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ABSTRACT
We introduce the Android Security Framework (ASF), a
generic, extensible security framework for Android that en-
ables the development and integration of a wide spectrum of
security models in form of code-based security modules. The
design of ASF reflects lessons learned from the literature
on established security frameworks (such as Linux Security
Modules or the BSD MAC Framework) and intertwines them
with the particular requirements and challenges from the
design of Android’s software stack. ASF provides a novel
security API that supports authors of Android security ex-
tensions in developing their modules. This overcomes the
current unsatisfactory situation to provide security solutions
as separate patches to the Android software stack or to em-
bed them into Android’s mainline codebase. This system
security extensibility is of particular benefit for enterprise or
government solutions that require deployment of advanced se-
curity models, not supported by vanilla Android. We present
a prototypical implementation of ASF and demonstrate its
effectiveness and efficiency by modularizing different secu-
rity models from related work, such as dynamic permissions,
inlined reference monitoring, and type enforcement.

1. INTRODUCTION
For several decades now, the need for operating system

security mechanisms to provide strong security and privacy
guarantees has been well understood [24, 34, 26, 5]. Yet, re-
cent classes of attacks against smartphone end-user’s privacy
and security [19, 41, 29, 9] have shown that the fairly new
smart device operating systems fail to provide these strong
guarantees, for instance, with respect to access control or
information flow control. To remedy this situation, security
research has proposed a wide spectrum of security models and
extensions for mobile operating systems, most of them for the
popular open-source Android OS. These extensions include
context-related access control [10], developer-centric security
policies [28], and dynamic, fine-grained permissions [42, 21,
3]. They also comprise security models [7, 33, 36, 8] such as
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domain isolation and type enforcement, which are usually at
the heart of enterprise and governmental security solutions.
However, the lack of a comprehensive security API for

the development and modularization of security extensions
on Android has created the unsatisfactory situation that
all of these novel and warranted security models are either
provided as model-specific patches to the Android software
stack, or they became an integrated component of the An-
droid OS design [36]. When considering the body of literature
on established security frameworks, such as Linux Security
Modules (LSM) [40] or the BSD MAC Framework [39], their
history has taught that the need to patch the OS or the hard-
wiring of a specific security model impairs both the practical
and theoretical benefits of security solutions. First, there
is in general no consensus on the “right” security model,
as demonstrated by the broad range of Android security
extensions [10, 28, 3, 42, 7, 36]. Thus, OS security mecha-
nisms should not limit policy authors to one specific security
model by embedding it into the OS design. Second, providing
security solutions as “security-model-specific Android forks”
impedes their maintainability across different OS versions,
because every update to the Android software stack has to
be re-evaluated for and applied to each fork separately.
Contributions. In this paper, we propose the design and

implementation of Android Security Framework (ASF),
which allows security experts to develop and deploy their
security models in form of modules as part of Android’s
platform security. This provides the means to easily extend
the Android security mechanisms and avoids that security
designers have to choose “the right Android security fork” or
that the OS vendor has to impose a specific security model.
In the design of ASF we transfer the lessons learned and
guiding principles from the literature on established OS secu-
rity infrastructures to Android and intertwine them with new
requirements for efficient security policies for multi-tiered
software stacks of smart devices. In contrast to concurrent,
independent work [20], which introduced extensibility for
security apps (i.e., add-ons), our design establishes a generic
and extensible security framework that allows instantiating
security models by design as part of Android’s platform se-
curity and enables not only extending but also replacing
Android’s default security mechanisms. This is particularly
beneficial when tailoring Android for higher-security deploy-
ments like enterprise phones, where the default mechanisms
are insufficient or even obsolete (e.g., when the IT department
is an additional stakeholder that decides on apps’ privileges
and installation). We make the following contributions:



1. Policy-agnostic, multi-tiered security infrastructure: The
security infrastructure must avoid committing to one partic-
ular security model and enable authors of security extensions
to develop as well as deploy their solutions in form of code.
This requires special consideration of Android’s multi-tiered
software stack and the dominant programming languages at
each layer. For ASF we solve this by integrating security-
model-agnostic enforcement hooks into the Android kernel,
middleware and application layer and exposing these hooks
through a novel security API to module authors.
2. Enabling edit automata policies: Various Android se-

curity solutions realize edit automata policies that not only
truncate but also modify control flows. In ASF, the appli-
cation layer and middleware hooks are specifically designed
to allow module authors to leverage the rich semantics of
Android’s application framework and to implement their se-
curity policies as edit automata. This required a re-thinking
of the “classical” object manager design from the literature
by shifting the edit automata logic from the infrastructure
into the security modules.
3. Instantiation of existing security models: We demon-

strate the efficiency and effectiveness of our ASF by instan-
tiating different security models from related work on type
enforcement [8, 36] and inlined access control [3] as well as
from Android’s default security architecture as modules.
4. Maintenance benefits for security extensions: Our ported

security modules show how ASF simplifies maintainability
of security extensions across different OS versions by shifting
the bulk of effort to the security framework maintainer. This
is similar to the maintenance of the application framework
for regular apps. Hence, a comparable benefit to regular
apps in adaption and stability across OS versions can be
expected of security modules.
5. Research and development benefits: We postulate that

developing security solutions against a well documented secu-
rity API also greatly contributes to a) a better understanding
and analysis of new security models that form a self-contained
unit instead of being integrated to various components of
the Android software stack, b) a better reproducibility and
dissemination of new solutions since modules can be easily
shared and instantiated, and c) a more convient application
of security knowledge to the Android software stack with-
out the requirement to be familiar with the deep technical
internals of Android.

