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ABSTRACT

Many deployed learned models are black boxes: given input, returns output. Inter-
nal information about the model, such as the architecture, optimisation procedure,
or training data, is not disclosed explicitly as it might contain proprietary infor-
mation or make the system more vulnerable. This work shows that such attributes
of neural networks can be exposed from a sequence of queries. This has multiple
implications. On the one hand, our work exposes the vulnerability of black-box
neural networks to different types of attacks – we show that the revealed internal
information helps generate more effective adversarial examples against the black
box model. On the other hand, this technique can be used for better protection
of private content from automatic recognition models using adversarial examples.
Our paper suggests that it is actually hard to draw a line between white box and
black box models.

1 INTRODUCTION

Black-box models take a sequence of query inputs, and return corresponding outputs, while keeping
internal states such as model architecture hidden. They are deployed as black boxes usually on
purpose – for protecting intellectual properties or privacy-sensitive training data. Our work aims at
inferring information about the internals of black box models – ultimately turning them into white
box models. Such a “whitening” of a black box model has many implications. On the one hand, it
has legal implications to intellectual properties (IP) involving neural networks – internal information
about the model architecture can be proprietary and a key IP, and the training data may be privacy
sensitive. Disclosing hidden details may also render the model more susceptible to attacks from
adversaries. On the other hand, gaining information about a black-box model can be useful in other
scenarios. E.g. there has been work on utilising adversarial examples for protecting private regions
(e.g. faces) in photographs from automatic recognisers (Oh et al., 2017). In such scenarios, gaining
more knowledge on the recognisers will increase the chance of protecting one’s privacy. Either way,
it is a crucial research topic to investigate the type and amount of information that can be gained
from a black-box access to a model. We make a first step towards understanding the connection
between white box and black box approaches – which were previously thought of as distinct classes.

We introduce the term “model attributes” to refer to various types of information about a trained
neural network model. We group them into three types: (1) architecture (e.g. type of non-linear acti-
vation), (2) optimisation process (e.g. SGD or ADAM?), and (3) training data (e.g. which dataset?).
We approach the problem as a standard supervised learning task applied over models. First, collect
a diverse set of white-box models (“meta-training set”) that are expected to be similar to the target
black box at least to a certain extend. Then, over the collected meta-training set, train another model
(“metamodel”) that takes a model as input and returns the corresponding model attributes as output.
Importantly, since we want to predict attributes at test time for black-box models, the only informa-
tion available for attribute prediction is the query input-output pairs. As will see in the experiments,
such input-output pairs allow to predict model attributes surprisingly well.

In summary, we contribute: (1) Investigation of the type and amount of internal information about
the black-box model that can be extracted from querying; (2) Novel metamodel methods that not
only reason over outputs from static query inputs, but also actively optimise query inputs that can
extract more information; (3) Study of factors like size of the meta-training set, quantity and quality
of queries, and mismatch between meta-training models and the black box model; (4) Empirical
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verification that revealed information leads to greater susceptibility of a black-box model to an
adversarial example based attack.

2 RELATED WORK

There has been a line of work on extracting and exploiting information from black-box learned mod-
els. We first describe papers on extracting information (model extraction and membership inference
attacks), and then discuss ones on attacking the network using the extracted information (adversarial
image perturbations (AIP)).

Model extraction attacks either reconstruct the exact model parameters or build an avatar model that
maximises the likelihood of the query input-output pairs from the target model (Tramer et al., 2016;
Papernot et al., 2017). Tramer et al. (2016) have shown the efficacy of equation solving attacks and
the avatar method in retrieving internal parameters of non-neural network models. Papernot et al.
(2017) have also used the avatar approach with the end goal of generating adversarial examples.
While the avatar approach first assumes model hyperparameters like model family (architecture) and
training data, we discriminatively train a metamodel to predict those hyperparameters themselves.
As such, our approach is complementary to the avatar approach.

