
computer science

saarland
university

Saarland University
Faculty of Natural Sciences and Technology I
Computer Science Department

Master

Anonymous Webs of Trust

submitted by

Stefan Lorenz

May 26, 2011

Supervisor Prof. Dr. Michael Backes
Advisors Prof. Dr. Michael Backes

Dr. Matteo Maffei
Reviewers Prof. Dr. Michael Backes

Dr. Matteo Maffei

Statement

Hereby I confirm that this thesis is my own work and that I have documented all
sources used.

Saarbrücken, May 26, 2011

Stefan Lorenz

Declaration of Consent

Herewith I agree that my thesis will be made available through the library of the
Computer Science Department.

Saarbrücken, May 26, 2011

Stefan Lorenz

Acknowledgement

I would like to thank Prof. Dr. Michael Backes for supervising and advising my work
and issuing this interesting topic to me. He never doubted that I could finish this
thesis and his optimism has been inspiring ”If you think there is a problem, go back
to work, and think about it. If after three weeks, you still think there is a problem,
you might have an actual one.”

I also thank Dr. Matteo Maffei for advising my work and proofreading my thesis.
His door has always been open for me and he has given me deep insights on countless
occasions. The sincerity and the enthusiam he shows to his work and his co-workers
have been truly insipiring to me. But most of all, I thank Matteo for pushing me this
little extra bit to explore the use of elliptic curve cryptography for our approach.

Also many thanks go to my partners in science, Björn Kunz, Julian Backes, and
Kim Pecina. They have become true friends and as such they never hesitated to
provide criticism and to push me to go on with my work. I honestly enjoy their
company in the office, during lunch, and in the Aperture science labs for testing. In
particular, I thank Kim, because he never seems to become tired of answering my
questions regarding cryptography and math. And, maybe most of all, for suffering
going to a conference with me.

Further, I thank all fellow students from the chair of Prof. Backes. I enjoyed our
discussions and appreciated the advice they gave me on countless occasions. Fabienne
Eigner I thank, since she suffered our discussions about computer games for many
lunches and still did not run away. I enjoyed your company and working with you,
Fabi. Further, I thank Bettina Balthasar. She is the good soul of the chair of Prof.
Backes.

I thank my friends, Andreas Schaller, Daniel Schwarz, Hendrik Hähl, Thomas
Kleinert, and Thomas Leichtweis for their support and friendship and many many
wonderful weekends in this world and also far away from it.

Finally, I would like to thank my brother Ulrich Lorenz for his continous support.
His enthusiasm for science remembered me of my reasons to start studying and helped
me to find my enthusiam again.

Abstract

Trust and anonymity are key elements for the development of the Web. On the one
hand, we want to be assured of the identity of our communication partners so that
we can trust the authenticity of exchanged information. Trust captures our belief,
that the communicating parties are who they claim to be and possible social relations
between them. Thus, trust is the key element to establish authenticity in the Web.
On the other hand, we often strive for anonymity when using the Web. We do not
want to be subject to stigmatization or negative repercussions for the information we
provide or collect. Both goals are desirable, yet seemingly contradictory: How can we
trust someone who is not willing to reveal her identity?

Webs of trust constitute the most successful and wide-spread decentralized infras-
tructure for establishing trust, i.e., the authenticity of the binding between public keys
and identities. We introduce anonymous webs of trust, an extension to webs of trust,
that allows us to assert anonymously that there exists a trust relationship between
the sender and the receiver of a message and to prove the trust level corresponding
to this relationship while hiding the identity of the sender.

The generality of our approach allows us to incorporate different aspects of webs of
trust, such as key expiration, presence of multiple trust relationships between sender
and recepient, and sophisticated trust measures into our proofs.

This work introduces a novel cryptographic protocol based on zero-knowledge
proofs. We conducted a formal verification of the security of the protocol. We
provide two different cryptographic instantiations based on Σ-protocols and elliptic
curve cryptography. We conducted an experimental evaluation to show the feasibility
of our approach.

VII

Contents

1 Introduction 1

1.1 Webs of trust . 2

1.2 Contributions . 3

1.3 Related work . 4

1.4 Outline of this work . 6

2 Anonymous webs of trust 7

3 Cryptographic instantiations 11

3.1 Classical instantiation . 11

3.1.1 Camenish-Lysyanskaya signature scheme 11

3.1.2 The protocol . 12

3.2 Modern approach using pairing-based cryptography 14

3.2.1 Automorphic signatures . 15

3.2.2 The protocol . 17

4 Implementation 29

4.1 Java implementation of the classical approach 29

4.2 Key server . 30

4.3 Implementation based on bilinear maps 31

4.3.1 Security parameter . 32

4.3.2 Experiments . 32

5 Extensions 35

5.1 Hiding the chain length . 35

5.2 Partial release of secrets . 36

5.3 Dynamic trust relationships and key expiration 37

5.4 Conjunctive and disjunctive statements over certificate chains 38

5.5 Proof that two committed numbers are not equal 38

5.6 Trust measures . 39

5.7 Settings where the web of trust is not public 42

I

6 Abstract representation and formal verification 45
6.1 Attacker model . 45
6.2 Verification of trust . 45
6.3 Verification of anonymity . 50

7 Conclusion 55
7.1 Future work . 55

II

Section 1

Introduction

Over the last fifty years, but especially since its commercialization in 1990, the Inter-
net has evolved into the main forum for freely disseminating data, information, and
opinions. Nowadays, sending emails, browsing the Web, and updating and reading
newsgroups, forums, and social networks are parts of most peoples daily life. This is
even true for remote countries or countries with governments that strive to suppress
the freedom of speech.

Next to all its benefits, communication using the Web suffers some serious issues.
In contrast to a meeting in person or a phone call, we have nearly no means to deter-
mine the authenticity of the other party. However, intuitively, we want authenticity.
How else can we be sure that an email really is from a friend or that information really
is from trustworthy sources? While the use of public-key cryptography ensures that
only the owner of a certain private key can decrypt a message and that a message
is really from the owner of a certain key there is something missing: the binding
between keys and identities. Privacy can only be achieved if the public key used for
encryption actually belongs to the indented recipient and authenticity can only be
guaranteed if the verification key actually belongs to a well-known identity. Public
key infrastructures (PKI) are a very important part of current applications of public
key cryptography that have exactly this purpose, i.e., they bind keys to identities. The
x509 certificates in web browsers, for instance, are organized by means of a centralized
PKI. In a centralized PKI there exists one ultimate root authority one has to trust.
This authority asserts the authenticity between entities and keys. These entities can
again assert authenticity to other entities. This establishes trust relationships between
different entities, or more precisely, between an entity and the root authority.1

While trust in the authenticity of an entity is a serious concern regarding commu-
nication on the Web, there is another interesting point that became more prominent
over the last years. There might be information providers that are not willing to re-
veal their true identity for different, comprehensible, reasons. They might try to avoid
associations with their race, ethnic background or other sensitive characteristics that

1Notice that in current browsers there are actually several root authorities accepted in parallel.

1

Alice

sig  pk Alice , AAlice , sk Bobsig  pk Charlie , ACharlie , sk Alice

BobCharlie

Eve

sig  pk Eve , AEve , skCharlie 

sig  pkCharlie , ACharlie , sk Eve

Figure 1.1: Example for a web of trust

could lead to misunderstandings or misjudgments of the information they provide. It
is also possible that they even have to stay anonymous in order to avoid stigmatiza-
tion or other negative repercussions. This is in particular important in settings where
the social relations are public, e.g., social networks.

1.1 Webs of trust

When talking about public-key infrastructures and their purpose we already encoun-
tered the concept of a centralized PKI. While this concept is widely used there exists
another well-established concept, the web of trust. In contrast to a centralized PKI
that forces us to trust an authority, in webs of trust every entity is her own authority
and decides on her own which trust relations are valid and to which key-identity pairs
she asserts her trust.

This trust is expressed by signing the public keys that are considered authentic
along with a set of user and key attributes. The resulting certificates can be chained
in order to express trust relationships between entities with no direct connection. For
instance, consider Figure 1.1: The certificate chain

sig((pkCharlie,ACharlie), skAlice), sig((pkAlice,AAlice), skBob)

says that the owner of pkBob, i.e., Bob, has certified the binding between the public
key pkAlice and the set AAlice of attributes, and the owner of pkAlice has certified
the binding between the public key pkCharlie and the set ACharlie of attributes. After
receiving a signature on message m that can be verified using pkCharlie, the owner of

2

pkBob knows that m comes from a user bound to the attributes ACharlie of trust level
2.2

Whenever there exists a certificate chain between two entities in a web of trust,
there is a trust relation between them. A message can be authenticated if there exists
a chain starting with a certificate issued by the intended recipient and ending with a
certificate for the sender’s key.

1.2 Contributions

Both, authenticity and anonymity, are desirable goals. In this work we present a novel
zero-knowledge protocol that allows for anonymity in webs of trust and thus combines
both requirements. We put forth the notion of anonymous webs of trust.

Our technique is a combination of digital signature schemes and non-interactive
zero-knowledge proofs.3

This allows us to prove statements of the form “there exist certificates C1, C2, a
signature S, keys K1, K2, and attributes A1, A2 such that (i) C1 is a certificate for
(K1, A1) that can be verified with key K2, (ii) C2 is a certificate for (K2, A2) that can
be verified with key pk3, and (iii) S is a signature on m that can be verified with K1”.
The generality of our approach allows for proving complex trust relationships and for
selectively revealing partial information on the attributes in the certificate chain and
thus for supporting expressive trust models while providing strong anonymity.

First, we present two instantiations of our zero-knowledge protocol, a “classi-
cal” cryptographic implementation built upon the Camenisch-Lysyanskaya signature
scheme [17], and a novel one built upon automorphic signatures [4], very recent work
from 2010, using pairing-based cryptography. In particular the latter yields strong
results with respect to running time and proof size. In addition the latter is more
expressive in the sense that it even works for webs of trust where the trust relations
are not public. A description of the implementation and the experimental results com-
plete the presentation. As Backes et al. already introduced the classical instantiation
in [8], the focus of this work is the description of the scheme built upon automorphic
signatures.

Furthermore we introduce several extensions of our protocol to achieve fine-grained
anonymity and trust properties. For instance consider a trust value stored in each
certificate that describes to what extent the signer trusts the signed key (as in the

2We initially define the trust level provided by a certificate chain as its length. In Section 5, we
will consider a more sophisticated trust measure proposed in [22]. We refer the interested reader
to [44, 3, 39, 42, 22, 20, 62, 5, 37] for additional trust models.

3A zero-knowledge proof combines two seemingly contradictory properties. First, it is a proof
of a statement that cannot be forged, i.e., it is impossible, or at least computationally infeasible,
to produce a zero-knowledge proof of a wrong statement. Second, a zero-knowledge proof does
not reveal any information besides the bare fact that the statement is valid [33]. A non-interactive
zero-knowledge proof is a zero-knowledge protocol consisting of one message sent by the prover to
the verifier.

3

trust signatures of the OpenPGP standard [16]). While revealing all attributes might
compromise the anonymity of the prover, the release of these trust values might
convince the verifier of the quality of their trust relation. Since even the exact trust
values might already reduce the degree of anonymity, we show how to prove the
average of the trust values along a certificate chain and even more sophisticated trust
measures. We propose variants of our zero-knowledge proof that allow for selectively
revealing additional properties of the certificate chains, such as the validity of the
keys with respect to their expiration date, the existence of multiple certificate chains,
and the trust level that the certificate chains are assigned according to a realistic
trust model. Additionally we show how we can anonymously authenticate a message
in settings where the web of trust is not public using the cryptographic instantiation
based on bilinear groups.

We envision distributed social networks, where people want to share opinions or
information anonymously while being able to prove their trust relationships, applica-
tions for anonymous message exchange, and services for anonymous yet trustworthy
reports and reviews as potential application scenarios.

Finally we provide a symbolic abstraction of our protocol. Based upon this repre-
sentation we conduct an automated formal analysis. We specify our protocol in the
applied pi-calculus [1] and we formalize the trust property as an authorization policy
and the anonymity property as an observational equivalence relation. We consider
a strong adversarial setting where the attacker has the control over the topology of
the web of trust, some of the protocol parties, and the certificate chains proved in
zero-knowledge by honest parties. Security properties are verified using ProVerif [14],
an automated theorem prover based on Horn clause resolution that provides security
proofs for an unbounded number of protocol sessions and protocol parties. This proof
guarantees not only that our protocol enforces the expected anonymity and trust re-
quirements, but also paves the way for the deployment of our protocol in formal tools
for the design of secure systems. For instance, we expect our protocol can be used in
Aura [38], in order to enforce fine-grained security policies that capture anonymity and
trust requirements. In a way of example, a logical predicate of the form Alice says P
is proved in Aura by a digital signature of Alice on P . As illustrated in this work, the
zero-knowledge proofs of our protocol can be used to prove more complex formulas
of the form ∃X.Alice trusts X ∧ X says P , which combines anonymity, trust, and
the standard says modality of authorization policies.

1.3 Related work

At first glance our approach might resemble the delegatable anonymous credential
scheme [12], although the setting is different. In the delegatable anonymous credential
scheme a root authority releases credentials of first level to trusted users, who can
in turn release credentials of second level, and so on. Similar to our scheme, a user
has to prove in zero-knowledge the existence of a credential chain started by the

4

credential authority in order to authenticate herself. In our scheme we prove the
existence of a certificate chain started by the intended recipient of a message. The
delegatable anonymous credential protocol relies on an interactive protocol between
each pair of users along the credential chain, that is between the party releasing a
credential and the party owning the certified key, which eventually gives the last user
in the chain an anonymous credential consisting of a non-interactive zero-knowledge
proof. In contrast, our protocol is purely based on non-interactive zero-knowledge
proofs. This requires the prover to do all the work without any interactions with
the other principals involved in the chain. The intended recipient is an exception, of
course. Moreover, our approach allows for selectively revealing partial information on
attributes in the certificate chain. This is essential to achieve anonymity in advanced
trust models without restricting their expressiveness. This is not possible in the system
of delegatable anonymous credentials described in [12].

Group signature schemes [23, 57, 7, 13] allow a member of a group to sign a
message on behalf of the group. The signer stays anonymous in the sense that it
is not determinable which member of the group signed the message. In contrast to
our solution, these schemes require the presence of a group manager. Two users in
the group turn out to be completely interchangeable. This also holds for HIBE/HIBS
schemes [30, 15], where anonymity could be obtained by replacing user identifiers
with generic anonymous attributes.

Ring signature schemes [53, 36, 41] are similar to group signatures but do not
require a group manager. As for group signatures, two users in the same group are
completely interchangeable. It would be interesting, nevertheless, to explore the usage
of ring signature schemes to achieve k-anonymity in webs of trust.