2. BACKGROUND ON ANDROID
In this section we provide necessary technical background

information on Android.

2.1 Primer on Android
Android is an open-source software stack for embedded de-

vices. The lowest level of this stack consists of a Linux kernel
responsible for elementary services such as memory man-
agement, device drivers, and an Android-specific lightweight
inter-process communication called Binder. On top of the
kernel lies the extensive Android middleware, consisting of
native libraries (e.g., SSL) and the application framework.
System services in the middleware implement the bulk of
Android’s application API (e.g., the location service) and pre-
installed system apps at the application layer, like Contacts,
complement this API.
Although application layer and middleware apps and ser-

vices are commonly written as Java code, they are com-
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Figure 1: Android’s default security architecture.

piled to dex bytecode and run inside the Dalvik Virtual
Machine (DVM). In addition to dex bytecode, apps and ser-
vices can use native code libraries (i.e., C/C++) for low-level
interactions with the underlying Linux system. Native code
can be seamlessly integrated into dex bytecode by means of
the Java Native Interface.
Android apps are generally composed of different compo-

nents. The four basic app components are Activities (GUI for
user interaction), BroadcastReceivers (mailbox for broadcast
Intent messages), ContentProviders (SQL-like data manage-
ment), and Services (long running operations without user
interaction). All components can be interconnected remotely
across application boundaries by using different abstractions
of Android’s Binder IPC mechanism, such as Intent messages.

2.2 Android’s Security Philosophy
Android’s security philosophy dictates that all apps are

sandboxed by executing them in separate processes with
distinct user IDs (UID) and assigning them private data
directories on the filesystem.
To achieve privilege separation between apps, Android

introduces Permissions, i.e., privileges that an app is granted
by the user at install-time. In accordance with the least
privilege principle, an app without permissions is not able to
access security and privacy sensitive resources. Permissions
are assigned to the app’s UID and enforced at two different
points in the system architecture (cf. Figure 1): First, every
app sandbox can directly interact with the kernel through
system calls, for instance, to edit files or open a network
socket. These resources are either of private nature (i.e., are
within the app’s private directory) or public resources (e.g.,
SDCard). Access control in the filesystem ensures that the
apps’ processes have the necessary rights (i.e., Permissions)
to issue particular syscalls, e.g., opening a file. The filesystem
access control consists of the traditional Linux Discretionary
Access Control, which is complemented (since Android v4.3)
by SELinux based Mandatory Access Control (MAC).
Second, apps can interact through the Android API in a

strictly controlled manner with highly privileged resources.
To ensure system security and stability, apps are prohibited
to access those resources directly. Instead, those resources are
wrapped by system services and apps that implement the API.
For instance, the TelephonyService communicates on behalf
of apps with the radio interface layer daemon (rild) to initiate
calls or send text messages. Whether an app is sufficiently
privileged to successfully call the API is determined by a
Permission check within the system services/apps. For this



check, the Binder mechanism provides to the callee (system
service/app) the UID of the caller (app).

3. RELATED WORK
We first provide a synopsis of the development of extensible

kernel security frameworks and discuss afterwards the current
status of security extensions and frameworks for Android.

3.1 Extensible Kernel Access Control
The importance of the operating system in providing sys-

tem security has been very well studied in the last decades [34,
24, 5, 26] and different approaches to extending operating
systems with access control and security policies have been
explored. These include system-call interposition [15, 30],
software wrappers [16], and extensible access control frame-
works like DTE [4], GFAC [1], and Flask [37]. All of these
solutions have been provided as kernel patches for Linux or
UNIX. However, this led to an intricate situation: On the one
hand, maintaining these solutions as patches incurred high
maintenance costs for adapting the patches to kernel changes.
On the other hand, none of these solutions was included in
the vanilla kernel because this would constrain security policy
authors to one specific security model. This constrain would
be unsatisfying since there exists in general no consensus on
the “right” security model. To remedy this situation, exten-
sible security frameworks have been proposed [40, 39] that
allow the extension of the system with trusted code modules
that implement specific security models. Module authors are
supported with an API that exposes kernel abstractions as
well as operations and facilitates the implementation of the
desired security architecture and model. The results of this
research have been integrated into the mainline kernels as
the Linux Security Modules framework (LSM) [40] and the
BSD MAC Framework [39].

3.2 Android Security
Closest to our approach is the independently and con-

currently developed ASM [20], which also provides a pro-
grammable interface for security extensions. In contrast to
ASF, however, it targets “security apps” added in addition to
the default Android security architecture. As a consequence,
ASM has to address the intricate problem of including un-
trusted code into highly-privileged context for access control
enforcement and consolidating it with existing policies. It
avoids this Gordian knot through a trade-off between policy
expressiveness and sandboxing of security apps. In contrast,
our ASF framework resides beneath the default Android
security framework and hence allows instantiation of secu-
rity models that complement or even substitute parts of the
default platform security (cf. Section 6). Hence, ASM can
even be implemented as a module in ASF. By definition, we
must trust the developer of security solutions for ASF.
In recent years, Android’s security has been quite scruti-

nized, and a wide spectrum of security extensions has been
brought forward. To name a few: CRePE [10] provides a
context-related access control, where the context can be, e.g.,
the device’s location. Saint [28] enables developer-centric
policies that allow app developers to ship their apps with rules
that regulate the app’s interactions with other apps. Different
approaches to more dynamic and fine-grained permissions
have been proposed based on system-centric enforcement
(e.g., TISSA [42]) or inlined reference monitors (Dr. Android
and Mr. Hide [21] or AppGuard [3]). XManDroid [6] en-

forces Chinese Wall policies to prevent confused deputy and
collusion attacks. TrustDroid [7] and MOSES [33] isolate
different domains such as “Work” and “Private” from each
other. SE Android [36] and FlaskDroid [8] bring type enforce-
ment to Android, where SE Android focuses on the kernel
layer and has been partially included into the mainline An-
droid source code, and FlaskDroid extends type enforcement
to Android’s middleware layer on top of SE Android.

