
Technical Report: A Composable Cryptographic Library with

Nested Operations (Long Version)∗

Michael Backes, Birgit Pfitzmann, and Michael Waidner

IBM Zurich Research Lab

{mbc,bpf,wmi}@zurich.ibm.com

July 31, 2008

Abstract

We present the first idealized cryptographic library that can be used like the Dolev-Yao
model for automated proofs of cryptographic protocols that use nested cryptographic operations,
while coming with a cryptographic implementation that is provably secure under arbitrary
active attacks. The proof is a novel technique of a probabilistic, imperfect bisimulation with
cryptographic reductions and static information-flow analysis.

1 Introduction

Many practically relevant cryptographic protocols like SSL/TLS, S/MIME, IPSec, or SET use
cryptographic primitives like signature schemes or encryption in a black-box way, while adding many
non-cryptographic features. Vulnerabilities have accompanied the design of such protocols ever
since early authentication protocols like Needham-Schroeder [65, 46], over carefully designed de-
facto standards like SSL and PKCS [76, 36], up to current widely deployed products like Microsoft
Passport [50]. However, proving the security of such protocols has been a very unsatisfactory task
for a long time.

One possibility was to take the cryptographic approach. This means reduction proofs between
the security of the overall system and the security of the cryptographic primitives, i.e., one shows
that if one could break the overall system, one could also break one of the underlying cryptographic
primitives with respect to its cryptographic definition, e.g., adaptive chosen-message security for
signature schemes. For authentication protocols, this approach was first used in [35]. In principle,
proofs in this approach are as rigorous as typical proofs in mathematics. In practice, however,
human beings are extremely fallible with this type of proof. This is not due to the cryptography,
but to the distributed-systems aspects of the protocols. It is well-known from non-cryptographic
distributed systems that many wrong protocols have been published even for very small problems.
Hand-made proofs are highly error-prone because following all the different cases how actions of
different machines interleave is extremely tedious. Humans tend to take wrong shortcuts and do
not want to proof-read such details in proofs by others. If the protocol contains cryptography, this
obstacle is even much worse: Already a rigorous definition of the goals gets more complicated, and
often not only trace properties (integrity) have to be proven but also secrecy. Further, in principle

∗An extended abstract of this work appears in Proc. of 10th ACM Conference on Computer and Communications
Security (CCS), [23].

1

the complexity-theoretic reduction has to be carried out across all these cases, and it is not at
all trivial to do this rigorously. In consequence, there is almost no real cryptographic proof of a
larger protocol, and several times supposedly proven, relatively small systems were later broken,
e.g., [70, 47].

The other possibility was to use formal methods. There one leaves the tedious parts of proofs to
machines, i.e., model checkers or automatic theorem provers. This means to code the cryptographic
protocols into the language of such tools, which may need more or less start-up work depending
on whether the tool already supports distributed systems or whether interaction models have to be
encoded first. None of these tools, however, is currently able to deal with reduction proofs. Nobody
even thought about this for a long time, because one felt that protocol proofs could be based on
simpler, idealized abstractions from cryptographic primitives. Almost all these abstractions are
variants of the Dolev-Yao model [48], which represents all cryptographic primitives as operators
of a term algebra with cancellation rules. For instance, public-key encryption is represented by
operators E for encryption and D for decryption with one cancellation rule, D(E(m)) = m for all
m. Encrypting a message m twice in this model does not yield another message from the basic
message space but the term E(E(m)). Further, the model assumes that two terms whose equality
cannot be derived with the cancellation rules are not equal, and every term that cannot be derived
is completely secret. However, originally there was no foundation at all for such assumptions about
real cryptographic primitives, and thus no guarantee that protocols proved with these tools were
still secure when implemented with real cryptography. Although no previously proved protocol has
been broken when implemented with standard provably secure cryptosystems, this was clearly an
unsatisfactory situation, and artificial counterexamples can be constructed.

Three years ago, efforts started to get the best of both worlds. Essentially, [68, 71] started to
define general cryptographic models that support idealization that is secure in arbitrary environ-
ments and under arbitrary active attacks, while [2] started to justify the Dolev-Yao model as far as
one could without such a model. Both directions were significantly extended in subsequent papers,
in particular [1, 72, 39, 9, 24, 25, 29].

Nevertheless, the paper underlying this technical report was the first that offers a provably secure
variant of the Dolev-Yao model for proofs that people typically make with the Dolev-Yao model,
because for the first time we cover both active attacks and nested cryptographic operations. This
new property combination is essential: First, most cryptographic protocols are broken by active
attacks, e.g., man-in-the-middle attacks exploiting concurrent protocol runs or attacks where an
adversary reuses a message from one protocol step in a different protocol step where it suddenly
gets a different semantics. Such attacks are not covered by [2, 1]. Secondly, the main use of the
Dolev-Yao model is to represent nested protocol messages like Epkev (signsksu(m,N1), N2), where
m denotes an arbitrary message and N1, N2 two nonces. No previous idealization proved in the
reactive cryptographic models contains abstractions from cryptographic primitives (here mainly
encryption and signatures, but also the nonces and the list operation) that can be used in such
nested terms. Existing abstractions are either too high-level, e.g., the secure channels in [72, 9]
combine encryption and signatures in a fixed way. Or they need immediate interaction with the
adversary [39, 38], i.e., the adversary learns the structure of every term any honest party ever
builds, and even every signed message. This abstraction is not usable for a term as above because
one may want to show that m is secret because of the outer encryption, but the abstraction gives
m to the adversary. (A similar immediate application of the model of [72] to such primitives would
avoid this problem, but instead keep all signatures and ciphertexts in the system, so that nesting is
also not possible.) Finally, there exist some semi-abstractions which still depend on cryptographic
details [61, 72]. Thus they are not suitable for abstract protocol representations and proof tools,
but we use such a semi-abstraction of public-key encryption as a submodule below.