Social networks constitute a particularly promising application scenario for our pro-
tocol; we thus briefly relate our approach to recent works on privacy and anonymity in
social networks. Frikken and Srinivas have recently addressed the orthogonal problem
of creating encrypted data that can be read by people who are n degrees away in a
social network [28]. Other works which target privacy and access control in social net-
works (e.g., [26, 25, 61]), set their focus on keeping the graph private and enforcing
access control policies based on trust degrees without revealing them. Similar to the
delegatable anonymous credential scheme described in [12], the proposed protocols
are interactive which is in contrast to our technique. Other works (e.g., [54, 6, 21])
assume trust relationships to be public. In our protocol, we just assume that the
prover can retrieve the certificates composing the chain proven in zero-knowledge.
In webs of trust such as GnuPG [59], public keys and attached certificates are up-
loaded on key servers and are thus publicly available. Finally, the recently proposed
Lockr protocol [60] achieves access control and anonymity in social networks and file-
sharing applications, such as Flickr and BitTorrent. Lockr provides weaker anonymity
guarantees compared to our framework, since the prover has to reveal her identity to
the verifier; moreover, Lockr does not support certificate chains but only direct trust
relationships.

5

1.4 Outline of this work

Section 2 formalizes the notion of anonymous webs of trust and gives and overview
of our protocol. Section 3 describes both cryptographic instantiations with a focus
on the instantiation using automorphic signatures. This is followed by a detailed de-
scription of the implementation in Section 4. Section 5 introduces several extensions
to our protocol which further improve its expressiveness. Section 6 proposes a sym-
bolic abstraction of our protocol and conducts a formal security analysis. Section 7
concludes and gives directions of future research.

6

Section 2

Anonymous webs of trust

In this section, we introduce the notion of anonymous webs of trust and we give an
overview of our protocol.

A web of trust is a decentralized public-key infrastructure. Each user u holds
a public key pku and a secret key sku. Trust is distributed via certificates. User u
expresses her belief that a given public key pkv actually belongs to user v by signing
pkv along with a set Av of user and key attributes. Hence, certificates establish the
relation between public keys and users and, depending on the applications, they can
also be used to witness specific trust relationships between users. These certificates
are attached to the signed public key and uploaded all together onto key servers.
Every user having access to such a server can participate in the web of trust.

Trust into public keys not directly signed by a user is established using certificate
chains. A certificate chain from A to B consists of all the certificates that link
(pkA,AA) to (pkB,AB), thus establishing a trust relation between those keys.

Definition 1 (Certificate Chain) A certificate chain or simply chain from (pk1,A1)
to (pk`,A`) is a sequence of certificates C = (C1, ...,C`−1) of length ` − 1, where
Ci = sig((pki+1,Ai+1), ski) and ` ≥ 2. We say that (pk`,A`) has trust level ` − 1.
We assume to know the binding between sk1 and (pk1,A1), which can be captured
by an additional self-generated certificate sig((A1, pk1), sk1).

The fundamental idea of our approach is to provide anonymity in webs of trust
by deploying zero-knowledge proofs to demonstrate the existence of valid certificate
chains without revealing any information that might compromise the anonymity of
users. We consider a setting where users want to anonymously exchange messages,
yet guaranteeing the receiver the trust level of the sender. In particular, only the
recipient’s public key and the message to be authenticated are revealed by our proof.

We stress that the anonymity in webs of trust we achieve is k-anonymity. In-
tuitively, k-anonymity says that a given entity can not be distinguished from k − 1
other entities, i.e., she is anonymous under k − 1 others. Figure 2.2 illustrates this
intuition. The web of trust depicted is reduced to basic trust relations and highlights

7

A B
C

sig(pkB , skA) sig(pkC , skB)

S

m
Transmission of message m

Trust relation certified by S sig(pkI , skJ): J ’s signature on I’s key

Witnesses: α1 ← pkB α2 ← sig(pkB , skA) α3 ← pkC α4 ← sig(pkC , skB)

ZK (∃α1, . . . , α4 : ver(α1, α2, pkA) ∧ ver(α3, α4, α1))

Figure 2.1: Protocol for anonymous proof of a certificate chain of length 2

Alice

Figure 2.2: Illustration of the intuition of k-anonymity

every entity with a distance of two to Alice in red. Every one of the 6 entities is
anonymous under 5 others with respect to Alice.

More formally, every entity in a (publicly accessible) web of trust can create
the sets of entities with a given distance to her. This holds independently of the
chosen trust model. Since the length of the chain, i.e., the distance, is revealed by
our proof, and given that the set for this distance contains k entities, the prover is
indistinguishable from the k − 1 other entities in the same set. In particular, this
means that in sparse or degenerated webs of trust the trust level might reveal enough
information to identify the prover. In Section 5 we show how it is possible to hide
the chain length and thus preserve anonymity even in such settings.

For the sake of simplicity, we initially focus on certificates on public keys without
attributes. In Section 5, we will extend our zero-knowledge proof scheme to certifi-
cates binding a key to a set of attributes, and subsequently show how to selectively
hide some of them while revealing the others.

In order to authenticate a message m with the owner of pk1, the owner of pk`

8

has to retrieve a certificate chain from pk1 to pk` and to prove in zero-knowledge
the existence of this chain as well as the knowledge of a signature on message m
done with the signing key corresponding to pk`. Notice that the signature cannot be
sent in plain, since this would compromise the anonymity of the sender. If we denote
by ver(m,C, pk) the successful verification of certificate C on message m with public
key pk, the statement that the owner of pk` has to prove can be formalized by the
following logical formula:

ver(pk2,C1, pk1) ∧
[∧`−1

i=2 ver(pki+1,Ci, pki)
]
∧ ver(hash(m), sig(hash(m), sk`), pk`)�� ��2.1

which can be read as “the verification of signature C1 on message pk2 with verification
key pk1 succeeds and for all i from 2 to `−1, the verifications of Ci on pki+1 with pki
succeed and the verification of the signature on the hash of m with pk` succeeds.”
For efficiency reasons, the sender signs the hash of the message she is willing to
authenticate. Since the proof should not reveal the user identities, we weaken this
statement by existentially quantifying over all secret witnesses:4

∃ α1, ..., α2`−1 :

ver(α1, α2, pk1) ∧
[∧`−1

i=2 ver(α2i−1, α2i, α2i−3)
]
∧ ver(hash(m), α2`−1, α2`−3)

�� ��2.2

This statement only reveals the public key pk1 of the intended recipient, the hash of
the authenticated message m, and the length of the chain (i.e., the trust level of the
sender). The zero-knowledge proof of this statement is sent to the verifier, who, after
successful verification, will authenticate message m as coming from a principal of level
` − 1. Figure 2.1 schematically shows our protocol for a certificate chain of length
2. To execute this algorithm, we solely assume that the prover can efficiently retrieve
the certificates composing the chain. In an established web of trust, public keys
and attached certificates are usually uploaded on key servers and are thus publicly
available. Our approach, however, is general and does not put any constraints on
the way certificates are distributed (for instance, they could be exchanged by private
communication). We just require that the prover has access to the certificate chain
linking her key to the verifier’s one. In Section 5 we show that depending on the
instantiation we can even weaken this to requiring only a proof for a part of the chain
from the verifier up to an entity that signed the prover’s key.

4Here and throughout this thesis, we use the convention introduced in [19] that Greek letters
denote those values that are kept secret by the proof.

9

Input: A chain C = (C1, ...,C`−1) from pk1 to pk`, signing key sk`, recipient U
owner of pk1, and message m.

1. Set sigm ← sig(hash(m), sk`).

2. Set formula
f ← ∃ α1, ..., α2`−1 : ver(α1, α2, pk1) ∧ [

∧l−1
i=2 ver(α2i−1, α2i, α2i−3)] ∧

ver(hash(m), α2`−1, α2`−3).

3. Set witness w̃ ← (pk2,C1, ..., pk`,C`−1, sigm).

4. Generate non-interactive zero-knowledge proof ZK(f) for statement f using
witnesses w̃.

5. Send m,ZK(f), pk1, hash(m)) to U.

Figure 2.3: Anonymous message exchange protocol

10

Section 3

Cryptographic instantiations

For implementing the ideas described in the previous sections, we need (i) a digital
signature scheme that allows for efficient zero-knowledge proofs and (ii) an expres-
sive set of zero-knowledge proofs that can be combined together in conjunctive and
disjunctive forms.

As mentioned in Section 1, we provide two different instantiations. We will first
present our approach based on classical cryptographic primitives and Σ-protocols [34]
in summarized form. In depth this approach is described in work by Backes et al. [8]
Afterwards we will describe our recent approach using pairing-based cryptography in
detail.

3.1 Classical instantiation

The first cryptographic protocol we developed utilizes the Camenisch-Lysyanskaya
signature scheme [17]. This signature scheme has been introduced together with
some zero-knowledge proofs. None of them, however, deals with situations in which
every value involved in the verification (and, in particular, the verification key) must be
kept secret, as required by the statements considered in this work. This circumstance
required us to develop a novel zero-knowledge proof.

3.1.1 Camenish-Lysyanskaya signature scheme

We will start with a short overview of the Camenisch-Lysyanskaya signature scheme
and the strong RSA assumption it relies on. A public key is a tuple pk = (a, b, c, n)
where n = p · q is a special RSA modulus with p = 2 · p′ + 1, q = 2 · q′ + 1, and
p, p′, q, q′ are primes. The numbers a, b, and c are uniformly random elements of
QR(n), the group of quadratic residues modulo n. The corresponding secret key is
sk = p. Since factorizing n is assumed to be hard, the attacker cannot efficiently
compute sk. To sign a given message m ∈ [0, ..., 2`m), one chooses a random prime
e of length `e ≥ `m + 2 and a random number s ∈ [0, ..., 2`m+`n+`) where `n is the

11

bit-length of n and ` is a security parameter. In practice, ` = 160 is considered
secure. Finally, one computes v such that:

v ≡n (am · bs · c)1/e
�� ��3.1

Here and throughout this work, we write v ≡n u to say that u is equivalent to v
modulo n. Notice that the factorization of n is used to efficiently compute 1/e. The
signature on message m is the tuple sigm = (e, s, v). Given pk = (a, b, c, n), m, and
sigm = (e, s, v), the verification of the signature sigm is performed by checking that
2`e−1 < e < 2`e along with the following equivalence:

ve ≡n (am · bs · c)
�� ��3.2

Under the strong RSA assumption, the Camenisch-Lysyanskaya signature scheme is
secure against existential forgery attacks. Security against existential forgery is the
standard notion of security when dealing with signature schemes.

Definition 2 (Strong RSA Assumption) The strong RSA assumption states that
it is hard, on input an RSA modulus n and an element u ∈ Z∗n, to compute values
e > 1 and v such that ve ≡ u mod n. More formally, we assume that for all
polynomial-time circuit families {Ak}, there exists a negligible function µ(k) such
that

Pr
[
e > 1 ∧ ve ≡n u : n← RSAmodulus(1k);u← QRn; (v, e)← Ak(n, u)

]
= µ(k)

3.1.2 The protocol

Intuitively, the goal of our zero-knowledge proof is to compute the verification equa-
tion (2.1) in zero-knowledge. By doing so, a prover can show that she has knowledge
of a secret key she could use to sign a message that would be accepted by the in-
tended recipient and the existence of a certificate chain from the recipient to the
prover. This is achieved by the zero-knowledge protocol (3.3). We first recompute
the exponentiations in the signature verification equation, i.e., τ1 , am, τ2 , bs,
τ4 , ambs, and τ3 , ve, and check if ve ≡n ambsc (cf. line (a)). We then test
whether the signed message and the verification prime number are in the appropriate
ranges (cf. line (b)). This protocol constitutes the cryptographic instantiation of
the symbolic proof for the statement ∃ αm, αsig, αpk : ver(αm, αsig, αpk) discussed in
Section 2 with αm = µ, αsig = (ν, σ, ε), and αpk = (α, β, γ, η).


PK(α, β, γ, ε, η, µ, ν, σ, τ1, τ2, τ3, τ4) : JcaK = α ∧ JcbK = β∧
JccK = γ ∧ JcnK = η ∧ JcmK = µ ∧ JcvK = ν ∧ JcsK = σ ∧ JceK = ε
∧Jc(am)K = τ1 ∧ Jc(bs)K = τ2 ∧ Jc(ve)K = τ3 ∧ Jc(ambs)K = τ4
τ1 ≡η αµ ∧ τ2 ≡η βσ ∧ τ3 ≡η νε ∧ τ4 ≡η τ1 · τ2 ∧ τ3 ≡η τ4 · γ (a)
∧ 0 ≤ µ < 2`m ∧ 2`m+1 < ε < 2`m+2 (b)


�� ��3.3

12

Zero-knowledge proofs for single chain elements are combined together in con-
junctive form to prove the existence of a valid certificate chain, as formalized in
equation (2.2). In particular, every occurrence of value u is instantiated with the
same commitment cu. This ensures the equality of the values appearing in different
chain element proofs. We reveal the public key of the verifier and the hash of the
signed message by opening the corresponding commitments.

Lemma 1 (Logical Combination of Σ-protocols [24]) Assume that (P1, V1) and
(P2, V2) are SHVSZK and have special soundness and overwhelming completeness for
relations R1 and R2 respectively. Assume that M1 ⊇ LR1 and M2 ⊇ LR2 where
LR := {(x, y) | xRy}. Assume that for both schemes, the verifier accepts the output
of the simulator with overwhelming probability.

Then there exist SHVSZK proof schemes for the relations R∧ := R1 ∧M1,M2 R2

and R∨ := R1 ∨M1,M2 R2.

Theorem 1 Let ca, cb, cc, cm, cs, cv, ce, and cn be integer commitments and let
c(am), c(bs), c(ve), and c(ambs) be auxiliary commitments. Then, the protocol from
equation (3.3) is a special honest verifier statistical zero-knowledge proof with special
soundness [24] that the values committed to in ca, cb, cc, cm, cs, cv, ce, and cn fulfill
the Camenisch-Lysyanskaya signature scheme verification equation.

Proof The completeness follows from inspection of the protocol and the verification
equation of the signature scheme. Special soundness and SHVSZK follow from the
special soundness and the SHVSZK property of the individual proofs by applying
Lemma 1.

Finally, we apply the Fiat-Shamir heuristic [27] to make our protocol non-interactive.

In addition to Σ-protocols, which enjoy special soundness and the special honest
verifier statistical zero-knowledge (SHVSZK) properties [32, 24], we used several
basic building blocks in the design of our zero-knowledge protocol. We will give a
short overview here and and refer to [9] for a detailed description.

Commitments A commitment scheme consists of the commit phase and the open
phase. Intuitively, it is not possible to look inside a commitment until it is opened
(hiding property) and the committing principal cannot change the content while open-
ing (binding property). We use the integer commitment scheme described in [48].
JcK denotes the value committed to in c.

