semantics describes how the analysis proceeds depending on the current
instruction opcode. Opcodes can thereby be partitioned into direct and indirect
opcodes. During backwards symbolic execution, only instructions labeled as
direct opcodes are found during register resolving. This is due to the fact that

5.4. BACKWARDS SYMBOLIC EXECUTION 35

certain instructions, which for example modify data structures or class fields,
are never connected directly with a data sink. Thus, they will never appear
in the search for a register definition. However, it turned out that the default
symbolic execution approach lacks important information in certain situations,
like the reconstruction of array data. In these cases, the bytecode is searched for
non-direct opcodes explicitly. This enables a more precise and comprehensive
analysis since these instructions provide additional information about objects
and class fields.

Op Format Op Semantics Direct Resolver Semantics

const-op vA, C vA ← C X ∅
move-op vA, vB vA ← vB X ρ(vB)
move-result-op vA vA ← R X resolve(curInstr-1)
return-op vA R← vA X ρ(vA)
unary-op vA, vB vA ← ⊗vB X ρ(vB)
binary-op vA, vB , vC vA ← vB ⊗ vC X ρ(vB), ρ(vC)
binary-op vA, vB vA ← vA ⊗ vB X ρ(vA (i-1)), ρ(vB)
binary-op vA, vB , C vA ← vB ⊗ C X ρ(vB)
phi-op vA, vB , vC [..] vA ← φ(vB , vC , ..) X ρ(vB), ρ(vC)[..]
sget-op vA, fB vA ← fB X µ(fB)
sput-op vA, fB fB ← vA − ρ(vA)
iget-op vA, vB , fC vA ← vB .fC X µ(vB .fC)
iput-op vA, vB , fC vB .fC ← vA − ρ(vA)
new-array vA, vB , fC (fC)[] vB − ρ(vB)
aget-op vA, vB , vC vA ← vB [vC] X ρ(vC), µ(vB)
aput-op vA, vB , vC vB [vC]← vA − ρ(vA)
filled-new-array {vB , vC , ..}, fA R← (fA)[vB , vC , ..] − ρ(vB), ρ(vC)[..]
new-instance vA, fB (fB) vA − ∅
invoke-op {vB , vC , ..},FA FA(vB , vC , ..) − µ(vB), µ(vC), ..
invoke-op {vD, vE , ..},FC FC(vD, vE , ..) − µ(vD), µ(vE), .., µ(FC)

Table 5.1: Resolver semantics in backwards symbolic execution

The default approach for resolving registers is to search for its corresponding
definition and is indicated by ρ() in the resolver semantics. The resolution of a
register starts at the current instruction. The bytecode is processed backwards
until a new definition of the register is found. In this context, definition means
that the register is assigned a new value. This backwards processing continues
until a constant value is found. Field references and data types marked with µ()
have to be handled specially, since the default approach cannot be applied or
only recovers little information. The resolution of method arguments strongly
depends on the data types.

During analysis, it is possible that the beginning of a method is reached and
the register is not yet fully resolved. This happens if the register belongs to a
method argument. In this case, the application is searched for invocations of
this method. When an invocation is found, the algorithm locates the target
argument register and proceeds with the analysis at that point. If multiple
invocations are found, the algorithm analyzes them consecutively. This also
implies that more than one result is output for the current sink.

64-bit values must be handled explicitly. In the Dalvik virtual machine the
register size is 32 bit. Adjacent register pairs are used for 64-bit values of
type double or long. There are dedicated opcodes to handle 64-bit values,

36 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

marked with a trailing wide. Although these opcodes handle 64-bit values, their
instruction format does not include additional registers. Instead, opcodes only
specify the first of both registers vA, the second adjacent register vA+1 is used
implicitly.

Fortunately, in symbolic execution the second register does not matter. If this
register would be resolved, either no result would be found or an incorrect one,
in case the register has been used before for something else. Therefore, it is
sufficient to just resolve the first register that is specified in the instruction.
The resolver semantics does not change in these cases. However, if 64-bit values
are used in method arguments, both registers are explicitly specified. In this
case, only the first register must be resolved, whereas the second one has to be
omitted. In order to determine whether 64-bit values are used within a method
invocation, the method header must be parsed. It includes the full class name
of arguments types and thus wide values can easily be identified.

The easiest case handled by the resolver semantics is when an instruction is
found that defines a constant value. No further resolving is necessary and the
algorithm stops. Besides the const-op and the move-result-op instructions, all
other instructions include at least one register that must be resolved.

The resolving algorithm starts at the current instruction and continues until a
constant value is found. An exception are the move-result opcodes. Method
invocations via invoke opcodes and the filled-new-array opcode always return
a result that must be stored in a register. Thus, any of these opcodes is im-
mediately followed by a move-result opcode which performs this action. In
backwards symbolic execution, the move-result instruction is always reached
first. However, resolving the single argument register does not lead to the corre-
sponding invoke instruction. There is no explicit connection between these two
bytecode instructions. In order to continue with the correct method invocation,
the analysis has to process the preceding instruction when a move-result opcode
is reached.

Binary opcodes that perform an operation on two registers have an instruction
format that needs to be handled specially. In these two-address opcodes, the first
register is both destination and source register. Since this register is assigned a
new value, it is considered a definition and gets a unique index during renaming.
As this register is also considered a source register, it has to be resolved during
analysis. But searching for this definition won’t produce a result. The search
has to be modified such that the register is found whose data is propagated to
this instruction. This is achieved by searching for the register that has the same
base name but an index decremented by one. Instead of searching for a register
vA i, the algorithm proceeds by searching for register vA (i− 1). This way, the
correct definition for the first operand is found.

The custom phi instruction requires special handling as well. Phi statements
are always placed at the very beginning of join nodes in the CFG. They help
to keep track of register definitions across multiple paths that originate at con-
structs like switch statements or if-conditionals. In phi statements, all source
registers are resolved. In contrast to other instructions, a phi source register is
only resolved within the path that starts with its associated predecessor node.
Searching in other paths usually produces wrong results. Arguments of the φ-

5.4. BACKWARDS SYMBOLIC EXECUTION 37

function marked with X are not processed and considered a dead-end. When a
φ-instruction with multiple argument registers is reached, the algorithm resolves
every register in its associated path. This also implies that for each analyzed
path a distinct result is output. Additionally, the results are very likely to differ
because different paths represent different control flow.

5.4.1 Resolving Class Fields

Values of static class fields are retrieved via sget-opcodes. Thereby, fB denotes
the field reference to be accessed. Unfortunately, this reference is not a register
that can be resolved by searching for its definition. The reference only provides
information about the class and field name. In order to recover the concrete
value at the time of the access, additional analysis is necessary. Therefore, the
algorithm searches for all instructions that modify this specific field.

Static class fields can be modified via sput-opcodes. These opcodes are never
found directly in backwards symbolic execution. When a static field access is
reached via a sget-instruction, the algorithm searches for matching field modi-
fication opcodes explicitly. The algorithm starts by searching for the last sput-
instruction that modified the associated class field, beginning at the current
instruction. This search is path-sensitive to cover cases in which the field is
updated differently in different paths of the CFG. If the header of the current
method is reached and no matching sput-instruction was found, assignments to
this class field have to be searched outside the method.

The complete application bytecode is searched for matching instructions, since
static fields are not bound to a specific object instance. All sput-instructions
found in this step are then resolved regularly. Multiple matching instructions
are resolved consecutively. This again implies that several results are output for
the current sink. Theoretically, a static class field reference can also be passed
as method argument. In these rare cases, the algorithm searches for match-
ing method invocations and proceeds with the class field recovery as described
above.

Non-static class fields are accessed via iget-opcodes. In contrast to a static field
access, iget-instructions additionally include the instance object whose field is
to be accessed. However, applying the default backwards symbolic execution
approach does not result in a concrete field value. Similar as for static fields,
only information about class and field name can be retrieved. Thus, additional
effort is required to recover the field value at the time of the access. Beginning
from the current instruction, the target is the last iput-instruction that modifies
the current instance field. The search is done path-sensitive and stops at the
method border, if no match was found before.

In this case, there are two possibilities on how to proceed. If the object is the
this reference, that is the current class instance, it is obvious that the current
method is a class method. The application is then searched for any invocation
of this class method and the algorithm continues with the analysis from the
location of the invocation. The actual object register can then be extracted
from the found invoke instruction. It is used to continue the search for class
field modifying instructions as described before.

38 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

If the object reference is passed as method argument, the analysis has to pro-
ceed differently. The analysis continues with the search for all invocations of
that method. In this case, the object register is part of the method argument
list. Starting at the found method invocation, the search for matching iput-
instructions then continues normally.

5.4.2 Resolving Arrays

Array data can be accessed via aget-instructions. The array element is stored
in the destination register. The source registers include the array register and
the index register.

Bytecode Listing 5.3 shows a simple example containing an array definition and
an array access. In the first lines a new integer array of size three is defined.
Afterwards, the first two elements are set to 3 and 5, respectively. Finally, the
first element from the array is retrieved.

const/4 v2, 0x3 // new integer array of size 3
new-array v0, v2, [I

const/4 v4, 0x0 // array[0] = 3
aput v2, v0, v4

const/4 v2, 0x1 // array[1] = 5
const/4 v3, 0x5
aput v3, v0, v2

aget v1, v0, v4 // v1 = array[0]

Bytecode Listing 5.3: Array definition and modification

The index register is resolved normally. Afterwards, the index of the element
to be accessed is known. Resolving the array register directly leads to the defi-
nition of the array, which is the new-array instruction. It provides information
about the array type and a reference of the size register. After resolving this
information, the algorithm knows that there is an integer array with three ele-
ments. Thus, all meta information is available, but the actual elements of the
array are still unknown. It is not possible to reconstruct the array data once
the definition is reached.

In order to provide the actual element values, the aget-instruction has to be
resolved specially. The algorithm tries to reconstruct the array data at the
time of the access. Starting at the aget-instruction, the algorithm records any
modification on the target array. The bytecode is processed backwards until
the array definition is reached. Only the most recent modification of an array
element is used to reconstruct the array. Any previous values are out of date at
the time of the access. The index register is resolved normally to determine the
target element.

By using the reconstructed array, it is possible to evaluate the array access.
Usually, the element index is resolved first. Thus, it would be sufficient to
reconstruct only the target element and not the whole array. However, the index

5.4. BACKWARDS SYMBOLIC EXECUTION 39

is, in general, not necessarily reducible to a numeric value. In symbolic execution
the index could also be an unresolvable method invocation that returns an
integer value. In this case the concrete element index is unknown and the
complete array data must be reconstructed to provide detailed information.

In Bytecode Listing 5.3 the index register v4 is resolved to 0. The array recon-
struction records the value 3 and 5 for the first two elements. Once the definition
is reached the array type and size is also available and thus the reconstructed
array is [3,5,X]. The X that denotes the third element indicates an unknown or
uninitialized value.

Arrays can also be defined and pre-filled by use of a single bytecode instruction.
The filled-new-array opcode specifies an array type and a set of argument regis-
ters which are used to initialize the array elements. The argument registers can
be resolved normally without any special handling. Note, that this opcode is
only reached indirectly via the move-result instruction that immediately follows.

5.4.3 Resolving Method Invocations

Methods or functions are important programming constructs that are nearly
used in any application to separate code into smaller units that perform a specific
task. In symbolic execution, methods have to be classified into open-source
and closed-source methods. All methods whose bytecode is available in the
application are classified as open-source or custom methods. This does not
only include all methods implemented by the app developer, but also third-
party code. A prominent example is the AdMob SDK, that is used to display
advertisements. All other methods are closed-source or API methods. These
methods are not necessarily closed-source in general, but from the view of the
application, their bytecode is not available. An example is the official Android
API which is not closed-source. However, an application does not include the
source-code from all APIs that are used within the app.

Static analysis algorithms are not capable of analyzing closed-source methods
in depth, since their bytecode is not available. But the arguments used for the
method invocation can be resolved. As explained in Section 5.1.1, function calls
use an invoke bytecode instruction. The first argument of this kind of instruction
is a set of registers. In case of non-static method invocations, it includes the
object register on which the method is invoked. Additionally, the set includes
registers for all arguments that are passed to this function call. The register set
can be resolved normally, that is by searching for the respective definitions. But
comprehensive information would then not be recovered for certain argument
types. Thus, they need to be checked and processed accordingly.

If a register is associated with an array argument, the algorithm handles it the
same way like in aget-instructions. Direct resolving would only discover meta
information about the array. Putting some additional effort into reconstructing
the array content, results in the concrete element values at the time of the
function call.

In non-static method invocations, the first register in the argument set is the
object register, that refers to the object on which the method is invoked. Re-

40 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

solving this register directly leads to the new-instance instruction, which is the
object definition. This opcode does not provide any useful information, since the
object type can be extracted from the method header as well. The instruction
is also a dead-end, as it does not contain any more registers to resolve. Thus,
not even the object initialization or constructor call can be found this way.

But the algorithm should not only provide information about the constructor.
The analysis should go beyond the initializer, as usually the object’s call history
is of great interest. A call history is a simple, chronologically ordered list of
method invocations executed on a target object, starting at the constructor call
and ending at the currently processed invocation. This construct gives valuable
context information about an object that reaches a data sink. In general, the
interesting arguments in data sinks are strings or numeric values. If an object is
propagated to a sink, it is converted to a string value, for example through the
toString method. This is also the first and only invocation that is encountered
during normal analysis. Without a call history, only this piece of information is
output to the user.

Example 5.4 shows an bytecode excerpt in which a new class instance is created.
The class object is initialized and in subsequent instructions some class methods
are invoked. Finally, a string representation of the instance is retrieved and used
to initialize a StringBuilder instance2.

new-instance v1, $Class;
...
invoke-direct {v1, v2}, $Class;-><init>($Arg1)V
...
invoke-virtual {v1, v3, v4}, $Class;->$Method($Arg1, $Arg2)V
...
invoke-virtual {v1}, $Class;->toString()Ljava/lang/String;
move-result-object v6
...
invoke-direct {v8, v6}, Ljava/lang/StringBuilder;

-><init>(Ljava/lang/String;)V

Bytecode Listing 5.4: Method invocations on a class object

If the string argument in the last invocation is to be resolved, the algorithm pro-
cesses the move operation and proceeds with the associated toString invocation
on an instance of type $Class. Resolving the object register v1 directly leads
to the new-instance instruction which does not include any more information.
Thus, the result of the analysis would only provide little information about the
string origin:

$Class;→toString()

Creating a call history on the object, referred to by register v1, provides a lot
more information. Starting from the toString invocation the algorithm records
any class function call on the target object. The search is done path-sensitive
and stops when the object definition is reached. After assembling the results,
a more comprehensive and detailed view on the state of the object is provided

2In dex bytecode, the StringBuilder class is used to perform any operation on strings,
including assembling string values from fragments.

5.5. ASSEMBLING & ENCODING OF RESULTS 41

at the time of the conversion to a string representation. The final call history
looks as follows:

$Class;→<init>(µ($Arg1))→$Method(µ($Arg1), µ($Arg2))→toString()

During the construction of the call history, the arguments of the found invo-
cations are resolved as described before. Object registers that are passed as
method arguments in static and non-static function calls are resolved the same
way.

Analysis of Custom Methods

Open-source or custom methods are more interesting for static analysis than
API methods. Their bytecode is available in the application package, and thus
a deep analysis of the functionality is possible. In a first step, the application
is searched for the implementation of the function. In backwards symbolic
execution, the analysis usually starts at the end of the method, that is the
unique end node in the CFG. All predecessor nodes end with an instruction that
exits the function, like return and throw -instructions. These are the locations
at which the algorithm continues the analysis. Note that the resolution of
multiple exit instructions will also result in multiple results, as each instruction
is analyzed separately.

In general, resolving throw -instructions does not give any valuable information
for the currently analyzed sink. Usually, these instructions lead to an error
message that is displayed to the user in case of an error. Therefore, the algorithm
does not process throw -instructions.

Resolving return-instructions will exhibit the behavior and functionality of the
method. This acquired knowledge can then be used in combination with the ob-
tained information about the passed method arguments to deduce an even more
accurate result for the current sink. Note that in non-static custom method in-
vocations the object register is not resolved, that is no call history is generated.
This is due to the fact that the method bytecode is available and thus a com-
prehensive analysis is possible. During analysis of open-source methods, the
algorithm stops when the method header is reached. The functionality of the
method has then been reconstructed and the invocation can be evaluated by
inserting the resolved argument values.

5.5 Assembling & Encoding of Results

The previous section described how backwards symbolic execution works. Ta-
ble 5.1 specifies how the analysis proceeds when a certain type of instruction is
reached. But, it does not provide information on how fragments of the result,
collected during analysis, are stored and assembled. Just merging all token to a
string and output it as final result does not give a proper view on the data that
reaches the predefined sink.

In case of a binary operation, it is not sufficient to just store the resolved values
of the operands. In order to provide complete information, the type of oper-

42 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

ation needs to be stored additionally. For example, the result of an addition
is different to the result of a multiplication of two operands. Without storing
meta information, the data type of values is lost as well, which makes an evalu-
ation pretty difficult. Therefore, not only the resolved values have to be stored,
but also meta information about instructions to be able to output accurate and
detailed information about an operation.

In general, expressions cannot be evaluated directly during analysis. An oper-
ation with two constant values is easy to evaluate, but an operand itself could
be another expression. In order to evaluate the enclosing expression, the inner
expression needs to be resolved first. During analysis, it is not clear whether
the current set of token is sufficient to evaluate an expression completely or if
some important information is yet to be resolved.

Thus, we need a proper and sophisticated encoding to store all necessary in-
formation during the symbolic execution. Information should be stored in a
compact way such that the results can be assembled efficiently and be output
after the analysis stops. Encoding is necessary not only for unary and binary
operations, but for any instruction for which simple storing of resolved reg-
ister information is not sufficient. In these cases, additional meta information
about the opcode is required. In order to handle complex control flow, arbitrary
nesting of different instruction encodings must be supported.

Before the actual encoding schemes are explained, the term result is defined
in the context of the static analysis. A result is a list of token that is created
and extended during the backwards symbolic execution. A token is either a
constant value like a string or numeric value, or a special marker that is used to
encode meta information. In dex bytecode, strings are always written in quotes,
thus there is no way to interfere with encoding markers. All numeric values
are stored in a hexadecimal representation in dex bytecode and start with a 0x.
Therefore, the first digit in opcode identifiers is always greater than zero.

For the resulting list structure, three groups of instructions need a proper en-
coding scheme. These groups are expressions, arrays and method invocations.
The following sections introduce the encoding schemes for all groups. They
are presented as syntax diagrams which show the essential parts while omitting
trivial details for the sake of simplicity. This includes for example the syntax
format of strings or hexadecimal values.