4. REQUIREMENTS ANALYSIS
The current development of Android security extensions

has strong parallels to the initial development of the above
mentioned Linux and BSD security extensions, since current
Android security extensions are provided as patches to the
software stack or, in the case of SE Android [36], are em-
bedded into the Android source tree. For the same, above
mentioned reasons as for the early Linux and BSD security
extensions, this impedes the applicability and adaption of
Android security extensions and additionally precludes many
of the benefits that a modular composition could offer in
terms of maintenance: Embedding SE Android’s security
model into Android’s source tree limits policy authors to the
expressiveness and boundaries of type enforcement, whereas
provisioning security models and architectures as patches
to Android’s software stack forces policy authors to chose a
solution-specific Android fork. This requires for every version
update to the Android OS a re-evaluation and port of each
separate fork. Moreover, security solutions cannot be easily
compared with each other, because their infrastructures are
deeply embedded into the Android software stack.
In this paper, we develop in the spirit of the two de facto

most established security frameworks, Linux Security Mod-
ules (LSM) [40] and the BSD MAC Framework [39], a generic
and extensible Android Security Framework that allows
the instantiation and deployment of different security models
as modules at Android’s application layer, middleware, and
kernel. The two most important guiding principles from
LSM and the BSD MAC framework that govern the design
of our Android Security Framework are: 1) provision-
ing of policies as code instead of data; and 2) providing a
policy-agnostic OS security infrastructure. In the remainder
of this section, we analyze the requirements and challenges
for their transfer to the Android software stack.
Policy as code and not data. The first guiding prin-

ciple is that policies should be supported as code instead
of data (such as rules written in one predetermined policy
language). Providing an extensible security framework that
supports integration of policy logic as code avoids committing
to one particular security model or architecture. For Android,
this removes the need to chose a particular extension-specific
Android fork or to be limited to one specific security model
in the mainline Android software stack. Additionally, de-
veloping modules against an OS security API provides the
benefits of modularization for developing and maintaining
security extensions. This includes, foremost, a higher func-
tional cohesion of security modules and lower coupling with
the Android software stack and, hence, can significantly re-
duce the maintenance overhead of modules, especially in case
of OS changes. Moreover, it allows a better dissemination,
comparison, and analysis of self-contained security modules.
Transferring this principle to an extensible security frame-

work for Android poses the additional requirement to consider
the semantics and dominant programming languages of the
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Figure 2: Android Security Framework architecture.

different layers of Android’s software stack. LSM and the
BSD MAC Framework, for instance, as part of the kernel,
support modules written in C and operate on kernel data
structures (e.g., filesystem inodes). While this applies to the
Android Linux kernel as well, an Android security framework
should additionally support modules written for Android’s
semantically-rich middleware and application layers. That
means modules written in Java and operating on application
framework classes (e.g., Intents or app components).
Policy-agnostic security infrastructure. The second

principle is that the security framework and its API should
be policy-agnostic. This means that policy-specific intrusions
into the software stack are avoided and policy-specific data
structures and logic are confined to security modules.
A particular additional requirement for a security frame-

work on Android are enforcement hooks in the middleware
and application layer that support edit automata [23] poli-
cies, as promoted by different solutions [42, 7, 21, 3]. Edit
automata, in contrast to truncation automata, can not only
abort control flows but also divert or manipulate them and,
thus, give policy authors a higher degree of freedom in im-
plementing their enforcement strategies. For instance, when
querying a ContentProvider component, the policy could sim-
ply deny access by throwing a Java Exception (truncation),
but also modify the return value to return filtered, empty, or
fake data (edit). To technically enable security modules to
implement edit automata, our design requires a re-thinking
of the “classical” object manager vs. policy server design that
is used, e.g., in LSM. Object managers (i.e., enforcement
points) are responsible for assigning security labels to the ob-
jects that they manage and for both requesting and enforcing
access control decisions from the policy server (i.e., policy
decision point). Because this design embeds the enforcement
logic into the system independently from the security model,
it is unfit for realizing edit automata. Thus, our design re-
quires hooks that generically support different enforcement
strategies and shift the enforcement and object labelling logic
from the object managers to the security modules.

5. ANDROID SECURITY FRAMEWORK
In the following we present ASF. We provide further details

in an anonymous long version of this paper [2].

5.1 Framework Overview
The basic idea behind our Android Security Frame-

work is to extend Android with a new security API that

incorporates the design principles explained in Section 4.
This API allows to easily author, integrate, and enforce
generic security policies. Figure 2 provides an overview of
our ASF and we explain its building blocks in the following.

