
YubiSecure? Formal Security Analysis Results for
the Yubikey and YubiHSM

Robert Künnemann1,2 and Graham Steel2

1 LSV & INRIA Saclay – Île-de-France
2 INRIA Project ProSecCo, Paris, France

Abstract. The Yubikey is a small hardware device designed to authenti-
cate a user against network-based services. Despite its widespread adop-
tion (over a million devices have been shipped by Yubico to more than
20 000 customers including Google and Microsoft), the Yubikey protocols
have received relatively little security analysis in the academic literature.
In the first part of this paper, we give a formal model for the operation
of the Yubikey one-time password (OTP) protocol. We prove security
properties of the protocol for an unbounded number of fresh OTPs using
a protocol analysis tool, tamarin.
In the second part of the paper, we analyze the security of the protocol
with respect to an adversary that has temporary access to the authenti-
cation server. To address this scenario, Yubico offers a small Hardware
Security Module (HSM) called the YubiHSM, intended to protect keys
even in the event of server compromise. We show if the same YubiHSM
configuration is used both to set up Yubikeys and run the authentica-
tion protocol, then there is inevitably an attack that leaks all of the keys
to the attacker. Our discovery of this attack lead to a Yubico security
advisory in February 2012. For the case where separate servers are used
for the two tasks, we give a configuration for which we can show using
the same verification tool that if an adversary that can compromise the
server running the Yubikey-protocol, but not the server used to set up
new Yubikeys, then he cannot obtain the keys used to produce one-time
passwords.

Keywords: Key management, Security APIs, Yubikey

1 Introduction

The problem of user authentication is central to computer security and of increas-
ing importance as the cloud computing paradigm becomes more prevalent. Many
efforts have been made to replace or supplement user passwords with stronger
authentication mechanisms [1]. The Yubikey is one such effort. Manufactured by
the Swedish company Yubico, the Yubikey itself is a low cost ($25), thumb-sized
USB device. In its typical configuration, it generates one-time passwords (OTPs)
based on encryptions of a secret value, a running counter and some random values
using a unique AES-128 key contained in the device. A Yubikey authentication
server verifies an OTP only if it decrypts under the correct AES key to give a

valid secret value with a counter larger than the last one accepted. The counter
is therefore used as a means to prevent replay attacks. The system is used by a
range of governments, universities and enterprises, e.g. Google, Microsoft, Agfa
and Symantec [2].

Despite its widespread deployment, the Yubikey protocol has received little
independent security analysis. Yubico themselves present some security argu-
ments on their website [3]. A first independent analysis was given by blogger
Fredrik Björck in 2009 [4], raising issues that Yubico responded to for a sub-
sequent post [5]. The only formal analysis we are aware of was carried out by
Vamanu [6], who succeeded in showing security for an abstract version of the Yu-
bikey OTP protocol for a bounded number of fresh OTPs. In this paper, we use
a new protocol analysis tool tamarin [7], not available at the time of Vamanu’s
analysis. We are able to prove the protocol secure in an abstract model for an
unbounded number of fresh OTPs.

The aforementioned results assume that the authentication server remains
secure. Unfortunately, such servers are sometimes breached, as in the case of
the RSA SecurID system where attackers were able to compromise the secret
seed values stored on the server and so fake logins for sensitive organisations
such as Lockheed Martin [8]. RSA now use a Hardware Security Module (HSM)
to protect seeds in the event of server compromise. Yubico also offer (and use
themselves) an application specific HSM, the YubiHSM to protect the Yubikey
AES keys in the event of an authentication server compromise by encrypting
them under a master key stored inside the HSM. In the second part of our
paper, we analyse the security of the YubiHSM API. First we show that due to
an apparent oversight in the cryptographic design, an attacker with access to the
server where Yubikey AES keys are generated is able to decrypt the encrypted
keys and obtain them in clear. We informed Yubico of this problem in February
2012 and they issued a security advisory [9]. We then prove secrecy of keys in
various configurations of YubiHSMs and servers, and suggest design changes that
would allow a single server to be used securely.

All our analysis and proofs are in an abstract model of cryptography in
the Dolev-Yao style, and make various assumptions (that we will make explicit)
about the behaviour of the Yubikey and YubiHSM. At the end of the paper we
will discuss how we could refine our models in future work.

The rest of the paper proceeds as follows. In section 2, we described the Yu-
bikey and its OTP protocol. We model and analyse the security of this protocol
in section 3. We then describe the YubiHSM in section 4, and the attacks we
found in section 5. We model the HSM API and prove secrecy of the sensitive
keys for various configurations in section 6. Finally we evaluate our results (7)
and conclude (8).

2 The Yubikey Authentication Protocol

In the following, we will cover the authentication protocol as it pertains to version
2.0 of the Yubikey device [10].

The Yubikey is connected to the computer via the USB port. It identifies
itself as a standard USB keyboard in order to be usable out-of-the-box in most
environments using the operating system’s native drivers. Since USB keyboards
send “scan codes” rather than actual characters, a modified hexadecimal en-
coding, called modhex is employed, which uses characters that have the same
position on many different keyboard layouts, including the German QUERTZ,
the French AZERTY and the US QWERTY layout. Each keystroke carries 4
bits of information [10, Section 6.2].