5.5.1 Encoding Expressions

Expressions include unary and binary expressions as well as definitions of con-
stant values. Figure 5.6 shows the encoding scheme for expressions. It includes
the root syntax diagram expression as well as diagrams for constants and com-
plex values.

A trivial expression, is an expression that defines a constant value. There are
opcodes to define string and integer constants as well as multi-purpose opcodes
to define a fixed-size value of arbitrary type. Any numeric value in dex bytecode
is stored in hexadecimal notation. Thus, constant values have to be encoded
in order to store the type information. The most compact way of storing this

5.5. ASSEMBLING & ENCODING OF RESULTS 43

meta data is to use the 2-digit hexadecimal opcode that is unique among all
instructions3.

Value

Expression

Opcode

Expression

Array Access

Method Invocation

Value

Value

Constant

Constant
String

Hex Value

Figure 5.6: Expression encoding

Unary and binary operation instructions are encoded the same way by prepend-
ing the opcode identifier. This provides information for both data type and kind
of operation. The opcode ID is followed by one or two values depending on the
type of operation. Values in unary and binary operations can be another expres-
sion, the result of an array access, or the return value of a method invocation.
The encoding scheme for expressions does even allow invalid combinations, like
strings in operations or method invocations that return non-numeric values. For
the sake of simplicity, the encoding scheme does not have restrictions on com-
plex structures or on return values of certain operations. However, these invalid
combinations only exist in theory. In practice, the dex bytecode guarantees that
the operands are numeric values. If one of the operands would not contain a
numeric value, the dx or the javac compiler would have generated an error.

Using the opcode for storing meta information works fine for all opcodes, except
for the two multi-purpose opcodes. The opcodes 14 and 18 define values of
arbitrary data type of 32-bit and 64-bit size, respectively. This means that a
32-bit register can either hold an integer or float value, whereas a 64-bit value
might have type long or double. The Dalvik virtual machine does not care about
the concrete data type, the size of the value is the only crucial information.
During conversion from JVM bytecode to dex bytecode, the type information is
lost and there is no way to recover the actual data type by analyzing the opcode
in isolation.

However, it is possible to retrieve the data type through context parsing. By
analyzing method invocations that use this value, the data type can be extracted

3The hexadecimal opcodes can be looked up at http://s.android.com/tech/dalvik/
dalvik-bytecode.html

http://s.android.com/tech/dalvik/dalvik-bytecode.html
http://s.android.com/tech/dalvik/dalvik-bytecode.html

44 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

from the method header. In order to store this additional information, new
custom opcodes have to be defined. Existing opcodes cannot be exploited to
store the type information without changing the instruction semantics. For each
of the multi-purpose opcodes, two new opcodes are devised. The semantics
remain unchanged, but the type information is provided additionally.

Table 5.2 depicts the four custom opcodes. The opcode identifier deliberately
include non-hexadecimal characters. This way, they won’t interfere with future
changes in the bytecode specification. The templates are used during evaluation
as fallback. If the actual value is not resolvable, outputting the template with
the resolved operand provides the most detailed information. This is described
in depth in Section 5.6.

Opcode Template Description

1w (int) $1 32-bit integer value
1x (long) $1 64-bit long value
1y (float) $1 32-bit float value
1z (double) $1 64-bit double value

Table 5.2: New custom opcodes for encoding type information

Note, that in case of unary and binary operations, the opcode always specifies
the resulting data type. Thus, the type of the operands is known implicitly,
even if one of the operands is defined via a multi-purpose opcode.

The custom opcodes are not used directly when the algorithm reaches a multi-
purpose instruction. Instead, the custom IDs are added to the current list of
token when type information is exposed in method calls during parsing. Since
these opcodes are idempotent, it doesn’t matter if they are added multiple times
during analysis.

The following token list represents the encoding for an example integer opera-
tion; the value 5 is subtracted from the value 10:

91, 12, 0xa, 12, 0x5

The opcode for the subtraction is followed by the encoded operands. Opcode
12 describes a 4-bit signed integer value. This type information is used for both
converting the hexadecimal values into more readable integer values and for
evaluating the expression.

5.5.2 Encoding Arrays

Resolving arrays is handled specially during analysis in order to reconstruct
the elements at a certain point in time. Fragments obtained during array re-
construction need to be encoded properly, such that the array elements can be
identified and put at the correct location within the array. Figure 5.7 depicts
the encoding scheme for both array definitions and array accesses.

The enclosing markers of the array definition encoding are Array and Array-
End. Within these markers, the reconstructed element information and array

5.5. ASSEMBLING & ENCODING OF RESULTS 45

Array Definition

Value

Array AType Array-EndArray Instruction

APut

AFill

Value

Value

Index

AFill-End

Array Instruction

AType-{B,S,I,J,F,D}

AType-X

AType

AGet Value Array Definition

Array Access

A#

Figure 5.7: Array and array access encoding

meta data is stored. The array type is extracted from the corresponding new-
array instruction. It is encoded via special AType markers. There are dedi-
cated markers for all primitive types like integer, float or double values. Any
non-primitive class type is marked with AType-X. Object types do not have
to be discriminable, since the type information is only required for converting
primitive types correctly. The type marker is followed by at least one array
instruction.

In dex bytecode there are only two types of array element modifying opcodes.
The aput-opcodes modify the element at the specified index. The instruction
is encoded with a APut marker followed by the resolved value register and the
resolved index register.

The second one is the fill-array-data opcode. It performs a bulk initialization
of an array by setting multiple elements at once. The values to be filled into
the array are stored in a dedicated table within the bytecode. The number of
elements used for initialization does not necessarily have to be equal to the array
size. Thus, the encoding does not only require a start marker AFill but also an
end marker AFill-End.

Path-sensitive reconstruction in the array definition scheme is encoded by use

46 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

of the A# marker. It separates the array instructions of different paths.

There is also an atomic instruction to define and fill a new array. The filled-new-
array returns a reference of a newly created array that is being filled with values
specified by the argument registers. The corresponding encoding is shown in the
second path of the array definition diagram. Instead of using array instructions
to describe the modifications of elements, the element values are directly placed
after the initial marker. This is because the values can be directly resolved and
the algorithm does not need to search for element modifying instructions.

Besides the array definition, there is another diagram that describes the encod-
ing for array accesses. Values are retrieved from arrays via aget-opcodes. In
order to evaluate these instructions correctly, the index of the element to be
accessed and the array content are required. The encoding scheme is pretty
straightforward. An AGet marker indicates an array access. The index argu-
ment and the encoded array are placed behind.

For more clarification, a simple array encoding is presented in the following. It
shows the token list generated for the integer array [1,3]:

Array, AType-I, APut, 12, 0x3, 12, 0x1, AFill, 12, 0x1, 12, 0x7, AFill-End, Array-End

The list includes two array instructions. A fill-array-data opcode has been used
to initialize the array with the values 1 and 7. Afterwards, an aput-instruction
modified the value of the second element. Note that the encoding always starts
with the array instruction that is closest to the sink. In this example, storing
the array data type would not be necessary since the information is already
encoded through opcode 12. However, it is required if the data type is not
exposed through the value encoding, for example if multi-purpose opcodes are
used.

5.5.3 Encoding Method Invocations

There are two types of method invocations, custom and API method invoca-
tions. Additional semantic analysis can be applied to open-source methods, as
their bytecode is available within the application. Therefore, both kinds of invo-
cations need to be encoded differently. Figure 5.8 depicts the syntax diagrams
for method invocation and argument encoding. An argument can be either a
value or an array definition.

When processing API method invocations, the algorithm resolves all method
arguments. The method itself cannot be resolved and is considered a dead-end.
However, storing the full method header also provides significant information.
The method header includes the class name, the method name, and the argu-
ment list. For the sake of simplicity a distinct diagram for the method header
is omitted.

The encoding uses enclosing markers MA-Start and MA-End. The start marker
is followed by the method header and the resolved argument registers, if any.
The argument list in the method header is replaced by a counter indicating the
number of arguments. Furthermore, the return type is removed.

5.5. ASSEMBLING & ENCODING OF RESULTS 47

MA-Start

MC-Start

Method Header

Method Invocation

Argument

Value

Array Definition

MA-End

MA#

Argument

MC-Sep Argument MC-End

Argument

Figure 5.8: Encoding of method invocations

The following example shows the encoding of an append function of the String-
Builder class. It has been invoked with a single string argument foo:

MA-Start, ”Ljava/lang/StringBuilder→append(#1)”, 1a, ”foo”, MA-End

Call histories are encoded as nested method invocations. Any subsequent in-
vocation is placed right after the last argument of the previous invocation.
Since call histories are constructed path-sensitive, the encoding must take this
into consideration. The MA# marker separates method invocations of different
paths. By using the separator, a distinct call history can be created for each
path. The following token list presents a path-sensitive call history encoding.
Invi describes an invocation including method header and arguments:

MA-Start, Inv1, Inv2, MA#, Inv3, Inv4, MA# Inv5, MA-End

The encoding describes two distinct call histories. The first two method invo-
cations are part of both histories. Then the control flow splits and the MA#
marker separates the invocations for both paths. Thus, the first history includes
the invocations Inv1, Inv2, Inv3, and Inv4, whereas the second one includes the
invocations Inv1, Inv2, and Inv5. Note that the first element is again the invo-
cation that is reached first during the backwards symbolic execution.

Custom methods can be fully resolved and thus have to be encoded slightly
different. The resolved method invocation arguments are placed right after the
start marker MC-Start. The mandatory MC-Sep marker separates the argu-
ments from the resolved method. Resolving a custom method starts from the
unique end node and stops once the method border is reached. Intuitively speak-
ing, the algorithm resolves each register that is returned from this method, for
example via a return opcode. Method argument registers are resolved until the
beginning of the method is reached. Then, they are replaced by a placeholder
that includes the position of the argument within the argument list. For ex-

48 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

ample, the second method argument is then replaced by a marker §2. During
evaluation, the placeholders are replaced by the associated resolved argument
values. Finally, the whole encoded method invocation is evaluated and the result
is output.

5.5.4 Multi-path Encoding

Only trivial methods have sequential control flow. Control flow splitting in-
structions like switch statements or if-conditionals create additional paths in
the CFG. In backwards symbolic execution there are various situations in which
multiple paths have to be followed and resolved. This also implies multiple re-
sults for the currently processed sink. In order to be able to distinguish resolved
token of different paths correctly, places at which the control flow splits must
be encoded properly.

Intensive testing showed that multi-path encoding via marker is both complex
and infeasible for typical applications. In general, the effort for decoding the
result is disproportionate to the effort necessary for encoding. Furthermore,
the representation of complex nested structures is usually infeasible in terms of
performance and also interfered with non-multi-path encodings. The previous
encoding schemes described some exceptions, for example the path-sensitive
array reconstruction via markers. The reason for that will be explained later in
the section.

In general, a more sophisticated approach is necessary to encode multi-path
results properly. The most obvious solution is to encode these structures in a
graph. A directed, acyclic graph (DAG) provides the best representation for this
kind of encoding. A DAG is a directed graph that has no directed cycles. This
matches the assembly of results during backwards symbolic execution best. The
graph can be constructed node by node during analysis with only little effort. It
is also a memory efficient representation since shared subpaths are only stored
once.

In combination with the previous encoding schemes, the algorithm uses an hy-
brid approach of graph and list encoding. Any node in the DAG contains a list
of encoded tokens found during analysis. If the control flow splits, new nodes
are created to represent the various paths. There are a few cases that cause the
resolver to follow multiple paths:

• Phi statements are placed in join nodes to merge control flow from mul-
tiple paths. When the algorithm reaches such a statement, the argument
registers have to be resolved in their associated path. The number of out-
going links that have to be created, equals the number of arguments of
the φ-function.

• Class field access resolution does not necessarily create new nodes in the
target graph. But if the access cannot be resolved in the current method,
the algorithm searches the application for accesses of this class field. This
may produce multiple results, which must be resolved sequentially.

• Method resolving If the algorithm resolves a register within a method
and does not find an associated definition, then the register is a method

5.5. ASSEMBLING & ENCODING OF RESULTS 49

argument. In order to resolve the value of this register, the algorithm
searches the app for invocations of this method. This potentially generates
multiple new paths, depending on the number of invocations found.

If the algorithm reaches a point at which the control flow splits (see Figure 5.9),
a new node in the target graph is created and linked with the current node. Any
token that is obtained in the new path is stored in this new node. As backwards
symbolic execution performs a depth-first search, the algorithm completely re-
solves this path before other paths are processed. A new node is created for
each new path that is about to be analyzed and an outgoing edge is generated
from the split node to the new path node.

...

path 1

path 2

path X

join
node

split
node

Figure 5.9: Target graph construction

If all paths have been processed, a join node is created and connected to the
last node of each path. This common end node merges the control flow after
all paths have been resolved. It is necessary to be able to continue building the
graph in case there are multiple registers to be resolved at the same instruction.
Registers are resolved sequentially, thus resolving the first register will result in
a target graph (see the light gray nodes in Figure 5.10). Once the first register is
complete, the second register is resolved. Instead of building a dedicated graph
for the second register and trying to merge them afterwards, any new nodes
are appended to the current graph (dark gray nodes). Tokens for the second
register are then stored at the first join node.

A1

A2

join
node

join
node

B1

B2

Figure 5.10: Example target graph

In general, this approach will overestimate the final results in some cases. Fig-
ure 5.10 depicts an example target graph for two registers resolved from the
same instruction. There are four distinct paths through the graph which lead
to four results. If however A1 and A2 are the same nodes as B1 and B2, respec-
tively, there are only two valid results. In this case, the graph encodes some
combinations that won’t appear during execution of the application. This over-
estimation originates from building the cross product of all results of the first

50 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

register with all results of the second register. Other approaches to create and
merge dedicated graphs for each register are both complex and error-prone.

Listing 5.1 shows the code of a simple Java method with a URL sink. When the
URL constructor is processed and the url variable is resolved, a phi instruction
right after the conditional will indicate three paths. In each path, the argument
that is appended to the domain www.foo.com is set differently.

private URL t e s t () {
int i = 5 ;
S t r ing u r l = ”www. foo . com” ;

i f (i < 10)
u r l += ”/? key=” + 7 ;

else {
i f (i > 1)

u r l += ”/? key=” + i ;
else

u r l += ”/? key=” + i ∗ i ;
}

return new URL(” http :// ” + u r l) ;
}

Listing 5.1: Java method with a URL sink

The graph shown in Figure 5.11 depicts the target graph for the Java method.
Each node contains a list of token that represents the encoded values obtained
during analysis.

[1a, "http://"]

[1a, "www.foo.com", 1a, "/?key=7"]

[1a, "www.foo.com", 1a, "/?key=", 12, 0x5]

[1a, "www.foo.com", 1a, "/?key=", 92, 12, 0x5, 12, 0x5]

[]

Figure 5.11: Target graph that shows a simple multi-path encoding

Section 5.4 stated that certain opcodes and array reconstructions are performed
path-sensitive. This means that multiple paths have to be analyzed. How-
ever, this multi-path analysis is encoded in the token list and not within the
graph. The reason for this is that this kind of multi-path encoding is instruction-
sensitive. It can simply be expressed within the encoding of a single instruc-
tion/structure.

Examples are the array reconstruction and the path-sensitive creation of the
call hierarchy. For an array reconstruction, the algorithm searches for array
element modifying instructions in the area between current instruction and ar-
ray definition. Thereby, the resolved instructions are encoded by path using
the separation marker A#. In order to create a call history, the encoding of
invocations is nested and paths are separated via a dedicated marker.

5.6. DECODING AND EVALUATION 51

5.6 Decoding and Evaluation

Once the analysis is completed, the data that reaches the sink is available as
encoded graph. In order to output the final URL strings, several steps have
to be performed. The first essential step includes the dissection of the multi-
path encoding to obtain a set of encoded lists. Therefore, all paths through the
graph, beginning at the start node and ending at the last common end node,
have to be dumped. Instead of recording the node indices per path, the node
token lists are stored and merged to a single list. Each final list represents an
encoded value for the specified sink. The token lists are then to be decoded and
any expression is to be evaluated, if possible. Finally, the results are output to
the user.

Formally, the path decoding is done by performing the following three steps:

• Decoding opcodes and evaluating operations (expressions)

• Decoding arrays and array accesses

• Decoding method invocations (both custom and API methods)

5.6.1 Decoding Expressions

Decoding expressions requires connecting the opcode meta information with
the actual operand values. In order to provide a comprehensive textual view
on expressions, templates for each opcode have been devised. These templates
illustrate a human readable presentation of the operation, including all infor-
mation necessary to evaluate the expression. Table 5.3 shows a fraction of the
set of all templates.

Opcode Mnemonic / Syntax Template Operand $1 Operand $2

15 const/high16 vA, C (int) $1 C −
7c not-int vA, vB (int) ∼$1 ρ(vB) −
7f neg-float vA, vB (float) -$1 ρ(vB) −
90 add-int vA, vB , vC (int) $1 + $2 ρ(vB) ρ(vC)
98 shl-int vA, vB , vC (int) $1 � ($2 & 31) ρ(vB) ρ(vC)
9d mul-long vA, vB , vC (long) $1 * $2 ρ(vB) ρ(vC)
a9 div-float vA, vB , vC (float) $1 / $2 ρ(vB) ρ(vC)
cc sub-double/2addr vA, vB (double) $1 - $2 ρ(vA) ρ(vB)
d6 or-int/lit16 vA, vB , C (int) $1 | $2 ρ(vB) C
df xor-int/lit8 vA, vB , C (int) $1 ∧ $2 ρ(vB) C

Table 5.3: Selected templates for expressions

The templates include placeholders for the operands. During decoding, the
template is selected based on the opcode that has been used for encoding. The
placeholders are then replaced by the concrete operand values. This provides a
first high-level view on the expression. The next step towards the evaluation is
to convert the operand values. Any numeric value in Dalvik is stored as hex-
adecimal value. All templates include information about the result type of the
operation. Thus, it is possible to convert the hex values into the corresponding

52 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

data type. Finally, the operation can be evaluated and the resulting value can
be output.

The conversion of data types fails if an operand is not a number, but a closed-
source method invocation that returns a number. In this case, the operand is
replaced by the invocation and the template is output as fallback. This way,
the user gets the most detailed information possible.