Range proofs We use the range proofs proposed in [29]. A range proof guarantees
that a certain committed value lies in the interval (A,B), where A and B are integers.
This proof will be denoted by {PK(α) : JcK = α ∧ A < α < B} Notice that this proof
does not reveal α, just the commitment c and the bounds A and B of the interval.

13

Proofs of arithmetic operations Our protocol also uses some of the protocols
presented in [18] for proving sums, multiplications, and exponentiations of committed
values in zero-knowledge (i.e., without opening the commitments and revealing the
witnesses). These proofs will be denoted by

{PK(α, β, δ, ν) : JcaK = α ∧ JcbK = β ∧ JcdK = δ ∧ JcnK = ν ∧ α + β≡νδ}
{PK(α, β, δ, ν) : JcaK = α ∧ JcbK = β ∧ JcdK = δ ∧ JcnK = ν ∧ α · β≡νδ}
{PK(α, β, δ, ν) : JcaK = α ∧ JcbK = β ∧ JcdK = δ ∧ JcnK = ν ∧ αβ≡νδ}

While this instantiation enjoys some interesting properties, it still has its limitations.
Maybe most severe of all, the complexity of this protocol is given by Θ(ε · ` · `b ·
C), where ` determines the maximum bit length of a committed value, ε > 1 is
a security parameter, `b denotes the maximum bit length of the exponents used in
the exponentiation proof (typically, `b = `), and C describes the challenge space
CS := {0, ..., 2C − 1}. The details are given in [9]. While looking unproblematic
on first sight, in practice this resulted in about 900000 exponentiations modulo a
prime for a chain of length two. The actual computation took about two hours on
an off-the-shelf pc. Although this is sufficient for a proof-of-concept implementation,
it is far too expensive for a real-world application.

3.2 Modern approach using pairing-based cryptog-
raphy

During the development of the first approach we already looked for alternative cryp-
tographic primitives that would leverage the problem of the huge number of expo-
nentiations modulo a prime number. Elliptic-curve cryptography seemed to be such
an alternative.

While being cryptographically interesting on its own, elliptic curves are of particular
interest because of the cryptographic primitives that can be built on top of them.
Bilinear groups constitute such a primitive and we rely on them for our new approach.
A bilinear group is of the form (n,G1, G2, GT , e,P1,P2) where

• G1, G2, and GT are cyclic groups of order n

• P1,P2 generate G1 and G2 respectively

• e : G1×G2 is a non-degenerate bilinear map such that e(P1,P2) generates GT

and for all a, b ∈ Zn we have e(aP1, bP2) = e(P1,P2)
ab

• group operations, the bilinear map and membership decision are efficiently com-
putable

14

All cryptographically relevant pairings e work on elliptic curves.
When we started to implement the protocol, mapping keys from classical signa-

ture schemes to elliptic curves proved to be hard. In 2008, Groth and Sahai published
work titled Efficient Non-interactive Proof Systems for Bilinear Groups [35]. The fo-
cus of this work is to present a general non-interactive zero-knowledge proof scheme
that avoids expensive NP-reductions but at the same time is capable of expressing
statements that arise in practice. To reach this goal they consider cryptographic pro-
tocols that are based on finite abelian groups. The proof scheme captures statements
that express relations between group elements. This enables the scheme to express
statements such as “the plaintext of c is a signature on m”, as long as encryption,
commitments and signature schemes work over the same finite group.

By the end of 2010 Abe et al. released a paper in which they introduced automor-
phic signatures [4]. An interesting feature of this scheme is that it allows for signing
its own keys and thus is perfectly suited for the Groth Sahai proof scheme. This
finally allowed us to switch from a zero-knowledge proof scheme based on ”classical
cryptography” to a scheme that works on bilinear maps.

We will first introduce the automorphic signature scheme and the necessary as-
sumptions. In the following we will describe the actual instantiation of the protocol
proposed in [35].

3.2.1 Automorphic signatures

The automorphic signature scheme is a structure preserving signature scheme that
allows for signing its own keys and that is secure against existential forgery attacks.
The scheme is called structure preserving since it does not utilize hash functions.
Automorphic refers to the fact that the verification keys lie in the message space.
Loosely speaking, the scheme can sign its own keys.

The following assumptions are necessary to show the security of the signature
scheme.

SXDH The Symmetric External Diffie-Hellman Assumption (SXDH) states that
given (Ga, Gb, Gc) for random a, b ∈ Zp, it is hard to decide whether c = ab or c is
random as well in G1 as in G2.

AWF-CDH Let G ∈ G1, H ∈ G2 and a ∈ Zp be random. Given (G,A = Ga, H),
it is hard to output (Gr, Gar, Hr, Har) with r 6= 0, i.e., a tuple (R,M, S,N) that
satisfies

e(A, S) = e(M,H) e(M,H) = e(G,N) e(R,H) = e(G,S)

q-ADH-SDH Let G,F,K ∈ G1, H ∈ G2 and x, ci, vi ∈ Zp be random. Given

(G,F,K,X = Gx;H,Y = Hx) and (Ai = (K · Gvi)
1

x+ci , Ci = F ci , Di = Hci , Vi =

15

Gvi ,Wi = Hvi), for 1 ≤ i ≤ q − 1, it is hard to output a new tuple ((K ·
Gv)

1
x+c , F c, Hc, Gv, Hv) with (c, v) 6= (ci, vi) for all i.

The automorphic signature scheme Sig consists of four algorithms:

Setup On input λ, the security parameter, a bilinear map Λ = (p,G1, G2, GT , e, G,H)
is generated and additional parameters F,K, T ∈ G1 are chosen randomly. The mes-
sage space is given by DH := (Gm, Hm)|m ∈ Zp. A pair (A,B) ∈ DH is called a
Diffie-Hellman pair. The set of parameters pp is output: pp = (Λ, F,K, T).

KeyGen Keys for the scheme are generated by this algorithm. On input pp chose x
randomly from Zp. The verification key is given by vk := (Gx, HX) and the signing
key by sk := x.

Sign A message (M,N) ∈ DH can be signed using parameters pp and a secret key
x as follows:

choose c, r ←r Zp
compute:

A := (K · T r ·M)
1

x+c C := F c D := Hc R := Gr S := Hr

Verify A signature (A,C,D,R, S) verifies on input pp, a public key (X, Y) and a
message (M,N), both in DH, iff

e(A, Y ·D) = e(K ·M,H)e(T, S) ∧
e(C,H) = e(F,D) ∧
e(R,H) = e(G,S)

Correctness The correctness of the scheme follows from recasting the verification
equations using the bilinearity properties of the map e. Left hand side and right hand
side turn out to be equal.

As an example, we demonstrate how we can recast the verifcation equation e(A, Y ·
D) = e(K·M,H)e(T, S). Replacing A, Y,D, and S by the equations from the signing
phase we get

e((K · T r ·M)
1

x+c , Hx ·Hc) = e(K ·M,H)e(T,Hr)

e((K · T r ·M)
1

x+c , Hx+c) = e(K ·M,H)e(T,Hr)

using e(Ga, Hb) = e(G,H)ab on the left hand side we get by bilinearity

e((K · T r ·M), H)
1

x+c
∗(x+c) = e(K ·M,H)e(T,Hr)

which equals
e((K · T r ·M), H) = e(K ·M,H)e(T,Hr)

16

using e(G,Hb) = e(G,H)b = e(Gb, H) on the right hand side yields

e((K · T r ·M), H) = e(K ·M,H)e(T r, H)

finally we can use the property e(A,H)e(B,H) = e(A ·B,H), so we get

e((K · T r ·M), H) = e(K ·M · T r, H)

The other verification equations follow the example above and can be recast using
the bilinearity property accordingly.

Theorem 2 Under q-ADH-SDH and AWF-CDH the automorphic signature scheme
Sig is strongly existentially unforgable against adversaries making at most q − 1
adaptive chosen-message queries.

It is interesting to notice that there exist variants of automorphic signatures for
signing message vectors. This allows for direct signing of attributes without need of
a reveal protocol. We will elaborate this in detail in Section 5.

Further, the automorphic signature scheme allows us to sign bit strings. This
is important since a message will usually be represented as some form of bit string.
In order to sign a bit string, we assume a collision resistant hash function Hash :
{0, 1}∗ → Zp. Before signing, a message m ∈ {0, 1}∗ is mapped to (M,N) :=
(GHash(m), HHash(m)) ∈ DH. Since the message is revealed in our zero-knowledge
protocol the use of the hash function is unproblematic. In particular, we do not have
to prove the hash algorithm in zero-knowledge. Notice that this is not a contradiction
to the structure preserving property, since the hash function is used to prepare the
message. It is not used for the actual signature algorithm.

3.2.2 The protocol

In [35] a general construction is given for non-interactive witness-indistinguishable
proofs (NIWI) of satisfiability of a set of equations along with example instantiations
based on different assumptions. To give an intuition, given a witness-indistinguishable
proof it is impossible to determine which witnesses have been used. However, the
proof still might leak other information, e.g., that a certain witness has not been
used. Zero-knowledge on the other hand does not leak any information except for
the correctness of the statement.

We use the instantiation based on the SXDH assumption as this fits the automor-
phic signature scheme we utilize. In the following we will present the proof scheme
as we implemented it, i.e., instantiated under the SXDH assumption, and refer the
reader to [35] for the general approach. The set of equations that can be proven
satisfiable includes pairing product equations and multi-scalar multiplications in G1

and G2.

17

Pairing product equation:

n∏
i=1

e(Ai,Yi) ·
m∏
i=1

e(Xi,Xi) ·
m∏
i=1

n∏
j=1

e(Xi,Yj)γij = tT

Multi-scalar multiplication equation in G1:

n′∑
i=1

yiAi +
m∑
i=1

biXi +
m∑
i=1

n′∑
j=1

γijyjXi = T1

Multi-scalar multiplication equation in G2:

n∑
i=1

aiYi +
m′∑
i=1

xiBi +
m′∑
i=1

n∑
j=1

γijxiYj = T2

Quadratic equations in Zn:

n′∑
i=1

aiyi +
m′∑
i=1

xibi +
m′∑
i=1

n′∑
j=1

γijxiyj = t

Please note that we follow [35] by choosing additive notation for G1 and G2 but
multiplicative notation for GT . The former is more common in mathematics while
the latter is usually used in cryptography. + thus refers to the group operation in
G1 and G2 and · in GT . Further, 1 is the neutral element in GT and O refers to
the neutral element in G1 and G2. Capital letters denote group elements and small
letters denote elements from Zn. We will stick with this notation through the rest of
this work.

We first explain the individual building blocks of the proof scheme, i.e., the usage
of modules, and how we can commit to values, and we show how to turn the NIWI
proofs into zero-knowledge. We conclude with a description of the actual zero-
knowledge protocol.

Modules [35] uses modules as a generalization. This step allows for recasting pair-
ing product equations, multi-scalar multiplication equations and quadratic equations
as quadratic equations over Zn-modules with a bilinear map. Instead of several differ-
ent commitment schemes and proofs, now only one scheme and proof is needed
respectively, i.e., a scheme and a proof for quadratic equations over R-modules
A1, A2, AT with bilinear map f . To conduct the actual proof they have to be in-
stantiated accordingly. An R-module A is an abelian group (A,+, 0).

18

Let R be a finite commutative ring and A1, A2, AT be finite R-modules with
a bilinear map f : A1 × A2 → AT . Then quadratic equations over variables
x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2 can be described as follows

n∑
j=1

f(aj, yj) +
m∑
i=1

f(xi, bi) +
m∑
i=1

n∑
j=1

γijf(xi, yj) = t

For notational convenience we adapt the following notational simplification for
x1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2

~x · ~y =
n∑
i=1

f(xi, yi)

As an example for this concept we will recast the multi-scalar multiplication in
G1 to a quadratic equation in detail. The other equations can be recast in a similar
fashion as shown in [35]. First we recap the equation

n′∑
i=1

yiAi +
m∑
i=1

biXi +
m∑
i=1

n′∑
j=1

γijyjXi = T1
�� ��3.4

for variables: X1, . . . ,Xm ∈ G1, y1, . . . , yn′ ∈ Zn
and constants: Ai, T1 ∈ G1, bi, γij ∈ Zn

Before recasting the equation we have to define R, A1, A2, AT and f(x, y). As
we want to instantiate for multi-scalar multiplication in G1, we set A1 = G1 and
AT = G1, since the result of our multiplication will be in G1. To represent scalar
multiplication there is only one choice for A2, i.e., A2 = Zn. As R-module we choose
Zn. Finally we have to define f(x, y). As we are instantiating for scalar multiplica-
tion, the function f will be f(X, y) = yX. Having this set up, we first rewrite the
equation 3.4 by replacing all products with the function f . The resulting equation is
given in 3.5. Then we use the simplification ~x · ~y =

∑n
i=1 f(xi, yi) and get 3.6.

n′∑
i=1

f(Ai, yi) +
m∑
i=1

f(Xi, bi) + ΓT
m∑
i=1

n′∑
j=1

f(Xi, yj) = T1
�� ��3.5

(~A · ~y) + (~X ·~b) + (~X · Γ~y) = T1
�� ��3.6

Commitments from modules and SXDH-instantiation After performing the
abstraction using modules instead of the groups G1 and G2 directly, we can describe
the commitment scheme proposed in [35]. In general, to commit to an element x
from an R-module A, the element is mapped into another R-module B and then the
commitment key elements u1, . . . , um̂ are multiplied with randomnesses r1, . . . , rm̂

19

chosen from R and the results added together. Again, please note that this means
that the group operation from B is applied on the results. The mapping from A
to B is implicitly given by the map ι which is part of the commitment key. The
commitment key itself is part of the common reference string.

Again, we adapt the notation from [35] to express several commitments to several
elements at a time.

Given elements x1, . . . , xm ∈ A we write

~c := ι(~x) +R~u with R ∈ Matm×m̂

for making commitments c1, . . . , cm, computed as

ci := ι(xi) +
m̂∑
j=1

rijuj

As stated above we will give the details for the instantiation based upon the SXDH
assumption. In this setting there will be two commitment keys, one key (u1, u2) for
the group G1 and one key (v1, v2) for the group G2. The module B1 is initialized
as B1 := G2

1 and B2 accordingly as B2 := G2
2. BT is given by BT := G4

T . The
map F : G2

1 × G2
2 → G4

T maps elements from the modules B1 and B2 to BT . The
maps ι1 and ι2 are given by ιi(X) := (O, X) for i ∈ {1, 2}. If we apply this to the
general case we get the following equation for committing to elements in G1 and G2

respectively.
We commit to group elements ~X from G1 as

~c := ι1(~X) +R~u for R← Matm×2(Zp)5

In the case where we compute a single commitment, i.e., m = 1, we have

c := ι1(X) + r11u1 + r12u2

which can be referred to the general case directly. Please notice that u1 and u2 as well
as ι1(X) are elements in B1 and as such are vectors themselves. ι1(X) by definition
is (O, X), so actually a commitment looks like

c :=

(
O
X

)
+ r11

(
u11
u12

)
+ r12

(
u21
u22

)
Adding two vectors here means applying the group operation pairwise to the corre-
sponding entries (

A
B

)
+

(
C
D

)
:=

(
A+ C
B +D

)
5Note that m̂ is directly initialized to 2 since the commitment key contains two elements in this

instantiation.