Membership inference attacks determine if a given data sample has been included in the training
data (Ateniese et al., 2015; Shokri et al., 2017). In particular, Ateniese et al. (2015) also trains a
decision tree metamodel over a set of classifiers trained on different datasets. This work goes far
beyond only inferring the training data by showing that even the model architecture and optimisation
process can be inferred.

Using the obtained cues, one can launch more effective, focused attacks on the black box. We use
adversarial image perturbations (AIPs) as an example of such attack. AIPs are small perturbations
over the input such that the network is mislead. Research on this topic has flourished recently after
it was shown that the needed amount of perturbation to completely mislead an image classifier is
nearly invisible (Szegedy et al., 2014; Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2017).

Most effective AIPs require gradients of the target network. Some papers proposed different ways
to attack black boxes. They can be grouped into three approaches. (1) Approximate gradients by
numerical gradients (Narodytska & Kasiviswanathan, 2017; Chen et al., 2017). The caveat is that
thousands and millions of queries are needed to compute a single AIP, depending on the image
size. (2) Use the avatar approach to train a white box network that is supposedly similar to the
target (Papernot et al., 2016b;a; Hayes & Danezis, 2017). We note again that our metamodel is
complementary to the avatar approach – the avatar network hyperparemters can be determined by
the metamodel. (3) Exploit transferability of adversarial examples; it has been shown that AIPs
generated against one network can also fool other networks (Moosavi-Dezfooli et al., 2017; Liu
et al., 2017). Liu et al. (2017) in particular have shown that generating AIPs against an ensemble of
networks make it more transferable. We show in this work that the AIPs transfer better within an
architecture family (e.g. ResNet or DenseNet) than across, and that such a property can be exploited
by our metamodel for generating more targetted AIPs.

3 METAMODELS

 

Figure 1: Overview of our approach.

We want to find out the type and amount of in-
ternal information about a black-box model that
can be revealed from a sequence of queries. We
approach this by first building metamodels for
predicting model attributes, and then evaluating
their performance on black-box models. Our
main approach, metamodel, is described in figure 1. In a nutshell, the metamodel is a classifier of
classifiers. Specifically, The metamodel submits n query inputs

[
xi
]n
i=1

to a black box model f ; the
metamodel takes corresponding model outputs

[
f(xi)

]n
i=1

as an input, and returns predicted model
attributes as output. As we will describe in detail, the metamodel not only learns to infer model
attributes from query outputs from a static set of inputs, but also searches for query inputs that are
designed to extract greater amount of information from models.
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In this section, our main methods are introduced in the context of MNIST digit classifiers. While
MNIST classifiers are not fully representative of any learned model, they have a computational edge:
it takes only five minutes to train each of them with reasonable performance. We could thus prepare a
diverse set of 11k MNIST classifiers within 40 GPU days for the meta-training and evaluation of our
metamodels. We stress, however, that the proposed approach is generic with respect to the task, data,
and the type of models. We also focus on 12 model attributes (table 1) that cover hyperparameters
for common neural network MNIST classifiers, but again the range of predictable attributes are not
confined to this list.

3.1 COLLECTING A DATASET OF CLASSIFIERS

We need a dataset of classifiers to train and evaluate metamodels. We explain how MNIST-NETS
has been constructed, a dataset of 11k MNIST digit classifiers; the procedure is task and data generic.

BASE NETWORK SKELETON

Every model in MNIST-NETS shares the same convnet skeleton architecture: “N conv blocks →
M fc blocks → 1 linear classifier”. Each conv block has the following structure: “ks ×
ks convolution → optional 2 × 2 max-pooling → non-linear activation”, where ks (kernel size)
and the activation type are to be chosen. Each fc block has the structure: “linear mapping →
non-linear activation → optional dropout” This convnet structure already covers many LeNet (Le-
Cun et al., 1998) variants, one of the best performing architectures on MNIST (mni).

INCREASING DIVERSITY

Table 1: MNIST classifier attributes. Italicised attributes are
derived from other attributes.