However, placing an unresolvable expression directly into the final URL, re-
duces the readability dramatically due to the increased length of the result.
Furthermore, the important high-level view on the URL is mixed with low-level
information about a specific value. Thus, the expression is not placed directly
into the result. Instead, a label is placed at the position of the expression and
the unresolved data is put in an extra line. This improves the readability of
the result by abstracting low-level parts away from important parts of the URL
without omitting information.

5.6.2 Decoding Arrays

Decoding arrays and array accesses requires reconstructing the elements at the
time of usage/access. Given a list of token, the decoding algorithm extracts
any sublist which encodes an array construct. These sublists can either start
with the Array or AGet token. Any other marker associated with arrays can
only appear within the array encoding. The AType marker provides information
about the array element type. In case of a primitive type, this information is
used to convert the element values accordingly.

In the simplest form of array encoding, all element values are given directly in
the correct order. This is usually the case when the filled-new-array opcode has
been used to define and fill an array with a single instruction. Given an array
encoding

Array AType-x val1 val2 val3 val4 Array-End ,

the decoder outputs [val1, val2, val3, val4], whereas the values have been con-
verted according to the specified type.

The other form of array encoding doesn’t reveal the element values directly. In-
stead, array instructions, as depicted in Figure 5.7, describe how element values
changed in the region between array definition and a certain instruction. The
reconstruction assembles the array by starting from scratch and subsequently
applying the encoded instructions. At the time of usage/access only the last
value of each element matters. Due to the backwards traversal, the instruc-
tions are ordered from array usage to array definition. Thus, an element in the
reconstructed array is only modified, if it hasn’t been set before.

Decoding array instructions is pretty straightforward. The aput-encoding sim-
ply sets a value at a given index. In order to decode an AFill instruction,
multiple values are set in the target array, starting at index zero.

Table 5.4 shows an example reconstruction via array instructions. Note, that
the array size is not necessary for the actual reconstruction and therefore it is
not included in the encoding scheme. The size of the reconstructed array is

5.6. DECODING AND EVALUATION 53

adapted dynamically, if the current size does not suffice for processing the next
instruction. Increasing the size might result in unknown values, that haven’t
been set so far. These elements are labeled with x.

Instruction Reconstructed Array

∅ []
APut 3 2 [x, x, 3]
APut 8 0 [8, x, 3]
APut 7 4 [8, x, 3, x, 7]
APut 4 2 [8, x, 3, x, 7]
AFill 2 2 2 AFill-End [8, 2, 3, x, 7]

Table 5.4: Reconstruction of an array

The algorithm starts with an empty array. The first aput instruction sets the
third element of the array. Thus, the array size must be increased before the
value can be set. Values for the first two elements are unknown at that point
in time and are therefore marked with an x. The next aput instruction sets the
value eight at index zero. The subsequent aput extends the array size again.
The next instruction then tries to set an element for which a value is already
known. This fails, since the algorithm prevents overwriting the existing value.
Finally, the fill instruction tries to set the first three elements of the array. Only
the unknown second element is replaced by the given value.

After the reconstruction there is a chance that some of the elements are still
unknown. This does not cause problems, because such a situation can also be
caused in a Java program. If these elements would be accessed by the applica-
tion, a runtime exception would be thrown.

The array reconstruction is performed path-sensitive. Instructions of different
paths are separated by the A# marker. For each path, a distinct array is
assembled. The number of results, that are finally output, is directly related to
the number of reconstructed arrays. If, for example, the reconstruction outputs
two arrays, the whole token list must be cloned and the corresponding array
encodings must be replaced by the respective arrays.

The encoding scheme does also provide an encoding for array accesses. The
AGet encoding simply includes an encoded array and the index of the element
to be retrieved. Its decoding requires the array to be decoded first, before the
element at the specified index can be accessed and output.

5.6.3 Decoding Method Invocations

The decoding of method invocations includes both custom and API methods.
The encoding schemes provide information about the arguments passed to the
function. During decoding, the arguments used in the invocation are resolved
first. In case of an API method invocation, the argument header definition is
replaced by the resolved argument values. Given the method header of a String-
Builder class method, e.g. Ljava/lang/StringBuilder;→append(Ljava/lang/String;),

54 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

the method argument type is replaced by the resolved string value, for example
Ljava/lang/StringBuilder;→append(”foo”).

A call history provides a chronological list of invocations executed on a class
instance object. Histories are encoded as nested closed-source method invoca-
tions. Due to the backwards analysis approach, the invocations are encoded in
reverse order which means that the final invocation represents the first executed
method on the target object. This is usually the constructor call which will be
placed at the very beginning of the call history.

Given a set of invocations and the associated resolved arguments, a call history
is created as follows:

$Class;→<init>([µ(Arg1,..)])→$Method1([µ(Arg1),..])→$Method2([µ(Arg1),..])

It starts with the class name followed by the constructor invocation and its
corresponding arguments, if any. Any additional invocation, indicated by the
right arrow, is appended to the current history string. This results in a compact
and readable representation of a call history. Table 5.5 depicts a simple example
with a StringBuilder object. The invocations are already in chronological correct
order.

Method invocation header Resolved Argument

Ljava/lang/StringBuilder;→<init>(Ljava/lang/String;) ”http://www.foo.com/”
Ljava/lang/StringBuilder;→append(Ljava/lang/String;) ”?key=”
Ljava/lang/StringBuilder;→append(I) 12345
Ljava/lang/StringBuilder;→toString() ∅

Table 5.5: Set of invocations to form a call history

The history is composed of four invocations. The method invocation header
includes type information of the arguments. In a first step, this type informa-
tion is replaced by the resolved argument values. Finally, the history string is
assembled as described before. The following history represents the output for
the example invocation set (the line wrap is due to the limited horizontal space):

Ljava/lang/StringBuilder;→ <init>(”http://www.foo.com”)

→ append(”?key=”)→ append(12345)→ toString()

The generation of a history is performed path-sensitive. The MA# separation
marker is used to distinguish between invocations of different paths. Similar
to the reconstruction of arrays, multiple paths lead to multiple distinct call
histories. For each history, the token list needs to be duplicated and the corre-
sponding encoding must be replaced with the respective history.

Placing a decoded API method invocation or a call history directly into the URL
would cause a massive blowup of the result. Furthermore, it makes the view on
the essential parts of the URL difficult. Therefore, any invocation in the result
is replaced by a label during a post-processing step. The corresponding label
along with the actual invocation is then printed in an extra line to improve the
readability of the result, similar as it is done with unresolvable expressions.

5.6. DECODING AND EVALUATION 55

Custom Method Invocations

Decoding open-source method invocations starts with the decoding of argument
values. Thereby, the marker MC-Sep separates the encoding of the method
functionality and the encoded arguments passed to the invocation. Resolving a
function starts at the unique end node of its CFG and stops once the method
header is reached. Any unresolved method argument is subsequently replaced
by a marker indicating its exact location within the argument list.

The evaluation of custom methods starts by replacing these markers with their
associated resolved argument values. Then, the method functionality can be
fully resolved. Any expression is evaluated and finally a value of the method’s
return type is output.

56 CHAPTER 5. INFORMATION FLOW ANALYSIS ON ANDROID

Chapter 6

Implementation

The last chapter described the theory behind the information flow analysis on
Android applications. This chapter describes in detail how these concepts are
realized in a concrete tool called Bati. The analysis tool is a standalone Java
application. The design and implementation is highly modular and a later port
to Android is possible with only little effort. Figure 6.1 shows a high-level view
on the static analysis approach.

Application

URL

Parser

SSA BuilderStatic Analysis

Decoder

Dex Bytecode

Bati - App Analysis

Baksmali

A

B C

D E

Figure 6.1: High-level view on the static analyzer

The following sections describe specific implementation details of the individual
modules. Besides explaining the actual techniques that are used to solve certain
tasks, aspects on how to save memory, to build acceleration structures, or to
improve the performance are pointed out as well.

57

58 CHAPTER 6. IMPLEMENTATION

6.1 Disassembling and Parsing

The first step towards the analysis is to retrieve the application’s bytecode.
Therefore, a disassembler is used to translate the compact dex class file into
a more convenient assembly language. The Android SDK includes a default
disassembler called dexdump which provides only limited functionality. Some
data structures like initialization tables for arrays are not dumped. In addition
to that, the output is not very intuitive and quite hard to read and process.

Besides the default disassembler, there are two popular open-source disassem-
blers which offer a more comprehensive functionality. These tools are dedexer
[48] and baksmali [36]. Both disassemblers fully support the dex bytecode in-
struction set and generate a Jasmin-based output which is much more readable1

Furthermore, both tools include odex2 support in their latest versions.

The tools are easy to handle and offer a great set of functionality. However,
baksmali has a better support and a larger community. Its code base is more
structured and it includes a distinct comprehensive parsing library for dex byte-
code. Therefore, we chose baksmali for the disassembling task.

Disassembling an Android application produces a set of dex bytecode files, one
for each class used in the app. In order to process the output files and to
extract important information, the bytecode needs to be parsed. In a first step,
Bati’s parsing module reads in the application bytecode. In the process, the
instructions are parsed and stored in basic blocks which are used in a later step
to generate the control flow graph. Dumping the instructions block-wise also
improves the readability of bytecode, because control flow sources and targets
can be identified without effort. In contrast to this, baksmali outputs bytecode
instructions separated by a blank line, which provides no visual assistance in
identifying control flow.

Bytecode Listing 6.1 shows the dex bytecode of the simple program presented
in Section 4.3. The output on the left shows the default output format that is
used by the disassembler baksmali. The format on the right is the block-wise
output format that is generated by Bati. Instructions belonging to the if-block
and else-block can easily be identified.

Besides parsing bytecode instructions, the module also parses data of array ini-
tialization tables and switch branch offset tables. Information stored in branch
offset tables is required to be able to connect basic blocks in switch statements
correctly. Array initialization tables include values that are used for bulk ar-
ray initialization, for example through the fill-array-data instruction. This kind
of array initialization is only performed for arrays of primitive types like inte-
ger or float. Bytecode Listing 6.2 depicts a float array with its corresponding
supplemental data block that is used to set multiple array elements directly.

The instruction and the data block are connected via a label. The array-data
annotation includes three elements of type float. Each line contains 4 bytes =
32 bit for the specification of one float value. Thereby, the trailing t indicates a

1Jasmin is a popular assembler for the Java Virtual Machine. It takes Java classes, written
in a simple assembler-like syntax, and converts them into binary Java class files.

2odex files are optimized dex files which are generated at runtime by Dalvik’s JIT compiler

6.1. DISASSEMBLING AND PARSING 59

const/4 p2, 0x5

add-int/lit8 p2, p2, -0x3

const/4 v0, 0x4

if-ge p2, v0, :cond_0

mul-int/lit8 p3, p2, 0x2

move p1, p3

:goto_0
sub-int p1, p2, p3

add-int/lit8 p4, p3, 0x2

return-void

:cond_0
const/4 v0, 0x3

sub-int p3, p2, v0

goto :goto_0

(a) Default baksmali output

const/4 p2, 0x5
add-int/lit8 p2, p2, -0x3
const/4 v0, 0x4
if-ge p2, v0, :cond_0

mul-int/lit8 p3, p2, 0x2
move p1, p3

:goto_0
sub-int p1, p2, p3
add-int/lit8 p4, p3, 0x2
return-void

:cond_0
const/4 v0, 0x3
sub-int p3, p2, v0
goto :goto_0

(b) Block-wise output

Bytecode Listing 6.1: Difference between dex output formats

byte literal. The actual byte values are stored in reversed order and thus the first
element is 0x3fb47ae1. The three elements are the hexadecimal representation
of the values 1.41, 3.75, and 2.22, respectively.

new-array v1, v2, [F
fill-array-data v1, :array_0

:array_0
.array-data 0x4

0xe1t 0x7at 0xb4t 0x3ft
0x0t 0x0t 0x70t 0x40t
0x7bt 0x14t 0xet 0x40t

.end array-data

Bytecode Listing 6.2: Array definition with initialization table

During the initial phase, information extracted from the bytecode is also used
to generate lookup maps and acceleration structures. They are used during
the construction of the SSA form and during the actual analysis to reduce the
need for re-parsing data. Among the most important data structures is the
one providing information about the various method invocations within the
application. It includes which custom methods are invoked in which methods
and whether a method is invoked recursively. The differentiation between open-
source and closed-source method invocations is based on the full class name.
Classes that are included in the public Android API3 are classified as closed-
source methods.

3http://developer.android.com/reference/packages.html

60 CHAPTER 6. IMPLEMENTATION

Another data structure assembles data about Java interfaces within the appli-
cation and classes that implement them. This knowledge is important during
analysis, if an invoke-interface instruction is reached and the algorithms needs
to search for classes that implement this method to be able to resolve the call.

Storing data about assignments to class fields increases the performance when
the resolver algorithm searches the application for new definitions of that class
field. Without this data structure, the complete bytecode must be re-parsed
during analysis to obtain this information.

Another essential task of the parsing module is the search for predefined sinks.
If an application does not contain any sinks of interest, the tool can stop the
analysis right after parsing. Otherwise, if at least one sink is found, its location
is stored, such that the static analyzer can directly start at that very instruction.
The location of an instruction is stored as compact 4-tuple that is composed
of numeric IDs for the class, method, basic block, and instruction. Since the
control flow graphs are created on a per method level, the method ID refers to
the associated CFG.

6.2 The SSA Builder Module

Building the SSA form is an essential prerequisite for an efficient backwards
symbolic execution. Without this intermediate form the tracing for register def-
initions would become infeasible and extremely complex. Translating bytecode
into the SSA form usually requires two steps. Placing phi functions to handle
locations where control flow is merged from multiple paths and the renaming of
registers, such that each register is defined exactly once.

However, depending on the chosen approach, additional steps have to be done
to create the necessary data structures. Besides the common approach to place
phi functions by using node dominance information, there also exist approaches
based on DJ graphs and merge sets (see Section 4.4.1).

The current implementation of Bati uses an approach based on control flow
graphs. The CFG is not only used for constructing the SSA form, it is also an
important data representation during analysis. If registers have to be resolved
path-sensitive, the graph helps to keep track of data flow. Computing dominance
on a CFG might be slightly slower than comparable approaches, however their
performance gain usually shows up only on larger graphs. Based on empirical
evidence, control flow graphs per method have less than 100 nodes. Thus,
neither approach is significantly faster in this scenario.

The actual generation procedure for the SSA form includes the following steps:

1. Generate the control flow graph

2. Calculate the reverse postorder

3. Compute dominator

4. Compute dominance frontiers

5. Place phi functions

6. Rename registers

6.2. THE SSA BUILDER MODULE 61

The basic blocks have already been created during parsing. In order to create
the control flow graphs, the blocks have to be connected. The way basic blocks
are connected strongly depends on the block type and is described in detail in
Section 5.2.1.

The graph generating algorithm additionally includes a module to visualize the
CFG. This module creates a textual representation of the flow graph and uses
the open-source graph visualization software GraphViz 4 to generate a picture of
the CFG. The GraphViz binaries can be used transparently via a Java wrapper
API5. The visualization plugin is not necessary for creating the SSA form. In-
stead, it is some kind of visual debugging that can be used to generate a picture
of the control flow graph and the various paths within.

6.2.1 Determining Node Relationship

The next steps gather and compute information about the node relationship
necessary to create the SSA form. Computing dominance on a CFG has a
long history in literature. There exist multiple approaches which vary in com-
putation time and complexity. One of the best-known and most widely used
algorithms is the Lengauer-Tarjan algorithm [40]. It computes dominance in
O(E ∗ log(N)), where E is the number of edges and N the number of nodes. An-
other technique was proposed by Cooper et al. [17]. Their iterative algorithm
uses well-engineered data structures and computes dominance in O(N2).

Although the algorithm of Lengauer-Tarjan has faster asymptotic complexity,
it requires unreasonably large graphs (≥ 30.000 nodes) to show a performance
advantage compared to the iterative algorithm. Small graphs benefit from the
improved performance of the iterative solution. Additionally, it is a very memory
efficient algorithm.

Therefore, the analysis tool implements the iterative approach as proposed by
Cooper et al. [17]. In the following, the algorithm is explained in detail along
with the necessary data structures.

Dominance is computed by the iterative Algorithm 6.1. In order to apply this
algorithm, nodes have to be traversed in reverse postorder. This can be de-
termined by calculating the postorder first and then reversing the resulting
sequence in a subsequent step. The postorder graph traversal is the following:

1. Right subtree

2. Left subtree

3. Root

In general, it is possible to start with either the right or the left subtree. In
the actual implementation, the right subtree is traversed first. This implies
that in reverse postorder the left subtree is traversed first, which means that in
if-conditionals the then-branch is processed before the else-branch.

4Hosted at http://www.graphviz.org/
5Bati uses an open-source Java wrapper created by Laszlo Szathmary. The

source is freely available at http://www.loria.fr/˜szathmar/off/projects/java/
GraphVizAPI/index.php

http://www.graphviz.org/
http://www.loria.fr/~szathmar/off/projects/java/GraphVizAPI/index.php
http://www.loria.fr/~szathmar/off/projects/java/GraphVizAPI/index.php

62 CHAPTER 6. IMPLEMENTATION

Algorithm 6.1: Iterative algorithm to determine dominance

for all nodes n do {initialize the dominator array}
doms[n] ← ∅

end for
doms[start node] ← start node
changed ← true

while changed do
changed ← false
for all nodes n in reverse postorder (except start node) do

new idom ← first (processed) predecessor of n

for all other predecessors p of n do
if doms[p] 6= ∅ then {i.e. if it is already calculated}

new idom ← intersect(p, new idom)
end if

end for

if doms[n] 6= new idom then
doms[n] ← new idom
changed ← true

end if
end for

end while

By using a reverse postorder sequence, the graph traversal starts at the leaf
nodes. It ensures that a parent node is not traversed before all child nodes
have been processed. This is important since dominance information can only
be computed at a parent node if dominance has been already computed for all
child nodes. The algorithm does also work without reverse postorder traversal.
However, additional iterations might then be required to compute the complete
dominance information.

Recall that a node n dominates a node b if n lies on every path from the root
node to b. The set of dominator of b is denoted by Dom(b). The immediate
dominator of b, denoted IDom(b), is the single node of Dom(b) that is next to
b. Furthermore, a dominator tree is defined for all nodes except the root node
n0 as

Dom(b) = {b} ∪ IDom(b) ∪ IDom(IDom(b)) . . . {n0} .

Instead of keeping distinct dom sets, the algorithm uses a compact dominator
tree to manage dominator sets. The sets are implicitly represented by the tree.
This data structure provides several benefits. It is a compact scheme since
IDom(b) is stored only once. Modifications can be done in-place, that is without
having to copy data or to allocate new data structures.