20

Commitments to group elements from G2 follow accordingly.
In order to commit to exponents from Zp we need additionally maps ι′1 and

ι′2. They are given as ι′1(z) := zu with u := u2 + (O, P1) and ι′2(z) := zv with
v := v2 + (O, P2). A commitment to an exponent then is given by c := ι′1(x) + ru1
and c := ι′2(x) + rv1 for randomly chosen r from Zp.

The construction of the commitment keys (u1, u2) and (v1, v2) depends, apart
from the chosen assumption, on the intended properties of the whole construction.
We can achieve either perfectly binding or perfectly hiding commitments.

For our zero-knowledge protocol we choose perfectly hiding commitments, i.e., the
witness-indistinguishability setup. This is important since we stress that our protocol
reveals nothing except the intended recipients key, the message m, and the length of
the chain.

Assumption The distribution of hiding keys and the distribution of binding keys
are computationally indistinguishable under the DDH assumption.

Hiding commitment keys for SXDH are instantiated as follows. The element u1 is
given as u1 := (P1,Q1), where P1 is a generator for G1 and Q1 := αP1 for randomly
chosen α ∈ Z∗p. The computation of u2 now determines whether we get a perfectly
binding commitment key or a perfectly hiding one. We choose u2 := tu1 − (O,P1)
for randomly chosen t ∈ Z∗p which yields perfectly hiding keys.

Argument As mentioned above, u1 and u2 are elements of B1 = G2
1 and thus they

are actually vectors. If we take a closer look at u1 and u2 we can easily see that they
are linearly independent and thus they form a basis for B1. In particular, this yields
ι1(G1) ⊆ 〈u1, u2〉. Another visit to a single commitment c := ι1(X) + r1u1 + r2u2
shows that if r1 and r2 are chosen randomly, there is no way to distinguish between
ι1(X) and r1u1 + r2u2, since ι1(X) is an element of the vector space spanned by u1
and u2 and r1u1 + r2u2 is a random element of the same vector space. Thus a key
constructed this way is indeed perfectly hiding. The construction and argument for
v1 and v2 follows accordingly.

The construction and argument for the keys for commitments to exponents also
follows the same idea. Since we decided for a hiding commitment key, we have u :=
tu1−(O, P1)+(O, P1) which is u = tu1. It now directly follows that u ∈ 〈u1〉, which
implies ι′1(Zp) ⊆ 〈u1〉. Thus we can easily see that this yields a hiding commitment
key for exponents. The same holds for v.

Zero-knowledge There is one last thing missing before we can describe the proofs
we need for our protocol. We already mentioned, that the proofs described in [35] are
non-interactive witness-indistinguishable proofs. However, by modifying the equations
we want to prove satisfiable, we can empower the simulator to generate a suitable
witness in all cases. In particular, recasting the equations to equal 1 for pairing
product equations and 0 for multi-scalar multiplications allows for a trivial witness,

21

i.e., O. The resulting equations yield composable non-interactive zero-knowledge
proofs of satisfiability. They enjoy perfect completeness, perfect Lco-soundness and
composable zero-knowledge. We refer the interested reader to [35] for definitions and
proofs of these properties.

Proofs We now have all the building blocks to describe the proofs needed for
our protocol. Like in the classical approach we would like to show the verification
equations in zero-knowledge.

Before we give the full details, there is one last notational convention we have to
introduce. For ~x ∈ Bn

1 , ~y ∈ Bn
2 we define

~x • ~y =
n∑
i=1

F (xi, yi)

where F is a map F : B1 ×B2 → BT .
For our protocol, we expect a bilinear map gk := (p,G1, G2, GT , e,P1,P2) as

input and a common reference string defining the following

• B-modules initialized as B1 := G2
1, B2 := G2

2, and BT := G4
T

• A map F : G2
1 ×G2

2 → G4
T defined as((

X1

X2

)
,

(
Y1

Y2

))
7→
(
e(X1,Y1) e(X1,Y2)
e(X2,Y1) e(X2,Y2)

)
• Commitment keys (u1, u2), (v1, v2) of the form

u1 = (P1,Q) := (P1, α1P1) u2 = t1u1 − (O,P1) t1, α1 ←r Zp
v1 = (P2,Q) := (P2, α2P2) v2 = t2v1 − (O,P2) t2, α2 ←r Zp

For our protocol we can omit the maps ι̃T , ι̂T , and ιT since we will be only dealing
with recast equations which either have tT = 1 or T1, T2 = O. In the first case we
get a matrix of all 1 by applying ιT which is neutral to multiplication and in the other
cases we get (O,O) as input to F which results in a matrix with all entries being O
by bilinearity.

Having finished the setup we can describe the protocol. Our goal is to prove the
verification equation of our automorphic signature scheme in zero-knowledge.

Step 1 First we commit to all values included in the verification equation. As a
remark, G from the automorphic signature scheme equals P1 and H equals P2.

~c = (c(A), c(KM), c(T), c(C), c(F), c(R), c(P1), c(K), c(M))
~d = (d(Y D), d(P2), d(S), d(D), d(Y))

The commitments to K,M and Y,D are necessary to prove that the values KM and
Y D we use for computations are indeed the result of the application of the group

22

operation to K and M and Y and D respectively. M represents the first element of
a message (M,N) and Y is part of the verification key (X, Y) that belongs to the
secret key that has been used to sign this message. It is interesting to notice that
only one part of the message and the verification key are used in the verification.
We will revisit this fact later in this section when we explain how to connect several
proofs in a certificate chain.

As an example, the commitment for A looks like

cA := ι1(A) + rA1u1 + rA2u2

Step 2 As mentioned in step 1 we have to prove that KM and Y D are indeed the
results of applying the group operation to K and M and Y and D. We can express
this by multi-scalar multiplication equations of the form

Y +D = Y D and K +M = KM

We recast them to equal O as follows

Y +D − Y D = O K +M −KM = O

Further we can observe that our equations are linear equations of the form ~X~b =
T1 and ~a~Y = T2 respectively. Linear equations can be proven using the following
shortened proofs

~π := RT ι′2(
~b) for G1 and ~π := RT ι′2(

~b) for G2

The values a and b can be directly read from the equations if we rewrite them to
(1) · Y + (1) ·D+ (−1) · Y D = O. Plugging in the values for ~a and ~b we get for G1

the proof

~π := RT ι′2(

 1
1
−1

)

and for G2 we have

~θ := ST ι′1(

 1
1
−1

)

The matrices R and S are given by the randomnesses used to commit to the values in
the equation. They are of dimension m× 2, where m is the dimension of the vectors
~b and ~a respectively. For example, R for the first equation would look like rK1 rK2

rM1 rM2

rKM1 rKM2


23

Plugging this in and applying the ι′ functions we have as proofs

~π :=

(
rK1 rM1 rKM1

rK2 rM2 rKM2

) 1
1
−1

 v

~θ :=

(
rY 1 rD1 rY D1

rY 2 rD2 rY D2

) 1
1
−1

u

Since RT and ST are of dimension 2 ×m and ~b and ~a are of dimension m × 1 we
will always have a 2× 1 matrix, i.e., a vector, to multiply to ~u and ~v respectively.

Finally for a multiplication proof in G1 we add θ := (O,O) and for a multiplication
proof in G2 we add π := (O,O) since a proof always consists of the two elements π
and θ.

Step 3 To conclude our proof we have to show in zero-knowledge that the veri-
fication equations of the signature indeed hold. Therefore we need three pairing
product equations which prove e(A, Y D) = e(KM,H)e(T, S), e(C,H) = e(F,D),
and e(R,H) = e(G,S). First we recast the equations to equal 1 to achieve zero-
knowledge proofs

e(A, Y D) · e(KM,H)−1 · e(T, S)−1 = 1
e(C,H) · e(F,D)−1 = 1
e(R,H) · e(G,S)−1 = 1

Comparing this to the general pairing product equation (~A· ~Y)(~X · ~B)(~X ·Γ~Y) = tT ,

we can see that in our equations we only have the case ~X · Γ~Y , which simplifies the
proofs as the parts concerning ~B and ~A can be omitted. The proof equation for a
single pairing product equation then is

~π := RTΓι2(~Y) · (RTΓS − T T)~v
~θ := STΓT ι1(~X) · T~u

Again, the matrices R and S are of dimension m×2 and represent the randomnesses
from the commitments to the variables of the corresponding verification equation.
As a reminder, m is the dimension of ~X and ~Y respectively. T is a 2 × 2 matrix
randomly chosen from Zp and is used to randomize the proof. Γ is directly taken from
the pairing product equation and represents the exponents of the individual parts of
the equation. For our protocol Γ will always be a variant of the identity matrix with

24

dimension m×m. For e(A, Y D) · e(KM,H)−1 · e(T, S)−1 = 1 we get

~π :=

(
rA1 rKM1 rT1
rA2 rKM2 rT2

)1 0 0
0 −1 0
0 0 −1

 ι2(

Y DH
S

)+

(

(
rA1 rKM1 rT1
rA2 rKM2 rT2

)1 0 0
0 −1 0
0 0 −1

rY D1 rY D2

rH1 rH2

rS1 rS2

− (t11 t21
t12 t22

)
)~v

~θ :=

(
rY D1 rH1 rS1
rY D2 rH2 rS2

)1 0 0
0 −1 0
0 0 −1

 ι1(

 A
KM
T

) +

(
t11 t12
t21 t22

)
~u

Taking a closer look at the matrices used in the equation we see that RT is of
dimension 2×m and Γ of dimension m×m. The resulting matrix therefore will be
of dimension 2×m. Multiplying this with ~Y we get a 2× 1 matrix(

RTΓ11 RTΓ12 RTΓ13

RTΓ21 RTΓ22 RTΓ23

)Y DH
S


(
RTΓ11Y D +RTΓ12H +RTΓ13S
RTΓ21Y D +RTΓ22H +RTΓ23S

)
If we further multiply RTΓ with S we get a 2×2 matrix that is suitable for subtraction
by T T and later on multiplying with ~v. Again, this is matrix-multiplication, but the
individual products are combined using the group operation.

For e(C,H) · e(F,D)−1 = 1 we get as proof

~π :=

(
rC1 rF1

rC2 rF2

)(
1 0
0 −1

)
ι2(

(
H
D

)
)+

(

(
rC1 rF1

rC2 rF2

)(
1 0
0 −1

)(
rH1 rH2

rD1 rD2

)
−
(
t11 t21
t12 t22

)
)~v

~θ :=

(
rH1 rD1

rH2 rD2

)(
1 0
0 −1

)
ι1(

(
C
F

)
) +

(
t11 t12
t21 t22

)
~u

and for e(R,H) · e(G,S)−1 = 1

~π :=

(
rR1 rG1

rR2 rG2

)(
1 0
0 −1

)
ι2(

(
H
S

)
)+

(

(
rR1 rG1

rR2 rG2

)(
1 0
0 −1

)(
rH1 rH2

rS1 rS2

)
−
(
t11 t21
t12 t22

)
)~v

~θ :=

(
rH1 rS1
rH2 rS2

)(
1 0
0 −1

)
ι1(

(
R
G

)
) +

(
t11 t12
t21 t22

)
~u

25

Alice

sig M 2 , N 2 , skAlice

Bob

sig M 1 , N 1 , sk Bob

Figure 3.1: Sending a message in a minimal web of trust

Step 4 The commitments, all proofs ~π and ~θ, and the individual ~a, ~b, and Γ as parts
of the statement, are sent to the verifier.

Verification Given the setup information gk, the common reference string, the
commitments, and the set of proofs {~π, ~θ}Ni=1, the verifier needs to check the following
equations
For every pairing product equation

~c • Γ~d = ~u • ~π + ~θ • ~v

For every multi-scalar multiplication in G1

~c • ι′2(~b) = ~u • ~π

For every multi-scalar multiplication in G2

ι′1(~a) • ~d = ~θ • ~v

Please notice that we omitted all parts of the equations that are trivially the neutral
element in our case. For instance, in the pairing product equation ιT (tT) is the matrix
with all 1’s since we set tT to 1 to get zero-knowledge.

Chaining proofs In the previous paragraphs we have shown how to prove in zero-
knowledge that we know values such that a single verification of an automorphic
signature holds. Considering Figure 3.1, which depicts a simple scenario in our web
of trust, i.e., Bob wants to send a message to Alice, we can see that we need to prove
at least two verifications in order to authenticate the message anonymously. Unfor-
tunately, simply sending two proofs is not sufficient. In the first proof, Bob proves
that the verification equations of his signature on m are satisfiable using his verifi-
cation key. The second proof states, that the verification equations of the signature
on his public key created by Alice are satisfiable using Alice’s public key. However,
the verification equations only use one part of the verification key, i.e., the Y from

26

Proof-equation Group operations Multiplications
with Zp

Pairings

Commitment 4 4 0
Multi-scalar multiplica-
tion

2 2 0

Pairing product 2 32 32 0
Pairing product 3 40 40 0

Table 3.1: Number of ECC operations per proof-equation

vk := (X, Y). So in particular, the first proof could verify using a key (X1, Y1) and
the second proof could be for a signature over a message (X2, Y1). In order to prevent
this, we have to prove that both proofs use the same message. This is achieved by
another pairing product proof. Given that G and H are generators for G1 and G2

respectively and the following verification equations

ver((M1, N1), sig((M1, N1), skBob), (XBob, YBob))∧
ver((M2, N2), sig((M2, N2), skAlice), skAlice)

we have to prove
(M2, N2) = (XBob, YBob)

This is achieved by proving the following pairing product equation

e(M2, H) = e(G, YBob)

Writing the equation in detail shows why this is indeed the proof we need. Under the
assumption that (Gx, Hx) is Bob’s public key and that M2 is the first part of this
tuple we have

e(M2, H) = e(Gx, H) = e(G,Hx) = e(G, YBob)

Complexity analysis In contrast to [35] where the cost is given as the number of
group elements needed for the individual proofs, we consider the number of operations
of greater interest, since they provide a better impression of the computational costs.
In Table 3.1 we give an overview of how many operations of which type our current
implementation needs. Please notice that this might differ from the general case, since
our implementation is tailored specifically for our instantiation. Table 3.2 lists the
operational costs for the verification equations. Adding up the costs for the individual
proofs we get roughly 150 group operations to compute a proof and about 30 group
operations and 100 pairings for the verification. Since individual group operations
and pairings can be computed very fast, these are indeed feasible results.