Code Attribute Values

A
rc

hi
te

ct
ur

e

act Activation ReLU, PReLU, ELU, Tanh
drop Dropout Yes, No
pool Max pooling Yes, No
ks Conv ker. size 3, 5

#conv #Conv layers 2, 3, 4
#fc #FC layers 2, 3, 4

#par #Parameters 214, · · · , 221
ens Ensemble Yes, No

O
pt

. alg Algorithm SGD, ADAM, RMSprop
bs Batch size 64, 128, 256

D
at

a split Data split All0, Half0/1, Quarter0/1/2/3
size Data size All, Half, Quarter

In order to learn generalisable fea-
tures, the metamodel needs to be
trained over a diverse set of mod-
els. The base architecture described
above already has several free param-
eters like the number of layers (N and
M ), the existence of dropout or max-
pooling layers, or the type of non-
linear activation.

Apart from the architectural hyperpa-
rameters, we increase diversity along
two more axes – optimisation pro-
cess and the training data. Along
the optimisation axis, we vary op-
timisation algorithm (SGD, ADAM,
or RMSprop) and the training batch
size (64, 128, 256). We also consider
training MNIST classifiers on either on the entire MNIST training set (All0, 60k), one of the two
disjoint halves (Half0/1, 30k), or one of the four disjoint quarters (Quarter0/1/2/3, 15k).

See table 1 for the comprehensive list of 12 model attributes altered in MNIST-NETS. The number
of trainable parameters (#par) and the training data size (size) are not directly controlled but derived
from the other attributes. We also augment MNIST-NETSwith ensembles of classifiers (ens), whose
procedure will be described later.

SAMPLING AND TRAINING

The number of all possible combinations of controllable options in table 1 is 18, 144. We also select
random seeds that control the initialisation and training data shuffling from {0, · · · , 999}, resulting
in 18, 144, 000 unique models. Training such a large number of models is intractable; we have
sampled (without replacement) and trained 10, 000 of them. All the models have been trained with
learning rate 0.1 and momentum 0.5 for 100 epochs. It takes around 5 minutes to train each model
on a GPU machine (GeForce GTX TITAN); training of 10k classifiers has taken 40 GPU days.
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PRUNING AND AUGMENTING

In order to make sure that MNIST-NETS realistically represents commonly used MNIST classifiers,
we have pruned low-performance classifiers (validation accuracy < 98%), resulting in 8, 582 clas-
sifiers. Ensembles of trained classifiers have been constructed by grouping the identical classifiers
(modulo random seed). Given t identical ones, we have augmented MNIST-NETS with 2, · · · , t
combinations. The ensemble augmentation has resulted in 11, 282 final models. See appendix table
6 for statistics of attributes – due to large sample size all the attributes are evenly covered.

TRAIN-EVAL SPLITS

Attribute prediction can get arbitrarily easy by including the black-box model (or similar ones) in
the meta-training set. We introduce multiple splits of MNIST-NETS with varying requirements on
generalization. Unless stated otherwise, every split has 5, 000 training (meta-training), 1, 000 testing
(black box), and 5, 282 leftover models.

The Random (R) split randomly (uniform weights) assigns training and test splits, respectively.
Under R split, the training and test models come from the same distribution. We introduce harder
Extrapolation (E) splits. We separate a few attributes between the training and test splits. They are
designed to simulate more difficult domain gaps when the meta-training models are significantly
different from the black box. Specific examples of E splits will be shown in §4.

3.2 METAMODEL METHODS

The metamodel predicts the attribute of a black-box model f by submitting n query inputs and
observing the outputs. It is trained over a meta-training set (training split). We propose three ap-
proaches for the metamodels – we collectively name them kennen1. See figure 2 for an overview.