In the algorithm, the tree is implemented as single array doms. For any node
b, the inclusion into its dom set dom(b) is done implicitly. The array element
doms[b] holds IDom(b). Element doms[doms[b]] then holds the subsequent en-
try, which is IDom(IDom(b)). The dominator set of a node b can then be
reconstructed by walking through the doms array, starting at b.

6.2. THE SSA BUILDER MODULE 63

The main loop in the algorithm updates the doms array. Starting at leaf nodes,
the algorithm computes the IDom of the current node by performing inter-
sections with its predecessor nodes. The intersection routine is depicted in
Algorithm 6.2.

Algorithm 6.2: Two-finger algorithm for node intersection

Require: Nodes n1, n2
finger1 ← n1
finger2 ← n2

while finger1 6= finger2 do
while finger1 < finger2 do

finger1 ← doms[finger1]
end while

while finger2 < finger1 do
finger2 ← doms[finger2]

end while
end while

return finger1

It implements a two-finger algorithm. Given two nodes n1 and n2, one can
imagine two fingers pointing at the associated dominator sets. Each finger
moves independently until both fingers point at the same element. Note, that
the comparisons are on postorder numbers and nodes higher in the dominator
tree have higher postorder numbers. Thus, the finger pointing at the smaller
element is moved backwards.

The resulting set starts with the found element. The dominator set is assem-
bled by traversing the array backwards until the root element is reached. The
computation for a node continues until its dominator set doesn’t change in two
subsequent iterations. The algorithm stops when the complete doms array has
been computed.

Dominance frontier

After having computed dominance information, all necessary prerequisites are in
place to compute the dominance frontiers. The dominance frontiers describe the
exact places at which phi functions have to be placed during SSA construction.
Recall that the dominance frontier of a node n was defined as the set of all
CFG nodes b, such that n dominates a predecessor of b, but does not strictly
dominate b.

Given this definition and the dominance information, Algorithm 6.3 can now
be applied to compute the dominance frontiers. In a first step, the method
selects all join nodes within the graph at which control flow of multiple paths is
merged. Formally, a join node n is a node with at least two predecessors. For
each predecessor p the dominator tree is traversed starting at p. The algorithm
stops when the immediate dominator of node n is found. The join node is in the

64 CHAPTER 6. IMPLEMENTATION

dominance frontier of each traversed node except for its immediate dominator.
The remaining dominator of n are shared by n’s predecessors as well.

Algorithm 6.3: The dominance-frontier algorithm

for all nodes n do
if the number of predecessors of n ≥ 2 then

for all predecessors p of n do
runner ← p

while runner 6= doms[n] do
add n to runner’s dominance frontier set
runner ← doms[runner]

end while
end for

end if
end for

6.2.2 Modifying Dex Bytecode

The final steps towards the translation into the static single assignment form
are the placement of phi functions and the renaming of registers. It starts with
instrumenting the bytecode by adding φ-functions at the nodes determined by
the dominance-frontier computation. However, this information includes only
the target nodes. It is not clear which registers in these nodes require a phi
function.

This kind of information has to be collected in an additional pre-processing step.
In each target node, registers that are assigned a new value are recorded. A
distinct φ-function is necessary for any element of this resulting set of registers.
The classification of instruction registers is accelerated by use of a predefined
hashmap.

An argument in a bytecode instruction can either be a register, a literal, or a
numeric value. For the translation into the SSA form, non-register arguments
are of no interest. Register arguments instead, can be further separated into
registers that define a new value and source registers. This register classification
is fix and can be predefined for all opcodes. Table 6.1 shows an excerpt of the
classification map.

A dex bytecode instruction has up to three arguments. A set of registers, that
is for example used in invoke instructions, is considered as a single argument.
Registers within a set are always source registers. A dash sign denotes that
either the instruction does not have this argument or it is some constant value
that does not have to be processed. Destination registers can only appear as
first argument.

The hashmap allows classification of instruction registers in constant time. The
set of registers for which φ-functions have to be created can then be computed in
linear time by processing each bytecode instruction in the target node exactly

6.2. THE SSA BUILDER MODULE 65

Mnemonic / Syntax Argument 1 Argument 2 Argument 3

const-wide/32 vA, C Destination − −
move/from16 vA, vB Destination Source −
return-void − − −
throw vA Source − −
invoke-direct {vA, ..}, C Source − −
new-array vA, vB , C Destination Source −
aget-boolean vA, vB , vC Destination Source Source
aput-object vA, vB , vC Source Source Source
mul-int vA, vB , vC Destination Source Source

Table 6.1: Register classification table

once. Phi functions are inserted at the very beginning of basic blocks. The
number of arguments equals the number of predecessor nodes.

Renaming registers

Once the bytecode has been instrumented, all registers have to be renamed in
a final step. This is done in O(n) whereas n is the total number of bytecode
instructions in the application. In order to generate the SSA form, destination
and source registers have to be renamed differently. Register types are looked
up in the register classification table to determine which renaming scheme has
to be applied.

As already explained in Section 4.4, registers that are assigned a new value,
the destination registers, are renamed by appending an underscore along with
a sequential numeric index. For each register a distinct index is kept on a per
method level. Indices start with value one and are incremented each time a
new definition of that register is encountered. In the process, register v3 will
be renamed to v3 1 → v3 2 → v3 3 .. during this phase. Note that argument
registers within the method header are always considered as a new definition.

Renaming source registers is slightly more difficult. While destination registers
are renamed by using a global, per method index, source registers have to be
renamed differently. If a register is renamed, the last definition for this register
must be found on the current path. The target register is then assigned the
name of the last definition. The search for matching definition registers usu-
ally requires traversing the CFG backwards, or at least traversing the already
processed instructions in the current node backwards.

In order to speed up this computation, a local register map is generated during
renaming of destination registers. The map stores the maximum index per
register and basic block. By using this map, constant time lookups can be
performed to avoid costly path traversals.

An anomaly of transforming register-based bytecode into the SSA form is, that
in some cases it is not possible to rename certain argument registers of a phi
function. In high-level programming languages, variables always have to be de-
fined before they can be used. Registers in bytecode do not have to be defined

66 CHAPTER 6. IMPLEMENTATION

explicitly. They are just used when necessary. Thus, it is possible that tempo-
rary values in one path are stored in a register that is not present in a different
path (see also Section 5.3.1).

In such cases, no matching definition for the phi argument register can be found
in the associated path. In order to mark these special locations, the register
is renamed to X. If the resolver algorithm reaches such a phi function, the
corresponding path is not processed.

6.3 Resolver Implementation

The theory behind the symbolic execution of dex bytecode has already been
explained in Section 5.4. This section describes implementation specific details
of the analysis algorithm.

During the parsing step, all sinks within the application have been located and
their exact positions have been stored. However, due to the translation into the
SSA form, some of these positions might have become incorrect. If phi functions
have been inserted into basic blocks that contain sinks, the instruction indices
of the sinks have to be updated. This is accomplished by adding the number
of inserted phi functions to the instruction ID of the sinks. After updating all
sinks, the resolver algorithm is able to access the instructions associated with
the sinks.

Once the sink locations are verified, the actual backwards symbolic execution
can be applied. Sinks are processed consecutively. The algorithm starts at
the bytecode instruction associated with the sink and resolves all source regis-
ters. Instructions are processed according to the resolver semantics depicted in
Table 5.1.

6.3.1 Loop Detection

During analysis, several kinds of loops can occur. In order to proceed with the
analysis, several mechanisms have to be implemented to handle these loops and
to provide information on how to resolve these situations.

One of the most important functions of the resolver is to find the matching
definition for a given source register. When an instruction with arguments is
processed, the next step usually includes the search for corresponding definitions
of the argument registers. This is done by a path-sensitive backwards search of
the application bytecode, starting at the current instruction. Path information
is extracted from the previously created control flow graph.

In case that the CFG contains directed loops, it is possible that the tracing for
a definition register ends in an infinite loop. Such a loop usually starts at a join
node, if for example phi instruction arguments are resolved. If an infinite loop
is detected during resolution of an argument, the algorithm stops, returns back
to the phi instruction and continues its search in the path associated with the
next argument register.

6.3. RESOLVER IMPLEMENTATION 67

The actual loop detection is done by using a list of visited nodes. Once the
tracing for a definition register starts, the visited list is cleared. It is updated
each time a new node is visited and a loop detection warning is reported, if the
current node is already in the visited list.

The simplest form of a loop includes only two bytecode instructions. It occurs
when a for-loop, as shown in Listing 6.1, is processed. Internally, each loop
is converted into a conditional-jump construct in dex bytecode. Thus, if the
loop condition is true, the body is executed and in the end of the body a jump
instruction puts the control flow back to the beginning of the loop.

St r ing s t r = ” someString ” ;
for (int i = 1 ; i < 5 ; i++)

s t r += i ;

Listing 6.1: Simple for-loop

The corresponding bytecode in SSA form for the for-loop is depicted in Bytecode
Listing 6.3. A phi instruction at the end of the loop indicates the two paths of
the conditional. The const-instruction defines the initial value of the loop vari-
able. Problematic is the integer addition instruction afterwards. It increments
the loop variable by one for each iteration. Obviously, the source register of the
addition instruction equals the destination register of the phi instruction and
vice versa.

const/4 v0_1, 0x1
add-int/lit8 v0_3, v0_2, 0x1
phi v0_2, v0_1, v0_3

Bytecode Listing 6.3: Dex bytecode of a simple for-loop

Another rather rare case of a loop was encountered during resolution of a method
argument register. The loop is formed by multiple phi instructions pointing at
each other, that is phi argument registers pointing at the destination register
of another phi function within the same method. Figure 6.2 shows a phi-loop
with register v2 5 as starting point encountered during register resolving.

phi v2_1, v2_2, v2_3, v2_8

phi v2_5, v2_1, v2_4

phi v2_8, v2_5, v2_6, v2_7

Figure 6.2: Phi loop during resolution of a method argument register

68 CHAPTER 6. IMPLEMENTATION

This kind of a loop is detected and prevented by a special phi visited list. The
list is initialized each time a new method argument is resolved and updated
each time a new phi argument register is processed. This is possible due to the
unique naming of registers within a method. If a loop is detected, the algorithm
terminates the current path and proceeds with the next argument of the last
processed phi instruction.

Loops cannot only appear on register or node level. During testing, loops also
appeared on method invocation level. Furthermore, this kind of loops can be
categorized into two types, recursive method invocations and invocation chain
loops.

Recursive method invocations can only be detected in custom method invoca-
tions since their bytecode is available for analysis. Recursive invocations are
easily detectable. If a new invocation is reached, the corresponding method
name is compared to the name of the currently analyzed method.

Recursive invocations must be treated differently in terms of resolving. In con-
trast to non-recursive custom method invocations, they cannot be reduced to
a single value after all registers and the bytecode of the function have been re-
solved. The actual analysis starts with the resolution of method arguments. The
recovered tokens encode the values of the initial invocation. Then, the method
is resolved starting from its return instructions. Once the method header is
reached, any unresolved function argument is replaced by a placeholder value.
The recursive invocation within the function is treated like an API invocation
in order to prevent a loop.

private int recurs iveSum (int n) {
return (n > 1) ? n + recurs iveSum(−−n) : 1 ;

}

Listing 6.2: Recursive function to calculate the sum of the first n natural
numbers

Listing 6.2 shows a simple recursive function to compute the sum of the first n
natural numbers. If it is invoked with a value x, the sum

x+ . . .+ 2 + 1 =

x∑
i=1

ni

is calculated recursively. Applied to this example, the analysis algorithm first
reassembles the argument values that are passed to the initial invocation. Then,
the function itself is resolved, whereas method argument registers are not re-
solved beyond the method border but instead replaced by markers. As a result,
an invocation recursiveSum(4) is resolved as

4 + !ClassName;→recursiveSum($Arg1 - 1) .

Besides recursive method invocations, loops can also be formed by a sequence
of method invocations that is repeatedly executed. However, sequences of in-
vocations can appear multiple times in a program without forming a loop. In
order to be able to distinguish real loops from normal function sequences, it is

6.3. RESOLVER IMPLEMENTATION 69

necessary to generate a method invocation chain. This chain does not only con-
tain the current sequence of method invocations within the analysis, it does also
provide information about the exact location of the invocations in the bytecode.
The locations are again stored as 4-tuple consisting of class, method, node, and
instruction identifier.

The invocation chain is a ordered list of location tuples, whereas the first element
is the root method invocation and the last element is the current invocation.
With each new element in the list, the algorithm enters a new recursion level.
When a method is processed completely, the last element is deleted and the
recursion level is decreased by one. The element at the current recursion level
is updated once a new invocation is reached. This way, it is possible to keep
track of the current invocation history.

Multiple executions of the same invocation sequence within an application does
not necessarily create a loop. A sequence methodA → methodB → methodC
might be executed in different parts of the application. It is only considered
as a loop if after methodC , methodA is invoked at the same location as before.
Thus, it is crucial to store the exact invocation locations rather than the method
names.

Each time a new invocation is about to be processed, it is checked whether
the current invocation chain includes the same method invocation at the same
location. If a loop is detected, the algorithm stops and marks this path a dead-
end.

6.3.2 Incorporating Expert Knowledge

The previous chapter introduced the concepts behind backwards symbolic ex-
ecution and the corresponding approach of collecting and storing data tokens.
Some of these approaches can be optimized by using expert knowledge. The
concept of resolving closed-source method invocations and the generation of a
call history (see Section 5.4.3) are candidates for optimization.

Closed-source method invocations are resolved by dumping the full method
name and replacing the argument types by the resolved argument values. This
forms a comprehensive representation as it includes any resolvable information.
However, there is a more compact way of presenting the data in certain situ-
ations. By using expert knowledge, unnecessary method information may be
omitted to improve readability.

In dex bytecode, strings are internally created and modified via the String-
Builder class. Dumping the method and class name for a StringBuilder method
invocation does not provide useful information. It is even unfavorable because
it blows up the result without given additional value. Taking up the example
of Section 5.6.3, the URL string www.foo.com/?key=12345 is assembled via the
StringBuilder function calls listed in Table 6.2.

The default algorithm generates a call history of these invocations and outputs

70 CHAPTER 6. IMPLEMENTATION

Method invocation header Resolved Argument

Ljava/lang/StringBuilder;→<init>(Ljava/lang/String;) ”http://www.foo.com/”
Ljava/lang/StringBuilder;→append(Ljava/lang/String;) ”?key=”
Ljava/lang/StringBuilder;→append(I) 12345
Ljava/lang/StringBuilder;→toString() ∅

Table 6.2: StringBuilder invocation sequence

the following result (the line-wrap is due to the limited horizontal space):

Ljava/lang/StringBuilder;→ <init>(”http://www.foo.com”)

→ append(”?key=”)→ append(12345)→ toString()

The result contains all resolved information and provides a comprehensive,
but too complex representation of the string. In these cases, expert knowl-
edge can be used to optimize string representations. It is known that the
java.lang.StringBuilder class handles string values. Furthermore, it is known
that class methods like the constructor or the append method are used to as-
semble a string value. The invocation order within the call history already
represents the correct order of substrings. Thus, we can simply omit the class
and method information, resolve the arguments and assemble the fragments in
the correct order.

This approach can also be referred to as resolve arguments only approach. In the
example above, this results in the raw string http://www.foo.com/?key=12345.
Thus, using expert knowledge provides a more compact and readable output for
strings created via the StringBuilder class.

The approach can also be used for certain other well-known methods. The set
of methods for which expert knowledge can be applied to generate an improved
output includes toString and valueOf methods of known Java classes. The
optimization is restricted to widely used classes within the common java.lang
package, like the Integer or Float class.

In general, toString methods take no arguments and return a string represen-
tation of the object on which they are invoked. Thus, the method itself does
not provide any useful information. Resolving the object register will result in
a string which can be directly incorporated into the associated set of tokens.

In Java, valueOf methods in the java.lang package usually take a primitive type
or a string representation thereof and return the corresponding object type.
The Integer.valueOf function, for example, takes an int argument and returns an
Integer object. The analyzer does not make any difference between the primitive
type and its corresponding object type. The resolved values are stored equally
and are finally output in a string representation to the user. Therefore, the
resolve arguments only approach can be applied in these cases as well.

6.3.3 Handling special Method Invocations

Functions often include invocations of other methods. This does not only com-
plicate the backwards symbolic execution, it does also require a sophisticated

6.3. RESOLVER IMPLEMENTATION 71

and robust mechanism to find the associated method definition to proceed with
the analysis. Contrary, if the resolver reaches a method header, a routine must
find all locations in the application at which the current method is invoked.

By use of pre-generated lookup maps, these searches are quite simple and effi-
cient. However, there are various situations at which no matching definition or
method invocation is found. The following list includes a number of situations
which require special handling in case the default search hasn’t been successful:

• Super class method invocations

• Interface method invocations

• Resolution of Android event handler

• Class initializer invocations (constructors)

Any Java class inherits from the root base class Object. In order to implement
specific concepts, it is often necessary to create a class hierarchy in which certain
classes inherit from a base class. Thereby, the child classes may override methods
of the base class in order to implement a custom behavior. If no custom version
of a method is implemented in the child class, the corresponding function of the
base class is executed.

As the bytecode dictates, the algorithm searches in the child class for the match-
ing definition. If no implemented method is found, the resolver must check if
the class inherits from a super class and must use this information to find the
corresponding method definition. In case that the super class is a closed-source
method, it is processed like any other API call.

In the Java programming language there is also a concept called interfaces.
Interfaces are a kind of class skeletons. They provide class information and
method header definitions without an actual implementation. Implementations
can use interfaces like real classes without knowing implementation details.

If the resolver algorithm processes an invocation instruction that targets an in-
terface method, it won’t find the implementation in the associated interface.
Instead, it must search for the implementation in classes that declare to imple-
ment the interface. In order to speed up this search, the parser module extracts
interface information and generates a convenient lookup table during the parsing
step.

Android event handler methods are considered entry points of the application.
In contrast to default Java or C++ programs, there is no single entry point, like
a main function, in Android applications. Event handlers are used to directly
react to user input, for example if a button is clicked. The Android event
handler method names are prefixed with on followed by the action that triggers
the event, e.g. onClick or onKeyDown.

If the algorithm resolves an event handler function and reaches the function
header, the resolver stops. Event handlers are usually invoked by the framework
automatically. Further resolving, especially of function arguments, does not add
useful information to the current result.

When class methods are reached, the algorithm does not only resolve the argu-
ments. In case of API method invocations, a call history is created to provide

72 CHAPTER 6. IMPLEMENTATION

information about method invocations on the instance that preceded the current
invocation. The first invocation on an object instance is always the constructor
call. In dex bytecode, this is the method initializer, denoted by <init>. As
there is no preceding invocation, the algorithm stops here as well.