2

The first decision in the design of an ideal library that supports both nesting and general active
attacks was how we can represent an idealized cryptographic term and the corresponding real
message in the same way to a higher protocol. This is necessary for using the reactive cryptographic
models and their composition theorems. We do this by handles. In the ideal system, these handles
essentially point to Dolev-Yao-like terms, while in the real system they point to real cryptographic
messages. Our model for storing the terms belonging to the handles is stateful and in the ideal
system comprises the knowledge of who knows which terms. Thus our overall ideal cryptographic
library corresponds more to “the CSP Dolev-Yao model” or “the Strand-space Dolev-Yao model”
than the pure algebraic Dolev-Yao model. Once one has the idea of handles, one has to consider
whether one can put the exact Dolev-Yao terms under them or how one has to or wants to deviate
from them in order to allow a provably secure cryptographic realization, based on a more or less
general class of underlying primitives. An overview of these deviations is given in Section 2.2, and
Section 2.3 surveys how the cryptographic primitives are augmented to give a secure implementation
of the ideal library.

The vast majority of the work was to make a credible proof that the real cryptographic library
securely implements the ideal one. This is a hand-made proof based on cryptographic primitives
and with many distributed-systems aspects, and thus with all the problems mentioned above for
cryptographic proofs of large protocols. Indeed we needed a novel proof technique which we call a
cryptographic bisimulation. It consists of a probabilistic, imperfect bisimulation with an embedded
static information-flow analysis, followed by cryptographic reductions proofs for so-called error sets
of traces where the bisimulation did not work. As this proof needs to be made only once, and is
intended to be the justification for later basing many protocol proofs on the ideal cryptographic
library and proving them with higher assurance using automatic tools, we carefully worked out
the details. Based on our experience with making this proof and the errors we found by making
it, we strongly discourage the reader against accepting idealizations of cryptographic primitives
where a similar security property, simulatability, is claimed but only the first step of the proof, the
definition of a simulator, is made.1 Note that although the crypto-library enables formal methods,
the cryptographic bisimulation needed to prove the crypto-library itself must be by hand at the
current state of the art, because the real cryptographic library contains cryptographic objects. We
further sketch in Section 7.2 that this cannot be simplified by certain obvious techniques.

1.1 Further Related Literature

Both the cryptographic and the idealizing approach at proving cryptographic systems started in the
early 80s. Early examples of cryptographic definitions and reduction proofs are [54, 55]. Applied to
protocols, these techniques are at their best for relatively small protocols where there is still a certain
interaction between cryptographic primitives, e.g., [34, 74]. The early methods of automating proofs
based on the Dolev-Yao model are summarized in [59]. More recently, such work concentrated on
using existing general-purpose model checkers [62, 64, 45] and theorem provers [49, 67], and on
treating larger protocols, e.g., [32].

Work intended to bridge the gap between the cryptographic approach and the use of automated
tools started independently with [68, 71] and [2]. In [2], Dolev-Yao terms, i.e., with nested opera-
tions, are considered specifically for symmetric encryption. However, the adversary is restricted to

1For the sake of illustration, let us mention some problems in such proofs: The main ideal key exchange function-
ality FKE from [40] proved to be impossible to realize [58]. The signature realization from [39] was claimed under a
too weak assumption [26]. Further, the line of research started with [39] makes neither the machines nor the actual
attackers polynomial-time, while for us, polynomial runtime is one of the most severe problems in system definitions
as well as in simulatability proofs.

3

passive eavesdropping. Consequently, it was not necessary to define a reactive model of a system,
its honest users, and an adversary, and the security goals were all formulated as indistinguishability
of terms. This was extended in [1] from terms to more general programs, but the restriction to
passive adversaries remains, which is not realistic in most practical applications. Further, there
are no theorems about composition or property preservation from the abstract to the real system.
Several papers extended this work for specific models or specific properties. For instance, [56]
specifically considers strand spaces and information-theoretically secure authentication only. In
[60] a deduction system for information flow is based on the same operations as in [2], still under
passive attacks only.

The approach in [68, 71] was from the other end: It starts with a general reactive system model, a
general definition of cryptographically secure implementation by simulatability, and a composition
theorem for this notion of secure implementation. This work is based on definitions of secure
function evaluation, i.e., the computation of one set of outputs from one set of inputs [53, 63, 31, 37];
earlier extensions towards reactive systems were either without real abstraction [61] or for quite
special cases [57]. The approach was extended from synchronous to asynchronous systems in [72, 39].
All the reactive works come with more or less worked-out examples of abstractions of cryptographic
systems, and first tool-supported proofs were made based on such an abstraction [9, 8] using the
theorem prover PVS [66]. However, even with a composition theorem this does not automatically
give a cryptographic library in the Dolev-Yao sense, i.e., with the possibility to nest abstract
operations, as explained above. Our cryptographic library overcomes these problems. It is abstract
in the sense needed for theorem provers, i.e., without cryptographic objects in the ideal system.
It supports nested operations in the intuitive sense; operations that are performed locally are not
visible to the adversary. It is secure against arbitrary active attacks, and works in the context
of arbitrary surrounding interactive protocols. This holds independently of the goals that one
wants to prove about the surrounding protocols; in particular, property preservation theorems for
the simulatability definition we use have been proved for integrity, fairness, liveness, and non-
interference [8, 22, 15, 14, 19, 4].

We have already exemplified the usefulness of the cryptographic library by conducting a sound
security proof of the well-known Needham-Schroeder-Lowe protocol [13, 16] as well as several well-
known protocols that come with a symbolic representation [5, 7, 20, 12, 6]. This is one of the
two first cryptographically sound proofs of the Needham-Schroeder-Lowe protocol, concurrently
developed. Whereas the proof from [77] shows a slightly stronger property, our proof relies on
idealizations of cryptography and has all the advantages explained in the text; in particular, the
proof is suited for formal proof tools. Moreover, drawing upon insides gained from the proof of the
cryptographic library, we showed that widely considered symbolic abstractions of hash functions
and of the XOR operation cannot be proven computationally sound in general, hence indicating
that their current symbolic representations might be overly simplistic [18, 28].

2 Overview of the Simulatable Cryptographic Library

In this section, we give an overview of our abstract and real crypto-library, in particular their
relations to the standard Dolev-Yao model and standard cryptographic definitions, respectively.
To understand some design decisions, a basic understanding of simulatability is important. Thus
we first briefly sketch the definitions from [72].