KENNEN-O : REASON OVER OUTPUT

 

Figure 2: Metamodels kennen-o (top) and
kennen-i (bottom).

kennen-o first selects a fixed set of queries
[xi]i=1···n from a dataset. Both during training
and testing, always these queries are submitted.
kennen-o learns a classifier mθ to map from
the order-sensitive concatenated n query out-
puts, [f(xi)]i=1···n (n × 10 dim for MNIST),
to the simultaneous prediction of 12 attributes
in f . The training objective is:

min
θ

E
f∼F

[
12∑
a=1

L
(
ma
θ

(
[f(xi)]ni=1

)
, ya
)]

(1)

where F is the distribution of meta-training
models, ya is the ground truth label of attribute
a, and L is the cross-entropy loss.

In our experiments, we model the classifier mθ

via multilayer perceptron (MLP) with two hid-
den layers with 50 hidden units. The last layer consists of 12 parallel linear layers for a simultaneous
prediction of attributes. In our preliminary experiments, MLP has performed better than linear clas-
sifiers. The optimisation problem in equation 1 is solved via SGD by approximating the expectation
over f ∼ F by an empirical sum over the training split classifiers for 200 epochs.

Note that kennen-o can be applied to any type of model (e.g. non-neural networks) with any
output structure, as long as the output can be embedded in an Euclidean space. We will show that
this method can effectively extract information from f even if the output is a single label, encoded
via one-hot vectors.

1kennen means “to know” in German, and “to dig out” in Korean.
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KENNEN-I : CRAFT INPUT

kennen-i crafts a single query input that can repurpose a black box f into a model attribute
classifier for a single attribute a. For example, kennen-i for max-pooling layer prediction
crafts an input x that is predicted as “1” for MNIST digit classifiers with max-pooling lay-
ers and “0” for ones without. See figure 3 for visual examples. The training objective is:

drop pool ks
77.0% 94.8% 88.5%

Figure 3: kennen-i crafted inputs and their per-
formances. E.g. with 94.8% chance a black box
will predict the middle image as “1” if it has max-
pooling layers; “0” otherwise.

min
x: image

E
f∼F

[L (f(x)) , ya] (2)

where the condition “x : image” ensures the
input stays a valid image x ∈ [0, 1]D with
image dimension D. We use SGD as for
kennen-o for 200 epochs. For each iteration
we project x back to [0, 1]D to enforce the con-
straint. We initialise x with a random sample
from the MNIST validation set (random noise
or uniform gray initilisation gives similar per-
formances).

Unlike kennen-o, kennen-i submits un-
natural images to the system, and so may easily be detected. kennen-o is more realistic when
the exploration needs to be stealthy. Also unlike kennen-o, kennen-i requires end-to-end dif-
ferentiability of f .

KENNEN-IO : COMBINED APPROACH

In order for kennen-i to optimise multiple different query inputs, simply re-purposing a classifier
is not enough – there must be some form of reasoning over their outputs to diversify the input pat-
terns. Our final method kennen-io performs kennen-o on top of the output from kennen-i
crafted query inputs. The optimisation problem is as follows:

min
[xi]ni=1: images

min
θ

E
f∼F

[
12∑
a=1

L
(
ma
θ

(
[f(xi)]ni=1

)
, ya
)]
. (3)

To improve stability against covariate shift, we initialise mθ with kennen-o for 200 epochs. Af-
terwards, gradient updates of [xi]ni=1 and θ alternate every 50 epochs.

4 WHITENING BLACK-BOX MNIST DIGIT CLASSIFIERS

We have introduced a procedure for constructing a dataset of classifiers (MNIST-NETS) as well as
novel metamodels (kennen variants) that learn to extract information from black-box classifiers.
In this section, we evaluate the ability of kennen to extract information from black-box MNIST
digit classifiers. We measure the class-balanced attribute prediction accuracy for each attribute a in
the list of 12 attributes in table 1.

ATTRIBUTE PREDICTION

See table 2 for the main results of our metamodels, kennen-o, kennen-i, and kennen-io
on the Random split. Unless stated otherwise, the metamodel is trained with 5, 000 training split
classifiers. Given n = 100 queries with probability output, kennen-o already performs far above
the random chance in predicting 12 diverse attributes (73.4% versus 34.9% on average); neural
network output indeed contains rich information about the black box. In particular, the presence of
dropout (94.6%) or max-pooling (94.9%) has been predicted with high precision. It is surprising
that optimisation details like optimisation algorithm (71.8%) and training batch size (50.4%) can
also be predicted well above the random chance (33.3% for both).