5.1.1 Reference Monitors
In our design we differentiate between policy enforcing

and policy decision making code. For enforcement we use
reference monitors [22] at all layers of the Android software
stack, i.e., at the application layer, the middleware layer, and
the kernel layer. Each reference monitor protects one specific
privileged resource and is placed such, that it mediates all
access to the resource through the Android API. The benefit
of this multi-tiered enforcement is that each reference monitor
can operate with the semantics of its respective layer.

5.1.2 Security Modules
Security extensions are deployed in the form of code mod-

ules and loaded during boot into the security frameworks at
the middleware and kernel level. Modules should be signed
to ensure their integrity and trustworthiness, and the verifi-
cation key is embedded in the kernel (or a secure location like
a secure execution environment). Each module implements
a policy engine that manages its own security policies and
acts as policy decision making point. Security modules are
integrated into the security frameworks through a security
API that exposes objects and operations of the different
software stack layers.
To provide a clear separation between policy decision logic

using kernel level semantics and logic using middleware/ap-
plication layer semantics, each module consists of two sub-
modules: a Kernel Sub-Module leveraging the already
existing Linux Security Module (LSM) infrastructure of the
Linux kernel and a Middleware Sub-Module, for which
we designed and implemented a novel security infrastructure
at the application and middleware layers.

5.1.3 Front-end Apps
To enable user configurable policies or graphical event

notifications, modules might want to include user interfaces.
To this end, the module developers (or external parties being
aware of the modules) can deploy standard Android apps that
act as front-end and that communicate through the frame-
work API with the module. We enable such proprietary
module interfaces through a Bundle based communication
protocol. A Bundle is a key-value store that supports het-
erogenous value types (e.g., Integer and String) and that can
be transmitted via Binder IPC. It is the responsibility of the
module to verify that the caller is sufficiently privileged.

5.2 Framework Infrastructure
We present now in a bottom-up approach details about the

ASF infrastructure that has been prototypcially implemented
for Android v4.3 and currently comprises 4606 lines of code.

5.2.1 Kernel Space
At kernel level we employ the existing Linux Security

Module (LSM) [40] framework of the Linux kernel. LSM
implements an infrastructure for mandatory access control
and provides a number of enforcement hooks within kernel
components such as the process management or the virtual
filesystem. The Kernel Sub-Module is implemented as
a standard Linux Security Module that registers through



Listing 1: Exemplary enforcement functions
1 public boolean deliverToRegisteredReceiver (Intent intent,

ComponentName targetComp, String requiredPermission,
int targetUid, int targetPid, String callerPackage,
ApplicationInfo callerApp, int callingUid, int callingPid);

2 public Location getLastLocation (Location currentLocation,
LocationRequest request, int callingUid, int calingPid);

the LSM API for the LSM hooks in the system and that
operates with kernel level semantics. Kernel Sub-Module
can be an existing Linux security module like SELinux or
proprietary ones [20]. Kernel-level policies form truncation
automata that terminate illegal control flows.
Since there might be operational inter-dependencies be-

tween the Kernel Sub-Module and user-space processes
like the Middleware Sub-Module (e.g., propagation of
access control decisions), the kernel module can implement
proprietary channels for communication between kernel- and
user-space (e.g., sysfs entries).

5.2.2 Middleware Layer
At the middleware layer we extended the system services

and apps that implement the Android API with hooks that
enforce access control decisions made by the Middleware
Sub-Module. The middleware security framework is exe-
cuted as a new Android system service and mediates between
our hooks and the Middleware Sub-Module. The hooks
are policy-agnostic and not tailored to one specific security
model. Each hook takes as arguments all relevant, ambient
information of the current control flow that led to the hook’s
invocation. For instance, Listing 1 presents two exemplary
hooks in our system: one for the Intent broadcasting sub-
system of the ActivityManagerService (line 1) and one for
the LocationManagerService that implements the location
API of Android (line 2). Both provide to the Middleware
Sub-Module information about the current caller to the
Android API, i.e., App in Figure 2 (parameters callingUid
and callingPid). However, all other parameters are specific
to the hooks’ contexts, e.g., the hook in line 1 provides infor-
mation about the Intent being broadcast and the app compo-
nent that should receive this Intent (parameters targetComp
through targetPid). Thus, the hooks support policies that
use the rich middleware-specific semantics.
In general, all hooks support truncation automata as poli-

cies by either allowing the module to throw exceptions that
terminate the control flow and that are returned to the caller
of the Android API, or by explicitly requiring a boolean
return value that indicates whether the hook truncates the
control flow or not (line 1 in Listing 1). A subset of the hooks
additionally supports edit automata policies, that is the mod-
ule can modify or replace return values of the Android API
function or modify/replace arguments that divert or affect
the further control flow after the hook. For instance, the
LocationManagerService hook in Listing 1 (line 2) allows the
module to edit or replace the Location object that is returned
to the app that requested the current device location.