The communication complexity as well as the proof size are linear in the length
of the chain.

27

Proof-equation Group operations Multiplications
with Zp

Pairings

Multi-acalar multiplica-
tion

2 8 16

Pairing product 2 8 24 24
Pairing product 3 18 38 28

Table 3.2: Number of ECC operations per verification-equation

28

Section 4

Implementation

Due to the fact that we provide two instantiations of our zero-knowledge protocol that
rely on completely different cryptographic building blocks we also provide two differ-
ent implementations. We first present the implementation based on the Camenish-
Lysyanskaya signature scheme with a short description of some of the problems we
encountered. Additionally we present the key-server we provide to realize a fully
working extension to existing webs of trust. Further we describe the exemplary im-
plementation of the protocol based on bilinear maps. We conclude with a description
of the experimental results we obtained for the bilinear map based approach.

4.1 Java implementation of the classical approach

The intention of the first implementation was a fully fledged and ready-to-use exten-
sion to the web of trust realized by PGP [49] and GnuPG [31]. We chose Java [47]
as programming language because next to a fast and object-oriented implementation
it allows for easy construction of graphical user interfaces. However, there was no
big number library available that could handle the expected huge number of expo-
nentiations modulo a prime reasonably fast. Promising alternatives that may be used
for research were NTL [56] (based on GMP [51]) and Miracl [55]. We opted for the
latter because in contrast to NTL it is suitable for use with parallelization. This is
important to further leverage the problem of the huge number of exponentiations, in
particular on multi-core systems. However, both libraries are implemented in C [52]
and as far as we know there are no Java bindings available for them.

Given these basic considerations, the first part of our implementation is a java
native interface (JNI) wrapper that allows us to access the C-library functions of
Miracl from Java. The wrapper offers a Java representation of an immutable huge
number and the necessary operations on such numbers, including serialization and de-
serialization. This allows us to conveniently implement all cryptographic algorithms
needed while sticking close to implementation guidelines for modern object oriented
languages. Implementing the numbers to be immutable has the side-effect that it

29

prevents the accidental change of a value passed as an argument to a function for
a computation. This is a very important aspect to reduce the potential sources of
implementation errors and proved to be valuable in practice as a lot of program-
ming errors already showed on compile time. Further we provide a set of expressive
JUnit [40] test cases for our wrapper.

The second part of the program consists of an implementation of all cryptographic
primitives introduced in Section 3 and needed for our proof. Lastly we connected ev-
erything into one library style application that offers convenient functions for the
individual proof steps to the outside world. This allows for easily attaching a separate
graphical interface to the implementation. Moreover, the cryptographic primitives as
well as the big number representation can be easily interfaced and used by other pro-
grams. We consider this of independent interest as this might be a first step towards
a general library containing cryptographic primitives suitable for use in the construc-
tion of zero-knowledge protocols. Further our implementation contains functions to
interface the key server, i.e., requesting certificate chains, uploading new keys, and
updating them with new certificates.

Finally we provide a graphical user interface utilizing the functions our imple-
mentation provides. Next to the generation of proofs and their verification, it also
offers functionality to manage keys and certificates and to interface the key server
conveniently.

The implementation is freely available from [9]. Although the system is working,
we have to admit that the running time is not satisfying. A proof for a chain of
length two needs about two hours to compute. The reason being the huge number
of exponentiations modulo a prime, about 900000 for such a proof, that has to be
computed. One of the reasons that even parallelization does not help to mitigate the
problem significantly is, that we can not apply it throughout the program, as lots of
computations rely on the results of other computations.

4.2 Key server

We assign an extra section to the key server since we consider it of independent
interest because, although not performed in practice, we are convinced that this key
server is also suitable to be used with the new instantiation of our protocol based
on bilinear maps since the only part that has to be exchanged is the type of the
certificate and public keys while the basic algorithms for retrieval and the structure of
the database stay the same. This is one starting point for future work in Section 7.

The key server is implemented in Java. To communicate with the server the
client sends an instance of a command object to the server containing the necessary
parameters for the intended operation on the server side. The connections to clients
are handled by a thread pool, which enables the server to, at least theoretically,
handle a huge number of connections in parallel. During tests we never encountered
a situation where the server was unable to accept a new connection. To store the

30

actual keys and certificates the server is backed by a PostgreSQL [50] database.
The server offers the addition of keys, the retrieval of a certificate chain with

given length between two entities, if existent, the retrieval of a certain public key,
the retrieval of a number of keys with a given distance to a certain key, and the
attachment of a signature to a key, i.e., expressing trust in the authenticity of the
binding between the key and the according identity.

Further, each key has to be signed by a GPG key. This signature on the CL key
with a users GPG key establishes the connection between our anonymous web of trust
and the web of trust already given by GPG. By signing the anonymous key with the
GPG key, a user certifies, that this key belongs to her, in particular, that it belongs
to the identity connected to her public key.

4.3 Implementation based on bilinear maps

The second implementation we provide constitutes a proof-of-concept implementa-
tion. However, it offers full functionality to create and verify keys, signatures, and
proofs. As number theory library we opted for Ben Lynn’s PBC [43], that is written
in C. We chose C++ [58] as programming language for our implementation, as this
allows for easily interfacing the library while still offering object oriented programming.
The experience from our first implementation pointed out, that it is much more con-
venient to write the whole library in C or C++ than to make primitives available in
a higher language, e.g., Java, and to perform the computations there.

We provide classes representing group elements, vectors, and matrices in a general
way suitable for use with any curves from PBC. Moreover, we provide operators for
most mathematical operations using operator overloading. This enables a programmer
using these primitives to write very expressive code. For example, to perform the
group operation between the group elements A and B we can write C = A + B;.
The cryptographic primitives are all instantiated based on the SXDH assumption
and optimized specifically for this use-case. However, we tried to stick as far as
possible with a strictly object oriented approach in order to make it (easily) possible to
extend the implementation for other assumptions or to generalize the implementation
completely. Further we provide a generator to conveniently generate bilinear maps
for use in our protocol.

The implementation itself is able to prove the existence of a certificate chain given
the messages, keys, and the common reference string. It provides a command line
interface suitable for testing. It lacks a graphical user interface, communication with
the key server, and high level functions to conveniently create proofs. This is why we
consider it a proof-of-concept implementation.

A particularly interesting part of the implementation is the “binding” proof which
shows that the message signed in the current proof equals the key used in the previous
proof of the chain. A chain in this case is directed from the message over the sender
towards the intended recipient. This is done by constructing a pairing product proof

31

Date security parameter asymmetric key size elliptic curve size
2007 - 2010 80 1024 160
2011 - 2030 112 2048 224

> 2030 128 3072 256
>> 2030 192 7680 384

>>> 2030 256 15360 512

Table 4.1: Estimated secure usage interval, security parameter and comparable asym-
metric key sizes, and elliptic curve sizes as recommended by NIST in 2007

e(M,H) = e(G, Y) where M is initialized to be the first part of the current message,
and Y is initialized to be the second part of the previous key

1 ...

2 X = Vector(messages[i].M, ref.P1);

3 Y = Vector(ref.P2, keys[i - 1].Y);

4 ...

This ensures that in the implementation indeed the previous key keys[i − 1] is used
and proven to be identical with the current message messages[i].

The implementation is freely available from [9]. Within the downloadable package
we provide detailed instructions on how to build and use the program. The program
offers several switches to create keys, sign a given message, and generate and verify
a proof for a given chain length and given signatures. Especially, this allows for
extending proofs in settings where the web of trust is not public.

4.3.1 Security parameter

Before we present the results of our experimental evaluation, we give an intuition of the
meaning of the security parameter. As with the classical approach, where the running
time depends on the size of the key used, the results for our new implementation
depend on the size of our curve. We follow the recommendations of NIST [46]
from 2007.6 According to NIST, a security parameter of 112 bits is comparable to
2048 bit asymmetric cryptography keys with respect to cryptographic strength. NIST
assumes algorithms with this strength secure up to the year 2030. A list of several
recommendations is given in Table 4.1.

4.3.2 Experiments

Our program yields very good results with respect to running time and proof size.
Figure 4.1 shows the results depending on the chain length for a fixed security pa-
rameter of 112 bits, which is a reasonable choice. The results depicted show a linear
increase of running time and proof size, since the complexity increases linearly with

6We use the recommendations as reported on http://www.keylength.com.

32

http://www.keylength.com

1 2 3
0

2

4

6

8

Number of proofs

P
ro

of
ge

ne
ra

ti
on

ti
m

e
in

s

1 2 3
0

2

4

6

8

Number of proofs

P
ro

of
ve

ri
fi

ca
ti

on
ti

m
e

in
s

1 2 3
0

5

10

15

20

25

Number of proofs

P
ro

of
si

ze
in

kB

One proof corresponds to ver(m, sig, vk). Two and three proofs correspond to
ver(m, sig1, vk1) ∧ ver(vk1, sig2, vk2) and ver(m, sig1, vk1) ∧ ver(vk1, sig2, vk2) ∧
ver(vk2, sig3, vk3), respectively.

Figure 4.1: Experimental evaluation of zero-knowledge proofs of various verification
chain lengths for a fixed security parameter of 112 bits.

the number of proofs. The verification times are slightly worse compared to the proof
generation. However, we expected this, since the verification involves pairings be-
tween elements, which is a very costly operation. In particular, the cost for a pairing
computation increases with the embedding degree of the elliptic curve used.

We can create a proof for a chain of length two in approximately 6.5 seconds.
Considering the fact, that we did not yet implement any computational optimizations,
this is a really promising result towards a full-fledged application. The proof sizes go
up to 25 kb for a chain length of two, which is still small enough to send or publish
proofs without problems.

33

Section 5

Extensions

The cryptographic protocols described so far allow the prover to show the existence
of a certificate chain without revealing anything other than the length of the chain.
In some situations, however, the length of the chain might reveal too much about
the prover’s identity, while in some other scenarios users might desire more precise
trust measures, even at the price of sacrificing a little bit of their anonymity. There is
indeed an inherent trade-off between anonymity and trust. In this section we develop
extensions of our protocols that allow users to fine-tune the degree of anonymity and
trust. Naturally these extensions increase the expressiveness of our protocols as they
increase the potential useful application scenarios, allow for more fine-grained trust
measurements, and give the user more power with respect to the attributes she wants
to reveal.

Since we have two fundamentally different cryptographic instantiations of the
same zero-knowledge protocol, there are differences with respect to possible exten-
sions. Whenever we do not mention anything explicitly, the extension works for both
instantiations without any preliminaries or special steps. Otherwise, we will explicitly
state special requirements or limitations with respect to a given instantiation.

5.1 Hiding the chain length

The length of the chain might actually reveal some information about the sender,
depending on the topology of the web of trust. For instance, in the extreme scenario
where the intended recipient has certified just one key and the length of the chain
is 1, the intended recipient knows exactly the identity of the sender. We can further
generalize this problem when we refer to Section 2. We stated, that actually we
achieve k-anonymity with our zero-knowledge protocol, i.e., the prover is anonymous
under k − 1 other entities with the same trust measure for a given chain length. If
we face a sparse or deformed web of trust, this number k might be so small, that it
does not satisfy the anonymity requirement of the prover.

To address this problem it is possible to increase the length of the chain proven in

35

zero-knowledge by attaching self-generated (and self-signed) certificates. Therefore
the prover has to generate a number of fresh keys she uses to “locally” increase the
chain length. These keys and certificates however don’t have to be uploaded onto key
servers, and for the sake of keeping the web of trust reliable should not be uploaded,
since the final proof is self-contained and the information generated by the prover to
increase the chain length not needed to verify the proof. After the proof is generated,
this additional information can be discarded.

Using this extension, a proof for a certificate chain of length n does not guarantee
that the prover is n hops away from the verifier, but that she is at most n hops away.

5.2 Partial release of secrets

To achieve fine-grained trust properties, we now consider certificate attributes, such
as user name and key expiration date, and show how to reveal some of them while
keeping the others secret. For instance, we might want to reveal the key expiration
date while hiding confidential information such as the user name. We recall that
participants in a web of trust place the signature on the concatenation of a public
key and a set of attributes.

For the classical instantiation, intuitively, instead of proving ∃ αm, αsig, αpk :
ver(αm, αsig, αpk), we would like to prove a statement of the form ∃ αS, αsig, αpk, αK, αA :
ver(αS, αsig, αpk) ∧ αS = (αK, αA) and then reveal (part of) the attributes αA. The
concatenation of the public key and the attributes is implemented as b = k · 2` + A
where ` is an a priori fixed upper bound on the length of the attribute set. The idea
is to split b in zero-knowledge and to reveal some of the components to the verifier.

Given commitment ckA on public key k and attributes A, commitment ck on k,
commitment cA on A, we execute the following zero-knowledge protocol:

{
PK(α, κ, τ) : JckK = κ ∧ JcAK = α ∧ JckAK = τ ∧ τ = κ · 2l + α ∧ 0 ≤ α < 2l

}
We can then open cA and release all the attributes A to the verifier or apply the
protocol again on cA to select which attributes have to be revealed.

For the instantiation based upon bilinear maps we face a different scenario. Here,
we do not need to place a signature on the concatenation of the public key and the
attributes. Instead, the automorphic signature scheme offers us the possibility to sign
message vectors, as mentioned in Section 3. This allows us to sign every attribute
and the public key as single message and later on to reveal individual commitments
to these signed attributes without revealing the others. Moreover we do not need a
special reveal protocol, we can simply reveal the attributes we would like to publish
by opening the corresponding commitments.

36

Figure 5.1: Webs of trust

5.3 Dynamic trust relationships and key expiration

Since trust relationships may vary over time, it is important to provide users with
the possibility to periodically update their certificates. Our system incorporates two
distinct key expiration mechanisms.

The first mechanism is based on a global version number that is attached as
an attribute to all public keys. Periodically after a fixed interval, all keys have to
be generated from scratch, resigned, and tagged with the updated version number.
Proving a key valid translates into showing that it is tagged with the most recent
version number. This version number is revealed using our partial secret release
protocol. As the interval is globally fixed, revealing the version number does not leak
any information about the key.

In order to provide the user with the possibility to independently decide the validity
of each certificate, we also support a second mechanism based on a key expiration
date. Users can use our partial secret release protocol to selectively reveal the ex-
piration date of a key. Since the exact expiration date might uniquely identify the
public key, one can also prove {PK(ε) : JceK = ε ∧ current date < ε < ub} given a
commitment ce on the expiration date attribute ε and a suitable upper bound ub for
all possible key expiration dates.