4

2.1 Overview of Simulatability

A system consists of several possible structures. A structure consists of a set M̂ of connected
correct machines and a subset S of free ports, called specified ports. In a standard cryptographic
system, the structures are derived from one intended structure and a trust model. The trust model
consists of an access structure ACC and a channel model χ. Here ACC contains the possible sets
H of indices of uncorrupted machines (among the intended ones), and χ designates whether each
channel is secure, authentic (but not private) or insecure. Each structure is complemented to a
configuration by adding an arbitrary user machine H and adversary machine A. H connects only
to ports in S and A to the rest, and they may interact. The general scheduling model in [72]
gives each connection c (from an output port c! to an input port c?) a buffer, and the machine
with the corresponding clock port c⊳! can schedule a message when it makes a transition. In real
asynchronous cryptographic systems, network connections are typically scheduled by A. Thus a
configuration is a runnable system, i.e., one gets a probability space of runs. Views of individual
machines in these runs are the restriction to all in- and outputs this machine sees and its internal
state.

Simulatability essentially means that whatever can happen to certain users in the real system
can also happen to the same users in the ideal (abstract) system: For every structure struc1 of the
real system, every user H, and every adversary A1 there exists an adversary A2 on a corresponding
ideal structure, struc2, such that the view of H in the two configurations is indistinguishable.
Indistinguishability is a well-defined cryptographic notion from [78]. This is shown in Figure 1.
For the crypto-library, we even show blackbox simulatability, where A2 consists of a simulator Sim

HH

A2

A1

S S

M1 M2
THM3

struc
1

struc
1

 f(struc
2
)

Figure 1: Overview of the simulatability definition. The view of H must be indistinguishable in the
two configurations. In this example, H = {1, 2}.

depending only on struc1 and using A1 as a blackbox submachine.
In a typical ideal system, each structure contains only one machine TH called trusted host.

Corresponding structures are designated by a function f . For standard cryptographic systems, f
maps a real structure to a trusted host with the same set S of specified ports, so that the same
honest users can connect.

2.2 Overview of the Ideal System

An ideal (abstract) crypto-library offers its users abstract cryptographic operations, such as com-
mands to encrypt or decrypt a message, to make or test a signature, and to generate a nonce. All
these commands have a simple, deterministic semantics. In a reactive scenario, this semantics is
based on state, e.g., of who already knows which terms. We store state in a “database”. Each
entry has a type (e.g., “signature”), and pointers to its arguments (e.g., a key and a message).
This corresponds to the top level of a Dolev-Yao term; an entire term can be found by following
the pointers. Further, each entry contains handles for those participants who already know it.
Thus the database index and these handles serve as an infinite, but efficiently constructible supply

5

of global and local names for cryptographic objects. However, most libraries have export oper-
ations and leave message transport to their users (“token-based”). An actual implementation of
the simulatable library might internally also be structured like this, but higher protocols are only
automatically secure if they do not use this export function except via the special send operations.

The ideal crypto-library does not allow cheating. For instance, if it receives a command to
encrypt a message m with a certain key, it simply makes an abstract database entry for the ci-
phertext. Another user can only ask for decryption of this ciphertext if he has handles to both the
ciphertext and the secret key. Similarly, if a user issues a command to sign a message, the ideal
system looks up whether this user should have the secret key. If yes, it stores that this message
has been signed with this key. Later tests are simply look-ups in this database.

A send operation makes an entry known to other participants, i.e., it adds handles to the entry.
Recall that our model is an entire reactive system and therefore contains an abstract network model.
We offer three types of send commands, corresponding to three channel types {s, a, i}, meaning
secure, authentic (but not private), and insecure. The types could be extended. Currently, our
library contains contains public-key encryption and signatures, nonces, lists, and application data.
We have recently added symmetric authentication [27] and symmetric encryption [17, 21], which
also shows that the library can be extended in a modular way. Further extensions are thus easily
conceivable, e.g., to incorporate the recently proposed computationally sound symbolic abstraction
of zero-knowledge proofs [11, 30].

The main differences between our ideal crypto-library and the standard Dolev-Yao model are
the following. Some of them already exist in prior extensions of the Dolev-Yao model.

• Signature schemes are not “inverses” of encryption schemes.

• Secure encryption schemes are necessarily probabilistic, and typically so are secure signature
schemes. Hence if the same message is signed or encrypted several times, we have to distin-
guish the versions, i.e., we make different database entries. For each entry, we only need to
store its type (e.g., “signature”) and pointers to its arguments (e.g., a key and a message).
This corresponds to the top level of a Dolev-Yao-like term.

• Secure signature schemes often have memory. The standard definition [55] does not even
exclude that one signature divulges the entire history of messages signed before. We have
to restrict this definition, but will allow a signature to divulge the number of previously
signed messages, so that we include the most efficient provably secure schemes under classical
assumptions like hardness of factoring [55, 41, 42].2

• We cannot (easily) allow participants to send secret keys around because then the simulation is
not always possible.3 Fortunately, for public-key cryptosystems this is not needed in standard
protocols.

• Encryption schemes cannot keep the length of arbitrary cleartexts entirely secret. Typically
one can even see the length quite precisely because message expansion is minimized. Hence
we also allow this in the ideal system. A fixed-length version would be an easy addition to
the library, or can be implemented on top of the library by padding to a fixed length.

2Memory-less schemes exist with either lower efficiency or based on stronger assumptions (e.g., [52, 44, 51]). We
could add them to the library as an additional primitive.

3The primitives become “committing”. This is well-known from individual simulation proofs. It is also the reason
why the approach in [2], developed for symmetric cryptosystems, is hard to extend to active attacks.

6

• Adversaries may include incorrect messages in encrypted parts of a message which the current
recipient cannot decrypt, but may possibly forward to another recipient who can, and will
thus notice the incorrect format. Hence we also allow certain “garbage” terms in the ideal
system.

Moreover, our ideal crypto-library contains explicit bounds on message lengths and the number
of accepted inputs, so that a polynomial-time real system can simulate it correctly. In practice
one would typically choose these bounds so large that they are not reached under ordinary circum-
stances.

2.3 Overview of the Real System

The real crypto-library offers its users the same commands as the ideal one, i.e., honest users
operate on cryptographic objects via handles. This is actually quite close to standard APIs for
real implementations of crypto-libraries that include key storage. The database of the real system
contains real cryptographic keys, ciphertexts, etc., and the commands are implemented by real
cryptographic algorithms. Sending a term on an insecure channel releases the actual bitstring to
the adversary, who can do with it what he likes. The adversary can also insert arbitrary bitstrings
on non-authentic channels. The simulatability proof will show that nevertheless, everything a real
adversary can achieve can also be achieved by an adversary in the ideal system, or otherwise the
underlying cryptography can be broken.