COMPARING METHODS KENNEN-O , KENNEN-I , AND KENNEN-IO

Table 2 shows the comparison of kennen-o, kennen-i, and kennen-io. kennen-i has a
relatively low performance (average 52.7%), but kennen-i relies on a cheap resource: 1 query
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Table 2: Comparison of metamodel methods. See table 1 for the full names of attributes. 100 queries
are used for every method below, except for kennen-i which uses a single query.

architecture optim data
Method Output act drop pool ks #conv #fc #par ens alg bs size split avg

Chance - 25.0 50.0 50.0 50.0 33.3 33.3 12.5 50.0 33.3 33.3 33.3 14.3 34.9
kennen-o score 80.6 94.6 94.9 84.6 67.1 77.3 41.7 54.0 71.8 50.4 73.8 90.0 73.4
kennen-o ranking 63.7 93.8 90.8 80.0 63.0 73.7 44.1 62.4 65.3 47.0 66.2 86.6 69.7
kennen-o 1 label 48.6 80.0 73.6 64.0 48.9 63.1 28.7 52.8 53.6 41.9 45.9 51.4 54.4
kennen-i 1 label 43.5 77.0 94.8 88.5 54.5 41.0 32.3 46.5 45.7 37.0 42.6 29.3 52.7
kennen-io score 88.4 95.8 99.5 97.7 80.3 80.2 45.2 60.2 79.3 54.3 84.8 95.6 80.1
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Figure 4: kennen-o performance of against the size of meta-training set (left), number of queries
(middle), and quality of queries (right). Unless stated otherwise, we use 100 probability outputs and
5k models to train kennen-o. Each curve is linearly scaled such that random chance (0 training
data, 0 query, or top-0) performs 0%, and the perfect predictor performs 100%.

with single-label output. kennen-i is also performant at predicting the kernel size (88.5%) and
pooling (94.8%), attributes that are closely linked to spatial structure of the input. kennen-io is
superior to kennen-o and kennen-i for all the attributes with average accuracy 80.1%.

4.1 FACTOR ANALYSIS

NUMBER OF TRAINING MODELS

We have trained kennen-o with different number of the meta-training classifiers, ranging from
100 to 5, 000. See figure 4 (left) for the trend. We observe a diminishing return, but also that the
performance has not saturated – collecting larger meta-training set will improve the performance.

NUMBER OF QUERIES

See figure 4 (middle) for the kennen-o performance against the number of queries with probability
output. The average performance saturates after ∼ 500 queries. On the other hand, with only ∼ 100
queries, we already retrieve ample information about the neural network.

QUALITY OF OUTPUT

Many black-box models return top-k ranking output (e.g. Facebook face recogniser), or single-label
output (i.e. top-1 ranking). We represent top-k ranking outputs by assigning exponentially decaying
probabilities up to k digits and a small probability ε to the remaining.

See table 2 for the kennen-o performance comparison among 100 probability, top-10 ranking, and
single label (i.e. top-1) outputs, with average accuracies 73.4%, 69.7%, and 54.4%, respectively.
While performance drops with coarser outputs, when compared to random chance (34.9%), 100
single-label query outputs already leak a great amount of information about the black box. Figure 4
(right) shows the interpolation from top-1 to top-10 (i.e. top-9) ranking. We observe a diminishing
return as k increases.
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4.2 WHAT IF THE BLACK-BOX IS QUITE DIFFERENT FROM META-TRAINING MODELS?

Table 3: kennen-io average relative
accuracies on R and E splits. E-attr
means attr is separated across the splits
according to split criteria in “Train” and
“Test”. E-attr1-attr2 rows show split
criteria for attr2; they inherit attr1 cri-
teria from the previous row (E-attr1).