Notice that the OpenPGP standard [16] incorporates a key revocation mechanism,
which is implemented by a special signature (also called revocation signature) that
is attached to the revoked key by the revoking principal. Although conceptually
appealing, such a revocation mechanism is not compatible with our framework since
there is no way to prove in zero-knowledge that a certain key has not been revoked.
In particular, even if revoked, the key and the according certificates could still be used
in our zero-knowledge proof.

Since the scheme proposed in [35] does not provide a range proof, we do not
elaborate this extension for our new instantiation. However, it is possible to realize
the extension using the GS proof scheme, too. [45] for example shows how to prove
knowledge of an exponent and how to show that it is within a given range.

37

5.4 Conjunctive and disjunctive statements over cer-
tificate chains

Σ-protocols as well as the proof system for bilinear maps allow us to prove logical
conjunction and disjunction of statements. For the bilinear map approach this can be
encoded using standard techniques in arithmetization. Proving a conjunctive state-
ment over certificate chains strengthens trust at the price of decreasing anonymity
guarantees whereas a disjunctive statement enhances the anonymity guarantees but
diminishes trust.

In a way of example, consider Figure 5.1 (a) where A is trusted by both C1 and
C2, and D is only trusted by C2. Assume A is interested in authenticating to a party
B trusting both C1 and C2 and suppose also that A does not know the public key
of B. If A proves that she is trusted by C1 or C2, a curious principal will not be
able to distinguish whether the message originated from D or A. The trust guarantee
provided by the proof, however, may be low if, for instance, the link between C2 and
D is weak (cf. the following discussion on trust measures).

A proof that A is trusted by C1 and C2 strengthens the trust guarantee. One
can, however, compute the intersection of the principals trusted by C1 and C2, poten-
tially reducing the anonymity guarantees. In this example, the intersection uniquely
identifies A as the prover. This example shows that there is often an inherent trade-
off between trust and anonymity and the expressiveness of our zero-knowledge proof
scheme is crucial to fine tune the security requirements according to the application
scenario.

5.5 Proof that two committed numbers are not equal

For proving relations about independent chains, it is necessary to prove that two given
commitments do not contain the same number. This will be particularly useful when
we show how we can increase trust by demonstrating knowledge of multiple paths
from the recipient to the sender of a message. Proving that two commitments do
not contain the same number allows us to guarantee that multiple paths are distinct,
without revealing the nodes occurring therein.

The following protocol proves that ca and cb are commitments to different num-
bers. The intuition is that if a = b, then multiplying a − b by any value yields zero
modulo P . If a 6= b, then multiplying a − b by a random value yields a (non-zero)
uniformly random number in the group, thus hiding a and b.

{PK(α, β, ρ) : JcaK = α ∧ JcbK = β ∧ JcdK = d ∧ JcrK = ρ ∧
∧d ≡P (α− β) · ρ ∧ d 6= 0 ∧ 0 < ρ < P}

where cr is a commitment to a freshly generated random value r, P ≈ √q is a publicly
known prime, and d is the result of (a− b) · ρ mod P . Notice that the proof reveals

38

the opening information for the commitment JcdK. If d is different from zero, then
the verifier knows that the values a and b committed to in ca and cb are different.

In order to prove that two numbers are not equal using the pairing-based instantia-
tion, we need a different protocol. In fact, we have two separate protocols, depending
on whether we would like to show that two group elements are not equal or we would
like to show that two elements of Zn are not equal. The intuition, however, is in
both cases the same as with the classical approach. We first show the protocol to
prove that two group elements are not equal. If X = Y then X − Y = O, for
all X ,Y ∈ G1 or G2. Since the proof scheme we use is suited to proof equations
satisfiable, we express the statement as a linear multi-scalar multiplication equation
of the form

X + (−1)Y + (−1)Z = O
and then show in an additional multi-scalar multiplication proof that rZ = Z ′ for
some r ←r Zp. The according multi-scalar multiplication equation is

rO + 0Z + (−1)Z ′ + 1rZ + 0rZ ′ = O

As above, the r is used to hide X and Y . To conclude the protocol, we reveal Z ′. If
X and Y are equal, Z ′ will be O, but if they are not equal, Z ′ will be some random
element in the group and the verifier knows they are different.

The proof to show that two numbers of Zn are not equal is similar to the proof
for group elements. We show that x − y = z by computing a proof for the linear
quadratic equation

1x+ (−1)y + (−1)z = 0

In an additional proof we show that rz = z′ by proving

0z + (−1)z′ + r0 + 1rz + 0rz′ = 0

for r ←r Zn.
In order to keep r secret, r is treated as a variable in both cases, i.e., independent

whether we are proving that group elements are not equal or whether we are proving
that elements from Zb are not equal. If r would be revealed, the verifier could use z′

respectively Z ′ and r to recompute z respectively Z and thus make assumptions about
X, Y respectively x, y. If the web is sparse, this might be enough to compromise the
security of the prover since only one or only very few possible certificate chains remain
with the given trust values.

5.6 Trust measures

In the following, we extend our approach to trust measures. We will focus in particular
on the trust model from [22]. The examples in this paragraph are intentionally
borrowed from [22] in order to show the applicability of our framework to existing

39

trust models. Consider the web of trust in Figure 5.1 (b). As shown by the weight
of the two links, the trust of B in C is higher than the trust of A in B. The trust
measure proposed in [22] is based on the multiplication of the trust values of the
individual links. Therefore the trust degree provided by the chain between A and C
is 95% · 99% = 94.05%.

We devise a proof that reveals the trust degree provided by a given chain, without
disclosing the weight of individual links, since this might compromise the anonymity
of participants. In case even the exact trust degree is considered too informative on
the identity of the parties involved in the chain, we can approximate this value using
range proofs similarly to key expiration dates.

We believe this is a flexible solution to fine-tune the trade-off between trust and
anonymity. We assume trust values to be computed only using certain arithmetic
operations, namely, addition, multiplication, and exponentiation. Since users typically
know only a small fragment of a given web of trust, the used measure should be
monotone in the sense that adding a new path will not decrease the trust into a chain.
This way, our protocols will give safe underapproximations of the actual trust value.
The computation of a trust level for a given chain depends on the trust indicators
available in a concrete implementation of the used web of trust. For instance, in a
given web of trust, users could be allowed to state how much they trust their neighbors
using values on a scale from 0 to 100 where 100 denotes absolute trust. Such values
can easily be translated into probabilities.

In addition to proving the validity of the certificate chain of Figure 5.1 (b), the
prover executes the following protocol:

{PK(α, β, γ) : JctK = α ∧ Jct1K = β ∧ Jct2K = γ ∧ α ≡P β · γ}

where ct1 and ct2 are the commitments to the certificate attributes 95 and 99, P is a
large publicly known prime (cf. Proving that two committed numbers are not equal),
and ct is a commitment to 9405, which is opened by the prover. Since we cannot
reason on rational numbers and consequently on divisions7, the verifier has to perform
the remaining computation on the value JctK = 9405, namely 1−(1−9405/10000) =
94.05%.

We now show how our protocol can be extended to deal with even more complex
scenarios. Consider the graph in Figure 5.1 (c): Z has to show that there exist two
distinct paths from A to Z. The total trust degree is computed as 1 − (1 − 95% ·
99%) · (1− 80% · 95%) ≈ 98.6%.

The corresponding zero-knowledge proof is computed as follows. Given the com-
mitments cs1 , cs2 , cs3 , and cs4 on the certificates certAB, certAC , certCZ , and certBZ ,
where certIJ denotes the certificate issued by I on J ’s public key, and the commit-
ments ct1 , ct2 , ct3 , and ct4 on the corresponding trust values, in addition to showing

7Computing 1/m for a given m results in a number u such that m ·u = 1 mod q, e.g., 1/4 = 5
mod 19.

40

that both chains are valid we run the following protocol:

{PK(α1, α2, α3, α4, β1, β2) : Jct1K = α1 ∧ Jct2K = α2 ∧ Jct3K = α3 ∧ Jct4K = α4∧
Jcs1K = β1 ∧ Jcs2K = β2 ∧ β1 6= β2 ∧ JcrK ≡P (Jc10000K− α1 · α3) · (Jc10000K− α2 · α4)}

Proving Jcs1K 6= Jcs2K ensures that the first two signatures, and therefore the two
chains, are different.

The rest of the proof computes in zero-knowledge the total trust value as follows:
JcrK = (10000 − 95 · 99) · (10000 − 80 · 95) = 1428000 (c10000 is a commitment to
10000). The verifier then computes (108 − JcrK)/108 ≈ 98.6%. As in the previous
example, the verifier takes care of the final division. Although the numbers grow
quickly with the chain length and the number of parallel paths, the upper bound
P � 10100 is large enough for any reasonably sized chain.

In our pairing-based instantiation, we can prove the trust degree provided by a given
chain without disclosing the weight of the individual links too. The approximation to
hide the exact trust degree depends on rangeproofs and is thus not yet applicable.
As mentioned in Section 5.3, this is not a general problem and can be solved.

The exact trust measure can be proven using one (or several) quadratic equations
in Zp. Let x and y be the trust values 95 and 99 of the first and second link from
the example above respectively, and let further z = x · y be the trust value for the
chain. We prove the following equation

x · y = z x · y − z = 0

using the quadratic equation in Zp

0y + (−1)z + x0 + 1xy + 0xz = 0

Afterwards, we open the commitment to z. This reveals that the trust degree of the
connection is z = 9405. a and b are not revealed. As above, the computation of the
percentaged trust value is left to the verifier.

If the certificate chain consists of more than two elements and thus the number
of factors for the computation of the trust value increases, we have to use several
quadratic equation proofs and a divide and conquer approach. For instance, consider
an example where we have four elements in a certificate chain. The trust degree is
computed as u · v · w · x = z. We use two proofs to show that u · v = uv and
w · x = wx as shown above. Then we can prove uv · wx = z using a third proof.

Further, we can also model the more sophisticated scenario depicted in Fig-
ure 5.1 (c). In addition to proving that two different certificate chains exist, we
have to prove that the trust value is correctly computed as 1 − (1 − 95% · 99%) ·
(1 − 80% · 95%) ≈ 98.6%. The former can be achieved by applying the protocol
from Section 5.5 to all elements from the signatures on the respective first chain
element. The latter is achieved utilizing a divide and conquer approach again. The

41

statement is given by z = (10000 − 95 · 99) · (10000 − 80 · 95), or, more general,
z = (k − x · y) · (k − u · v), where k = 10000.

c(k − x · y) · (k − u · v) = z

prove: x · y = xy u · v = uv

(k − xy) · (k − uv) = z

prove: k − xy = kxy k − uv = kuv

kxy · kuv = z

We already know how to prove that x · y = z, so we only have to show how to prove
k− x = z. If we recast the equation to k− x− z = 0 we observe that this is even a
linear equation which can be proven using

1 · k + (−1) · x+ (−1) · z = 0

To conclude the proof, we have to show that the trust values multiplied do not
exceed p. If they exceeded p, we would have arbitrary results in Zp, since the result
is computed modulo p. A dishonest prover could use this to construct arbitrary trust
measures and thus impede soundness. In general it is safe to assume that the trust
values do not exceed p, not even multiplied several times for a longer chain, since p will
have several hundred bits while the trust values typically are in the range 1 . . . 100.
However, in order to prove it, we have to use a range proof for every trust value
which shows that they are within a given range. This would imply that all values
multiplied do not exceed p. As stated in Section 5.3, we refer to extensions of the
Groth Sahai [35] proof scheme for actual implementations of range proofs, e.g., [45].

Using a combination of the proofs presented and range proofs, we are able to
prove the whole equation. To conclude the protocol, we reveal z. Following the
example in the classical variant, the verifier has to perform the final computations.
For this purpose, the commitment to k = 10000 might be opened to show that this
constant has actually been used.

5.7 Settings where the web of trust is not public

The AND and OR constructions we use in the classical setting do not allow us to
modify or extend a given proof. They are non-malleable. As a result we are unable
to create a valid proof if we are unable to access the certificate chain from the prover
to the intended recipient. This restricts possible applications of our classical zero-
knowledge protocol to settings where the social graph is public or at least publicly
accessible.

We will show that using our second instantiation, we are able to create valid
proofs even in settings where we can not access the (full) social graph. This increases
the expressiveness of our proof scheme and allows for a wider range of application
scenarios. However, we will need some interaction to achieve this goal.

42

sig  pk Alice , sk Bob

Charlie

sig  pkCharlie , sk Alice 

Alice Bob

Figure 5.2: Webs of trust

Consider the web of trust depicted in Figure 5.2. The gray area is unknown
and inaccessible to Charlie. However, he knows that there exists a (mutual) trust
relationship to Alice. Intuitively, the idea is, that Charlie asks Alice to create a
proof with Bob as recipient and Charlie’s public key as message, i.e., a proof for the
statement

∃α1, α2, α3 : ver(pkCharlie, α1, α2) ∧ ver(α2, α3, pkBob)

Instead of sending the proof to Bob, Alice sends it to Charlie. Charlie now combines
the proof received from Alice with the part he actually wants to prove, i.e.,

∃α4, α5 : ver(m,α4, α5)

The statement Charlie proves is then given by

∃α1, . . . , α5 : ver(m,α4, α5) ∧ ver(α5, α1, α2) ∧ ver(α2, α3, pkBob)

In the actual instantiation we have one additional problem to consider. In addition to
the proofs for the verification equations, there will be the binding proofs as described
in Section 3. In particular, Charlie has to create the proof for the binding between
his public key used as α5 in ver(m,α4, α5) and the α5 used by Alice when creating
a proof for ver(α5, α1, α2). For this purpose, Charlie needs access to the opening
information of the commitment to α5 by Alice. It is important to notice that Charlie
uses the proof he receives by Alice “as is”. In particular, he does not change anything,
he just prepends his proofs.

Considering a setting where every participant in a social graph only knows his direct
neighbors, i.e., entities with distance one, this protocol could be applied recursively.
For example, Alice could intend to send a message to Dave who has distance 3 to
Alice. Alice only knows Bob. So she asks Bob for a proof, Bob again asks all his
direct neighbors, and so on. On return, every instance applies the above protocol
to the proof she receives to get a proof for a chain up to her. Finally, Alice can
construct a proof to authenticate a message with Dave, if there exists a path in the
graph between them.

43

Section 6

Abstract representation and formal
verification

While the cryptographic proofs from Section 3 ensure properties like special sound-
ness, it is important to verify, however, that the protocol as a whole guarantees the
intended trust and anonymity properties. We conducted a formal security analysis by
modeling our protocol in the applied pi-calculus [1], formalizing the trust property as
an authorization policy and the anonymity property as an observational equivalence
relation, and verifying our model with ProVerif [14, 2], a state-of-the-art automated
theorem prover that provides security proofs for an unbounded number of protocol
sessions.