The Yubikey can be configured to work in any of the following modes [10,
Section 2.1]:

– Yubikey OTP, which is the method that is typically employed
– OATH-HOTP, where the OTP is generated according to the standard RFC

4226 HOTP algorithm,
– Challenge-response mode, where a client-side API is used to retrieve the OTP,

instead of the keyboard emulation, and
– Static mode, where a (static) password is output instead of an OTP.

We will focus only on the Yubikey OTP mode, which we will explain in detail.
Depending on the authentication module used on the server, there are four basic
authentication modes [11, Section 3.4.1]:

– User Name + Password + YubiKey OTP
– User Name or YubiKey OTP + Password
– YubiKey OTP only
– User Name + Password

As the security provided by a user-chosen password is an orthogonal topic
and the OTP is the main feature of the Yubikey, we will only focus on the third
authentication mode.

The string emitted by the Yubikey is a 44-character string (i. e., 22 bytes of
information in modhex encoding) and consists of the unique public ID (6 bytes)
and the OTP (16 bytes) [12], encrypted its AES key. The length of the OTP is
exactly the block-length of AES. It contains the following information in that
order [10, Section 6.1].

– the unique secret ID (6 bytes)
– session counter (2 byte)
– timecode (3 byte)
– token counter (1 byte)
– a pseudo-random values (2 bytes)
– CRC-16 checksum (2 byte)

See Figure 1 for an example.
Yubico assigns an AES key and a public and secret ID to the Yubikey before

shipment, but they can be overwritten. The Yubikey is write-only in this regard,
thus it is not possible to retrieve secret ID nor the AES key. The session counter
is incremented whenever the Yubikey is plugged in. Once it reaches its limit of

216 = 65536, it cannot be used anymore. The timecode is incremented by an 8Hz
internal clock. When it reaches its limit, the session is terminated, i. e., no more
OTPs can be generated. This happens after approximately 24 days. The token
counter is incremented whenever an OTP is generated. When it reaches its limit
of 256, it restarts at 1 instead of terminating the session. The pseudo-random
value of length two bytes is supposed to add entropy to the plain-text, while the
CRC is supposed to detect transmission errors. It does not provide cryptographic
integrity.

8792ebfe26cc 0013 c0a8 00 10 4495 e9ec
Unique Device Id

Session Counter

Timestamp

Token Counter

Pseudo-random

CRC-16 value

Fig. 1. Structure of the OTP (session: 19, token: 16)

A Yubikey stores public and secret ID pid and sid , and the AES key k, and is
used in the following authentication protocol: The user provides a client C with
the Yubikey’s output pid , otp by filling it in a form. ("‖" denotes concatenation.)

C → S :pid ‖ otp ‖nonce ‖
S → C :otp ‖nonce ‖ hmac ‖ status

where nonce is a randomly chosen value between 8 and 20 bytes, hmac is a
MAC over the parameters using a key present on the server and the client. By
status, we denote additional status information given in the response, containing
an error code that indicates either success or where the verification of the OTP
failed, the value of the internal timestamp, session counter and token counter
when the key was pressed and more [13].

The server S accepts the token if and only if either the session counter is
bigger than the last one received, or the session counter has the same value but
the token counter is incremented. It is possible to verify if the timestamp is in
a certain window with respect to the previous timestamp received, however, our
model does not include the timing of messages, therefore we ignore this (optional)
check.

3 Formal Analysis in the Case of an Uncompromised
Server

We performed the analysis using the tamarin protocol prover [7], a new tool for
the symbolic analysis of security protocols. It supports both falsification and

verification of security goals which can be expressed as first-order formulas. The
secrecy problem with unbounded nonces can be expressed in tamarin. Since this
problem is undecidable [14], and due to the fact that the tool is sound and
complete, it is not guaranteed to terminate. In order to achieve termination,
some intervention is necessary: lemmas need to be used to cut branches in the
proof attempt.

We are using tamarin for the analysis because it supports the modelling
of explicit state, for example the last counter received for some Yubikey saved
on the server. The popular protocol verification tool ProVerif [15], to take an
example, represents protocol actions as Horn clauses, with the consequence that
the set of predicates is monotonic: it is possible to derive new facts, but not
to change or “forget” them. The Yubikey protocol, however, relies on the fact
that once an OTP with a counter value has been accepted, the last counter
value is updated. Certain OTP values that would have been accepted before
will be rejected from this moment on. The resolution algorithm employed by
ProVerif does not capture this (directly). There have been experiments with
several abstractions that aim at incorporating state into Horn clauses [16,17],
as well as the protocol analyser Scyther, but they have not been adequate for
proving the absence of replay attacks for an unbounded number of sessions [6].
There is an extension that incorporates state synchronisation into the Strand
Space Model [18], but as yet no tool support.