5.2.3 Application Layer
At the application layer, our Android Security Frame-

work provides a mechanism to inject access control hooks
into apps themselves. This access control technique is based
on the concept of inlined reference monitors (IRM) pioneered
by Erlingsson and Schneider [14]. The basic idea is to rewrite

an untrusted app such that the reference monitor is directly
embedded into the app itself, yielding a “self-monitoring”
app. Although using IRMs might seem counter-intuitive
or redundant in our design, IRMs are the only way in An-
droid’s current app model to achieve privilege separation
between the components within an app (e.g., ad libs [19])
or to enforce edit automata policies on file-system and net-
work interfaces (e.g., HTTPS-everywhere). The former are
DVM internal operations and the latter do not involve the
middleware, but instead the app processes interact directly
with the file-system and network API of the kernel, whose
semantics are rather unsuitable for enforcing edit automata
policies. Thus, until this app model has been retrofitted to
enable a system-centric solution for such kind of policies,
our design relies on IRM. ASF provides an instrumentation
API that enables security modules to dynamically hook any
Java function within an app’s DVM. Hooked functions divert
the control flow of the program to the reference monitor,
which thereby not only gains access to all function arguments
but can also modify or replace the function’s return value.
Furthermore, in contrast to the hooks placed in the Android
middleware, application layer hooks are dynamic: Hooks
are injected by directly modifying the target app’s DVM
memory when a new app process is started. This design
enables security modules to dynamically create and remove
hooks at runtime as well as to inject app-specific hooks.

5.3 Middleware Framework API
We elaborate now in more detail on our framework API

and the interaction between modules and the security infras-
tructure. Since we use the existing LSM framework as is,
we focus here on our newly introduced middleware security
framework and refer to the kernel documentation [25] for
details on the LSM API. The middleware framework API of
our current implementation contains 168 callback functions;
a full listing is provided in the long version of this paper [2].
This API can be broken down into the following categories:
Enforcement functions. These functions form the bulk

of the API (136 methods) and are called by the framework
whenever the enforcement hooks in system apps and ser-
vices are triggered. Each hook has a corresponding callback
function in the module API, which has the same method
signature as the hook (cf. Listing 1) and which implements
the policy decision logic for its hook.
Kernel Sub-Module Interface. To avoid policy-specific

interfaces for the communication between middleware/appli-
cation layer apps and the Kernel Sub-Module, we intro-
duce a generic kernel module API as part of the middleware
framework API. It allows apps and services a controlled ac-
cess to Linux security modules. Each security module can
implement this interface and internally translate the API calls
to calls on the proprietary channel between the user-space
and the Linux security module. Two particular challenges
for establishing this interface were the self-contained secu-
rity checks of the kernel module and the requirement that
this interface is already available during system boot. To
guarantee security, the kernel module is required to perform
policy checks to verify that a user-space process is sufficiently
privileged to issue commands to it. Additionally, the kernel
module is called before the middleware framework can load
any Middleware Sub-Module, e.g., it can be called by
Zygote when spawning new app processes. To solve these
challenges, our design avoids an additional layer of indirec-



tion (i.e., IPC) for communication with the kernel module
and loads the interface implementations via the Java reflec-
tion API statically into the application framework when it is
bootstrapped. This ensures that the calling processes com-
municate directly with the kernel module through our generic
API and that the kernel module can be called independently
of middleware services.
Life-cycle management. Every module must implement

functions for life-cycle management, such as initialization
or shutdown. This enables the framework to inform the
module when the system has reached a state during the boot
cycle from which on the module will be called or when the
system shuts down. Modules should use these functions, e.g.,
to initiate their policy engines or to save internal states to
persistent storage before the device turns off.
Event notifications. Event notification interfaces are

used to propagate important system events to the module.
For instance, modules should be immediately informed when
an app was successfully installed, replaced, or removed. Al-
though this information is usually propagated via a broadcast
Intents, the time gap between package change and broadcast
delivery might cause inconsistencies in module states. Hence
these events must be delivered synchronously.
Framework Callbacks. The framework provides mod-

ules a callback interface for communicating in a more di-
rect manner with system services, such as the PackageMan-
agerService, and avoids the need to go through the Android
API. This is desirable for policy authors that want to leverage
the middleware internal information. Our current callback
interface, for instance, includes functions that allow modules
to efficiently resolve PIDs to application package names.
Proprietary protocols. We introduced in our frame-

work API a callModule() function that allows modules to
implement proprietary communication protocols with other
apps that are aware of this specific module, e.g., the front-
end apps (cf. Section 5.1). When using callModule(), these
protocols are based on Bundles and enable a protocol similar
to the Parcel-based Binder IPC: apps serialize function argu-
ments to a Bundle and add an identifier for the proprietary
function the module should execute with the deserialized
arguments. It is the task of the module to verify that the
sender is sufficiently privileged to send commands.
IRM Instrumentation. The framework provides an

instrumentation API that enables security modules to hook
any Java function within selected app processes. To the best
of our knowledge, ASF is the first solution for Android to
provide a generic instrumentation API. Hooks injected via
the instrumentation API are local to the app process that the
API is called from. Therefore, all calls to the instrumentation
API need to be performed from within a target app’s process.
We solve this by placing an instrumentation hook in the
ActivityManagerService that is triggered when a new app
process is about to be launched. A module that implements
this hook has to return a Java class for the instrumentation
logic that will be executed within the app’s process. To
ensure that this code is executed before control flow is passed
to the app itself, we modify the arguments passed to Zygote
to start this new app process via a special wrapper class that
loads and executes the instrumentation code first.