We considered certificate chains of length less or equal than 3. We model zero-
knowledge proofs following the approach proposed in [10], for which computational
soundness results exist [11]. For easing the presentation, in this section we focus on
certificates without attributes.

6.1 Attacker model

In our analysis, we consider a standard symbolic Dolev-Yao active attacker who dic-
tates the certificates released by each party, i.e., the attacker controls the web of
trust, the certificate chains proven in zero-knowledge, and the proofs received by
each verifier.

6.2 Verification of trust

We partition the set of parties in honest and compromised. Honest parties generate a
fresh key-pair, publish the public component, and engage in three distinct activities:
Certificate generation, proof generation, and proof verification.

45

Figure 6.1: Trust policy

We decorate security-related protocol events with logical predicates, which consti-
tute the building blocks of the authorization policy formalizing the trust property (cf.
Figure 6.1). The event TRUST(x, y) describes the point in the protocol where the
honest party associated with public key x releases a certificate for public key y. The
event COMPR(x) tracks the compromise of the party associated with public key x
(i.e., this party is under the control of the attacker, which also knows the correspond-
ing private key). The event SENDi(x, y, z) describes the point in the protocol where
the party associated with public key x sends a zero-knowledge proof for a certificate
chain of length i to the party associated with public key y to authenticate message
z. Finally, the event AUTHi(x, y) describes the point in the protocol where the party
associated with public key x authenticates message y as coming from a party of trust
level i. The trust property is formalized as the following authorization policy:

AUTH2(id2, x)⇒ SEND2(id1, id2, x) & TRUST(id2, id3) & TRUST(id3, id1)) (1)
| (TRUST(id2, id3) & TRUST(id3, id1) & COMPR(id1)) (2)
| (TRUST(id2, id3) & COMPR(id3)). (3)

For the sake of simplicity, we focus on certificate chains of length 2: The extension
to arbitrary chain lengths is straightforward. This policy says that in all execution
traces, the event AUTH2(id2, x) has to be preceded by either (1) SEND2(id1, id2, x)
and TRUST(id2, id3) and TRUST(id3, id1) (i.e., all parties are honest), or (2)
TRUST(id2, id3) and TRUST(id3, id1) and COMPR(id1) (i.e., all parties except
for the prover are honest), or (3) TRUST(id2, id3) and COMPR(id3) (i.e., the party
trusted by the verifier is compromised and the attacker has chosen to lengthen the
certificate chain by an additional, possibly fake, certificate). In other words, this pol-
icy says that whenever the verifier authenticates a message as coming from a party of
trust level i, then indeed a party of trust level i or less has started a protocol session
with the verifier to authenticate that message.

This authorization policy is successfully verified by ProVerif and the analysis termi-
nates in 3 seconds. The formal analysis highlighted a couple of important requirements
for the safety of our protocol. First, the verifier has to check that the authenticated
message is not a public key8, otherwise the following attack would be possible: The
attacker gathers a certificate chain of length i+ 1 and builds a zero-knowledge proof

8We recall that parties sign the hash of messages and these are shorter than keys.

46

for a certificate chain of length i, authenticating the public key signed in the i + 1-
th certificate as coming from the party associated with the public key signed in the
i-th certificate. For a similar reason, signatures on messages other than public keys
cannot be sent in plain or must be tagged differently from the signatures proven in
zero-knowledge.

The specification of our protocol in the applied pi-calculus and the events used to
formalize the trust policy are reported in Listing 6.1. In the following we provide an
intuition on how the individual parts of the proof script work.

1 free c. (* communication channel *)

2 private free d. (* synchronization channel for public

keys *)

3
4 private reduc pkey(pk(x)) = true.

5 ...

6 (* standard equations for cryptographic messages and

zero -knowledge

7 omitted *)

8
9 query ev:AUTH(id2 ,x) ==>

10 (ev:SEND(id1 ,id2 ,x) & ev:TRUST(id2 ,id3) &

ev:TRUST(id3 ,id1)) |

11 (ev:TRUST(id2 ,id3) & ev:TRUST(id3 ,id1) &

ev:COMPROMISE(id1)) |

12 (ev:TRUST(id2 ,id3) & ev:COMPROMISE(id3)).

13
14 (*

15 Principals release certificates as dictated by the

attacker

16 *)

17
18
19 let auth =

20 in(c,(xsig2 ,xpk2 ,xsig3 ,pk1));

21 let z=pkey(pk1) in

22 new r1;

23 new m1;

24 let sigm1 = sign(hash(m1),sk(k)) in

25 let xzk1 =

zk(sigm1 ,pk(k),xsig3 ,xpk2 ,xsig2 ,r1;hash(m1),pk1;

proof) in

26 event SEND(pk(k),pk1 ,m1);

27 out(c,(xzk1 ,m1)).

28
29 (* The verifier receives and checks the zero -knowledge

47

proof *)

30
31 let ver =

32 in(c,(x,y));

33 if zkver (6;2; proof;x) = true then

34 if public2(x)=pk(k) then

35 let z = public1(x) in

36 if z=hash(y) then

37 AUTH(pk(k),z).

38
39 (* Honest principals *)

40
41 let peer =

42 new k;

43 !out(d,pk(k)) | (out(c,pk(k));

44 (!in(c, x);

45 let xi = pkey(x) in

46 in(d,=x);

47 event TRUST(pk(k),x);

48 out(c, sign(x, sk(k))))) | auth | ver.

49
50 (* Compromised principals *)

51
52 let keygencompromise =

53 new k;

54 event COMPROMISE(pk(k));

55 !out(d,pk(k)) | out(c,k).

56
57 (* Statement of our proof *)

58
59 define proof =

60 land(

61 land(

62 check(alpha1 ,beta1 ,alpha2),

check(alpha3 ,alpha2 ,alpha4)

63),

64 check(alpha5 ,alpha4 ,beta2)

65)

66 .

67
68 process

69 (!keygencompromise | !peer).

Listing 6.1: Applied pi-calculus model with trust policy

Lines 1 to 12 from Listing 6.1 represent a general setup. The channels c and d

48

are created, where d is private, i.e., the attacker can neither send nor listen on this
channel. pkey in line 4 returns true if and only if its argument is a public key, i.e.,
it is of the form pk(x). Since it is private, it can also not be used by the attacker.
Lines 9 to 12 state the trust policy which has been explained in detail above (6.2).
Before we explain the subprocesses, denoted by let and a label, we have a look at the
end of the file. The main process is denoted in line 69. It executes the subprocesses
keygencompromise and peer an unbounded number of times each, in parallel. This
is denoted by the ! in front of the processes.

keygencompromise keygencompromise, starting at line 52, creates a new key
k and raises the event COMPROMISE(pk(k)) that states that the public key pk(k)

is compromised. Afterwards the public key pk(k) is sent to the private channel d
an unbounded number of times. This represents the idea of the publicly accessible
web of trust. Every participant can access the information at any time, since it is
repeatedly sent. In parallel, the key information k is made public by sending it to the
public channel c once. In particular the attacker learns sk(k) and pk(k) and thus is
able to generate signatures using this key.

peer peer, beginning in line 41 also creates a fresh key k and publishes the corre-
sponding public key pk(k) on the secret channel d and in parallel once on channel
c. In contrast to the compromised entity, here really only the public key is sent to c.
Afterwards, three things happen in parallel

• An unbounded number of times, a message is received from channel c. On
receiving some x, it is checked whether x is actually a public key using pkey.
Then, it is checked, whether this is an authentic key by requesting it again from
the secure channel d. If this succeeds, the event TRUST(pk(k), x) is raised
which states that the owner of pk(k) believes that x is an authentic public key.
This is expressed by sending a signature on the public key x under the secret
key belonging to k to the public channel c. Put short, peer signs every valid
public key the attacker sends to it.

• subprocess auth is executed

• subprocess ver is executed

We notice that the subprocesses auth and ver will behave like their code would
replace the labels in line 48. In particular, k in the subprocesses will be the one from
the parent process.

keygencompromise and peer model the setup of the web of trust, as dictated by
the attacker. Keys are generated, signed, and made available on the secure channel.
Further the (public) keys and signatures are published on c. auth and ver model the
actual zero-knowledge proof generation and verification.

49

The auth subprocess, starting at line 19, reads a quadruple from the public
channel c and checks that the fourth variable is a valid public key. Then it cre-
ates fresh values r and m and signs the hash of m using the key k created in
its parent instance, i.e., in the instance of peer calling it. As the naming of
the variables of the quadruple read at the beginning implies, this quadruple con-
stitutes a chain up to the entity owning k. The proof is, in theory, generated
for the certificate chain ver(hash(m), sigm1, pk(k)) ∧ ver(pk(k), xsig3, xpk2) ∧
ver(xpk2, xsig2, pk1), given that the variables are indeed the corresponding keys and
signatures. The next step in auth is the actual zero-knowledge proof generation, de-
noted in line 25. The zero-knowledge proof zk is structured as follows. First, the secret
components are listed, followed by the public components, and finally the proof state-
ment. The statement used, i.e., proof, is given from line 59 to 65. It checks a cer-
tificate chain by replacing the parameters with the according ones from the proof. α’s
refer to the according secret component, and β’s to the according public components
from the proof. Please notice, that check expects the following order of arguments
check(signature, message, key), in contrast to ver(message, signature, key).
After construction of the proof, the event SEND(pk(k), pk1, m1) is triggered, stat-
ing that the owner of pk(k) sent a message m1 intended for the owner of pk1. Directly
afterwards, the proof and the message are sent to c.

The verification subprocess ver, line 31, reads a tuple of two arguments from c

and tries to verify the zero-knowledge proof denoted in the first element of the tuple
using the predicate proof. Written more formally, the verification checks

check(α1, β1, α2) ∧ check(α3, α2, α4) ∧ check(α5, α4, β2)

for the set α1, . . . , α6; β1, β2 given by the proof. If this succeeds, the verifica-
tion checks whether the second public component from the proof, retrieved using
public2(x), the same key is as in the parent process. If so, z is set to equal the
first public component of the proof and it is compared to the hash of the second part
of the tuple received. Comparing this to the tuple sent in auth, we can see, that a
proof and message have been sent. Thus this check verifies that the message used in
the proof and the one received are the same. On a successful verification of this fact,
the event AUTH(pk(k), z) is raised, stating that the process authenticates message
z under key pk(k).

6.3 Verification of anonymity

Intuitively, we formalize the anonymity property as a cryptographic game where two
principals act in a web of trust set up by the attacker and one of them authenticates by
proving in zero-knowledge a certificate chain chosen by the attacker. If the attacker
cannot guess which of the two principals generated this zero-knowledge proof, then the
protocol guarantees anonymity. Our model includes an arbitrary number of honest and

50

Figure 6.2: Anonymity game

compromised parties as well as the two (honest) principals engaging in the anonymity
game.

The anonymity game is defined by two distinct processes that are replicated (i.e.,
spawned an unbounded number of times) and in parallel composition (i.e., concur-
rently executed). In the first process, each of the two principals releases certificates as
dictated by the attacker. Since the attacker controls also the certificates released by
the other parties in the system, both honest and compromised ones, the attacker con-
trols the topology of the whole web of trust. In the second process, the two principals
receive two (possibly different) certificate chains from the attacker. If both certificate
chains are valid and of the same length, we non-deterministically choose one of the
two principals and we let it output the corresponding zero-knowledge proof. The ob-
servational equivalence relation ≈ (cf. Figure 6.2) says that the attacker should not
be able to determine which of the two principals output the zero-knowledge proof.

ProVerif successfully verifies this observational equivalence relation. This implies
that our protocol guarantees the anonymity of users even against our strong adver-
sarial model. Since processes are replicated and the two principals may output an
unbounded number of zero-knowledge proofs, our protocol additionally provides un-
linkability, that is, the attacker is not able to tell if two zero-knowledge proofs come
from the same principal or not. In the following, we will describe the script we used
to verify the anonymity game.

1 free c.

2
3 (* Equations for cryptographic messages as in Table 1

*)

4
5 (*

6 Phase 1: the attacker generates the Web of Trust

7 *)

8
9 let keygen =

10 new k;

11 out(c,pk(k));

12 !in(c, x);

13 let xi = pkey(x) in

14 out(c, sign(x, sk(k))).

15
16

51

17 (*

18 Phase2 :

19 Each peer generates a key -pair , publishes the public

key ,

20 and sign the public keys chosen by the attacker

21 *)

22
23 let signing1 =

24 out(c,pk(k1));

25 !in(c, x);

26 let xi = pkey(x) in

27 out(c, sign(x, sk(k1))).

28
29 let signing2 =

30 out(c,pk(k2));

31 !in(c, x);

32 let xi = pkey(x) in

33 out(c, sign(x, sk(k2))).

34
35
36 (*

37 Phase 3:

38 The attacker chooses a key -chain and each peer

generates the corresponding

39 proof.

40 If the two proofs are both valid and are addressed to

41 the same verifier ,

42 then the attacker does not know which of the two peers

is authenticating

43 *)

44
45 let auth =

46 in(c,(xsig2 ,xpk2 ,xsig3));

47 in(c,(ysig2 ,ypk2 ,ysig3));

48
49 // first peer

50 new r1;

51 new m1;

52 let sigm1 = sign(hash(m1),sk(k1)) in

53 let xzk1 =

zk(sigm1 ,pk(k1),xsig3 ,xpk2 ,xsig2 ,r1;hash(m1),pk1;

proof) in

54
55 // second peer

56 new r2;

52

57 new m2;

58 let sigm2 = sign(hash(m2),sk(k2)) in

59 let yzk2 =

zk(sigm2 ,pk(k2),ysig3 ,ypk2 ,ysig2 ,r2;hash(m2),pk1;

proof) in

60
61 // both proofs are valid

62 if zkver (6;2; proof;xzk1) = true then

63 if zkver (6;2; proof;yzk2) = true then

64 out(c,choice [(xzk1 ,m1),(yzk2 ,m2)]).

65
66 (* Statement of our proof as in Listing 6.1 *)

67
68 process

69 (!keygen | new k1; new k2;(signing1 | signing2 |

70 in(c,pk1);let xtemp = pkey(pk1) in auth)).

Listing 6.2: Applied pi-calculus model of the anonymity game.
P(choice(x,y)) , P(x) ≈ P(y)

We will follow in the description of the anonymity game the description of Listing
6.1. We start with the general setup and then describe the processes top down.

For the anonymity game we only need one public channel c that is set up in line
1. The overall process is given at the end of the script in lines 68 to 70. It consist of
two processes executed in parallel. The first executes keygen an unbounded number
of times while the second creates two fresh values k1 and k2 and then executes
signing1, signing2, and auth in parallel. Before executing auth, a message pk1

is read from c and it is verified, that this is indeed a public key using pkey we already
encountered in Listing 6.1.

keygen keygen (line 9) first creates a new message k, then sends the corresponding
public key pk(k) to c. Afterwards an unbounded number of messages x is read from
c, verified to be a public key, and finally the signature on x using the freshly generated
key is sent to c.

signing1 signing1 (line 23) sends the public key of k1 created in the main process
to c. Then, like in keygen, an unbounded number of messages is read, verified to be
a public key, a signature on x created using sk(k1), and output on c.

signing2 signing2 (line 29) does exactly the same as signing1 but for k2 instead
of k1.

keygen as well as signing1 and signing2 generate a web of trust as dictated
by the attacker. In particular the keys k1 and k2 sign every public key the attacker
sends them.