We base the implementation of the commands on arbitrary secure encryption and signature
systems according to standard cryptographic definitions. However, we “idealize” the cryptographic
objects and operations by measures similar to robust protocol design [3]. Some of these measures
have already been used in prior, specialized designs.

• All objects are tagged with a type field so that, e.g., signatures cannot also be acceptable
ciphertexts or keys.

• Several objects are also tagged with their parameters, e.g., signatures with the public key
used.

• Randomized operations must be randomized completely. For instance, as the ideal system
represents several signatures under the same message with the same key as different, the real
system has to guarantee that they will be different, except for small error probabilities. Even
probabilistic encryptions are randomized additionally because they are not always sufficiently
random for keys chosen by the adversary.

The reason to tag signatures with the public key needed to verify them is that the usual definition
of a secure signature scheme does not exclude “signature stealing:” Let (skh , pkh) denote the key
pair of a correct participant. With ordinary signatures an adversary might be able to compute a
valid key pair (ska , pka) such that signatures that pass the test with pkh also pass the test with pka .
Thus, if a correct participant receives an encrypted signature on m, it might accept m as being
signed by the adversary, although the adversary never saw m. It is easy to see that this would
result in protocols that could not be simulated. (An example is given in [69], Section 6.4.) Our
modification prevents this anomaly.

For the additional randomization of signatures, we include a random string r in the message
to be signed. Alternatively we could replace r by a counter, and if a signature scheme is strongly
randomized already we could omit r.

7

Ciphertexts are randomized by including the same random string r in the message to be en-
crypted and in the ciphertext. The outer r prevents collisions among ciphertexts from honest
participants, the inner r ensures continued non-malleability.

3 Notation

We mostly use a straight font for machines, algorithms, functions, and constants; italics for sets and
other variables, and a calligraphic font for T YPES and Index sets.

We write “:=” for deterministic and “←” for probabilistic assignment, and “ R←” for uniform
random choice from a set. In an algorithm X executed by a machine M and with a named output
m, “M returns n” means that M outputs m := n and stops executing X. We usually omit the return
statement if an execution path ends by returning a variable m as the output m. By x := y++ for
integer variables x, y we mean y := y + 1;x := y.

A function g : N→ R is called negligible, written g ∈ NEGL, if for all positive polynomials Q,
∃k0∀k ≥ k0: |g(k)| ≤ 1/Q(k).

We make the following assumptions about the representation of structured data types.

• For reasons of distinguishability, we use a type system consisting of abstract datatypes NAT
(“naturals”), HNDS (“handles”), INDS (“indices”), BOOL (“Boolean”), ERR (“error”),
CHARST R (“character strings”), BIT ST R (“bitstrings”), and LIST (“lists”). The union
of all these datatypes is denoted as T YPES .

• The typesNAT , HNDS, and INDS are isomorphic to N = {1, 2, . . .}, and we write elements
and operations as for natural numbers. NAT is extended to NAT 0, which is isomorphic to
N0 = N ∪ {0}.

• We write BOOL = {true, false} and ERR = {↓}. CHARST R is isomorphic to Σ+ for some
finite alphabet Σ ⊇ {a, . . . , z} ∪ {0, 1} with ↓ 6∈ Σ, and BIT ST R isomorphic to {0, 1}∗.

• The type LIST contains lists of elements of {0, 1}∗. The empty list is written (). We write a
list of x1, . . . , xh as (x1, . . . , xj). If l = (x1, . . . , xj) then l[i] := xi for 1 ≤ i ≤ j, and l[i] := ↓
for i > j. By “adding an element to a list” and similar formulations we mean appending it
at the end.

• The ranges and domains of all algorithms and functions implicitly contain the error element
↓ of type ERR. If ↓ is used as an argument for an algorithm, function or as a selector for a
datatype (e.g., as an index of a list element), the result is always ↓. However, comparisons
“if v = ↓” return true or false.

• In order to built up lists of elements of our abstract datatypes, and to apply cryptographic
operations to them (again with the exception of ↓), we assume that elements of T YPES\ERR
are uniquely encoded into the set {0, 1}∗. The exact encoding does not matter, but if a
function is efficiently computable for an abstract datatype, it must be efficiently computable
also on the encoding. In particular, this comprises element retrieval for lists, comparisons
and algorithms on natural numbers etc.

• The length |w| of w ∈ {0, 1}∗ is, as usual, the unique k with w ∈ {0, 1}k . The length |w|
of w ∈ T YPES \ ERR for a given encoding en is defined as |w| := |en(w)|. We require the
length of the encoding of a list l to depend only on the length of its encoded arguments: there

8

is a function list len such that |(x1, . . . , xj)| = list len(x1, . . . , xj) ≥ |x1| + . . . + |xj| for all
j ∈ N0 and all x1, . . . , xj ∈ T YPES \ ERR.

• By a “database” D we mean a finite set of mappings from finite subsets of CHARST R to
T YPES∪{0, 1}∗. These mappings are called tuples and their arguments are called attributes.
With t.a we mean the result of t ∈ D on argument a ∈ Σ∗. As usual, t.a = ↓ means that t.a
is undefined.

We use D :⇐ t as abbreviation of D := D∪{t}. We often write tuples as lists of assignments,
like (a1 := x1, . . . , ak := xk), and if the attributes and their order are clear from the context
we just write (x1, . . . , xk).

We will use some relational-database notation:

– If P (A) is a logical condition with the attributes in A as free variables then we define
the selection σP (A)(D) as the set of all t ∈ D whose actual attribute values satisfy P (A).
Let D[P (A)] := t if σP (A)(D) = {t}, and D[P (A)] := ↓ if |σP (A)(D)| 6= 1.

– A key attribute is an attribute a such that t.a is defined (6= ↓) and unique for all t ∈ D.
If we designate a specific key attribute a as a primary key attribute then we write D[x]
instead of D[a = x].

4 Ideal System for a Cryptographic Library

We now present the ideal crypto-library. We include all definition details like ports and structures
as needed for the notion of simulatability, because the ideal system is the abstract cryptographic
module based on which protocols should be proved in future work. Hence it has to be defined
precisely, and encoded faithfully into proof tools.