In tamarin, protocols are modelled as rewriting rules operating on a multi-
set of facts representing the protocol (Input/Output behaviour, long-term keys,
short-term keys, session etc.). A fact F (t1, . . . , tk) consists of a fact symbol F
or arity k and terms t1, . . . , ti. We will denote the set of ground facts G. The
state of the system is a finite multiset of such facts, written G#. There is a set
of “special” fact symbols used to encode the adversary’s knowledge (!K), fresh-
ness information (Fr) and messages on the network (In and Out). Other facts are
used to represent the protocol state. The set of facts is partitioned into linear
and persistent fact symbols. Linear facts can be consumed only once, persistent
facts can be consumed arbitrarily often and are marked with an exclamation
mark. Multiset rewriting rules are labelled by so-called actions. They consist of
premises l, actions a and conclusions r, and are denoted l−[a]→ r. For example,

Out(x)−[]→ !K(x)

formalizes the adversary’s capacity to eavesdrop all public communication,

!K(x)−[K(x)]→ In(x)

his capacity to write on the network, i. e., the Dolev-Yao model. More formally,
the labeled transition relation →M⊂ G# × P(G) × G# and a set of ground
instantiations of multiset rulesM is defined by the following transition rule:

l −[a]→ r ∈M lfacts(l) ⊂# S pfacts(l) ⊂ set(S)

S
set(a)−→M ((S \# lfacts(l)) ∪# mset(r))

where lfact and pfacts denote the linear, respectively the permanent facts
from a set, set and mset transform a multiset into a set and vice versa, and
⊂#, \#,∪# are the multiset equivalents of the subset relation, set difference and
set union. The executions are then modelled by a set of traces defined as:

{(A1, . . . , An) | ∃S1, . . . , Sn ∈ G#. ∅
A1→M . . .

An→M Sn ∧ ∀i 6= j. ∀x.
(Si+1 \# Si) = {Fr(x)} ⇒ Sj+1 \# Sj) 6= {Fr(x)}}

The second condition makes sure that each fresh name is indeed different in the
trace.

An important part of the modelling of the Yubikey protocol’s counter value
was to determine whether one value is smaller than another. Our modelling em-
ploys a feature added to the development version of tamarin as of October 2012.
Tamarin supports the union operator ∪# for multisets of message terms. We
model the counter as a multiset only consisting of the symbol “one”. The cardi-
nality of the multiset is the value of the counter. A counter value is considered
smaller than another one, if the first multiset is included in the second. We en-
force those semantics by adding an axiom that requires, for all instantiations of
rules annotated with Smaller(a, b), that a is a subset of b:

∀i, a, b. Smaller(a, b)@i⇒ ∃z.a+ z = b

Note that i and j are timepoints and Event@i means that the trace contains
a rule instantiation that produces the action Event at timepoint i. We had to
simplify the modelling of the session and token counter: instead of having two
counters, we just model a single counter. Since the Yubikey either increases the
session counter and resets the token counter, or increases the token counter, it
implements a complete lexicographical order on the pair (session counter, token
counter).

The following rule models the initialisation of a Yubikey. A fresh public id,
secret ID and Yubikey are drawn, and saved on the Server and the Yubikey.

Fr(k),Fr(pid),Fr(sid)−[Protocol(), Init(pid , k),ExtendedInit(pid , sid , k)]→
!Y(pid , sid),Y_counter(pid , ′1 ′),Server(pid , sid ,′ 1 ′), !SharedKey(pid , k),

Out(pid)

The next rule models how the counter is increased when a Yubikey is plugged
in. As mentioned before, we model both the session and the token counter as a
single counter. We over-approximate in the case that the Yubikey increases the
session token by allowing the adversary to instantiate the rule for any counter
value that is higher than the previous one, using the Smaller action.

Y_counter(pid , otc), In(tc)−[Yubi(pid , tc),Smaller(otc, tc)]→ Y_counter(pid , tc)

Note that the adversary has to input tc. We can only express properties about the
set of traces in tamarin, e. g., the terms the adversary constructs in a given trace,

but not the terms he could construct in this trace. By requiring the adversary to
produce all counter values, we can ensure that they are in !K, i. e., the adversary’s
knowledge.

When the button is pressed, an encryption is output in addition to increasing
the counter:

!Y(pid , sid),Y_counter(pid , tc), !SharedKey(pid , k), In(tc),Fr(npr),Fr(nonce)

−[YubiPress(pid , tc)]→
Y_counter(pid , tc +′ 1 ′),Out(< pid ,nonce, senc(< sid , tc,npr >, k) >)

The output can be used to authenticate with the server, in case that the
counter inside the encryption is larger than the last counter stored on the server:

Server(pid , sid , otc), In(< pid ,nonce, otp >), !SharedKey(pid , k), In(otc)

−[Login(pid , sid , tc, otp), LoginCounter(pid , otc, tc),Smaller(otc, tc)]→
Server(pid , sid , tc)

for otp = senc(< sid , tc, pr >, k). Tamarin is able to prove the following proper-
ties: First, the absence of replay attacks:

¬(∃i , j , pid , sid , x , otp1 , otp2 .
Login(pid , sid , x , otp1)@i ∧ Login(pid , sid , x , otp2)@j ∧ ¬(i = j))

Second, injective correspondence between pressing the button on a Yubikey and
a successful login:

∀pid , sid , x , otp, t2 .Login(pid , sid , x , otp)@t2 ⇒ ∃t1 .YubiPress(pid , x)@t1∧
t1 < t2 ∧ ∀otp2 , t3 .Login(pid , sid , x , otp2)@t3 ⇒ t3 = t2

Third, the fact that the counter values associated to logins are monotonically
increasing in time, which implies that a successful login invalidates previously
collected OTPs.