53

auth auth (line 45) reads two triples with two signatures and a public key each.
This corresponds to the setting from the trust verification, except that here there
is no second public key sent, as k1 and k2 from the main process will be used.
For each peer, k1 and k2, a fresh randomness and a fresh message is created, the
hash of the corresponding message is signed using the corresponding key, and a zero-
knowledge proof for the first respectively second triple created. Both zero-knowledge
proofs are then verified to check that the triples actually constituted valid chain-
fragments. If so, choice of both proofs with the corresponding messages is output
(line 64). This means, that either the first or the second proof is output. Moreover,
this means that the whole process is actually a biprocess, i.e., it is executed twice,
and in each execution, one of the two proofs is output arbitrarily. If the attacker is
unable to determine, which proof is output, we have observational equivalence and
thus anonymity.

54

Section 7

Conclusion

We have proposed a zero-knowledge protocol for anonymous yet authenticated mes-
sage exchange in webs of trust. We reconcile trust and anonymity, two seemingly
contradictory properties, using a zero-knowledge proof that allows the sender to prove
the existence of a trust relation without revealing her identity and the receiver to ver-
ify this relation and its level. Our scheme is general and we demonstrated several
extensions that further increase the expressiveness of our approach. We showed how
we can handle sophisticated trust measures, selectively reveal attributes, hide the
chain length, and how to deal with situations in which the social graph is hidden.

To prove that our protocol as a whole has the desired trust and anonymity proper-
ties, we conducted a formal security analysis by modeling the protocol in the applied
pi-calculus, formalizing the properties, and verifying the model with ProVerif.

Further we provided two cryptographic instantiations of our protocol based on
different cryptographic primitives. A classical approach based on Σ-protocols and
a modern approach based upon bilinear maps. While the former constitutes zero-
knowledge proofs of knowledge, the latter uses zero-knowledge proofs of satisfiability.
We highlighted how in particular the latter approach paves the way for new application
scenarios.

Both approaches have been implemented. We provided details about the individual
implementations and the experimental results.

7.1 Future work

As future work, it would be interesting to further develop the implementation of the
bilinear map based approach. This includes the application to an actual scenario, e.g.,
webs of trust or the social graph of a social network, and the exploration of further
application scenarios.

Necessary steps to actually apply the approach in practice include the commu-
nication with the key server we propose, a graphical user interface that allows for
push-button use, and the integration within the scenario. In particular the integration

55

with GPG might offer interesting hints to further application scenarios. Moreover,
scenarios where the social graph is hidden or inaccessible might prove to be of great
interest.

Further it might be interesting to explore [45], and in particular to explore the
extension to the Groth Sahai proof scheme that allows for proving that an exponent
is within a given range. This would pave the way for implementing key expiration
mechanisms into our pairing-based proof scheme for anonymous webs of trust.

On the implementational side, there are still several possible optimizations left
with respect to proof size and running time. Moreover it might be worth the effort to
convert the implementation to a library implementing the general approach described
in [35] and offering modular instantiations for it, thus turning the project into a general
purpose library for proofs of satisfiability for a set of equations. In combination with
the work done while implementing the classical approach this would resemble a library
that allows a wide range of zero-knowledge protocols to be easily implemented. This
might constitute the foundation for a general library for zero-knowledge protocols.

56

Bibliography

[1] Mart́ın Abadi and Bruno Blanchet. Secrecy types for asymmetric communication.
In Proc. 4th International Conference on Foundations of Software Science and
Computation Structures (FOSSACS), volume 2030 of Lecture Notes in Computer
Science, pages 25–41. Springer-Verlag, 2001.

[2] Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. In Proc. 20th Annual IEEE Sym-
posium on Logic in Computer Science (LICS), pages 331–340. IEEE Computer
Society Press, 2005.

[3] Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In Proc.
1997 workshop on New Security Paradigms (NSPW), pages 48–60. ACM Press,
1997.

[4] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. Structure-preserving signatures and commitments to group
elements. In International Crytology Conference, pages 209–236, 2010.

[5] Donovan Artz and Yolanda Gil. A survey of trust in computer science and the
semantic web. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2):58–71, 2007.

[6] Ronald Ashri, Sarvapali D. Ramchurn, Jordi Sabater, Michael Luck, and
Nicholas R. Jennings. Trust evaluation through relationship analysis. In Proc. 4th
international joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’05), pages 1005–1011. ACM Press, 2005.

[7] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Advances
in Cryptology - CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 255–270. Springer-Verlag, 2000.

[8] Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina. Anonymous
webs of trust. In Privacy Enhancing Technologies, pages 130–148, 2010.

57

[9] Michael Backes, Stefan Lorenz, Matteo Maffei, and Kim Pecina. Anonymous
webs of trust (tool and long version), 2010. Available at http://www.lbs.cs.
uni-sb.de/awot/.

[10] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the
applied pi-calculus and automated verification of the direct anonymous attes-
tation protocol. In Proc. 29th IEEE Symposium on Security & Privacy, pages
202–215. IEEE Computer Society Press, 2008.

[11] Michael Backes and Dominique Unruh. Computational soundness of symbolic
zero-knowledge proofs against active attackers. In Proc. 21th IEEE Sympo-
sium on Computer Security Foundations (CSF), pages 255–269. IEEE Computer
Society Press, 2008.

[12] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-
skaya, and Hovav Shacham. Randomizable proofs and delegatable anonymous
credentials. In Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture
Notes in Computer Science, pages 108–125. Springer-Verlag, 2009.

[13] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures:
The case of dynamic groups. In Topics in Cryptology - CT-RSA 2005, volume
3376 of Lecture Notes in Computer Science. Springer-Verlag, 2005.

[14] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog
rules. In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW),
pages 82–96. IEEE Computer Society Press, 2001.

[15] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryp-
tion with constant size ciphertext. In Advances in Cryptology - EUROCRYPT
2005, volume 3494 of Lecture Notes in Computer Science, pages 440–456.
Springer-Verlag, 2005.

[16] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP
message format. In Request for Comments, volume 4880. Internet Engineering
Task Force, 2007.

[17] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient pro-
tocols. In Proc. 3rd International Conference on Security in Communication
Networks (SCN), volume 2576 of Lecture Notes in Computer Science, pages
268–289. Springer-Verlag, 2002.

[18] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is
the product of two safe primes. In Advances in Cryptology - EUROCRYPT 1998,
volume 1592 of Lecture Notes in Computer Science, pages 107–122. Springer-
Verlag, 1998.

58

http://www.lbs.cs.uni-sb.de/awot/
http://www.lbs.cs.uni-sb.de/awot/

[19] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups. In Advances in Cryptology - CRYPTO 1997, volume 1294 of Lecture
Notes in Computer Science, pages 410–424. Springer-Verlag, 1997.

[20] Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A formal model for
trust in dynamic networks. In International Conference on Software Engineering
and Formal Methods (SEFM ’03), pages 54–64. IEEE Computer Society Press,
2003.

[21] Barbara Carminati, Elena Ferrari, and Andrea Perego. Rule-based access control
for social networks. In Proc. On the Move to Meaningful Internet Systems 2006
(OTM), volume 4278 of Lecture Notes in Computer Science, pages 1734–1744.
Springer-Verlag, 2006.

[22] Germano Caronni. Walking the web of trust. In Proc. 9th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, pages 153–158. IEEE Computer Society Press, 2000.

[23] David Chaum and Eugene van Heyst. Group signatures. In Advances in Cryptol-
ogy - EUROCRYPT 1991, volume 547 of Lecture Notes in Computer Science,
pages 257–265. Springer-Verlag, 1991.

[24] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Advances in
Cryptology - CRYPTO 1994, volume 839 of Lecture Notes in Computer Science,
pages 174–187. Springer-Verlag, 1994.

[25] Josep Domingo-Ferrer, Alexandre Viejo, Francesc Sebé, and Úrsula González-
Nicolás. Privacy homomorphisms for social networks with private relationships.
Computer Networks, 52(15):3007–3016, 2008.

[26] Joseph Domingo-Ferror. A public-key protocol for social networks with private
relationships. In Proc. 4th International Conference on Modeling Decisions for
Artificial Intelligence (MDAI’07), volume 4617 of Lecture Notes in Computer
Science, pages 373–379. Springer-Verlag, 2007.

[27] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Advances in Cryptology - CRYPTO 1987,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer-
Verlag, 1987.

[28] Keith Frikken and Preethi Srinivas. Key allocation schemes for private social
networks, 2009. To appear in Proc. ACM Workshop on Privacy in the Electronic
Society (WPES).

59

[29] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In Advances in Cryptology - CRYPTO 1997,
volume 1294 of Lecture Notes in Computer Science, pages 16–30. Springer-
Verlag, 1997.

[30] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Proc.
8th International Conference on the Theory and Application of Cryptology and
Information Security: ASIACRYPT 2002, volume 2501 of Lecture Notes in Com-
puter Science, pages 548–566. Springer-Verlag, 2002.

[31] GNU Project. The gnu privacy guard. http://www.gnupg.org/.

[32] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Univer-
sity Press, 2001.

[33] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal
of the ACM, 38(3):690–728, 1991.

[34] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[35] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Theory and Application of Cryptographic Techniques, pages 415–432,
2008.

[36] Javier Herranz. Identity-based ring signatures from rsa. Theoretical Computer
Science, 389(1-2):100–117, 2007.

[37] Jingwei Huang and David Nicol. A calculus of trust and its application to pki
and identity management. In Proc. 8th Symposium on Identity and Trust on the
Internet, pages 23–37. ACM Press, 2009.

[38] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph
Schorr, and Steve Zdancewic. Aura: a programming language for authorization
and audit. ACM SIGPLAN Notices, 43(9):27–38, 2008.

[39] Audun Jøsang. An algebra for assessing trust in certification chains. In Proc.
Network and Distributed System Security Symposium (NDSS). Internet Society,
1999.

[40] Kent Beck et al. Junit. http://www.junit.org/.

[41] Lance Cottrell, Pr0duct Cypher, Hal Finney, Ian Goldberg, Ben Laurie, Colin
Plumb, or Eric Young. Signing as one member of a set of keys. http://www.

abditum.com/ringsig/.

60

http://www.gnupg.org/
http://www.junit.org/
http://www.abditum.com/ringsig/
http://www.abditum.com/ringsig/

[42] J. Linn. Trust models and management in public key infrastructures, 2000. RSA
Laboratories.

[43] Ben Lynn. The pairing-based cryptography library. http://crypto.stanford.
edu/pbc/.

[44] Ueli Maurer. Modelling a public-key infrastructure. In Proc. 4th European Sym-
posium on Research in Computer Security (ESORICS), volume 1146 of Lecture
Notes in Computer Science, pages 325–350. Springer-Verlag, 1996.

[45] Sarah Meiklejohn. An extension of the groth-sahai proof system. 2009.

[46] National Institute of Standards and Technology. http://www.nist.gov/.

[47] Oracle. Java. http://www.java.com.

[48] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO ’91: Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology, volume 576 of Lecture Notes
in Computer Science, pages 129–140. Springer-Verlag, 1991.

[49] PGP Corporation. http://www.pgp.com.

[50] PostgreSQL-Team. Postgresql. http://www.postgresql.org/.

[51] GNU Project. The gnu multiple precision arithmetic library. http://gmplib.

org/.

[52] Dennis Ritchie. The c programming language. http://www.open-std.org/

jtc1/sc22/wg14/.

[53] Ronald Linn Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
Communications of the ACM, 22(22):612–613, 2001.

[54] Jordi Sabater-Mir. Towards the next generation of computational trust and
reputation models. In Proc. 3th International Conference on Modeling Decisions
for Artificial Intelligence (MDAI’06), volume 3885 of Lecture Notes in Computer
Science, pages 19–21. Springer-Verlag, 2006.

[55] Michael Scott. Multiprecision Integer and Rational Arithmetic C/C++ Library.
http://www.shamus.ie/.

[56] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.

net/ntl.

[57] Dawn Xiaodon Song. Practical forward secure group signature schemes. In
Proc. 8th ACM Conference on Computer and Communications Security, pages
225–234. ACM Press, 2001.

61

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/
http://www.nist.gov/
http://www.java.com
http://www.pgp.com
http://www.postgresql.org/
http://gmplib.org/
http://gmplib.org/
http://www.open-std.org/jtc1/sc22/wg14/
http://www.open-std.org/jtc1/sc22/wg14/
http://www.shamus.ie/
http://www.shoup.net/ntl
http://www.shoup.net/ntl

[58] Bjarne Stroustrup. The c++ programming language. http://www.open-std.
org/jtc1/sc22/wg21/.

[59] The GNU Privacy Guard Team. GnuPG. http://www.gnupg.org/.

[60] Amin Tootoonchian, Stefan Saroiu, Yashar Ganjali, and Alec Wolman. Lockr:
better privacy for social networks. In Proc. 5th International Conference on
emerging Network Experiments and Technologies (CoNEXT), pages 169–180.
ACM Press, 2009.

[61] Da-Wei Wang, Churn-Jung Liau, and Tsan sheng Hsu. Privacy protection in
social network data disclosure based on granular computing. In International
Conference on Fuzzy Systems 2006, pages 997 – 1003. IEEE Computer Society
Press, 2006.

[62] L. Xiong and L. Ling. A reputation-based trust model for peer-to-peer ecommerce
communities [extended abstract]. In Proc. 4th ACM conference on Electronic
commerce (EC’03), pages 228–229. ACM Press, 2003.

62

http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.gnupg.org/

	Introduction
	Webs of trust
	Contributions
	Related work
	Outline of this work

	Anonymous webs of trust
	Cryptographic instantiations
	Classical instantiation
	Camenish-Lysyanskaya signature scheme
	The protocol

	Modern approach using pairing-based cryptography
	Automorphic signatures
	The protocol

	Implementation
	Java implementation of the classical approach
	Key server
	Implementation based on bilinear maps
	Security parameter
	Experiments

	Extensions
	Hiding the chain length
	Partial release of secrets
	Dynamic trust relationships and key expiration
	Conjunctive and disjunctive statements over certificate chains
	Proof that two committed numbers are not equal
	Trust measures
	Settings where the web of trust is not public

	Abstract representation and formal verification
	Attacker model
	Verification of trust
	Verification of anonymity

	Conclusion
	Future work