Split Train Test R.Acc

R - - 100
E-#conv 2,3 4 92.1
E-#conv-#fc 2,3 4 80.7
E-alg SGD,ADAM RMSprop 88.5
E-alg-bs 64,128 256 70.1
E-size Quarter Half,All 86.9
Chance - - 0.0

So far we have seen results on the Random (R) split. In
realistic scenarios, the meta-training model distribution
may not be fully covering possible black box models. We
show how damaging such a scenario is through Extrapo-
lation (E) split experiments.

Results are presented in table 3. E-split results are
presented along three axes, architecture, optimisation,
and data with different splitting criteria. For example,
“E-#conv-#fc” row presents results when metamodel is
trained on shallower nets (2 or 3 conv/fc layers each)
compared to the test black box model (4 conv and fc lay-
ers each). We report relative average accuracies (R.Acc)
– average accuracies linearly scaled such that R-split
gives 100% and random chance gives 0%. The split-
ting attributes are excluded from the averaging; e.g. “E-
#conv-#fc” result excludes #conv and #fc accuracies.

Not surprisingly, E-split performances are lower than R-split ones (R.Acc < 100%); it is advisable
to cover all the black-box attributes during meta-training. Nonetheless, E-split performances are
still far above the chance level (R.Acc > 70% � 0%); failing to cover a few attributes during
meta-training is not too damaging.

4.3 DISCUSSION

We have verified through our novel kennen metamodels that black-box access to a neural net-
work exposes much internal information. We have shown that only 100 single-label outputs already
“whitens” black boxes to a great deal. When the black-box classifier is quite different from the meta-
training classifiers, the performance of our best metamodel – kennen-io– decreases; however, the
prediction accuracy for black box internal information is still surprisingly high.

5 WHITENING AND ATTACKING IMAGENET CLASSIFIERS

While MNIST experiments are computationally cheap and a massive number of controlled experi-
ments is possible, we provide additional ImageNet experiments for practical implications on realistic
image classifiers. In this section, we use kennen-o introduced in §3 to predict a single attribute of
black-box ImageNet classifiers – the architecture family (e.g. ResNet or VGG?). In this section, we
go a step further to use the extracted information to attack black boxes with adversarial examples.

5.1 DATASET OF IMAGENET CLASSIFIERS

It is computationally prohibitive to trainO(10k) ImageNet classifiers from scratch as in the previous
section. We have resorted to 19 PyTorch (pyt) pretrained ImageNet classifiers. The 19 classifiers
come from five families: Squeezenet, VGG, VGG-BatchNorm, ResNet, and DenseNet, each with
2, 4, 4, 5, and 4 variants, respectively (Iandola et al., 2016; Simonyan & Zisserman, 2015; He et al.,
2016; Huang et al., 2017).

5.2 CLASSIFIER FAMILY PREDICTION

We predict the classifier family (S, V, B, R, D) from the black-box query output, using the method
kennen-o, with the same MLP architecture (§3). kennen-i and kennen-io have not been
used for computational reasons, but can also be used in principle. We conduct 10 cross validations
(random sampling of single test network from each family) for evaluation. We also perform 10 ran-
dom sampling of the queries from ImageNet validation set. In total 100 random tries are averaged.

Results: compared to the random chance (20.0%), 100 queries result in high kennen-o perfor-
mance (90.4%). With 1, 000 queries, the prediction performance is even 94.8%.
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5.3 ATTACKING IMAGENET CLASSIFIERS

In this section we attack ImageNet classifiers with adversarial image perturbations (AIPs). We show
that the knowledge about the black box architecture family makes the attack more effective.

ADVERSARIAL IMAGE PERTURBATION (AIP)

AIPs are carefully crafted additive perturbations on the input image for the purpose of misleading
the target model to predict wrong labels (Goodfellow et al., 2015). Among variants of AIPs, we
use efficient and robust GAMAN (Oh et al., 2017). See appendix figure 6 for examples of AIPs; the
perturbation is nearly invisible.