6.4 The Decoder Module

After the static analysis has been completed, there is a distinct target graph for
each sink holding multiple sets of encoded tokens. The target graph is a directed,
acyclic graph which is used for multi-path encoding. It represents a compact
and space-efficient data structure to encode multiple paths with shared sub-
paths. Each node in the graph holds a list of tokens that represents a fragment
of the final output.

In order to decode the target graph and to dump all URLs associated with a
certain sink, two steps have to be performed. In the first essential step, the
graph is dissected into single results. This means that all paths through the
graph, beginning at the root node and ending at a leaf node, have to be found.
Furthermore, the path token lists have to be assembled by merging all token lists
that belong to a node within the path. This merging step dismantles the shared
representation of sub-paths. Each resulting path list holds a distinct copy of
node tokens. Once the token lists are complete, they have to be decoded as
described in Section 5.6. Decoded tokens of a path are subsequently assembled
and finally output to the user.

In order to make the decoding efficient, the implementation must combine these
steps rather than performing them consecutively. Dumping all paths first causes
a waste of memory, especially on large graphs. Thus, it is meaningful to only
store as much data as necessary. In the actual implementation, the decoding
routine is triggered immediately, once a new path has been assembled com-
pletely.

Unfortunately, there is no better way for retrieving all paths, from a start node to
a certain end node, than trying all possible combinations. A standard technique
for performing this task is the backtracking approach. A backtracking algorithm
traverses the graph recursively in depth-first order. It assembles the path by
collecting the node indices that are encountered during traversal.

Default backtracking algorithms usually include various abort criteria such that
partial solutions, which cannot lead to a valid end result, can be discarded
early. This way, backtracking algorithms are usually faster than brute-force
approaches. Since all paths through the DAG must be retrieved, reaching an end
node is the only abort criterion. In fact, this represents a brute-force approach.

Algorithm 6.4 shows the graph traversal via backtracking. It requires a cur-
rent node, the recursion depth and a list that represents the current path. It
performs a depth-first search and creates a path by collecting a list of node
identifiers. Once an end node is reached, the token list associated with the path
is assembled. Before the graph traversal proceeds, the current path is decoded
to minimize the memory footprint. The initial invocation of the backtracking

6.4. THE DECODER MODULE 73

method includes the root node with index 0, a recursion depth of -1, and an
empty list representing the path.

Algorithm 6.4: Graph traversal via backtracking

Require: int curNode, recursionDepth; list curPath

recursionDepth++
curPath[recursionDepth] ← curNode {update current path}

if curNode is end node then {path is complete}
pathTokenList ← []
for all nodes n on curPath do {assemble tokenlist for current path}

append tokenlist of n to pathTokenList
end for
decodePath(pathTokenList)
recursionDepth--
return

end if

{backtrack all successor nodes}
for all successor nodes s of curNode do

backtrack(s, recursionDepth, curPath)
end for

curPath[recursionDepth--] ← ∅
return

Intensive testing on large graphs showed that the recursive approach causes a
high memory consumption. Recursive methods are often easier to implement
because the stack handles the book-keeping of data during the recursive descent.
This convenience is bought with an increased memory consumption, because
of larger stack sizes. In order to optimize the graph decoding, an iterative
graph traversal routine has been implemented additionally. The pseudo-code is
depicted in Algorithm 6.5.

The iterative algorithm has the same abort criterion and path assembly than
the backtracking approach. The crucial difference is that the algorithm explic-
itly manages a data structure to keep track of the nodes that still have to be
processed. It mimics the task of the stack, but is more memory efficient, because
no return data or local method data needs to be stored.

The data structure is called worklist and is a 2-dimensional list. It stores lists
of successor nodes for all nodes on the current path. The depth variable holds
the same information than the recursionDepth variable in the backtracking al-
gorithm. The current node variable is always assigned the first element of the
current successor set. The poll function does not only retrieve the element, but
it additionally removes it from the set.

If a complete path is found, the algorithm assembles the token list and passes it
to the decodePath function. The list is then decoded and evaluated and the final
result is stored. Afterwards, the algorithm mimics the backtracking behaviour
by moving backwards in the worklist as long as it finds empty successor sets.

74 CHAPTER 6. IMPLEMENTATION

Algorithm 6.5: Iterative graph traversal

depth ← 0
worklist ← [[0]]

while worklist 6= ∅ do
curNode ← pollFirst(worklist[depth])
curPath[depth] ← curNode {update current path}

if curNode is end node then
pathTokenList ← []
for all nodes n on curPath do {assemble tokenlist for current path}

append tokenlist of n to pathTokenList
end for
decodePath(pathTokenList)

{move back to the last path node that has successors to process}
while worklist[depth] = ∅ do

remove worklist[depth]
if depth = 0 then

break
end if
remove curPath[depth]
depth--

end while

if depth = 0 then
return {root node reached, done}

end if
else

depth++
worklist[depth] ← list of successor nodes of curNode

end if
end while

Once a non-empty set is found, the algorithm continues the search for new paths.
Finally, the algorithm stops when the root node is reached.

Chapter 7

Evaluation

The last chapter described implementation specific details of the analysis tool.
This chapter is about the evaluation of the approach. It starts by showing the
results of the analyzer on common programming paradigms, like conditionals
and loops. With the help of small Java code snippets, concrete examples are
presented. Certain parts of the code are highlighted to describe areas that are
difficult or special to analyze.

Additional examples show more complex code including class field and array
accesses. They require advanced analysis techniques, like the concepts of array
reconstruction or the path-sensitive resolution. In order to show the differ-
ent types of method invocations, dedicated examples are presented for custom
methods, their special subtype, recursive invocations, and closed-source method
invocations. Concepts like the generation of a call history or the special dumping
of recursive invocations are explained with the help of descriptive examples. Fi-
nally, the analysis of a more complex Android application is presented. It covers
the resolution of data sinks across classes and includes various data structures
that need to be analysed in order to output a correct result.

The following sections contain several Java code examples that are used to
show the effectiveness of the static analysis approach. Each example includes
programming paradigms that are common in real applications. The code parts
are kept at a minimum size such that important aspects can be illustrated
without requiring a larger context. For the sake of simplicity, all examples
use the URL constructor data sink. Furthermore, the examples are presented
in Java code for readability and understanding reasons. However, it should
be noted, that the actual analysis is performed on the dex bytecode, which is
generated when the application is translated with the dx compiler.

7.1 Resolving Basic Constructs

This section shows how basic constructs like expressions or conditionals are
resolved by the algorithm. The examples are presented in form of small Java

75

76 CHAPTER 7. EVALUATION

functions that return a URL instance. The associated bytecode instruction is
the target data sink to be resolved.

Listing 7.1 shows a URL object that is assembled by means of strings and
expressions. The expressions include an subtraction of two float values and an
integer addition of a numeric value with a return value of a method. In this
example, TestClass is a class of some official API for which the source code is not
available. A new TestClass instance is created and initialized. The getValue()
method simply returns the integer value which has been used in the constructor.

private URL c a l c () {
f loat x = 1.43 f ;
f loat y = 1.174 f ;
int z = 5 + new TestClass (17) . getValue () ;
S t r ing dom = ”www. foo . com/? va l=” ;
return new URL(dom + (x−y) + ”&val2=” + z) ;

}

Listing 7.1: Simple calculations

The result of the analysis is shown in Output 1. In order to produce this result
several tasks have to be performed. The URL argument string is assembled
by processing the fragments in left to right order. Thereby, the variables are
resolved until constant values are found. In order to evaluate the expressions,
the numeric values have to be converted first. In dex bytecode all numbers
are stored in a hexadecimal representation, e.g. the hexadecimal value of 1.43f
is 0x3fb70a3d. They are converted according to their data type, before the
operation is performed.

www.foo.com/?val=0.25599992&val2=$(EXPR1)
$(EXPR1): $$((int) !Lorg/test/TestClass;-><init>(17);->getValue() + 0x5)

Output 1: Assembled URL string

As both operands of the float subtraction are real values, the expression is
evaluated and the result is output. The small loss of significance is a general
problem that occurs when two close floating point numbers are subtracted.

The second expression is not resolvable for the static analyzer, as the second
operand is not a numeric value. The return value of the function can also not be
inferred since no context or source code is available. In this case, the algorithm
uses a default template for expressions to provide the most comprehensive set of
information possible. The template also includes the data type of the operation
result. Furthermore, the full class name along with the constructor call and the
final method invocation are output.

For improved readability, unresolvable expressions are replaced by a simple
placeholder in the final result. The complete expression is then printed in an
extra line.

7.2. EVALUATING CLASS FIELDS 77

Conditionals

Listing 7.2 shows a nested conditional that needs to be resolved in order to
output the URL strings. The phi instruction that is placed right behind the
outermost if-conditional indicates three distinct paths. Two of these paths as-
sign a new value to the dom variable, which contains the core part of the do-
main. The third path only includes an expression that is of no importance for
the final URL. In this path, the depth-first search will therefore find the initial
assignment at the very beginning of the method.

private URL nes tedCond i t i ona l () {
St r ing dom = ” foo . com/ i n i t ” ;
int i = 5 ;

i f (i < 10)
dom = ” foo . com/ then ” ;

else {
i f (i < 5)

i = i ∗ i ;
else

dom = ” foo . com/ e l s e e l s e ” ;
}

St r ing domain = ”www. ” + dom;
return new URL(” http :// ” + domain + ”?noArgs”) ;

}

Listing 7.2: Nested conditional

This initial assignment is also part of the other two paths. However, in back-
wards symbolic execution only the first match will reach the data sink and thus
the algorithm will stop there. The three paths through the nested conditional
also produce three URL values, which are depicted in Output 2. Note, that in
this concrete example only the third output reaches the sink if the method is
invoked. In general, evaluating conditions is complex and infeasible in many
situations. The current algorithm does not perform reachability analysis by
evaluating conditions and therefore outputs one result for each path.

1. http://www.foo.com/then?noArgs
2. http://www.foo.com/init?noArgs
3. http://www.foo.com/else_else?noArgs

Output 2: Result for the nested conditional

7.2 Evaluating Class Fields

Resolving a class field access is a more complex task. Various factors have to
be considered for the analysis. The algorithm must check whether the target
class field is a static or an instance field. In addition, field accesses often need
to be resolved for multiple paths, i.e. the resolution has to be path-sensitive. If
the field access can not be resolved within the current method, the algorithm

78 CHAPTER 7. EVALUATION

extends its search to other parts of the program, depending on the field access
type.

Listing 7.3 shows a slightly more complex code example to describe the different
types of class field accesses. The code introduces a class ClassFieldRecovery
with a static field of type string and an instance field of type integer. The
class constructor invokes the class method target which contains a URL sink.
Furthermore, the class contains a nested class with a single public class field.

public class ClassFie ldRecovery {
stat ic St r ing s t a t i c V a l = ”C” ;
public int i n s tanceVa l = 555 ;

private class nes tedClas s {
public int item ;
nes tedClas s () {

item = 5 ;
}

}

ClassFie ldRecovery () {
t a r g e t (”www. foo . com”) ;

}

private URL t a r g e t (S t r ing domain) {
nes tedClas s nc = new nes tedClas s () ;
nc . item = 10 ;
nes tedClas s nc2 = new nes tedClas s () ;

int x = 24 ;
i f (x < 35) {

s t a t i c V a l = ”A” ;
} else {

s t a t i c V a l = ”B1” ;
this . i n s tanceVa l = 30 ;
nc . item = 50 ;
s t a t i c V a l = ”B2” ;

}

St r ing args = ”? s t a t i c V a l=” + s t a t i c V a l +
”&instanceVa l=” + this . i n s tanceVa l +
”&pa i r=” + nc . item + ”−” + nc2 . item ;

return new URL(” http :// ” + domain + args) ;
}

}

Listing 7.3: Class field resolution

Resolution of the class starts at the URL class instantiation. The domain vari-
able is a method argument that is not modified within the function. Therefore,
the algorithm searches for invocations of the target method. The only invocation
is found in the class constructor. The passed value for the domain argument is
stored and the analysis proceeds.

The interesting part is the args string that is assembled by using various class
field values. First, the value of the static field is accessed. It turns out that the
assignments to this field can be resolved within the conditional. The else-branch

7.3. EVALUATING ARRAYS 79

contains two assignments, whereas only the latter one will reach the data sink.

Next, the value of the instance class field is accessed. The current class in-
stance is referenced by the this variable. The class field instanceVal is assigned
the value 30 in the else-branch. Resolving the access in the then-branch isn’t
successful. The field is also not set in the remaining path towards the method
header. If this is the case, all class field initializations have to be parsed. These
initializations are stored in a special class field annotation that is not parsed
in the current implementation. Therefore, the algorithm doesn’t output a valid
value for this path.

The last fragment of the args string is a pair of values. The variables reference
the public class field item of the nested class instances. These objects are created
at the very beginning of the method. The field of the first instance is only set
in the else-branch. However, tracing the access through the then-path will lead
to the assignment right after the instantiation. The concrete class field value
of the second instance cannot be determined within the target method. The
field value is initialized in the constructor of the nested class. By analyzing this
initializer method, the value 5 can be recovered for the second class instance.

Combining all resolved data chunks for the URL sink generates the results shown
in Output 3. Obviously, the analysis overestimated the real results. Although
there are only two distinct paths through the CFG of the target method, the
output shows four URLs. This overestimation originates from the target graph
generation algorithm (see also Section 5.5.4). The resolution of the staticVal
and the nc.item variable results in two distinct target graphs. Each graph
contains the same two paths through the if-conditional. But since the graphs
are merged, the resulting target graph contains four distinct paths. This leads
to the overestimation that produces the first and fourth URL of the output. The
incorrect instanceVal values for the first two URLs originate from the missing
parsing support for class field annotations.

1. http://www.foo.com?staticVal=A&instanceVal=30&pair=50-5
2. http://www.foo.com?staticVal=A&instanceVal=30&pair=10-5
3. http://www.foo.com?staticVal=B2&instanceVal=30&pair=50-5
4. http://www.foo.com?staticVal=B2&instanceVal=30&pair=10-5

Output 3: Result for the class-field example

7.3 Evaluating Arrays

The analysis of arrays includes the evaluation of array accesses as well as the
reconstruction of array elements at a certain point in time. In general, resolving
an array access also requires the full reconstruction of the array content. It is
unknown in advance whether the index is reducible to a numeric value such that
the access can be fully resolved.

In order to show the effectiveness of the approach, Listing 7.4 includes various
array accesses with constant and dynamic indices. Again, a single URL data
sink is included. It is instantiated with a domain and an argument string is
appended with values from an integer array.

80 CHAPTER 7. EVALUATION

private URL arrayAccess () {
int i = 4 ;
int [] intArray = { 12 , 13 , 14 , 15 , 16 } ;

i f (i < 10)
intArray [1] = 35 ;

else
intArray [1] = 10 ;

intArray [0] = 1 ;
intArray [2] = i ∗ 5 ;

S t r ing arg = ”? key=” + intArray [i −2] +
”−” + (intArray [1] + intArray [3]) ;

return new URL(” http ://www. foo . com/” + arg) ;
}

Listing 7.4: Array access and reconstruction

The first value of the key pair is an array element that is indexed by an ex-
pression. The expression is resolved normally and the result is encoded and
stored. Afterwards, the elements of the array are reconstructed. Therefore,
all array modifying instructions are evaluated within the code from the actual
array access to the array definition.

Since the conditional modifies certain elements differently, the array reconstruc-
tion will produce two results. The fully resolved array contents, at the time of
the access, are [1, 35, 20, 15, 16] and [1, 10, 20, 15, 16]. Only the second element
differs. The actual value depends on the variable used in the if-condition.

During decoding, the array access is evaluated. The index expression targets
the array element at index two which is again an expression. The multiplication
is evaluated and the result is returned.

The second value of the key pair is an addition of two array elements. The
indices are constant values and thus no further resolution is necessary. The
array elements are reconstructed as described before. Since different values for
the second element are possible at the time of the access, there are two distinct
results for the addition. If the then-branch of the conditional has been executed,
the operands of the addition are 35 and 15. Otherwise, the value 35 is replaced
by 10. Finally, the fully resolved and assembled URLs are depicted in Output 4.

1. http://www.foo.com/?key=20-25
2. http://www.foo.com/?key=20-50

Output 4: Results of the array accesses

7.4 Evaluating Method Invocations

Resolving and evaluating method invocations is a complex area. There are dif-
ferent kinds of invocations and the level of analysis applicable strongly depends
on the availability of the method source code. If the functionality is known to

7.4. EVALUATING METHOD INVOCATIONS 81

the analyzer, much more compact and precise results are possible. On the other
side, if closed-source functions are invoked, special concepts like the call history
are used to give the user comprehensive information about the context of the
invocation.

In the following, code examples for different kinds of invocations are shown
to highlight both the general analysis approach and special concepts that are
applied if only limited information about a method is known.

7.4.1 Call Histories

Listing 7.5 shows an example with closed-source method invocations. Thereby,
a call history is generated to provide more context to the user than normal
resolution would provide. The method also includes a URL sink where the
actual URL string is assembled via several fragments.

private URL c a l l H i s t o r y () {
F i l e f = F i l e . createTempFile (” t e s t ” , ” . txt ”) ;
Float s i z e = 1.235 f ;
S t r ing f a r g s = ”? f i l e=” + f . getAbsolutePath () +

”&s i z e=” + s i z e ;
S t r ing domain = ”www. foo . com/ upload ” ;

B ig Intege r b i = new Big Intege r (”123456”) ;
b i . add (new Big Intege r (”77777”)) ;
return new URL(” http :// ” + domain + f a r g s

+ ”&id=” + bi . t oS t r i ng ()) ;
}

Listing 7.5: Call history example

A part of the argument string uses a file instance that is created by invoking
the static method createTempFile of the java.io.File class. This is similar to
creating a new object and initializing it with some values. The file argument
string fargs is built up of the absolute path of the instance, which is retrieved
by invoking the corresponding method. Furthermore, the file size is appended
as a floating point value.

The last parameter id uses a string representation of a BigInteger class instance
that has been created before. In a subsequent class method invocation its value
is modified. Finally, the current value is converted to a string representation by
invoking the toString method.

The results of the analysis are shown in Output 5. They clearly show the
benefit of generating a call history. With normal backwards symbolic exe-
cution, only the method invocations that directly reach the URL sink would
have been dumped. In this example, only the final object invocations would
have been output; Ljava/io/File;→getAbsolutePath() for the File object and
Ljava/math/BigInteger;→toString() for the BigInteger object. Certainly, this
gives some information, but the crucial part necessary to understand the big
picture is missing.