5.4 Middleware Security Modules
We elaborate in more detail on the structure of security

modules. Again, we use Linux security modules as is [25]

Middleware Sub-Module
manifest.xml classes.dex LSM.java / liblsm.so Resources

Figure 3: Middleware security module structure.

and, thus, focus here on the Middleware Sub-Module. A
middleware module is simply a Jar file that is created with
an Android SDK that includes our new security API. It is
deployed to a protected location on the file system, from
where it is loaded during boot. This Jar file contains all the
module’s code, resources, and manifest file (cf. Figure 3):
Module Manifest. The manifest (formatted in XML)

declares properties such as the module author or code version,
and, more importantly, the name of the main Java class that
forms the entry point for the module.
Classes.dex. The classes.dex file contains, as in regular

Android apps, the Java code compiled to Dalvik executable
bytecode (DEX). It contains all Java classes that implement
the security module’s logic. During the load process of the
Middleware Sub-Module, the middleware framework uses
the Java reflection API to load the module’s main class
(as specified in the manifest) from classes.dex. To ensure
that the reflection works error-free, the main class must
implement the API as described in Section 5.3. Since the
API defines currently more than a hundred methods, but a
security module very likely requires only a subset of those,
our SDK provides an abstract class that implements the
API. That abstract class can be sub-classed by the module’s
main class, which then only needs to override the required
functions. The abstract class returns for each non-overridden
enforcement function an allow decision.
LSM interface. The proprietary interface between the

user-space processes and the Linux security module in the
kernel is implemented through a native library liblsm.so and
a corresponding Java class LSM.java, which exposes the na-
tive library via the Java Native Interface. LSM.java has
to implement the generic interface for the communication
with the kernel that was explained in the previous section.
The generic kernel module interface of ASF loads LSM.java
through the Java reflection API into Android’s application
framework. This allows apps and services to communicate
with the kernel module and avoids a policy-specific inter-
face. We exemplified this mechanism by integrating SELinux
through API into Zygote (cf. Section 6.2).
Resources. Each module can ship with proprietary re-

sources, such as initial configuration files or required binaries.
During module instantiation, the framework informs the
module about the filesystem location of its Jar file, enabling
the module to extract these resources on-demand from it.

5.5 Stackable and Dynamic Loadable Modules
Finally, two desirable properties for implementing an ex-

tensible security framework such as our ASF are dynamically
loadable policies and policy composition (i.e., stacking mod-
ules). In the following we explain why we chose, in contrast to
closest related work [20], to permit these features by design,
but not consider them a requirement for our solution.
Dynamically Loadable Modules. Being able to dy-

namically load and unload modules is desirable, for instance,
to speed up the development and testing cycles of modules
and, in fact, we used this feature during the development
of our example use-cases (cf. Section 6). However, the ar-



guments to support dynamically loadable modules beyond
development (e.g., for security add-ons [20]) are disputed:
First, dynamic loading is not always technically possible.
A small set of static policy models, such as type enforce-
ment [36, 8], require that all subjects and objects are labeled
with a security context. Supporting such extensive labeling
operations at runtime is an intricate problem. Second, there
exist security considerations. The loading and unloading
of modules must be strictly controlled to ensure that only
integrity protected, trusted modules are loaded. Otherwise,
given the privileges of modules, this would open the way to
powerful malware modules. In our design we agree with the
conclusions of the various Linux security module authors [11]
and consider the drawbacks of dynamically loadable modules
to outweigh their benefits. Therefore, we load the module
once during the system boot and permit users of our frame-
work to additionally activate dynamic unloading and loading
of modules. But we currently do not consider this feature a
requirement for our solution.
Stackable Modules. Composing the overall policy from

multiple, simultaneously loaded and independent policies is a
desirable feature, since usually no “one-size-fits-all” policy ex-
ists. Android, for instance, implements currently a quadruple-
policy approach consisting of Permissions, SE Android type
enforcement, AppOps, and Linux capabilities—each being
responsible for a different aspect of the overall access control
strategy. Multiple policies will naturally conflict and thus
require the security framework to support different policy
composition and reconciliation strategies (e.g., consensus or
priority based) [32, 27]. However, supporting fully generic
policy composition is quite a challenge and has been shown to
be intractable [18]. Thus, despite its benefits, we decided in
our design to follow the lessons learned by the LSM develop-
ers [40] and to only permit module developers to implement
stackable modules, but we do not provide explicit interfaces
for stacked modules in our framework infrastructure. In
module combinations where policy consolidation is known
to be feasible, the approach to stacking modules would be
to provide a “composition module” that implements policy
reconciliation and composition logic and which in turn can
load other modules and multiplex API calls between them.

6. EXAMPLE SECURITY MODULES
In this section, we demonstrate the efficiency and effec-

tiveness of our Android Security Framework by instan-
tiating different security models from related work. To il-
lustrate the versatility of ASF, we chose models from the
areas of inlined reference monitoring, Android’s default secu-
rity architecture, and type enforcement. We present further
instantiations of other security models in our long version [2].

6.1 AppOps and IntentFirewall
Google introduced (unofficially) with Android v4.3 the

AppOps infrastructure for dynamic, more fine-grained Per-
missions. It added hooks in different system services and
apps, which query a central AppOpsService whether an ap-
plication is allowed to perform an operation (e.g., retrieving
the location of the device or querying a ContentProvider).
The AppOps rules define a mapping from UID/package name
to allowed operations. AppOps offers an interface to apps
to retrieve the current configuration. Additionally, Google
introduced (again unofficially) an IntentFirewall, which acts
as a reference monitor for certain Intent-based operations

Middleware Framework

AppOps Module

AppOpsService IntentFirewall

Settings App

callModule(Bundle args)

Middleware
API

Figure 4: AppOps and IntentFirewall module

like starting an Activity. The IntentFirewall rules describe
which caller is allowed to receive which kind of Intent object,
using the Intent’s attributes such as destination component.
Implementation as a module: We ported AppOps and