4.1 Structures

Given a number n of participants and a tuple L of parameters (mainly about lengths) discussed in
Section 4.2, the ideal system is of the form

Syscry,idn,L = {({THH},SH) | H ⊆ {1, . . . , n}},

where H denotes the set of honest participants (i.e., the access structure makes no restriction on
the possible corruptions).

Actually, we consider two versions Syscry,id,stann,L and Syscry,id,locn,L called stand-alone and localized;
in the former, in- and outputs for the users are scheduled by the adversary, in the latter locally
(i.e., the crypto library is then used as local subroutines by protocols using it). The ports of THH

intended for the users are, respectively,

userportsstanH := {inu?, outu ! | u ∈ H};

userports locH := {inu?, outu !, outu
⊳! | u ∈ H}.

Intuitively each u represents one user. The ports of the users which connect to those ports are,
respectively,

S stanc

H := {inu !, outu? | u ∈ H};

S locc

H := {inu !, outu?, inu
⊳! | u ∈ H}.

9

• • •

THH

H

inu?
outu!

SH

net_idu,v,x
for (u, v, x) ∈ ch_honest

outu !

inu!
outu?inu !

outa!
ina?

Figure 2: Ports of THH; localized version. Dotted arrows are clock connections; they end at buffers,
which are not shown.

The localized version is shown in Figure 2.4

For the adversary, THH mainly offers two ports ina? and outa!. Furthermore, to allow the
adversary to schedule messages even on secure channels, there are abstract versions of these secure
channels. We use the following abbreviations:

ch honest := {(u, v, x)|u, v ∈ H ∧ x ∈ {s, a}};

ch from adv := {(u, v, x)|v ∈ H ∧ (u 6∈ H ∨ x = i)};

ch to adv := {(u, v, x)|u ∈ H ∧ (v 6∈ H ∨ x ∈ {a, i})}.

Then for t ∈ {stan, loc}:

PortsTHt
H

:= userportstH ∪ {ina?, outa!, outa
⊳!}

∪ {net idu,v ,x !, net idu,v ,x? | (u, v, x) ∈ ch honest}.

4.2 Lengths and Bounds

We already mentioned that we do not assume encryption systems to hide the length of the mes-
sage. Furthermore, higher protocols may need to know the length of certain terms even for honest
participants. Thus the trusted host is parameterized with certain length functions denoting the
length of a corresponding value in the real system. In abbreviated notation, these functions are
data len∗(l), list len∗(l1, . . . , lj) for all j ∈ N0, nonce len∗(k), pks len∗(k), sig len∗(k, l), pke len∗(k),
and enc len∗(k, l). The domain of each parameter is N0, of each result N, and k denotes the security
parameter, while l and the li’s are lengths of messages.

Furthermore, to allow a polynomial-time system to be as secure as this ideal system, we
use functions max len(k), max skc(k), and max in(k) bounding the length of messages, the num-
ber of signatures per key, and the number of inputs at each port of correct real machines, re-
spectively. To avoid unrealistic special cases, we require for all k ∈ N that max len(k) > 3;
nonce len∗(k), pks len∗(k), pke len∗(k) < max len(k); max skc(k) ≤ max in(k); and |i| < max len(k)
for all i ∈ N with i ≤ max skc(k).

The tuple of all these functions is the system parameter L. Each function must be bounded by
a (multivariate) polynomial and efficiently computable.

4The set SH of specified ports is defined as the free ports at the end of the buffers. Hence here it is easier to show
its complement, S c

H, which are the ports that H may have to connect to THH.

10

4.3 States

The state of THH consists of a database D and variables size, curhndu for u ∈ H∪{a}, and stepsp?
for each input port p?.

4.3.1 Database D

The main data structure of THH is a database D. The entries of D are abstract representations of
the data produced during a system run, together with the information on who knows these data.
Each entry in D has attributes

(ind , type , arg , hndu1
, . . . , hndum

, hnd a, len)

where H = {u1, . . . , um}. For each tuple x ∈ D:

• x.ind ∈ INDS, called index, consecutively numbers all entries in D. We use it as a primary
key attribute, i.e., we will write D[i] for D[ind = i].

• x.type ∈ typeset := {data, list, nonce, ske, pke, enc, sks, pks, sig, garbage} identifies the type of x.
Further extensions of the library can extend this set.

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many values ai are indices
of other entries in D and thus in INDS. We sometimes distinguish them by a superscript
“ind.”5 The argument domains are defined implicitly by the commands, see Section 4.5. They
are easy to look up there because most types of entry are only constructed with on command;
exceptions are explicitly mentioned there.

• x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} identifies how u knows this entry. The value a

represents the adversary, and x.hndu = ↓ indicates that u does not know this entry. A value
x.hndu 6= ↓ is called the handle for u to entry x. We always use a superscript “hnd” for
handles and usually denote a handle to an entry D[i] by ihnd.

• x.len ∈ N0 denotes the “length” of the entry.6

4.3.2 Conventions about Indices

Initially, D is empty. THH keeps a variable size of type INDS denoting the current number of
elements in D. New entries x always receive x.ind := size++ (increment, then assign), and x.ind is
never changed. Thus, ind is indeed a key attribute.

4.3.3 Conventions about Handles

For each u ∈ H ∪ {a}, THH maintains a counter curhndu (current handle) of type HNDS initial-
ized with 0, and each new handle for u will be chosen as ihnd := curhndu++. Thus handles are
uniquely and consecutively assigned, i.e., D always fulfills the invariant that |σhndu=ihnd(D)| = 1
for each ihnd ≤ curhndu , and |σhndu=ihnd(D)| = 0 for all ihnd > curhndu . We call this fact “handle
uniqueness.”

5This is similar to the Dolev-Yao model: The arguments are just listed, not evaluated as in a real system.
6It is computed by THH using the given length functions. For most types, this length could be recomputed when

it is needed instead of storing it, but not for the type garbage.

11

The algorithm ind2hndu (with side effect) denotes that THH determines a handle ihnd for u to
an entry D[i]: On input i ∈ INDS, it returns D[i].hndu if it is not ↓; else it sets D[i].hnd u :=
curhndu++ and returns D[i].hnd u . We extend it by ind2hndu(i) := i for i 6∈ INDS. For lists, the
algorithm ind2hnd∗u applies ind2hndu to each element.