82 CHAPTER 7. EVALUATION

http://www.foo.com/upload?file=$(FNC1)&size=1.235&id=$(FNC2)
$(FNC1): Ljava/io/File;->createTempFile("test", ".txt");

->getAbsolutePath()
$(FNC2): Ljava/math/BigInteger;-><init>("123456");

->add("77777");->toString()

Output 5: The resulting call histories

By generating a call history, all invocations on the target object are recorded
until the object definition is reached. Then, this information is assembled in
chronological order. This provides the most comprehensive information possible
without having the actual source code of the function. In final results, call
histories are usually replaced by a marker and printed in a dedicated line for
readability reasons. In Output 5 lines are wrapped due to space limitations.

7.4.2 Fully Resolvable Methods

Methods that are defined and implemented within the application can be fully
resolved by the analyzer. The functionality can be reconstructed by parsing
the bytecode. Expressions and instructions within the function can be invoked
symbolically. Evaluation can be performed by replacing variables with either
concrete or symbolic values. The resulting output shows the full power of the
symbolic execution approach.

Listing 7.6 shows two custom methods that implement some calculations of
input values that reach a data sink. The main function is the target method that
includes a URL sink. The argument string, appended to the domain, contains
a single argument whose actual value is the return value of the function calc.

private URL t a r g e t () {
return new URL(” http ://www. foo . com/? va l=” + c a l c (7)) ;

}

private int c a l c (int input) {
int i = 5 ;
i f (input < i) {

return i +5;
} else {

i f (i ∗ input > 60)
return input−i ;

else {
i ∗= input ;

}
}
return c a l c 2 (i−input , 5) ;

}

private int c a l c 2 (int input1 , int input2) {
int r e s u l t = input1 + (input1 ∗ input2) ;
return (r e s u l t / 3) ;

}

Listing 7.6: Full resolving of custom methods

In total, there are three distinct paths through the calc function. The first

7.4. EVALUATING METHOD INVOCATIONS 83

two end by returning a simple expression. The third path through both else-
branches is slightly different. It does not only include expressions, but also
another method invocation that changes the value to be returned. Evaluating
this path does shows the effectiveness of the expression resolver.

The first two paths directly end within the conditional of the calc method.
The first return value does not depend on input arguments and is thus easily
resolvable. The second path returns an integer value which is the result of an
expression that includes a method parameter. Resolving this expression requires
the concrete argument value that is passed to the method invocation.

The third path is more complex than the previous ones. All tokens collected
during the analysis are stored and encoded properly. This includes the encoding
of the custom methods, expressions, and constant values. Once the methods are
processed, the decoding routine starts and the data evaluation is performed.

For convenience, the single steps through the path are highlighted and described
in more detail in Table 7.1.

Instruction Calculation

calc(7)
i = 5
i = i * input 5 * 7 = 35
return calc2(i-input, 5) calc2(35-7, 5) → calc2(28, 5)

calc2(28, 5)
result = input1 + (input1 * input2) 28 + (28 * 5) = 168
return (result / 3) 168 / 3 = 56

Table 7.1: Evaluation of custom method invocations

Finally, the results for the analysis of the URL data sink in function target are
shown in Output 6.

1. http://www.foo.com/?val=10
2. http://www.foo.com/?val=2
3. http://www.foo.com/?val=56

Output 6: The results after evaluating the expressions and custom method calls

7.4.3 Recursive Method Invocations

Recursive method invocations are a special subset of custom method invoca-
tions. A method is considered recursive, if it is invoked within its implementa-
tion. The analysis of recursive methods is pretty difficult and the invocations
have to be handled similar to loops within a method. The arguments that are
passed to the invocation are modified within the function. Furthermore, the
function includes some abort criterion which stops the recursion. In contrast to
a loop, in which all loop relevant data is stored within one block, information
that targets the recursion might be distributed all over the function.

In general, it is not possible to fully resolve and evaluate a recursive function
with static analysis. Information about the modifications of method arguments

84 CHAPTER 7. EVALUATION

and abort criteria might be very complex and not resolvable. Therefore, special
handling is necessary to approximate the concrete behavior of the method. The
goal is to output the most comprehensive information possible, as it is done for
closed-source method invocations.

Recursive methods are resolved like normal custom methods. Their recursive
invocation however is treated like an API call. This means, that the whole
method functionality is analyzed and evaluated by using the arguments passed
to the initial invocation. The recursive call within the function is not followed, as
this causes a loop which cannot be handled effectively. In general, information
about the abort criteria is unknown and might only be fully resolvable for a
limited number of cases.

Listing 7.7 shows a simple function with a URL sink. A fragment of the URL
argument string is assembled with the return value of a recursive function. Ac-
tually, the value results of a multiplication of a constant value with the outcome
of the recursive invocation. The function recSum recursively calculates the sum
of the numbers within the interval [input, 2], whereas input denotes the value
passed to the initial invocation.

private URL t a r g e t () {
int x = 17 ;
return new URL(” http ://www. foo . com/? va l=” + (x ∗ recSum (7))) ;

}

private int recSum (int input) {
return input > 2? input + recSum(−− input) : 2 ;

}

Listing 7.7: A recursive method invocation

The backwards symbolic execution finds two paths in the function recSum. The
first path is executed if the recursion proceeds, that is if the input value is larger
than two. The else-branch is taken if the recursion stops. In this case, the value
two is returned. Because of the two paths, the analysis outputs two different
results. The second URL in Output 7 appears if the initial argument value is
smaller than the abort threshold. This is also the only case in which the method
is not invoked recursively.

1. http://www.foo.com/?val=$(EXPR1)
$(EXPR1): $$((int) 17 * $$((int) 7 +

TestClass;->recSum($$((int) $ARG1 + -0x1))))
2. http://www.foo.com/?val=34

Output 7: The results for the recursive method invocation

The situation becomes more complex if the other path is executed. In this
case the then-branch is analyzed normally, with the exception of the recursive
invocation. In order to prevent a loop, this special invocation is handled like
a closed-source method call. The method argument passed to this invocation
cannot be resolved, and is thus replaced by a marker $ARG1 that indicates its
number within the argument list.

7.5. THE TRANSLATION APP 85

The expression of the first resulting URL shows the multiplication of two in-
teger values of the root expression. The second operand is the return value of
the invocation. Since it is not fully resolved, the template provides information
about the functionality of the method. The integer addition starts with the
initial value seven. In each subsequent invocation the first argument is decre-
mented by one. The abort criterion is only shown indirectly by the value in the
second result. Due to space limitations the full package name of the TestClass
is omitted and a line break is inserted into the expression line.

7.5 The Translation App

In order to show the effectiveness of the approach on real Android applications,
a simple translation app was implemented. The application translates an En-
glish text entered by a user into a selected destination language. The actual
translation is done by use of the Google Translate API1. The result is then
presented to the user.

The application comprises two classes. The main class Translate is an Activity
that shows up when the application is started. It defines all UI widgets, like
the EditText for the text to be translated and a Spinner/ComboBox to select
the destination language. Furthermore, a TextView shows the results of the
translation.

The translation is triggered implicitly, if the text input does not change within
a small time frame that starts right after the last modification. The actual
translation is performed asynchronously in a distinct thread, such that the GUI
is not blocked while the application waits for the result of the Google servers.
The translation thread is implemented in a second class TranslateJob. Its con-
structor is invoked with the user input extracted from the UI widgets. Using
this data, the actual request is assembled. Then, a connection to the translate
service is established and the data is transmitted. The translated data is then
received in JSON2 format. The JSON object is parsed and the translated text
is returned to the GUI thread which subsequently updates the screen.

In the following, the analysis relevant parts of the application are presented in
code listings. Thereby, the code is described in the order in which the backwards
symbolic execution processes the code parts. It starts with the main translation
method doTranslation, goes on to the run method of the translation thread,
and finally ends with a method in the GUI thread that collects all necessary
information and starts a translation thread.

Listing 7.8 shows the main translation method. It gets the original text as
well as the source and destination language to be used for the translation. The
source language has been hard-coded to English for all translations, whereas the
destination language is specified by the user. The input arguments are used to

1The Google Translate API v1 was officially deprecated on May 26, 2011. In a recent
statement it was announced that the API will be shut off completely on December 1, 2011.
The Translate API v2 is unfortunately only available as paid service. (see also http://code.
google.com/apis/language/translate/v1/getting_started.html)

2The JavaScript Object Notation is a lightweight data-interchange format.

http://code.google.com/apis/language/translate/v1/getting_started.html
http://code.google.com/apis/language/translate/v1/getting_started.html

86 CHAPTER 7. EVALUATION

create the actual request. To ensure correct transmission and processing, the
text has to be URL encoded. Thereby, the default UTF-8 character set is used.
Source and destination language are separated by the pipe operator (converted
to 7C in URL-encoding). The translation API is finally accessed by using the
domain http://ajax.googleapis.com/ajax/services/language/translate .

private St r ing doTrans lat ion (S t r ing origText , S t r ing src , S t r ing
dst) {

St r ing r e s u l t ;
HttpURLConnection con = null ;

try {
// Bui ld query f o r Trans la t ion API
St r ing query = URLEncoder . encode (origText , ”UTF−8”) ;

URL u r l = new URL(
” http :// ajax . g o o g l e a p i s . com/ ajax / s e r v i c e s / language /

t r a n s l a t e ”
+ ”?v=1.0”
+ ”&q=” + query
+ ”&langpa i r=” + s r c + ”%7C” + dst) ;

con = (HttpURLConnection) u r l . openConnection () ;
con . setRequestMethod (”GET”) ;
con . setConnectTimeout (10000) ; // 10 seconds
con . setDoInput (true) ;
con . addRequestProperty (” Re f e r e r ” , ” http :// foo . com”) ;
con . connect () ; // S ta r t the r eque s t

// Read and parse r e s u l t s from the query
// Set r e s u l t v a r i a b l e to be returned
[. . .]

} catch (Exception e) {
r e s u l t = ”An e r r o r ocurred during t r a n s l a t i o n . ” ;

} f ina l ly {
i f (con != null) con . d i s connec t () ;

}

return r e s u l t ;
}

Listing 7.8: Main translation method

The URL object is then used to create a HttpURLConncection. Before the
connection is established, some connection parameters have to be set, as it is not
possible to change them after the connection is active. The connection properties
include the request method, the connection timeout, and a property to allow
input for the connection. Furthermore, the API requires a valid referer header.
Once the parameters are set, the connection can be established to transmit the
data. The remaining part of the listing includes parsing and returning the result
of the translation.

During the parsing of the application bytecode, the URL sink gets stored and
marked as starting point for the backwards symbolic execution. The constant
strings within the method can be retrieved directly, whereas the resolution of
method arguments requires additional analysis effort. The variables for source
and destination language can be traced back to the method header directly.

7.5. THE TRANSLATION APP 87

The query parameter contains the original text that is passed to a static encode
function of the URLEncoder class.

The doTranslation method is invoked in the run method of the TranslateJob
class. The run function usually contains any code that is to be executed in a
thread. In this case, it contains a call to the translation routine. All arguments
passed to the function have been set previously in the constructor of the Trans-
lateJob class. The result is then used to invoke a method of the Activity, which
performs a screen update to display the translation to the user. Listing 7.9
depicts the code for the run method.

public void run () {
// Perform t r an s l a t i o n and c a l l screen update
St r ing t r a n s l a t i o n = doTrans lat ion (this . o r i g i n a l , this . s rc ,

this . dst) ;
t r a n s l a t e . s e tTrans l a t ed (t r a n s l a t i o n) ;

}

Listing 7.9: Run method of the translation thread

In order to proceed with the analysis, the algorithm searches the application for
any instantiation of the TranslateJob class. A translate job is assembled and
executed in a dedicated thread within the Translate class. Listing 7.10 shows
the corresponding part of the source code. First, the user input is retrieved from
the UI widgets. Any pending translation task is cancelled, before a new one is
started. For performance reasons, a new translation is only invoked, if there is
any text. A new instance of the TranslateJob class is created and the thread
is executed. The analysis proceeds with the constructor invocation within the
try-block. The original text and the destination language are traced back to
their corresponding widgets origText and dstLanguage. Before the actual widget
definitions are reached, multiple method invocations are executed to convert and
modify the respective values.

The results of the analysis are presented in Output 8. The URL has been
assembled and call histories are generated to provide context information. The
histories are output in an extra line to improve readability.

http://ajax.googleapis.com/ajax/services/language/translate?
v=1.0&q=$(FNC1)&langpair=en%7C$(FNC2)

$(FNC1): Ljava/net/URLEncoder;->encode
(Landroid/widget/EditText;->getText()

=>Landroid/text/Editable;->toString()
=>Ljava/lang/String;->trim(),

"UTF-8")
$(FNC2): Landroid/widget/Spinner;->getSelectedItem()

Output 8: Resulting URL for the Translation app

Fragments like the source language code are constant strings which can be di-
rectly incorporated into the URL string. The destination language, as well as
the text to be translated originate from user input. In order to provide compre-
hensive context information, call histories are generated by the decoder module.

88 CHAPTER 7. EVALUATION

t rans l a t eTask = new Runnable () {
public void run () {

// Get user input
St r ing inputText = or igText . getText () . t oS t r i ng () . tr im () ;
S t r ing lang = dstLanguage . ge tSe l e c t ed I t em () . t oS t r i ng () ;

// Cancel prev ious t r an s l a t i o n i f t he re was one
i f (transPending != null)

transPending . cance l (true) ;

// Trans la te only i f t he re i s any t e x t
i f (inputText . l ength () > 0) {

// Inform the user , t ha t the t r an s l a t i o n j u s t s t a r t e d
transText . setText (” Trans la t ing . . . ”) ;

try {
Trans lateJob t r an s l a t eJob = new Trans lateJob (

this , // Trans la te a c t i v i t y
inputText , // o r i g i n a l t e x t
”en” , // source language
lang // de s t i na t i on language

) ;
transPending = transThread . submit (t r an s l a t eJob) ;

} catch (RejectedExecut ionExcept ion e) {
transText . setText (”The t r a n s l a t i o n couldn ’ t be

i n i t i a t e d ! ”) ;
}

}
}

} ;

Listing 7.10: Translate Task

FNC1 is the marker for the analysis result of the original text part. As described
before, the URL-encoded user input reaches the actual URL that is used for
the request. The static encode method takes two arguments, the string to be
encoded and the charset. The source of the text is the EditText widget of the
user interface. A series of method invocations is used to retrieve the final string
that is encoded.

Here, a verbose version of the call history is used. It includes the full class name
for each method invocation. This is done, if the class names within a history do
not match. In this example, the getText function returns an Editable instance
on which the toString method is applied. Finally, the trim function is applied
on the resulting String object.

The second marker, FNC2, shows the origin for the destination language part
of the URL. This is the currently selected value of the ComboBox3, which is
retrieved by the getSelectedItem method.

The final toString invocation is stripped, because of the expert knowledge used
in the resolver module. The method returns an Object instance. The Object
class is the root class and is part of the java.lang package. Therefore, the method
can be stripped without loosing information (see also Section 6.3.2).

3In Android the Spinner widget denotes a common ComboBox, which is a selection list.

Chapter 8

Related Work

With the growing popularity of the Android platform, there has also been a lot
of research on how to improve the system security and, in particular, on how
to protect unauthorized leakage of sensitive user data. In the last two years,
there has been a rising number of frameworks and tools that improve certain
security aspects by either leveraging the Android core system, by implementing
some user-space protection, or by providing offline certification tools to analyze
applications on a large scale. The Android research can be partitioned into
the conceptual improvement of the core operating system and the detection of
malware and information leakage.

Since the Android market does not apply application vetting, a core security part
relies on the permission model. However, the concept of the permission model
has some severe limitations like for example the missing support for runtime
permissions. Due to this inflexibility, there has been active research on how to
extend and modify Android’s permission framework to provide more flexibility
and security. Enck et al. [28, 29] have built a tool called Kirin to perform
a lightweight certification of Android applications. Permissions are extracted
from the manifest file and compared to a manually created list of potentially
dangerous combinations of permissions. In a different work, they present Saint
[47], a tool that allows application developers to define install-time and runtime
constraints. Nauman et al. extended the permission model [43] to allow users to
define fine-grained permission constraints at install-time and to modify/revoke
permissions at runtime. MockDroid [7] is an approach to allow the user to mock
an application’s access to a specific resource. Thereby, it is possible to revoke
access to particular resources dynamically at runtime. A current approach called
TISSA [64] implements a privacy mode for Android. The user can specify access
policies for private data, like the address book, for each application individually.

The remaining part of this chapter puts the focus on analysis approaches to de-
tect malware and information leakage. The concrete goals of these approaches
are manifold. The number of malicious apps that leak sensitive user data with-
out the user’s explicit consent is rising quickly. Therefore, the detection and
prevention of such leaks becomes more and more important. Other approaches
target malware like online-banking trojans or applications that silently send

89

90 CHAPTER 8. RELATED WORK

premium SMS to foreign countries.

The approaches presented in the following sections are based on static and
dynamic analysis. Dynamic analysis usually means runtime analysis that is
applied during execution of the application/system. Static analysis approaches
are often used for offline certification and are thus suitable to be applied on
many applications simultaneously.

8.1 Dynamic Analysis

Bos et al. present a dynamic Android security system in the cloud [50]. They
argue that many security checks that are common on modern computers can-
not be applied on resource limited smartphones. Therefore, they devised a
solution called Paranoid Android, which outsources resource-intensive security
checks like detection of zero-day attacks and anti-virus scanning to servers in the
cloud. Their system is composed of a server and a client part. The client part
that resides on the smartphone stores an execution trace of the current actions
and transmits it securely to remote servers. The server part includes virtual
machines that replay the actions read from the execution trace and apply the
security checks. Thereby, each smartphone has an exact virtual replica on the
remote servers.

In 2010, Enck et al. presented TaintDroid, a dynamic information-flow anal-
ysis system for Android [25, 26]. It leverages Android’s runtime environment
to provide realtime data flow analysis. The approach is used to detect pri-
vacy leaks in applications. Data originating from privacy-sensitive sources are
tainted automatically by the system. Thereby, several kinds of sources are mon-
itored, including private data providers, files, and interprocess-communication.
TaintDroid tracks sensitive data as it propagates through the program during
execution. Each time labeled data reaches a data sink and leaves the phone,
for example via network or Bluetooth, the user is informed. Besides the con-
crete values that are transmitted, TaintDroid also logs information about the
destination.