IntentFirewall (from Android v4.3) to a security module for
ASF (cf. Figure 4) by moving the AppOpsService and the
IntentFirewall classes into a module. Our module comprises
2290 lines of code and differs in 33.71% of all LoC from the
original implementation. The bulk of the changes (520 LoC),
were required to move the hook logic of both services from
the system apps and services of Android into the module by
using our enforcement functions. For the IntentFirewall, this
was straightforward and we only had to substitute a direct
callback from IntentFirewall to the ActivityManagerService
by our framework callback mechanism. For the AppOpsSer-
vice, we had to add a mapping from caller PID to package
name. By default the hooks of AppOps determine the caller’s
package name and pass this information to the AppOpsSer-
vice for policy check. Since this is a policy-specific logic of
the hooks, our framework hooks do not (by default) provide
the caller’s package name and we re-implemented this logic
in our module by using our callback interface, which allows
us to retrieve the package name for app PIDs. Moreover, we
adapted the AppOpsService interface to retrieve/configure
the current policies via a Bundle-based communication. App-
Ops is, furthermore, partially integrated into the Settings
application to allow users to disable notifications from se-
lected apps. We replaced this policy-specific channel between
Settings and AppOps also with our policy-agnostic Bundle-
based communication. Modules that support this Settings
option, can return a value indicating whether notifications
are disabled or not. If the module does not support this
feature, Settings app by default allows notifications.

6.2 Type Enforcement [36, 8]
SE Android [36] brought SELinux type enforcement to

the Android kernel and established the required user space
support, e.g., it extended Zygote to label new app processes
with a security type. FlaskDroid [8], developed for Android
v4.0.3, extends SE Android’s type enforcement to Android’s
middleware. Building on SEAndroid’s kernel and low-level
patches, it adds policy-specific hooks as policy enforcement
points to various system services and apps in Android’s
middleware. The policy decisions at kernel level are made by
the SELinux kernel module, while the decisions at middleware
are made centrally in a policy server service. Both policy
decision points decide based on subject type, object type,
and object class reported by the hooks at their respective
layer whether control flows should be truncated or not.
Implementation as module: We realized type enforce-

ment with our ASF by porting FlaskDroid1 as a module
(cf. Figure 5), in this context porting the currently hard-
1Source code retrieved from http://www.flaskdroid.org/

http://www.flaskdroid.org/


Existing solution LoC of module policy engine LoC added/removed/edited (total delta)
AppGuard [3] 5059 +828/-79/○ 13 (18.18%)
AppOps / Intent Firewall 2290 +627/-106/○ 39 (33.71%)
FlaskDroid [8] 4968 +749/-32/○ 40 (16.53%)

Table 1: Effort of porting different security extensions as module on our Android Security Framework.
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Figure 5: FlaskDroid module

coded SELinux support of Android’s middleware into an
ASF module. At kernel level, we use the SE Android kernel
and provide an SELinux-specific interface implementation
for the kernel module. Further, we moved the middleware
policy server and its dependencies into the middleware mod-
ule. Using the enforcement functions of our API, we moved
the policy-specific hook logic of FlaskDroid into the module
as well. Additionally, we used SE Android’s build system to
label the file-system with security types.
Our port of FlaskDroid’s middleware component as a

security module consists of 4968 LoC (cf. Table 1) and differs
in only 16.53% of all LoC from the original code. The bulk
of these changes (550 LoC) is attributed to additions for
implementing a mapping from the enforcement functions of
our framework API to FlaskDroid’s type checks. To confirm
the correct enforcement of policies, we used the policies
for middleware and kernel level that are provided with the
FlaskDroid source code. Additionally, we noticed during our
tests that the original implementation contains an error in
assigning middlware security types to processes. Additional
changes were necessary to fix this error in our module.

6.3 Inlined Reference Monitoring [3]
We use AppGuard [3] as the use-case to illustrate the

applicability of our IRM instrumentation API, but similar
application rewriting approaches [21] are also feasible. App-
Guard is a privacy app for Android that enables end-users to
enforce fine-grained access control policies on 3rd party apps
by restricting their ability to access critical system resources.
By injecting an IRM into apps, this approach supports se-
curity policies not easily enforceable by traditional external
reference monitors in the Android middleware or kernel, e.g.,
to enforce the use of https over http.
Implementation as a module: We ported AppGuard2

as a module for ASF by separating its privacy app into
three components: We adapted the (1) AppGuard reference
monitor with its dynamic hook placement and policy en-
forcement logic to use our IRM instrumentation API. The
reference monitor is injected into selected app processes via
our framework at app startup. The policy decision logic
and persistent storage of policy settings was moved into
2Source code provided by the original authors

40%

60%

80%

100%

0 200 400 600 800 1000 1200 1400 1600
Time (µs)

R
el

at
iv

e 
cu

m
ul

at
iv

e 
fr

eq
ue

nc
y

Android Security Framework (no module)
Stock Android 4.3

Figure 6: Cumulative frequency distribution of micro bench-
marks in stock Android (dashed line) vs. ASF (solid line).

Frequency Mean (µs)
Stock Android 4.3 7320 116.182±4.550
ASF v4.3 6009 129.851±5.681

Table 2: Weighted average performance overhead of executing
hooked functions in stock Android and in our ASF. The
margin of error is given for the 95% confidence interval.