∀pid , otc1 , tc1 , otc2 , tc2 , t1 , t2 , t3 .Smaller(tc1 , tc2)@t3∧
LoginCounter(pid , otc1 , tc1)@t1 ∧ LoginCounter(pid , otc2 , tc2)@t2 ⇒ t1 < t2

The source files and proofs are available at the following website: http:
//www.lsv.ens-cachan.fr/~kunneman/yubikey/analysis/yk.tar.gz.

The absence of replay attacks is proven by showing the following, stronger
property to hold true:

∀pid , otc1 , tc1 , otc2 , tc2 , t1 , t2 .
LoginCounter(pid , otc1 , tc1)@t1 ∧ LoginCounter(pid , otc2 , tc2)@t2 ∧ t1 < t2

⇒ ∃z.tc2 = z + tc1

Intuitively, this means that counter values are increasing in time. Tamarin
is able to prove the invariant, as well as the security properties completely au-
tomatically. Note that in this model, the adversary has no direct access to the
server, he can only control the network. A stronger attack model is discussed in
the next section.

http://www.lsv.ens-cachan.fr/~kunneman/yubikey/analysis/yk.tar.gz
http://www.lsv.ens-cachan.fr/~kunneman/yubikey/analysis/yk.tar.gz

4 The YubiHSM

The YubiHSM is also a USB device about 5 times thicker than a Yubikey. Ac-
cording to the Yubico literature it “provides a low-cost [$500] way to move out
sensitive information and cryptographic operations away from a vulnerable com-
puter environment without having to invest in expensive dedicated Hardware
Security Modules (HSMs)” [19]. The YubiHSM stores a very limited number of
AES keys in a way that the server can use them to perform cryptographic op-
erations without the key values ever appearing in the server’s memory. These
‘master keys’ are generated during configuration time and can neither be mod-
ified nor read at runtime. The master keys are used to encrypt working keys
which can then stored safely on the server’s hard disk. The working keys are en-
crypted inside so-called AEADs (blocks produced by authenticated encryption
with associated data). In order to produce or decrypt an AEAD, an AES key
and a piece of associated data is required. The YubiHSM uses CCM mode to
obtain an AEAD algorithm from the AES block cipher [20].

In the case of the Yubikey protocol, AEADs are used to store the keys the
server shares with the Yubikeys, and the associated data is the public ID and the
key-handle used to reference the AES key. The idea here is that since the master
keys of the YubiHSM cannot be extracted, the attacker never learns the value
of any Yubikey AES keys, even if he successfully attacks the server. While he is
in control of the server, he is (of course) able to grant or deny authentication to
any client at will. However, if the attack is detected and the attacker loses access
to the server, it should not be necessary to replace or rewrite the Yubikeys that
are in circulation in order to re-establish security.

5 Two Attacks on the Implementation of Authenticated
Encryption

The YubiHSM provides access to about 22 commands that can be activated or
de-activated globally, or per key, during configuration. We first examined the
YubiHSM API in its default configuration, discovering the following two attacks
which led to a security advisory given issued by Yubikey in February 2012 [9].

The attacks use the following two commands: AES_ECB_BLOCK_EN-
CRYPT takes a handle to an AES key and a plaintext of length of one AES
block (16 Bytes) and applies the raw block cipher. YSM_AEAD_GENERATE
takes a nonce, a handle to an AES key and some data and outputs an AEAD.
More precisely, but still simplified for our purposes, it computes:

AEAD(nonce, kh, data) =

d |data|
blocksize e
‖

i=0

AES (k, counter i)

⊕
data

 ||mac

where k is the key referenced by the key-handle kh, counter i is a counter that is
completely determined by kh,nonce, i and the length of data and blocksize is 16
bytes. For the precise definition of mac and counter , we refer to RFC 3610 [20].

Figure 2 depicts the counter mode of operation, used to calculate the ciphertext
body of the AEAD to which will be appended the MAC.

counter1 counter2 countern

AES AES AES

data1

⊕
data2

⊕
· · · datan

⊕
cypher1 ‖ cypher2 ‖ · · · ‖ cyphern

Fig. 2. AES in counter mode (simplified)

The AEADs used to store keys for decrypting OTPs in the Yubikey protocol
are special cases: the plaintext is a concatenation of the respective Yubikey’s
AES key and secret device ID (22 bytes in total), and nonce consists of the
Yubikey’s public id.

An attacker with access to the command AES_ECB_BLOCK_ENCRYPT
is able to decrypt an AEAD by recreating the blocks of the key-stream, i. e.,
AES (k, counter i). He xors the result with the AEAD truncated by 8 bytes (the
length of mac) and yields data. When the attacker is able to compromise the
server, he learns the AEAD and the key-handle used to produce it. Since the
nonce is the public ID of the Yubikey, he can compute counter i and, using AES_-
ECB_BLOCK_ENCRYPT the key-stream. It is in the nature of the counter-
mode that encryption and decryption are the same operation. According to the
reference manual[19, Section 4.3], “the YubiHSM intentionally does not provide
any functions [sic] that decrypts an AEAD and returns it in clear text, either fully
or partial [sic].”. We therefore consider the protection of the AEAD’s contents a
security goal of the YubiHSM, which is violated by this attack. The attack can
be prevented by disabling the AES_ECB_BLOCK_ENCRYPT command on
the relevant key handles at configuration time.