In order to provide a system-wide taint-tracking system, the Android source
had to be instrumented. They state, that TaintDroid incurs an average of 14%
performance overhead during runtime. Intensive testing on real applications re-
sulted in a minimal perceived latency. A fundamental limitation of the approach
is that TaintDroid does not track control or implicit flows due to performance
issues. They claim that the use of implicit flows to avoid taint detection is itself
a strong indicator for malicious intent.

Hornyack et al. devised a dynamic privacy control system called AppFence [38].
It is composed of two mechanisms to control application usage of sensitive user
data. The first mechanism implements data shadowing. It prevents applica-
tions from accessing sensitive data that is not required for its core functionality.
AppFence provides mock data instead of real data originating from sensitive
data provider.

The control system additionally includes an exfiltration blocking feature. Out-

8.2. STATIC ANALYSIS 91

going network communication is blocked, if it includes sensitive user data that
is not essential to ensure the application’s functionality. This part of the sys-
tem is based on TaintDroid which provides the tracking of tainted data from
predefined sources to network sinks. In order to test which sensitive data can
be blocked without loosing functionality, they devised an automated testing
methodology. During application runtime, screenshots are taken both with and
without enabled privacy control. Any visual difference in the screenshots in-
dicates a change in application behaviour which potentially causes side-effects.
With manual tweaking of control settings, these side-effects could often be min-
imized or avoided.

XManDroid [13] is a security framework that targets the mitigation of privilege
escalation attacks. It extends Android’s monitoring mechanism to effectively de-
tect and prevent application-level privilege escalation attacks like Soundcomber
[58] at runtime. The system dynamically analyzes the transitive permission
usage of applications. It monitors the inter-process communication to detect
malicious requests. XManDroid thereby maintains information about all appli-
cations installed on the system to decide whether certain calls can be exploited
for escalation attacks.

8.2 Static Analysis

ComDroid [15] is a static analysis tool that targets inter-process communica-
tion (IPC). Message exchange in IPC is a potential attack surface in Android
applications. Sensitive content that is sent via communication channels may
be intercepted, modified and/or forged by malicious applications. ComDroid
performs static analysis on dex bytecode to identify security risks in application
components. It parses the output of the open-source disassembler dedexer to
warn the user of potential component and Intent vulnerabilities.

In a follow-up work, Chin et al. investigate whether developers follow the prin-
ciple of least privilege when specifying the permissions for their applications.
In order to detect overprivileged Android applications, they implemented the
static analysis tool Stowaway [30]. It uses a previously generated permission
map to identify which permissions are required for API calls. Stowaway then
extracts any API call that is used within an application and creates a minimal
set of permissions that is required to ensure functionality. Any difference to
the set of specified permissions from the application’s manifest file indicates an
overprivilege.

By evaluating 940 applications, Chin et al. found out that about one third of the
analyzed apps are overprivileged. Furthermore, they criticize that the official
Android API documentation is incomplete and does not provide sufficient infor-
mation about which classes/methods require which permissions. They showed
that, in general, overprivileged applications only contain a few dispensable per-
missions. Furthermore, the main reasons for incorrect permission settings are
the incomplete API documentation and the lack of developer understanding.

Christin et al. took on the problem of overprivileged applications from a devel-
oper view [62]. Permissions in Android are granted at install time and are then

92 CHAPTER 8. RELATED WORK

silently enforced at execution time. For developers, it is usually very difficult
to set the appropriate permissions that are necessary for an application. The
Android API provides almost no information about which methods require a
certain permission. An insufficient permission set does only become apparent
during runtime when the application is executed and a certain functionality
fails. Therefore, many developers overestimate permissions to ensure that the
application directly works as intended.

To help developers specifying the correct set of permissions before deploying,
Christin et al. developed an Eclipse plugin which inspects the Java source files
and subsequently generates a list of required permissions. This list is adjusted
with the permissions specified in the manifest file to inform the developer in
case of missing permissions or if the application is overprivileged.

The work of Grace et al. [35] targets the detection of capability leaks in Android
smartphones. Capability leak means that an untrusted application can obtain
unauthorized access to sensitive data and/or privileged actions without hav-
ing granted the respective permissions. Often, unsafely exposed interfaces and
functionality of already installed apps are exploited to gain access to privileged
functionality.

In order to detect leaked capabilities, they implemented a system called Wood-
pecker. It employs inter-procedural data-flow analysis on applications to detect
unauthorized access to private data. Woodpecker distinguishes between two
types of capability leaks, explicit and implicit leaks. Explicit leaks allow an
application to gain certain permissions by exploiting public interfaces without
requesting the permission itself. Recently, Backes et al. [4] were able to mount
a local XSS attack by exploiting an explicit leak in the default Android web
browser. Implicit leaks, however, exploit interfaces and services of another ap-
plication that has the same signing key. Such apps share the same user ID and
thus an application inherits the permissions of other applications from the same
developer.

Chaudhuri et al. present SCanDroid [31], a static analyzer for Android appli-
cations. It extracts specifications about components and permissions from the
manifest file. This information is then used to check whether data flow through
the application is consistent with the specification. The actual program syntax is
formalized in a core calculus to model the information flow. The implementation
of the analyzer is based on the WALA framework, a widely used open-source
library collection for code analysis. The main limitation of their approach is
that SCanDroid requires the Java source code or the JVML bytecode of the
application. It has never been tested on real Android applications.

AndroidLeaks [34] is a static analysis framework designed to detect privacy leaks
in Android applications. Similar to SCanDroid, they use the WALA libraries
to perform data-flow analysis. However, they apply their analysis on real appli-
cations. Therefore, they use the dex2jar [55] tool to convert the dex bytecode
into the Java class format. Using the JVM bytecode, they create an applica-
tion callgraph to perform a reachability analysis. The tool checks whether the
CFG contains paths from sensitive data sources to network sinks. If such paths
are found, a data-flow analysis is applied to verify that private data reaches a
method that subsequently sends the data via network.

8.2. STATIC ANALYSIS 93

On a large-scale evaluation on 18,000 applications, they found 9,631 potential
privacy leaks in about 3,000 different Android applications. Private data leaked
via network included phone information, location and WiFi data, as well as
audio recorded with the microphone.

In another work Enck et al. present ded [27, 46], a Dalvik decompiler. Their
system decompiles dex application bytecode back into JVM bytecode. This
is a challenging task, since dex is a compact, size-optimized bytecode format
(see Section 2.2.1). In order to achieve a comprehensive decompilation, many
information lost during translation into the dex bytecode format has to be re-
stored. After the reconstruction of Java .class files, they used existing tools for
decompilation to finally recover the application’s Java code.

They chose to decompile the application bytecode rather than operating directly
on the dex bytecode for several reasons. With Java source code they were able
to use existing tools to perform static analysis. In their work, a commercial
analysis suite was used to search for dangerous functionality and vulnerabilities
in Android applications. Another reason is that they required access to the
application’s Java code to manually verify their results from the automated
code analysis.

PiOS [22] is a static analysis system to detect privacy leaks in Apple’s iOS
operating system. PiOS performs a data-flow analysis on Mach-0 binaries that
are compiled from Objective-C code. By using a commercial disassembler, they
generate a control flow graph of the application. Then, a reachability analysis
is performed to check whether there exist paths from sensitive data sources to
sinks that transmit data via the network.

In order to enhance the precision of the results, they applied an additional flow-
analysis. Forward propagation is used for every path found in the first step to
verify that sensitive information accessed at a source node propagates to method
calls in a sink node.

Among all related work, PiOS comes closest to the approach I devised. They
created a CFG to perform data flow analysis on the disassembled application
binary and used forward propagation to improve their results. However, there
are major differences between the approaches. They use the flow analysis only to
check if there are paths through the program that connect sources of sensitive
data with network data sinks. They cannot provide information about the
actual values that are transmitted. Furthermore, my approach is not limited to
a certain type of data source. Starting from predefined data sinks, Bati finds
any piece of information that reaches this sink, both sensitive and non-sensitive
data fragments. This gives a more comprehensive and detailed insight into the
application’s behaviour.

94 CHAPTER 8. RELATED WORK

Chapter 9

Conclusion & Future Work

This chapter finally concludes the thesis. It starts by describing the limitations
of the work that has been developed and implemented during this master’s the-
sis. This includes both limitations inherited from the chosen approach as well as
limitations of the current analysis tool. The chapter continues by summarizing
the accomplishments of this thesis. It describes the contribution to the current
state of Android application analysis. The concrete implementation of these
concepts, the analysis framework Bati, is highlighted in particular. Finally, the
last section gives some proposals for the continuation of this work.

9.1 Limitations

Although the thesis objectives have been accomplished, there are some limita-
tions and shortcomings. Static analysis approaches always have some limitations
as compared to dynamic approaches and vice versa. With respect to the im-
plementation, the respective limitations primarily derive from the limited time
frame available during the thesis. In the following, the concrete approach and
implementation specific limitations are explained.

9.1.1 Approach Limitations

Bati provides offline certification for Android applications. It’s approach is based
on backwards symbolic execution. In contrast to dynamic runtime analysis, this
static approach inherently suffers from the fact that only available code can be
completely analyzed. Closed-source API calls can only be resolved symbolically.
The full class and method name is output along with the resolved arguments
used for the invocation. This set of information represents the most detailed
view possible in this context. However, this information is almost never as
accurate as the real values that can be observed during runtime analysis. By
adding more expert knowledge, mitigation of this drawback is possible.

95

96 CHAPTER 9. CONCLUSION & FUTURE WORK

Loops constitute another common problem in static analysis approaches. Sec-
tion 6.3.1 explained the different kind of loops that can occur during analysis.
By applying multiple techniques for loop detection, these cases can be handled
efficiently. However, it is pretty difficult to extract semantic information from
loops, in particular information about the loop variable and its modification. In
contrast to the different ways a loop can be created in a Java program, dex byte-
code only knows a single kind of loop consisting of a conditional with a jump
instruction. Listing 6.1 showed that even the resolution of a small, compact
for-loop is difficult or even infeasible in most cases.

The current approach is limited to the analysis of dex application bytecode.
This usually includes any Java source that has been converted to dex bytecode
by using the dx compiler. As described in Section 2.2, the Dalvik virtual ma-
chine is not limited to executing dex bytecode. Developers can use the NDK to
generate native code for their applications. This is usually done for outsourcing
performance-intensive tasks. Native code is thereby compiled from C++ code
and thus differs substantially from dex bytecode. In a large-scale evaluation
of Android applications, Chen et al. [34] found out that about 6% of Android
applications contained at least one native code file. This is an important fact,
as making network connections is not limited to Java code. Since the Internet
permission is enforced through the underlying Linux kernel, any network com-
munication could be moved to native code as well. In this case no sink would be
found by the parsing module. However, if an application requires the Internet
permission and no sink is detected, it’s a strong indicator for malicious intent.

The static analysis framework targets single Android applications. Bati pro-
cesses an application and reassembles data that is subsequently transmitted via
the network. Based on the data sources found during the analysis, data frag-
ments reaching a network sink can be classified as sensitive or non-private data.
This works as long as no further applications/components are involved. In priv-
ilege escalation attacks, the interaction of multiple applications might lead to a
leakage of sensitive information. For example, an application without Internet
permission might retrieve sensitive user data and store it in a file or database.
Another application then accesses this data and transmits it to some remote
servers. If the application with Internet permission is analyzed, the results will
indicate that certain data portions come from some external source. But the
results will give no information about the confidentiality of the data. In order
to provide this kind of information, the analysis would have to be extended to
also process information stored in the manifest file. Parsing this file reveals the
application interfaces as well as information about the Intents that are received
by the application. This information is then used to detect various kinds of
privilege escalation.

9.1.2 Implementation Limitations

The current implementation of multi-path encoding in form of target graphs
(see also Section 5.5.4) suffers from overestimation in certain situations. This is
due to the way the graphs are constructed during analysis. Multiple registers in
a bytecode instruction are resolved sequentially in a depth-first search. For each
register a distinct graph is created, whereas the collected data is encoded in a

9.1. LIMITATIONS 97

token list per node. In the current implementation, these separate graphs are
merged to a single graph. This allows an easy graph construction on a per sink
level. However, it results in overestimations if multiple target graphs encode
the same CFG paths. In these cases the decoder produces the cross product of
subresults.

Listing 9.1 shows an illustrative example. It contains a method invocation for
the URL class constructor that specifies registers for the file variable and the
fileSize variable. The actual content of both variables depends on the conditional
branch that is executed. The only valid combinations that can reach the URL
sink are (”A.txt”, 80) and (”B.txt”, 50).

private URL t a r g e t () {
[. . .]

i f ([c ond i t i on]) {
f i l e = ”A. txt ” ;
f i l e s i z e = ”80” ;

} else {
f i l e = ”B. txt ” ;
f i l e s i z e = ”50” ;

}

return new URL(” http ://www. foo . com?”
+ ” upload=” + f i l e + ”&s i z e=” + f i l e S i z e) ;

}

Listing 9.1: Overestimation

The current implementation creates the target graph for the URL sink as de-
picted in Figure 9.1a. The light gray nodes represent the part of the graph
belonging to the file variable. Once the corresponding register is completely
processed, a join node merges the resulting paths, such that the resolving of the
fileSize variable can continue from that node. Finally, the decoder module will
find four distinct paths through the graph, which result in four tuples reaching
the URL sink; (”A.txt”, 50), (”A.txt”, 80), (”B.txt”, 50), and (”B.txt”, 80).

The multi-path encoding could be improved, if each subsequent register resolu-
tion continues at the previous start node (as shown in Figure 9.1b). Then, also
the approach of storing one token list per node would have to be adapted. Fur-
thermore, it has to be noted that the resolution of multiple registers at a certain
instruction can also occur arbitrary times during resolving. This complicates
the problem and makes it even more challenging. A more sophisticated way to
manage the collected token properly does not only enhance the precision of the
results, it even improves the evaluation performance and reduces the memory
footprint.

Another limitation is the lack of a sink verification. This means, that it is
currently not checked whether a certain network sink is really used to create
an outgoing connection. Theoretically, a malicious app could obfuscate its real
behaviour to complicate static analysis. Multiple sinks could be defined whereas
only one of them is actually used to transmit data. Bati would then find and
output all specified sink definitions, including the malicious one. However, an

98 CHAPTER 9. CONCLUSION & FUTURE WORK

join

(a) current imple-
mentation

(b) a possible im-
provement

Figure 9.1: Multi-path encoding via target graph

user might think that all URLs are indeed used in this application. Although
this is a rare case, such an additional verification step would provide clarity
and would validate the set of recovered destinations. Furthermore, connection
parameters like request method or referer could be retrieved to provide an even
more comprehensive analysis result.

In the Java programming language, developers can use the concept of reflection.
With reflection, a program execution can be modified dynamically at runtime.
Reflection-oriented components can monitor the execution of a code block and
are able to modify themselves according to some conditions related to that
block. In general, this is achieved by dynamically assigning application code
at runtime. Static analysis of Java reflection is a challenging problem [11, 57]
and an area of open research. The current approach implemented in Bati is not
capable of handling Java reflection. However, I claim that Bati provides a good
basis for a comprehensive and sophisticated resolution of reflective invocations.
Class and method information that is assigned dynamically during execution
can be resolved with the current approach as long as it does not originate from
sources outside the application, like for example from user input.

9.2 Conclusion

This thesis presents a novel approach for offline certification of Android appli-
cations. In contrast to related work based on static analysis, Bati provides a
comprehensive view on the Internet usage of applications. It is capable of out-
putting the destinations used for network communication as well as the concrete
data that is transmitted. Thereby, it is not limited to sensitive data. A compre-
hensive verification of Internet access is accomplished by making the network
communication of Android applications transparent to the user.

The evaluation chapter showed the effectiveness of the extended backwards sym-

9.3. FUTURE WORK 99

bolic execution approach. The output clearly helps users to understand how an
application accesses the Internet. Any covert communication that is hidden
from the user is revealed. Using the output of Bati, it becomes trivial to detect
privacy leaks that are related to Internet usage. Users strongly benefit from
this application analysis as almost three out of four apps in the Android market
require the Internet permission [61].

In contrast to Apple’s App Store, the current Android market has no formal
review process [41]. The static analysis framework represents a suitable method-
ology for a (semi-)automatic application vetting. Although such tools will never
be 100% accurate, it would facilitate the application review. Bati automatically
analyzes applications and reports the ones that clearly show privacy leaks or
some malicious intent. This reduces the number of applications that require
manual verification to a manageable size.

The highly modular architecture of Bati allows an easy modification, extension,
and/or reuse of existing components. To enhance further research in this area,
new components can be simply plugged into the existing infrastructure. The
current resolver could for example be replaced by a new component implement-
ing a forward analysis. Existing data structures like CFGs, the SSA form, or
lookup tables can be reused to reduce implementation effort. Static single as-
signment forms are usually generated to perform advanced optimization and
validation tasks. Bati’s SSA builder generates a SSA form from dex bytecode to
facilitate the static analysis and to improve the performance of the algorithm.
This form could also be interesting for many other approaches that perform
static analysis on Android applications.

The symbolic execution implemented in Bati describes a generic analysis ap-
proach. Thus, it is not limited to the verification of the Internet access. By
specifying new sinks, the analysis can be applied to nearly arbitrary bytecode
instruction. With only little effort, additional sinks can be defined, e.g. for
phone calls and SMS transmission. These sinks do not only target the user’s
privacy, but could also prevent the user from installing applications that silently
communicate with premium numbers. This way, a comprehensive security check
for Android applications can be accomplished.

9.3 Future Work

The work presented in this thesis leaves a wide range of opportunities for fu-
ture work. Follow-up research may include the port of Bati as an Android
application. When integrating this approach as application installer, any new
application retrieved from the market can be analyzed before the user finally
confirms the installation. This way, an end-user security system is formed that
warns users when potentially malicious applications are about to be installed. In
order to get this approach working on an Android system, a few challenges have
to be overcome. The actual port of the source code is trivial, however the real
problem is that an application cannot access the bytecode of other applications.

”A central design point of the Android security architecture is that
no application, by default, has permission to perform any operations

100 CHAPTER 9. CONCLUSION & FUTURE WORK

that would adversely impact other applications, the operating sys-
tem, or the user. This includes reading or writing the user’s private
data (such as contacts or e-mails), reading or writing another appli-
cation’s files, performing network access, keeping the device awake,
etc.”1

Since the application’s bytecode is a crucial requirement for the analysis, An-
droid’s core system would have to be modified to allow Bati read access for
application packages.