(2) a middleware module. The middlware module selects the
apps into which the IRM is injected. It also implements a
Bundle-based communication protocol to exchange policy
decisions and security events with the IRM component and
with (3) a front-end app. The front-end app allows the user
to adjust policy settings and to view logs of security-relevant
events. We used the policies included in the original App-
Guard implementation to confirm that policy enforcement by
our module and by the original implementation are identical.
Our AppGuard security module consists of 5059 LoC in

total (cf. Table 1), with 782 LoC residing in the middleware
module and 4277 LoC in the IRM. Our module diverts in
18.18% of all LoC from the original code. The majority of
the difference, 728 LoC, is attributed to moving the policy
decision logic into the middleware module, while only 46
LoC were required to adapt the inlined reference monitor to
use the provided instrumentation API.

7. EVALUATION AND DISCUSSION
We evaluate the performance of our ASF and discuss its

current scope and prospective future work. An extended
evaluation is provided in the long version of this paper [2].

7.1 Performance
Although the actual performance overhead strongly de-

pends on the overhead imposed by the loaded module, we
wanted to establish a baseline for the impact of our Android
Security Framework on the system performance. The
performance of LSM has been evaluated separately, e.g., for
SEAndroid [36], and we are interested here in the effect of
our new middleware security framework on the performance
of instrumented middleware system services and apps.



Methodology. We implemented our ASF as a modi-
fication to the Android OS code base in version 4.3_r3.1
and used the Android Linux kernel in branch android-omap-
tuna-3.0-jb-mr1.1. We performed micro-benchmarks for all
execution paths on which a hook diverts the control flow to
our middleware framework: We first measured the execution
time of each hooked function with no security module loaded
and allowing all access. Afterwards we repeated this test
with hooks removed to measure the default performance of
the same functions and thus operating identical to a stock
Android. All our micro-benchmarks were performed on a
standard Nexus 7 development tablet (Quad-core 1.51 GHz
CPU and 2GB DDR3L RAM), which we booted and then
used according to a testplan for different daily tasks such
as browsing the Internet, sending text messages and e-mails,
contacts management, or (un-)installing 3rd party apps.
Micro-benchmark results. Table 2 presents the num-

ber of measurements for each test case and their mean values.
To eliminate extreme outliers, we excluded in both measure-
ment series the highest decile of the measurements. For
ASF the mean is the weighted mean value with consider-
ation of the frequency of each single hook. In overall, our
framework with no loaded module imposed with 129.851 µs
approximately 11.8% overhead compared to stock Android.
Figure 6 presents the relative cumulative frequency distri-
bution of our measurements series and further illustrates
this low performance overhead. Major contributor to this
overhead is the marshalling, sending, and unmarshalling of
the hooks’ parameters. Thus, a future optimization of the
baseline overhead would be a framework configuration that
enables only the hooks that are actually used by the loaded
module(s) and, hence, avoids irrelevant hook invocations.

7.2 Current Scope and Future Work
System setup. Certain security models require a prepara-

tory system setup. For instance, type enforcement requires a
pre-labelling of all subjects and objects. After the system has
been setup, ASF supports modularization of these security
models (cf. Section 6.2).
Module Integrity. As part of the kernel, the Kernel

Sub-Module has the highest level of integrity. In contrast,
the Middleware Sub-Module, as a user space process,
can be circumvented or compromised by attacks against the
underlying system (e.g., root exploits) and thus requires
support by the kernel modules to prevent low-level privilege
escalation attacks. Inlined reference monitors are inherently
susceptible to attacks by malicious applications, because
the reference monitor executes in the same process as the
application that it monitors and no strong security boundary
exists between the monitor and the app code. To remedy this
situation, we are currently retrofitting Android’s application
model to combine the benefits of inlined and of system-centric
reference monitors. By splitting apps into smaller units of
trust (e.g., app components and ad libs), system-centric
reference monitors are able to differentiate distinct trust
levels within apps [31, 38, 35].
Completeness. It is crucial for the effectiveness of our

security framework, that all access to security and privacy
sensitive resources is mediated by the reference monitors.
We consider it out of scope for this submission to formally
verify the completeness of our prototype framework, but plan
to use recent advances in static and dynamic analysis on

Android to verify the placement of our hooks, similarly to
how it was done for the LSM framework [12, 17].
Information flow control. Our framework provides

modules with the control over which subject (e.g., app) has
access to which objects (e.g., device location), but it cannot
control how privileged subjects distribute this information.
Controlling information flows is an orthogonal problem specif-
ically addressed by different solutions [13, 33]. We plan to
integrate such data flow solutions into our framework and
to extend our security API with new generic calls for taint
labeling and taint checking.

8. CONCLUSION
In this paper we presented the Android Security Frame-

work (ASF), an extensible and policy-agnostic security in-
frastructure for Android. ASF allows security experts to
develop Android security extensions against a novel Android
security API and to deploy their solutions in form of mod-
ules or “security apps”. Modularizing security extensions
overcomes the current unsatisfactory situation that policy au-
thors are either limited to one predetermined security model
that is embedded in the Android software stack or that they
are forced to confide in a security-model-specific Android fork
instead of the mainline Android code base. Additionally, this
modularization provides a number of benefits such as easier
maintenance and direct comparison of security extensions.
We demonstrated the effectiveness and efficiency of ASF by
porting different security models from related work to ASF
modules and by establishing a baseline for the impact of our
infrastructure on the system performance.

Availability
The ASF source code and example modules can be retrieved
from http://infsec.cs.uni-saarland.de/projects/asf/.
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