TRANSFERABILITY OF AIPS

Table 4: Transferability of ad-
versarial examples within and
across families. We report
misclassification rates.

Target family
Gen S V B R D

Clean 38 32 28 30 29

S 64 49 45 39 35
V 62 96 96 57 52
B 50 85 95 47 44
R 64 72 78 87 77
D 58 63 70 76 90

Ens 70 93 93 75 80

Typical AIP algorithms require gradients from the target network,
which is not available for a black box. Mainly three approaches for
generating AIPs against black boxes have been proposed: (1) nu-
merical gradient, (2) avatar network, or (3) transferability. We show
that our metamodel strengthens the transferability based attack.

We hypothesize and empirically show that AIPs transfer better
within the architecture family than across. Using this property, we
first predict the family of the black box (e.g. ResNet), and then gen-
erate AIPs against a few instances in the family (e.g. ResNet101,
ResNet152). The generation of AIPs against multiple targets has
been proposed by Liu et al. (2017), but we are the first to system-
ically show that AIPs generalise better within a family when they
are generated against multiple instances from the same family.

We first verify our hypothesis that AIPs transfer better within a fam-
ily. Within-family: we do a leave-one-out cross validation – gen-
erate AIPs using all but one instances of the family and test on the
holdout. Not using the exact test black box, this gives a lower bound on the within-family perfor-
mance. Across-family: still leave out one random instance from the generating family to match the
generating set size with the within-family cases. We also include the use-all case (Ens): generate
AIPs with one network from each family.

See table 4 for the results. We report the misclassification rate, defined as 100−top-1 accuracy, on
100 random ImageNet validation images. We observe that the within-family performances dominate
the across-family ones (diagonal entries versus the others in each row); if the target black box family
is identified, one can generate more effective AIPs. Finally, trying to target all network (“Ens”) is
not as effective as focusing resources (diagonal entries).

METAMODEL ENABLES MORE EFFECTIVE ATTACKS

Table 5: Black-box ImageNet classifier misclassi-
fication rates (MC) for different approaches.

Scenario Generating nets MC(%)
White box Single white box 100.0
Family black box GT family 86.2
Black box whitened Predicted family 85.7
Black box Multiple families 82.2

We empirically show that the whitening enables
more effective attacks. We consider multiple
scenarios. “White box” means the target model
is fully known, and the AIP is generated specif-
ically for this model. “Black box” means the
exact target is unknown, but we make a distinc-
tion when the family is known (“Family black
box”).

See table 5 for the misclassification rates (MC)
in different scenarios. When the target is fully specified (white box), MC is 100%. When neither the
exact target nor the family is known, AIPs are generated against multiple families (82.2%). When
the whitening takes place, and AIPs are generated over the predicted family, attacks become more
effective (85.7%). We almost reach the family-oracle case (86.2%).
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5.4 DISCUSSION

Our metamodel can predict architecture families for ImageNet classifiers with high accuracy. We
additionally show that such whitening enables more focused attack on black-boxes.

6 CONCLUSION

We have presented first results on the inference of diverse neural network attributes from a sequence
of input-output queries. Our novel metamodel methods, kennen, can successfully predict attributes
related not only to the architecture but also to training hyperparameters (optimisation algorithm and
dataset) even in difficult scenarios (e.g. single-label output, or a distribution gap between the meta-
training models and the target black box). We have additionally shown in ImageNet experiments
that the “whitening” of a black box makes it more vulnerable to adversarial examples.

ACKNOWLEDGMENTS

This research was supported by the German Research Foundation (DFG CRC 1223).

REFERENCES

Mnist benchmark. http://yann.lecun.com/exdb/mnist/.

Pytorch. https://github.com/pytorch.

Giuseppe Ateniese, Giovanni Felici, Liugi V. Mancini, Angelo Spognardi, Antonio Villani, and
Domenico Vitali. Hacking smart machines with smarter ones: How to extract meaningful data
from machine learning classifiers. In IJSN, 2015.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
ACMCCS-W, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Jamie Hayes and George Danezis. Machine learning as an adversarial service: Learning black-box
adversarial examples. 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size.
arXiv, 2016.
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APPENDIX

A MNIST-NETS STATISTICS

We show the statistics of MNIST-NETS, our dataset of MNIST classifiers, in table 6.