The second attack uses only YSM_AEAD_GENERATE: if the attacker pro-
duces AEAD(nonce, kh, 0l) for the same handle kh and nonce a previously gen-
erated AEAD of length l was created with (he can discard mac). Again he
directly recovers the key-stream. Once again, it is possible to decrypt AEADs.
This attack is worse than the first one, because YSM_AEAD_GENERATE
is necessary for the set-up of Yubikeys. Note that the attack applies also to
the commands YSM_RANDOM_AEAD_GENERATE and YSM_BUFFER_-
AEAD_GENERATE [19, p. 28-29].

This second attack is harder to prevent, since in order to set up Yubikeys with
their AES keys, the YSM_AEAD_GENERATE command must at some point

be enabled. The security advisory suggests that the threat can be “mitigated
by observing that a YubiHSM used to generate AEADs is guarded closely to
not permit maliciously crafted input.” In the next section, we try to interpret
this advice into a concrete configuration for which we can prove security of
the sensitive keys. Then, in section 7, we describe practical ways in which this
configuration could be used.

6 Analysis in the Case of Server Compromise

In the following, we will assume the following corruption scenario: in addition to
the capacities described in Section 3, the attacker can read the AEADs stored on
the server and he can access the HSM. Every AEAD is created using the same
key on the HSM, the handle to this key is made public. The public ID is given to
the adversary when the Yubikey is set up. Counter values are guessable, so there
is no need to give the adversary explicit access to this data. The adversary is
still not able to directly read the data stored on the Yubikey or YubiHSM. Note
that in this situation, the attacker can trivially approve or deny authorisation
requests to the server, hence we cannot expect to show absence of replay attacks.
We are rather interested in whether the attacker can recover the secret keys used
to create OTPs, which would allow him to continue to obtain authorisation even
once he is denied access to the server.

We model the xor operator in a very simplified manner. The equational theory
we employ allows to recover the two attacks described in Section 5, but it does
not capture all attacks that the xor-operator might permit in this context. For
this reason, the positive security results in this section have to be taken with
caution. We model xor using the function symbols xor , dexor1 and dexor2 and
the equations dexor1 (xor(a, b), a) = b and dexor2 (xor(a, b), b) = a. Using this
equational theory, we are able to rediscover the attacks described in the previous
section. The current version of tamarin (0.8.2.1) does not have built-in support
yet, but it is planned for future releases.

The counter values are modelled as before. We initialise the YubiHSM with
exactly one key-handle:

Fr(k),Fr(kh)−[MasterKey(k),OneTime()]→!HSM(kh, k),Out(kh),

!YSM_AEAD_YUBIKEY_OTP_DECODE(kh)

We make sure that this rule is only instantiated once by adding a corresponding
axiom ∀i, j. OneTime@i ∧ OneTime@j ⇒ i = j.

The following rules model the fact that the adversary can communicate with
the YubiHSM and read the list of AEADs stored on the authentication server.

OutHSM(x)−[HSMRead(x)]→ [Out(x)]

In(x)−[HSMWrite(x)]→ [InHSM(x)]

!S_AEAD(pid , aead)−[AEADRead(aead),HSMRead(aead)]→ [Out(aead)]

The next rules aim at modelling the HSM. We modelled a set of 4 rules in total,
but only YSM_AEAD_YUBIKEY_OTP_DECODE is used. (YSM_AEAD_-
GENERATE is directly incorporated into the rule BuyANewYubikey, see below.)

InHSM(< did , kh, aead , otp >), !HSM(kh, k),

!YSM_AEAD_YUBIKEY_OTP_DECODE(kh)

−[OtpDecode(k2 , k , < did , sc, rand >, sc, xor(senc(ks, k), < k2, did >),mac)

OtpDecodeMaster(k2 , k)]→ OutHSM(sc)

where ks = keystream(kh,N), mac = mac(< k2 , did >, k), aead =< xor(senc(ks,
k), < k2, did >),mac > and otp = senc(< did , sc, rand >, k2).

The rules for emitting the OTP and the login are modelled in a way very
similar to Section 3, but of course we model the encryption used inside the AEAD
in more detail. Here, the server-side rule for the login.

In(< pid ,nonce, senc(< sid , tc, pr >, k2) >), !HSM(kh, k), !S_sid(pid , sid),

!S_AEAD(pid , aead), S_Counter(pid , otc)

−[Login(pid , tc, senc(< sid , tc, pr >, k2)),Smaller(otc, tc)]→
S_Counter(pid , tc)

where ks,mac and aead are defined as before.
Tamarin is able to prove that, within our limited model of xor, the adversary

never learns a Yubikey AES key or a YubiHSM master key - in other words,
AEADs, as well as the key used to produce them, stay confidential. The proof
does not need human intervention, however, some additional typing invariants
are needed in order to reach termination. For instance, the following invariant
is used to proof that a key k2 shared between the authentication server and the
Yubikey can only be learned when the key used to encrypt the AEADs is leaked.

∀t1 , t2 , pid , k2 .Init(pid , k2)@t1 ∧ K(k2)@t2

⇒ ∃t3 , t4 , k .K(k)@t3 ∧MasterKey(k)@t4 ∧ t3 < t2

7 Evaluation

The positive and negative results in this paper provide formal criteria to evaluate
the security of the Yubikey protocol in different scenarios.