4.3.4 Input Counters

For each of its input ports p?, THH maintains a counter stepsp? ∈ N0 initialized with 0 for the
number of inputs at that port. These counters are used to ensure polynomial runtime of THH.
Hence for each port, there is a bound boundp? that the counter must not exceed.7 This bound is
max in(k) for all ports except for ina?, where it can be max ina(k) := 10n2max in(k)max len(k) or
any larger polynomial. (This fits a real system with the bound max in(k) for all ports.)

4.4 Overview of Possible Inputs

Each input c at a port inu? with u ∈ H∪{a} should be a list (cmd , x1, . . . , xj). We usually write it

y ← cmd(x1, . . . , xj)

with a variable y designating the result that THH returns at outu !. The value cmd should be a
command string: Let

basic cmds := {get type, get len, store, retrieve, list, list proj, gen nonce, gen sig keypair, sign, verify,
pk of sig,msg of sig, gen enc keypair, encrypt, decrypt, pk of enc};

send cmds := {send s, send a, send i};

adv local cmds := {adv garbage, adv invalid ciph, adv transform sig, adv parse};

adv send cmds := {adv send s, adv send a, adv send i}.

Then cmd must be in basic cmds ∪ send cmds if u 6= a, and otherwise from basic cmds ∪
adv local cmds ∪ adv send cmds . The sets of commands can be enlarged by further extensions
of the library. The permitted argument numbers j and exact domains are defined in Section 4.5.
Membership in all domains is easily verifiable.

The inputs at a port net idu,v ,x? come from THH itself; each one is simply a message index l ind.

4.5 Inputs and their Evaluation

We now define the precise inputs and how THH evaluates them based on its abstract state. The
main ideas were already explained in Section 2.2. The following more specific design decisions were
made, mainly to simplify the system:

• There are commands to store real-world messages in the library and to retrieve them by a
handle. Thus other commands can assume that everything is addressed by handles.

• We only allow lists to be signed and transferred, because the list-operation is a convenient
place to concentrate all verifications that no secret items are put into messages.

7For simulatability, we do not need THH to be polynomial-time; we only need the counters and bounds for the
user ports inu?.

12

• THH always offers all types of channels for all participants. Otherwise we would need many
different trusted hosts. Many real protocols using cryptography should only use secret and
authentic channels for key distribution at the beginning. As the channel type is part of the
send-command name, syntactic checks can ensure that a protocol designed with the ideal
crypto-library fulfills such requirements.

4.5.1 General Conventions

Upon each input at a port p?, the trusted host THH first increments the counter stepsp?. The
machine model in [72] is such that only non-empty inputs count, as only for those a Turing step is
needed in the Turing machine realization.

Furthermore, the machine model contains length functions which allow to bound how many
bits of input are accepted at each port, depending on the current state. The value 0 for port p?
means that no input is accepted (again without a Turing step). Once a counter stepsp? has reached
its bound boundp?, the length function for this port is always zero.

Otherwise, the length functions are determined by the domain specified for each input in the
part “for . . . ” after the parameter list below. The domain of each parameter with the superscript
hnd is HNDS, and the handle must be assigned at the time of execution, i.e., ≤ curhndu in the
given state. An input is well-formed if it is in the correct domain (at the time of execution). If
an input is not well-formed, which is easily verifiable, THH aborts the transition without further
action. (But the counter stepsp? has been incremented.) The overall length function for each port
p? in each state is the maximum of the possible lengths of well-formed inputs at that port in that
state; it can easily be computed.

The localized version THloc
H accompanies every output at a port outu ! for u ∈ H ∪ {a} by an

output 1 at outu
⊳!, i.e., it schedules that output immediately, the stand-alone version THstan

H only
for u = a.

From now on, we only need to define well-formed inputs further.

4.5.2 Basic Commands

In this section we define how THH evaluates a command from basic cmds , entered at a port inu?
with u ∈ H ∪ {a}. Each basic command represents one cryptographic operation; arbitrary terms
similar to the Dolev-Yao model are built up or decomposed by a sequence of commands. These
commands are local, i.e., they produce a result at port outu ! and possibly update the database D,
but do not produce outputs at other ports. They also do not touch handles for participants v 6= u.

Type and length queries

• Type query: t← get type(xhnd).

Set t := D[hndu = xhnd].type .8

• Length query: l← get len(xhnd).

Set l := D[hndu = xhnd].len .

8Note that u cannot get the type of entries he does not know because D∗[hndu = xhnd] = ↓ implies t = ↓.

13

Storing and retrieving data THH stores a string and gives u a handle to it, respectively
retrieves a previously stored string.

• Storing: mhnd ← store(m), for m ∈ BIT ST R with |m| ≤ max len(k).

If i := D[type = data ∧ arg = (m)].ind 6= ↓ then return mhnd := ind2hndu(i).
9 Otherwise if

data len∗(|m|) > max len(k) return ↓. Else set mhnd := curhndu++ and

D :⇐ (ind := size++, type := data, arg := (m), hndu := mhnd,

len := data len∗(|m|)).

• Retrieval: m← retrieve(mhnd).

m := D[hndu = mhnd ∧ type = data].arg [1].10

Lists Entries that can be sent to other players, like data, ciphertexts, and public keys, can be
combined into lists. Lists cannot include secret keys because no information about those must be
given away. The following commands create a list and determine the i-th element in a list.

• Generate a list: lhnd ← list(xhnd1 , . . . , xhndj), for 0 ≤ j ≤ max len(k).

Let xi := D[hndu = xhndi].ind for i = 1, . . . , j. If any D[xi].type ∈ {sks, ske}, set lhnd := ↓.

If l := D[type = list∧ arg = (x1, . . . , xj)].ind 6= ↓, then return lhnd := ind2hndu(l). Otherwise,
set length := list len∗(D[x1].len , . . . ,D[xj].len) and return ↓ if length > max len(k). Else set
lhnd := curhndu++ and

D :⇐ (ind := size++, type := list, arg := (x1, . . . , xj), hndu := lhnd,

len := length).

• i-th projection: xhnd ← list proj(lhnd, i), for 1 ≤ i ≤ max len(k).

If D[hndu = lhnd ∧ type = list].arg = (x1, . . . , xj) with j ≥ i, then xhnd := ind2hndu(xi),
otherwise xhnd := ↓.

Nonces In reality nonces are randomly chosen words, used, e.g., to verify freshness of messages.
THH just creates a new entry.