The precision of the results for method invocations strongly depends on the
presence of the corresponding method bytecode. Custom invocations can usu-
ally be fully resolved, whereas the lack of bytecode prevents a comprehensive
analysis of API invocations. The source of API methods is usually not available
within the application package. However, both Java and Android specific APIs
are open-source and can be downloaded and analyzed2. All public classes and
methods could be translated into dex bytecode. In a subsequent pre-processing
step, Bati could resolve all class methods like custom application methods. The
encoded results are then stored in a database. Each time, the resolver reaches
an API invocation during app analysis, the corresponding encoded result is re-
trieved from the database instead of storing the simple name of the invocation.
During evaluation, API invocations can then be resolved completely by using
the already generated results. This would strongly enhance the quality of the
results and would eliminate some drawbacks in comparison to dynamic runtime
analysis approaches.

Another area for optimization targets the improvement of the analysis per-
formance and the reduction of the memory footprint. Devising an improved
approach for the multi-path encoding via target graphs would provide great
benefit. This would not only effect the performance and memory usage, but
also the precision of the final output by eliminating overestimation. Further
improvement could be accomplished by introducing multi-threading. Many ap-
plications include more than one sink that has to be analyzed. The current
implementation is single-threaded, which means that all sinks are processed
consecutively. Since the main data structure used for the analysis, the SSA
form, is accessed read-only, multi-threading could be introduced without hav-
ing to implement locking. By analyzing multiple sinks simultaneously, Bati can
benefit from modern multi-core CPUs to reduce the processing time dramati-
cally.

The static analysis is currently limited to a single application. Thus, any mali-
cious intent that is concealed by the interaction of multiple applications cannot
be revealed. Extending the analysis to processing the information of the appli-
cation’s manifest file could help to cover at least some of these cases.

Finally, another proposal for future works targets the extension and customiza-
tion of the analysis tool. The generic resolution approach allows an easy ex-
tension of verification sinks. By specifying additional sinks, more security and
privacy-relevant properties of applications can be checked. Another interesting

1 http://developer.android.com/guide/topics/security/security.html
2The Android specific classes can be obtained from the Android Open Source Project [51],

the Java API can be downloaded from the OpenJDK project [53].

http://developer.android.com/guide/topics/security/security.html

9.3. FUTURE WORK 101

extension would be to allow users to specify their own sinks. In order to provide
maximal customization, users can then also determine the set of sinks to be
analyzed.

102 CHAPTER 9. CONCLUSION & FUTURE WORK

Appendix A

Syntax Diagram Notation

In this thesis certain concepts like the control-flow graph in Section 5.2 and the
data encodings in Section 5.5 are described by context-free grammars which
are represented by syntax diagrams. This chapter gives a brief introduction to
syntax diagrams and explains all notations that are necessary for understanding.

Each grammar is represented by a set of syntax diagrams. Thereby, each di-
agram defines a non-terminal and has an entry point and an end point. Di-
agrams describe possible paths between these points by going through other
non-terminals and terminals. In the context of this thesis, a terminal is usu-
ally a constant value or a string. In the diagrams, terminals are represented
by round boxes while non-terminals are represented by square boxes. A word
belongs to the language defined by the grammar, if it describes a valid path
through the root diagram.

Figure A.1 shows simple syntax diagrams with terminal symbols A and B. Fig-
ure A.1a shows a diagram that describes exactly one terminal A. In the second
diagram either zero or one occurrence of A is valid. Figure A.1c shows a selection
in which either terminal A or B has to be chosen.

A

(a) one A

A

(b) zero or one A

A

B

(c) A or B

Figure A.1: Linear syntax diagrams

Figure A.2 depicts syntax diagrams with a loop. Loops can be used to repeat
certain subpaths. In case of Figure A.2a, either zero or an arbitrary number of
A’s is valid. The loop shown in Figure A.2b describes at least one occurrence
of A.

103

104 APPENDIX A. SYNTAX DIAGRAM NOTATION

A

(a) zero or more A

A

(b) at least one A

Figure A.2: Loop syntax diagrams

Bibliography

[1] ABIresearch. Android overtakes apple with 44% worldwide share of mobile
app downloads. http://www.abiresearch.com/press/3799-Android+
Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+
Downloads, October 2011.

[2] Open Handset Alliance. http://www.openhandsetalliance.com/index.
html, November 2007.

[3] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables
in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’88, pages 1–11, New York, NY,
USA, 1988. ACM.

[4] Michael Backes, Sebastian Gerling, and Philipp von Styp-Rekowsky. A local
cross-site scripting attack against android phones. http://www.infsec.cs.
uni-saarland.de/projects/android-vuln/android_xss.pdf, June
2011.

[5] David Barrera, H. G üne ş Kayacik, Paul C. van Oorschot, and Anil Somayaji.
A methodology for empirical analysis of permission-based security models and its
application to android. In Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 73–84, New York, NY, USA, 2010.
ACM.

[6] Leonid Batyuk, Aubrey-Derrick Schmidt, Hans-Gunther Schmidt, Ahmet
Camtepe, and Sahin Albayrak. Developing and benchmarking native linux ap-
plications on android. In MobileWireless Middleware, Operating Systems, and
Applications, volume 7 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pages 381–392. Springer
Berlin Heidelberg, 2009.

[7] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan.
Mockdroid: Trading privacy for application functionality on smartphones. In
Proceedings of the 12th Workshop on Mobile Computing Systems and Applica-
tions, HotMobile ’11. ACM, March 2011.

[8] Gianfranco Bilardi and Keshav Pingali. Algorithms for computing the static single
assignment form. J. ACM, 50:375–425, May 2003.

[9] Android Developers Blog. Exercising our remote application removal
feature. http://android-developers.blogspot.com/2010/06/
exercising-our-remote-application.html, June 2010.

[10] The Official Google Blog. 10 billion android market downloads
and counting. http://googleblog.blogspot.com/2011/12/
10-billion-android-market-downloads-and.html, December 2011.

105

http://www.abiresearch.com/press/3799-Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+Downloads
http://www.abiresearch.com/press/3799-Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+Downloads
http://www.abiresearch.com/press/3799-Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+Downloads
http://www.openhandsetalliance.com/index.html
http://www.openhandsetalliance.com/index.html
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
http://googleblog.blogspot.com/2011/12/10-billion-android-market-downloads-and.html

106 BIBLIOGRAPHY

[11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Tam-
ing reflection: Aiding static analysis in the presence of reflection and custom class
loaders. In Proceedings of the 33rd International Conference on Software Engi-
neering, ICSE ’11, pages 241–250, New York, NY, USA, 2011. ACM.

[12] Dan Bornstein. Dalvik vm internals, May 2008.

[13] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-
Reza Sadeghi. Xmandroid: A new android evolution to mitigate privilege esca-
lation attacks. Technical report tr-2011-04, Technische Universität Darmstadt,
April 2011.

[14] Ben Cheng and Bill Buzbee. A jit compiler for android’s dalvik vm, May 2010.

[15] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. An-
alyzing inter-application communication in android. In Proceedings of the 9th
international conference on Mobile systems, applications, and services, MobiSys
’11, pages 239–252, New York, NY, USA, 2011. ACM.

[16] The Nielsen Company. U.s. smartphone market: Who’s the most
wanted? http://blog.nielsen.com/nielsenwire/online_mobile/
u-s-smartphone-market-whos-the-most-wanted/, April 2011.

[17] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A simple, fast dominance
algorithm, 2001.

[18] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An
efficient method of computing static single assignment form. In Proceedings of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’89, pages 25–35, New York, NY, USA, 1989. ACM.

[19] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13:451–490, October 1991.

[20] Dibyendu Das and U. Ramakrishna. A practical and fast iterative algorithm for
φ-function computation using DJ graphs. ACM Transactions on Programming
Languages and Systems, 27(3):426–440, 2005.

[21] Android developer. http://developer.android.com.

[22] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy Leaks
in iOS Applications. In Proceedings of the 18th Network and Distributed System
Security Symposium, NDSS 2011, San Diego, CA, February 2011.

[23] David Ehringer. The dalvik virtual machine architecture. http:
//davidehringer.com/software/android/The_Dalvik_Virtual_
Machine.pdf, March 2010.

[24] Gerry Eisenhaur, Michael N. Gagnon, Tufan Demir, and Neil Daswani. Mobile
malware madness and how to cap the mad hatters. In Black Hat Conference, Las
Vegas, NV, August 2011.

[25] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation, OSDI’10,
pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[26] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. Technical report nas-
tr-0120-2010, Network and Security Research Center, Department of Computer
Science and Engineering, Pennsylvania State University, University Park, PA,
USA, August 2010.

http://blog.nielsen.com/nielsenwire/online_mobile/u-s-smartphone-market-whos-the-most-wanted/
http://blog.nielsen.com/nielsenwire/online_mobile/u-s-smartphone-market-whos-the-most-wanted/
http://developer.android.com
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf
http://davidehringer.com/software/android/The_Dalvik_Virtual_Machine.pdf

BIBLIOGRAPHY 107

[27] William Enck, Damien Octeau, Patrick McDaniel, and Chaudhuri Swarat. A
study of android application security. In Proceedings of the 20th USENIX Security
Symposium, San Francisco, CA, August 2011.

[28] William Enck, Machigar Ongtang, and Patrick Mcdaniel. Mitigating android soft-
ware misuse before it happens. Technical report nas-tr-0094-2008, Pennsylvania
State University, September 2008.

[29] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile
phone application certification. In Proceedings of the 16th ACM conference on
Computer and communications security, CCS ’09, pages 235–245, New York, NY,
USA, 2009. ACM.

[30] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wag-
ner. Android permissions demystified. Technical report ucb/eecs-2011-48, EECS
Department, University of California, Berkeley, May 2011.

[31] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. Scandroid: Automated se-
curity certification of android applications. http://www.cs.umd.edu/˜avik/
papers/scandroidascaa.pdf, 2009.

[32] Inc. Gartner. Competitive landscape: Mobile devices, worldwide, 3q10. http:
//www.gartner.com/it/page.jsp?id=1466313, November 2010.

[33] Inc. Gartner. Market share: Mobile communication devices by region and country,
3q11. http://www.gartner.com/resId=1847315, November 2011.

[34] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks: Detecting privacy
leaks in android applications. Technical report, UC Davis, 2011.

[35] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection of
capability leaks in stock android smartphones. In Proceedings of the 19th Network
and Distributed System Security Symposium, NDSS 2012, Februrary 2012.

[36] Ben Gruver. Smali - an assembler/disassembler for android’s dex format. http:
//code.google.com/p/smali/.

[37] D Harel. A linear algorithm for finding dominators in flow graphs and related
problems. In Proceedings of the 17th ACM symposium on Theory of computing,
STOC ’85, pages 185–194, New York, NY, USA, 1985. ACM.

[38] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David
Wetherall. These aren’t the droids you’re looking for: retrofitting android to pro-
tect data from imperious applications. In Proceedings of the 18th ACM conference
on Computer and communications security, CCS ’11, pages 639–652, New York,
NY, USA, 2011. ACM.

[39] James C. King. Symbolic execution and program testing. Commun. ACM, 19:385–
394, July 1976.

[40] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dom-
inators in a flowgraph. ACM Trans. Program. Lang. Syst., 1:121–141, January
1979.

[41] Patrick McDaniel and William Enck. Not so great expectations: Why application
markets haven’t failed security. IEEE Security and Privacy, 8:76–78, September
2010.

[42] Inc Millennial Media. Millennial media’s mobile mix. http:
//www.millennialmedia.com/wp-content/images/mobilemix/
MM-MobileMix-March2011.pdf, March 2011.

[43] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending an-
droid permission model and enforcement with user-defined runtime constraints.

http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.gartner.com/it/page.jsp?id=1466313
http://www.gartner.com/it/page.jsp?id=1466313
http://www.gartner.com/resId=1847315
http://code.google.com/p/smali/
http://code.google.com/p/smali/
http://www.millennialmedia.com/wp-content/images/mobilemix/MM-MobileMix-March2011.pdf
http://www.millennialmedia.com/wp-content/images/mobilemix/MM-MobileMix-March2011.pdf
http://www.millennialmedia.com/wp-content/images/mobilemix/MM-MobileMix-March2011.pdf

108 BIBLIOGRAPHY

In Proceedings of the 5th ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS ’10, pages 328–332, New York, NY, USA, 2010.
ACM.

[44] Juniper Networks. Malicious mobile threats report 2010/2011. www.juniper.
net/us/en/local/pdf/whitepapers/2000415-en.pdf, November 2011.

[45] Jon Oberheide. Remote kill and install on google an-
droid. http://jon.oberheide.org/blog/2010/06/25/
remote-kill-and-install-on-google-android/, June 2010.

[46] Damien Octeau, William Enck, and Patrick McDaniel. The ded Decompiler.
Technical report nas-tr-0140-2010, Network and Security Research Center, De-
partment of Computer Science and Engineering, Pennsylvania State University,
University Park, PA, USA, September 2010.

[47] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel.
Semantically rich application-centric security in android. In Proceedings of the
2009 Annual Computer Security Applications Conference, ACSAC ’09, pages 340–
349, Washington, DC, USA, 2009. IEEE Computer Society.

[48] Gabor Paller. Understanding the dalvik bytecode with the dedexer tool. http://
pallergabor.uw.hu/common/understandingdalvikbytecode.pdf, De-
cember 2009.

[49] Inc Palm Source. Open binder, version 1. http://www.angryredplanet.
com/˜hackbod/openbinder/docs/html/index.html, 2005.

[50] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos.
Paranoid android: versatile protection for smartphones. In Proceedings of the 26th
Annual Computer Security Applications Conference, ACSAC ’10, pages 347–356,
New York, NY, USA, 2010. ACM.

[51] The Android Open Source Project. http://source.android.com/.

[52] The Android Open Source Project. Bytecode for the dalvik vm. http://s.
android.com/tech/dalvik/dalvik-bytecode.html, 2007.

[53] The OpenJDK Project. http://openjdk.java.net/.

[54] Reese T. Prosser. Applications of boolean matrices to the analysis of flow dia-
grams. In Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-
ACM computer conference, IRE-AIEE-ACM ’59 (Eastern), pages 133–138, New
York, NY, USA, 1959. ACM.

[55] pxb1988. dex2jar: A tool for converting android’s .dex format to java’s .class
format. https://code.google.com/p/dex2jar/.

[56] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’88, pages 12–27, New
York, NY, USA, 1988. ACM.

[57] Jason Sawin and Atanas Rountev. Improving static resolution of dynamic class
loading in java using dynamically gathered environment information. Automated
Software Engg., 16:357–381, June 2009.

[58] Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou, Mehool Intwala, Apu Kapadia,
and XiaoFeng Wang. Soundcomber: A stealthy and context-aware sound trojan
for smartphones. In Proceedings of the 18th Annual Network and Distributed
System Security Symposium, NDSS 2011, pages 17–33. The Internet Society, 2011.

[59] Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl. Virtual machine
showdown: stack versus registers. In Proceedings of the 1st ACM/USENIX inter-
national conference on Virtual execution environments, VEE ’05, pages 153–163,
New York, NY, USA, 2005. ACM.

www.juniper.net/us/en/local/pdf/whitepapers/2000415-en.pdf
www.juniper.net/us/en/local/pdf/whitepapers/2000415-en.pdf
http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-google-android/
http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-google-android/
http://pallergabor.uw.hu/common/understandingdalvikbytecode.pdf
http://pallergabor.uw.hu/common/understandingdalvikbytecode.pdf
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://source.android.com/
http://s.android.com/tech/dalvik/dalvik-bytecode.html
http://s.android.com/tech/dalvik/dalvik-bytecode.html
http://openjdk.java.net/
https://code.google.com/p/dex2jar/

BIBLIOGRAPHY 109

[60] Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm for placing
φ-nodes. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’95, pages 62–73, New York, NY,
USA, 1995. ACM.

[61] SMobile Systems. Threat analysis of the android market. http:
//globalthreatcenter.com/wp-content/uploads/2010/06/
Android-Market-Threat-Analysis-6-22-10-v1.pdf, June 2010.

[62] T. Vidas, N. Christin, and L. Cranor. Curbing android permission creep. In
Proceedings of the WS2P Workshop on Web 2.0 Security and Privacy, May 2011.

[63] Android x86 Porting Android to x86. http://www.android-x86.org/.

[64] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vince Freeh. Taming information-
stealing smartphone applications (on android). In Proceedings of the 4th Interna-
tional Conference on Trust and Trustworthy Computing, TRUST ’11, Pittsburgh,
PA, USA, June 2011.

http://globalthreatcenter.com/wp-content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-v1.pdf
http://globalthreatcenter.com/wp-content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-v1.pdf
http://globalthreatcenter.com/wp-content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-v1.pdf
http://www.android-x86.org/

	List of Figures
	List of Tables
	Introduction
	Motivation & Thesis Objectives
	Outline

	The Android Operating System
	Kernel & Middleware
	Android Runtime and the Dalvik Virtual Machine
	The dx compiler
	The Zygote
	Register-based Virtual Machine
	Bytecode for the Dalvik VM

	Application Framework
	Permission Model

	Bati - A high-level overview
	System Overview
	Modular Design & Generic Approach

	Information Flow Analysis Primer
	Static versus dynamic Program Analysis
	Symbolic Execution
	Control Flow Graph
	The Static Single Assignment Form
	Creation of the SSA form

	Information Flow Analysis on Android
	How to analyze Android Applications?
	Definition of Sinks
	Backwards Symbolic Execution

	Building the Control Flow Graph
	Connecting the Basic Blocks

	The SSA Form on Dex Bytecode
	Translating Dex Bytecode into SSA Form

	Backwards Symbolic Execution
	Resolving Class Fields
	Resolving Arrays
	Resolving Method Invocations

	Assembling & Encoding of Results
	Encoding Expressions
	Encoding Arrays
	Encoding Method Invocations
	Multi-path Encoding

	Decoding and Evaluation
	Decoding Expressions
	Decoding Arrays
	Decoding Method Invocations

	Implementation
	Disassembling and Parsing
	The SSA Builder Module
	Determining Node Relationship
	Modifying Dex Bytecode

	Resolver Implementation
	Loop Detection
	Incorporating Expert Knowledge
	Handling special Method Invocations

	The Decoder Module

	Evaluation
	Resolving Basic Constructs
	Evaluating Class Fields
	Evaluating Arrays
	Evaluating Method Invocations
	Call Histories
	Fully Resolvable Methods
	Recursive Method Invocations

	The Translation App

	Related Work
	Dynamic Analysis
	Static Analysis

	Conclusion & Future Work
	Limitations
	Approach Limitations
	Implementation Limitations

	Conclusion
	Future Work

	Syntax Diagram Notation
	References