Positive Results: Under the assumption that the adversary can control the net-
work, but is not able to compromise the client or the authentication server, we
have shown he cannot mount replay attack. Furthermore, if a YubiHSM is used
configured such that YSM_AEAD_YUBIKEY_OTP_DECODE is the only
available command, then even in case the adversary is able to compromise the
server, the Yubikey AES keys remain secure. All these results are subject to

our abstract modelling of cryptography and the algebraic properties of XOR of
course.

Since the Yubikeys need to be provisioned with their AES keys and secret
identities must be stored in the AEADs, we propose two set-ups that can be
used to obtain the configuration used in the analysis:

1. One Server, One YubiHSM: There is a set-up phase which serves the purpose
of producing AEADs (using any of the YSM_AEAD_GENERATE com-
mands) and writing the key and secret/public identity on the Yubikey. This
phase should take place in a secure environment. Afterwards, the YubiHSM
is returned to configuration mode and all commands disabled except YSM_-
AEAD_YUBIKEY_OTP_DECODE. In this set-up, only one YubiHSM is
needed, but it is not possible to add new Yubikeys once the second phase
has begun without taking the server off-line and returning the YubiHSM to
configuration mode. Note that switching the YubiHSM into configuration
mode requires physical access to the device, hence would not be possible for
an attacker who has remotely compromised the server.

2. Two Servers, Two YubiHSMs: There is one server that handles the authenti-
cation protocol, and one that handles the set-up of the Yubikeys. The latter
is isolated from the network and only used for this very purpose, so we con-
sider it a secure environment. We configure two YubiHSMs such that they
store the same master-key (the key used to produce AEADs). The first is
used for the authentication server and has only YSM_AEAD_YUBIKEY_-
OTP_DECODE set to true, the second is used in the set-up server and has
only YSM_AEAD_GENERATE set to true. The set-up server produces
the list of public ids and corresponding AEADs, which is transferred to the
authentication server in a secure way, for example in fixed intervals (every
night) using fresh USB keys. The transfer does not necessarily have to pro-
vide integrity or secrecy (as the adversary can block the authentication via
the network, anyway), but it should only be allowed in one direction.

Reading between the lines (since no YubiHSM configuration details are given) it
seems that Yubico themselves use this set-up to provision Yubikeys [21].

Negative Results: In case either of the permissions AES_ECB_BLOCK_EN-
CRYPT or YSM_AEAD_GENERATE are activated on a master key handle
(which by default they both are), the YubiHSM does protect the keys used to
produce one-time passwords encrypted under that master key. Since YSM_-
AEAD_GENERATE (or YSM_BUFFER_AEAD_GENERATE) are needed
in order to set a Yubikey up, this means that separate setup and authorisation
configurations have to be used in order to benefit from the use of the YubiHSM,
i. e., have a higher level of security than in the case where the keys are stored
unencrypted on the hard disk. Unfortunately, open source code available on
the web in e.g. the yhsmpam project [22], designed to use the YubiHSM to
protect passwords from server compromise, uses the insecure configuration, i.e.

one YubiHSM with both YSM_AEAD_GENERATE and (in this case) YSM_-
AEAD_DECRYPT_CMP enabled, and hence would not provide the security
intended.

Possible changes to the YubiHSM: We will now discuss two possible counter-
measures against this kind of attack that could be incorporated into future ver-
sions of the YubiHSM to allow a single device to be used securely, the first
which may be seen as a kind of stop-gap measure, the second which is a more
satisfactory solution using more suitable crypto:

1. AEAD_GENERATE with a randomly drawn nonce: All three YubiHSM
commands to generate AEADs (YSM_AEAD_GENERATE, YSM_BUF-
FER_AEAD_GENERATE and YSM_RANDOM_AEAD_GENERATE)
allow the user to supply the nonce that is used. This would not be possible
if they were replaced by a command similar to YSM_AEAD_GENERATE
that chooses the nonce randomly and outputs it at the end, so it is possible
to use the nonce as the public ID of the Yubikey. However, even in this case
there is an online guessing attack on the HSM: an AEAD can be decrypted if
the right nonce is guessed. We can assume that the adversary has gathered a
set of honestly generated OTPs, so he is able to recognize the correct nonce.
Since the nonce space is rather small (248) in comparison to the key-space
of AES-128, the adversary could perform a brute-force search. We measured
the amount of time it takes to perform 10 000 YSM_AEAD_GENERATE
operations on the YubiHSM. The average value is 0.2178 ms, so it would
take approximately 1900 years to traverse the nonce space. Even so this is
not completely reassuring.

2. SIV-mode: The SIV mode of operation [23] is designed to be resistant to
repeated IVs. It is an authenticated encryption mode that works by deriving
the IV from the MAC that will be used for authentication. As such it is
deterministic - two identical plaintexts will have an identical ciphertext - but
the encryption function cannot be inverted in the same way as CCM mode
by giving the same IV (the encryption function does not take an IV as input,
the only way to force the same IV to be used is to give the same plaintext).
This would seem to suit the requirements of the YubiHSM very well, since it
is only keys that will be encrypted hence the chances of repeating a plaintext
are negligible. Even if the same key is put on two different Yubikeys, they
will have different private IDs yielding different AEADs. In our view this is
the most satisfactory solution.

Methodology: Since the tamarin prover could not derive the results in this paper
without auxiliary lemmas, we think it is valuable to give some information about
the way we derived those results.