• Generation: nhnd ← gen nonce().

Set nhnd := curhndu++ and

D :⇐ (ind := size++, type := nonce, arg := (), hndu := nhnd,

len := nonce len∗(k)).

9Hence if the same string m is stored twice, THH reuses the first result. In general THH ensures that two identical
pieces of data get the same index. However, encryption or signing always create new entries, because these operations
are indeterministic.

10This implies that mhnd was created by a store command, as no other command creates entries with type = data.
Thus only explicitly stored data can be retrieved and not, e.g., keys or ciphertexts.

14

Signatures This comprises operations for key generation, signature generation and verification,
and retrieval of signature components.

• Key generation: (skhnd, pkhnd)← gen sig keypair().

Set skhnd := curhndu++; pk
hnd := curhndu++ and

D :⇐ (ind := size++, type := sks, arg := (0), hnd u := skhnd, len := 0);

D :⇐ (ind := size++, type := pks, arg := (), hnd u := pkhnd, len := pks len∗(k)).

The argument of the secret-key entry is a counter initialized with 0.

• Signature generation: shnd ← sign(skhnd, lhnd).

Let sk := D[hndu = skhnd ∧ type = sks].ind and l := D[hndu = lhnd ∧ type = list].ind . If
either of these is ↓ or if length := sig len∗(k,D[l].len) > max len(k), return ↓. Also return ↓ if
D[sk].arg [1] ≥ max skc(k) and u 6= a. Otherwise, set shnd := curhndu++, pk := sk + 1 (recall
that key pairs get successive indices), c := D[sk].arg [1]++, and

D :⇐ (ind := size++, type := sig, arg := (pk , l, c), hnd u := shnd, len := length).11

• Signature verification: v ← verify(shnd, pkhnd, lhnd).

Let s := D[hndu = shnd ∧ type = sig].ind . If s = ↓ then return ↓. Otherwise, let (pk , l, c) :=
D[s].arg . If D[pk].hndu 6= pkhnd or D[l].hndu 6= lhnd, then v := false, else v := true.12

• Public-key retrieval: pkhnd ← pk of sig(shnd).

Let pk := D[hndu = shnd ∧ type = sig].arg [1] and return pkhnd := ind2hndu(pk).

• Message retrieval: lhnd ← msg of sig(shnd).

Let l := D[hndu = shnd ∧ type = sig].arg [2] and return lhnd := ind2hndu(l).
13,14

Public-key encryption This comprises operations for key generation, encryption, decryption,
and retrieval of the public key from a ciphertext.

• Key generation: (skhnd, pkhnd)← gen enc keypair().

Sets skhnd := curhndu++, pk
hnd := curhndu++, and

D :⇐ (ind := size++, type := ske, arg := (), hnd u := skhnd, len := 0);

D :⇐ (ind := size++, type := pke, arg := (), hnd u := pkhnd, len := pke len∗(k)).

11This type also exists with c = false due to the command adv transform sig.
12Given the next two commands, signature verification is redundant. This works because for received real alleged

signatures, the type sig and the arguments are only assigned after cryptographic verification; otherwise the type
becomes garbage.

13This command implies that real signatures must contain the message, which may seem inefficient. However,
the simulator needs this to translate signatures from the adversary into abstract ones. Thus we also offer message
retrieval to honest users so that they need not send the message separately.

14A similar operation for retrieving the counter is only for the adversary because not all signature schemes allow
it.

15

• Encryption: chnd ← encrypt(pkhnd, lhnd).

Let pk := D[hndu = pkhnd ∧ type = pke].ind and l := D[hndu = lhnd ∧ type = list].ind and
length := enc len∗(k,D[l].len). If length > max len(k) or pk = ↓ or l = ↓, then return ↓. Else
set chnd := curhndu++ and

D :⇐ (ind := size++, type := enc, arg := (pk , l), hndu := chnd, len := length).15

• Decryption: lhnd ← decrypt(skhnd, chnd).

Let sk := D[hndu = skhnd∧ type = ske].ind and c := D[hndu = chnd∧ type = enc].ind . Return
↓ if c = ↓ or sk = ↓ or pk := D[c].arg [1] 6= sk + 1 or l := D[c].arg [2] = ↓ (as a result of the
command adv invalid ciph). Else return lhnd := ind2hndu(l).

• Public-key retrieval: pkhnd ← pk of enc(chnd).

Let c := D[hndu = chnd ∧ type = enc].ind . If c = ↓, return ↓. Otherwise, let pk := D[c].arg [1]
and return pkhnd := ind2hndu(pk).

4.5.3 Local Adversary Commands

The following commands are also local, but, as defined in Section 4.4, only well-formed at the port
ina?. Hence they are not available as commands for the honest users in the real system. They
model tolerable imperfections of the real system, i.e., actions that may be possible in real systems
but that are not required.

First, an adversary may create invalid entries of a certain length; they obtain the type garbage.
Secondly, invalid ciphertexts are a special case because participants not knowing the secret key can
reasonably ask for their type and query their public key, hence they cannot be of type garbage.
Thirdly, the security definition of signature schemes does not exclude that the adversary transforms
signatures by honest participants into other valid signatures on the same message with the same
public key.

Finally, we allow the adversary to retrieve all information that we do not explicitly require to
be hidden. We write this as a command adv parse. It returns the type and usually all the abstract
arguments of a value (with indices replaced by handles), e.g., parsing a signature yields the public
key for testing this signature, the signed message, and the value of the signature counter used for
this message. Only for ciphertexts where the adversary does not know the secret key, parsing only
returns the length of the cleartext instead of the cleartext itself. Most of these arguments could
also be queried with basic commands, but not the signature counter and the cleartext length.

• Invalid entry: yhnd ← adv garbage(l), for l ∈ N with l ≤ max len(k).

Set yhnd := curhnda++ and16

D :⇐ (ind := size++, type := garbage, arg := (), hnd a := yhnd, len := l).

• Signature transformation: thnd ← adv transform sig(shnd).

15This type also has a second format due to the command adv invalid ciph.
16This does not mean that the same garbage is always treated differently, only that the simulation has to ensure

that this command is only used for new garbage.

16

Let s := D[hnd a = shnd ∧ type = sig].ind . If s = ↓ then return ↓. Otherwise let (pk , l, c) :=
D[s].arg . Set thnd := curhnda++ and

D :⇐ (ind := size++, type := sig, arg := (pk , l, false), hnd a := thnd,

len := D[s].len).