B MORE KENNEN-IO RESULTS

We complement the kennen-o results in the main paper (figure 4) with kennen-io results. See
figure 5. Similarly for kennen-o, kennen-io shows a diminishing return as the number of
training models and the number of queries increase. While the performance saturates with 1, 000
queries, it does not fully saturate with 5, 000 training samples.

C VISUAL EXAMPLES OF AIPS

In this section, we show examples of AIPs. See figure 6 for the examples of AIPs and the perturbed
images. The perturbation is nearly invisible to human eyes. We have also generated AIPs with
respect to a diverse set of architecture families (S, V, B, R, D, SVBRD) at multiple L2 norm levels.
See figure 7; the same image results in a diverse set of patterns depending on the architecture family.
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Table 6: Distribution of attributes in MNIST-NETS, and attribute-wise classification performance
(on MNIST validation set). Observe that the attributes are evenly distributed and the corresponding
classification accuracies also do not correlate much with the attributes. We thus make sure that the
classification accuracy alone cannot be a strong cue for predicting attributes.

arch/act arch/drop arch/pool arch/ks arch/#conv arch/#fc
Tanh PReLU ReLU ELU Yes No Yes No 5 3 2 3 4 2 3 4

Ratio 24.8 24.9 25.3 25.1 49.8 50.3 49.9 50.2 50.3 49.7 34.0 33.4 32.7 33.1 33.5 33.4
max 99.4 99.4 99.5 99.4 99.5 99.4 99.4 99.5 99.5 99.4 99.4 99.4 99.5 99.4 99.4 99.5

median 98.6 98.7 98.7 98.7 98.7 98.6 98.7 98.5 98.7 98.6 98.6 98.7 98.7 98.7 98.6 98.6
mean 98.6 98.7 98.7 98.7 98.7 98.6 98.7 98.6 98.7 98.6 98.6 98.7 98.7 98.7 98.6 98.6
min 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0

opt/alg opt/bs data/size
RMSprop ADAM SGD 64 128 256 all half quarter

Ratio 33.8 32.5 33.7 32.9 33.6 33.7 14.8 28.5 56.8
max 99.2 99.4 99.5 99.3 99.4 99.5 99.5 99.3 99.1

median 98.6 98.7 98.7 98.6 98.7 98.7 99.0 98.8 98.5
mean 98.6 98.7 98.7 98.6 98.7 98.6 98.9 98.8 98.5
min 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0
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Figure 5: Performance of kennen-io with different sizes of training set (left) and number of
queries (right). The curves are linearly scaled per attribute such that random chance performs 0%,
and perfect predictor performs 100%.

Original Perturbation Perturbed Original Perturbation Perturbed

Figure 6: AIP for an ImageNet classifier. The perturbations are generated at L2 = 1× 10−4.
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Figure 7: Adversarial perturbations for the same input image (top) generated with diverse ImageNet
classifier families (S, V, B, R, D, SVBRD) at different norm constraints. The perturbation images
are normalised at the maximal perturbation for visualisation. We observe diverse patterns across
classifier families within the same L2 ball.

12


	1 Introduction
	2 Related Work
	3 Metamodels
	3.1 collecting a dataset of classifiers
	3.2 metamodel methods

	4 Whitening Black-Box MNIST Digit Classifiers
	4.1 factor analysis
	4.2 what if the black-box is quite different from meta-training models?
	4.3 Discussion

	5 Whitening and Attacking ImageNet Classifiers
	5.1 dataset of ImageNet classifiers
	5.2 classifier family prediction
	5.3 attacking ImageNet classifiers
	5.4 Discussion

	6 Conclusion
	A MNIST-NETS statistics
	B more kennen-io results
	C visual examples of AIPs