We first modelled the protocol using multiset rewriting rules, which was a
straight-forward task. Then, we stated a sanity lemma saying “There does not
exist a trace that corresponds to a successful protocol run” to verify that our
model is sane. Tamarin should be able to derive a counter-example, which is a
proof that a correct protocol run is possible.

We stated the security property we wanted to prove, e. g., the absence of
replay-attacks. Since tamarin did not produce a proof on its own, we investi-
gated the proof derivation in interactive mode. We deduced lemmas that seemed
necessary to cut branches in the proof that are looping, so-called typing invari-
ants. An example is YSM_AEAD_YUBIKEY_OTP_DECODE: it outputs a
subterm of its input, namely the counter value. Whenever tamarin tries to derive
a term t, it uses backward induction to find combination of AEAD and OTP
that allows to conclude that the result of this operation is t. Meier, Cremers and
Basin propose a technique they call decryption-chain reasoning in [24, Section
3b] that we used to formulate our typing invariant. Once the invariant is stated,
it needs to be proven. Sometimes the invariant depends on another invariant,
that needs to be found manually. We used trial and error to find a set of in-
variants that lead to a successful verification of the security property, and then
minimised this set of lemmas by experimentally deleting them to find out which
ones were strictly necessary.

All in all, it took about 1 month to do the analysis presented in this work.
The modelling of the protocol took no more than half a day. Finding a first
modelling of the natural numbers and the “Is smaller than” relation took a week,
since at this time, the multiset union operator was not available in tamarin. We
employed a modelling that build the “Is smaller than” as a set of permanent facts
from an “Is Successor” of relation:

In(0), In(S (0))−[IsSucc(0 ,S (0)), IsZero(0)]→ !Succ(0 ,S (0))

In(y), In(S (y)), !Succ(x , y)−[IsSucc(y ,S (y))]→ !Succ(y ,S (y))

!Succ(x , y)−[IsSmaller(x , y)]→ !Smaller(x , y)

!Smaller(x , y), !Succ(y , z)−[IsSmaller(x , z)]→ !Smaller(x , z)

An additional axiom is needed to enforce transitivity. Using this modelling, it
was also possible to derive all results covered in this paper. We consider the
modelling using the multiset data type more natural, whereas this modelling does
not rely on the support of associativity, commutativity and a neutral element
in equational theories, as is needed to model multisets with the empty multiset
and multiset union. It might be interesting for similar use cases with other tools
that may not support such equational theories. The sample files available for
download include this second modelling as well.

The lion’s share of the time was spent in searching the right invariants for
termination. The running time of tamarin is acceptable: proving the absence
of replay-attacks in case of an uncompromised server takes around 35 seconds,
proving confidentiality of keys in the case of a compromised server takes around
50 seconds, both on a 2.4GHz Intel Core 2 Duo with 4GB RAM.

8 Conclusions

We were able to show the absence of replay-attacks of the Yubikey protocol in
the formal model. This has been attempted before, using a variety of protocol

analysis tools, but it was previously only possible for a fixed number of nonces.
This shows, that verification based on multiset-rewriting rules is a promising
approach for realistic protocols, as long as the right invariants can be found.
Perhaps surprisingly, the modelling of a monotonically increasing counter proves
to be a surmountable problem.

To evaluate the YubiHSM, a small device that can potentially perform cryp-
tographic operations without revealing the key to the computer it is connected
to, we considered a more challenging scenario. Here, the attacker can access the
server and communicate with this device. Two attacks show that in the default
configuration, the encryption operations are implemented in a way such that
they do not provide confidentiality of plaintexts. The user must either set up
the authentication server and the YubiHSM such that provisioning and authori-
sation commands are never available at the same time on the same server. We
proposed a change to the cryptographic design that would relax this restriction.

We learned that it is possible to obtain formal results on the YubiKey and
YubiHSM for an unbounded model using tamarin, which gives us hope for the
unbounded formal analysis of other Security APIs, for example PKCS#11 and
the TPM. However, there are plenty of improvements to be made: we currently
treat the session and token counter on the Yubikey as a single value, and simplify
the algebraic theory of xor considerably. The treatment of xor is expected to be
included in future versions of the tamarin tool. Our own work will concentrate
on developing a methodology for deriving the lemmas tamarin needs to obtain
a proof automatically, thus permitting more automation and more expressive
models.

References

1. Bonneau, J., Herley, C., Oorschot, P.C.v., Stajano, F.: The quest to replace pass-
words: a framework for comparative evaluation of Web authentication schemes.
Technical Report UCAM-CL-TR-817, University of Cambridge, Computer Labo-
ratory (March 2012) Shorter version appears in Proceedings of IEEE Symposium
on Security and Privacy 2012.

2. Yubico AB: Yubico customer list. available at: http://www.yubico.com/
references

3. Yubico AB: Yubikey security evaluation: Discussion of security properties and best
practices. available at http://static.yubico.com/var/uploads/pdfs/Security_
Evaluation_2009-09-09.pdf (September 2009) v2.0.

4. Björck, F.: Yubikey security weaknesses. On Security DJ Blog, http://web.
archive.org/web/20100203110742/http://security.dj/?p=4 (February 2009)

5. Björck, F.: Increased security for yubikey. On Security DJ Blog, http://web.
archive.org/web/20100725005817/http://security.dj/?p=154 (August 2009)

6. Vamanu, L.: Formal analysis of Yubikey, available online at http://n.ethz.
ch/~lvamanu/download/YubiKeyAnalysis.pdf. Master’s thesis, École normale
supérieure de Cachan (August 2011)

7. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of diffie-
hellman protocols and advanced security properties. In: Proceedings of the 25th
IEEE Computer Security Foundations Symposium, CSF 2012. (2012) 78–94

http://www.yubico.com/references
http://www.yubico.com/references
http://static.yubico.com/var/uploads/pdfs/Security_Evaluation_2009-09-09.pdf
http://static.yubico.com/var/uploads/pdfs/Security_Evaluation_2009-09-09.pdf
http://web.archive.org/web/20100203110742/http://security.dj/?p=4
http://web.archive.org/web/20100203110742/http://security.dj/?p=4
http://web.archive.org/web/20100725005817/http://security.dj/?p=154
http://web.archive.org/web/20100725005817/http://security.dj/?p=154
http://n.ethz.ch/~lvamanu/download/YubiKeyAnalysis.pdf
http://n.ethz.ch/~lvamanu/download/YubiKeyAnalysis.pdf

8. Kaminsky, D.: On the RSA SecurID compromise. Available at http://
dankaminsky.com/2011/06/09/securid/. (June 2011)

9. Yubico Inc.: Yubihsm 1.0 security advisory 2012-01 (published online: http://
static.yubico.com/var/uploads/pdfs/SecurityAdvisory%202012-02-13.pdf)
(February 2012)

10. Yubico AB Kungsgatan 37, 111 56 Stockholm Sweden: The YubiKey Manual -
Usage, configuration and introduction of basic concepts (Version 2.2), available at:
http://www.yubico.com/documentation. (June 2010)

11. Yubico AB Kungsgatan 37, 111 56 Stockholm Sweden: YubiKey Authentication
Module Design Guide and Best Practices (Version 1.0), available at: http://www.
yubico.com/documentation

12. Kamikaze28, et al.: Specification of the Yubikey operation in the Yubico wiki.
available at: http://wiki.yubico.com/wiki/index.php/Yubikey (June 2012)

13. The yubikey-val-server-php project: Validation protocol version 2.0.
available at: http://code.google.com/p/yubikey-val-server-php/wiki/
ValidationProtocolV20 (October 2011)

14. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded secu-
rity protocols. In Heintze, N., Clarke, E., eds.: Proceedings of the Workshop on
Formal Methods and Security Protocols — FMSP, Trento, Italy. (July 1999) Elec-
tronic proceedings available at http://www.cs.bell-labs.com/who/nch/fmsp99/
program.html.

15. Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4) (July 2009) 363–434

16. Arapinis, M., Ritter, E., Ryan, M.D.: Statverif: Verification of stateful processes.
In: CSF, IEEE Computer Society (2011) 33–47

17. Mödersheim, S.: Abstraction by set-membership: verifying security protocols and
web services with databases. [25] 351–360

18. Guttman, J.D.: State and progress in strand spaces: Proving fair exchange. J.
Autom. Reasoning 48(2) (2012) 159–195

19. Yubico AB Kungsgatan 37, 111 56 Stockholm Sweden: Yubico YubiHSM - Crypto-
graphic Hardware Security Module (Version 1.0), available at: http://www.yubico.
com/documentation. (September 2011)

20. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC
3610 (Informational) (September 2003)

21. Yubico AB Kungsgatan 37, 111 56 Stockholm Sweden: Yubicloud Validation Ser-
vice - (Version 1.1), available at: http://www.yubico.com/documentation. (May
2012)

22. Habets, T.: Yubihsm login helper program. available at: http://code.google.
com/p/yhsmpam/

23. Rogaway, P., Shrimpton, T.: Deterministic authenticated encryption: A provable-
security treatment of the keywrap problem (2006)

24. Meier, S., Cremers, C.J.F., Basin, D.A.: Strong invariants for the efficient con-
struction of machine-checked protocol security proofs. [25] 231–245

25. Al-Shaer, E., Keromytis, A.D., Shmatikov, V., eds.: Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, Chicago, Illi-
nois, USA, October 4-8, 2010. In Al-Shaer, E., Keromytis, A.D., Shmatikov, V.,
eds.: ACM Conference on Computer and Communications Security, ACM (2010)

http://dankaminsky.com/2011/06/09/securid/
http://dankaminsky.com/2011/06/09/securid/
http://static.yubico.com/var/uploads/pdfs/SecurityAdvisory%202012-02-13.pdf
http://static.yubico.com/var/uploads/pdfs/SecurityAdvisory%202012-02-13.pdf
http://www.yubico.com/documentation
http://www.yubico.com/documentation
http://www.yubico.com/documentation
http://wiki.yubico.com/wiki/index.php/Yubikey
http://code.google.com/p/yubikey-val-server-php/wiki/ValidationProtocolV20
http://code.google.com/p/yubikey-val-server-php/wiki/ValidationProtocolV20
http://www.cs.bell-labs.com/who/nch/fmsp99/program.html
http://www.cs.bell-labs.com/who/nch/fmsp99/program.html
http://www.yubico.com/documentation
http://www.yubico.com/documentation
http://www.yubico.com/documentation
http://code.google.com/p/yhsmpam/
http://code.google.com/p/yhsmpam/

	YubiSecure? Formal Security Analysis Results for the Yubikey and YubiHSM