• Invalid ciphertext of length l: chnd ← adv invalid ciph(pkhnd, l), for 1 ≤ l ≤ max len(k).

Let pk := D[hnda = pkhnd ∧ type = pke].ind . If pk = ↓, then return ↓. Otherwise set
chnd := curhnda++ and

D :⇐ (ind := size++, type := enc, arg := (pk), hnd a := chnd, len := l).

• Parameter retrieval: (type , arg)← adv parse(mhnd).

Let m := D[hnd a = mhnd].ind and type := D[m].type . In most cases, set arg :=
ind2hnd∗a(D[m].arg). (Recall that this only transforms arguments in INDS.) The only excep-
tion is for type = enc andD[m].arg of the form (pk , l) (a valid ciphertext) andD[pk−1].hnd a =
↓ (the adversary does not know the secret key); then arg := (ind2hnda(pk),D[l].len).

4.5.4 Send Commands

We now define the send commands in detail. Essentially, messages from one honest user to another
(on a secure or authentic channel) are put on an abstract secure channel for scheduling, while
messages to or from the adversary (either by their addresses, or because the channel is not private)
are output immediately.

• send x (v, lhnd), for x ∈ {s, a, i} and v ∈ {1, . . . , n}.

Intuitively, the list l shall be sent to user v. Let l ind := D[hndu = lhnd ∧ type = list].ind . If
l ind 6= ↓, then depending on the channel type (where both cases may occur for one message):

– If (u, v, x) ∈ ch honest , output l ind at net idu,v ,x !.

– If (u, v, x) ∈ ch to adv , output (u, v, x, ind2hnda(l
ind)) at outa!.

• adv send x (u, v, lhnd), for x ∈ {s, a, i}, u ∈ {1, . . . , n} and v ∈ H at port ina?.

Intuitively, the adversary wants to send list l to v, pretending to be u. Let l ind := D[hnda =
lhnd ∧ type = list].ind . If l ind 6= ↓ and (u, v, x) ∈ ch from adv , output (u, v, x, ind2hndv(l

ind))
at outv !.

4.5.5 Inputs from Secure Channels

• Input from secure channel: On input l ind at a port net idu,v ,x?, for l
ind ∈ INDS with l ind ≤

size.

THH outputs (u, x, ind2hndv(l
ind)) at outv !.

17

4.6 Properties of the Ideal System

The following properties of the ideal system will be useful as invariants in the security proof. For
every entry x in D, let owners(x) := {u ∈ H ∪ {a} | x.hndu 6= ↓}.

Lemma 4.1 The ideal systems Syscry,id,xn,L for x ∈ {stan, loc} have the following properties:

1. Index and handle uniqueness: The argument ind of D is a key attribute. Further, D always
fulfills |σhndu=ihnd(D)| = 1 for each ihnd ≤ curhndu , and |σhndu=ihnd(D)| = 0 for each ihnd >
curhndu .

2. Well-defined terms: If an entry x = D[i] has an index argument, i.e., a := x.arg [j] ∈ INDS
for some j ∈ N, then a < i. (Thus following the arguments of an entry backwards recursively
yields a finite, Dolev-Yao-like term.) We call the entry D[a] a direct component of x, and
recursively define the set of all components of x in the obvious way.

3. Message correctness: At all times and for all (u, v, x) ∈ ch honest , each message l ind :=
net idu,v ,x [i] with l ind 6= ↓ has D[l ind].type = list. Here, net idu,v ,x [i] denotes the i-th element
in the buffer queue of the connection.

4. Length bounds: At all times, x.len ≤ max len(k) for all x ∈ D.

5. Correct key pairs: Key entries only exist in pairs, i.e., D[i].type = sks ⇐⇒ D[i+1].type = pks

and D[i].type = ske ⇐⇒ D[i+1].type = pke at all times and for all i ∈ N0. If the conditions
are true, we further have D[i+ 1].hnd u = D[i].hndu + 1 for u := owner(D[i]).

6. Key secrecy : If D[i].type ∈ {sks, ske}, then D[i] is not a component of D[j] for any j 6= i.
Further, |owners(D[i])| = 1. We write owner(D[i]) for the element of owners(D[i]) in this case.
It cannot change later.

✷

Proof. Part 1 was already shown in Sections 4.3.2 and 4.3.3; it is easy to see that all commands
respect the conventions introduced there.

Parts 2, 3, 4, and 5 can easily be seen by inspection of the commands, and for Part 4 by the
precondition on the lengths of nonces and keys.

For Part 6, inspection easily shows that no type of entry has a direct component of a type in {sks,
ske}, and thus also no component. Handles may be added to existing entries upon the following
inputs: Data storing and list generation, but only to data and lists; list projection, decryption,
retrieval from signatures and ciphertexts, and adv parse, but only to direct components of the given
entry and thus not to secret keys; send x and adv send x , but only to lists; and network inputs, but
only to lists by Part 3.

Moreover, the following properties will prove useful.

Lemma 4.2 The ideal systems Syscry,id,stann,L and Syscry,id,locn,L have the following properties:

1. The systems are polynomial-time.

2. No ideal network input is rejected because a counter stepsnet idu,v,x ? reached its bound.

3. The only modifications to existing entries x in D are assignments to previously undefined
attributes x.hndu, and (via the command sign) counter updates in entries of type sks.

18

4. Whenever THH assigns a handle x.hndu , it outputs it at port outu ! in the same transition.
Further, every new entry has exactly one handle.

✷

Proof. For Part 1, we have to show that THH only accepts a polynomial number of polynomial-
length inputs; the action in each command is then clearly polynomial-time by the assumptions
about the functions in L. For the input number, this holds because there is a counter stepsp? for
inputs at each port p?, each with a bound boundp? polynomial in k. Hence the dynamic bounds
curhndu on handle parameters and size on ideal network inputs are bounded by a statically fixed
polynomial. All other input parameters have static polynomial domain restrictions. Hence the
length bounds on inputs (recall Section 4.5.1) are indeed polynomial in k.

Part 2 holds because messages only get into a buffer net idu,v ,x by a command send x input
at inu?, one per command. There are at most max in(k) such inputs, and max in(k) messages are
accepted at net idu,v ,x? if scheduled.

Parts 3 and 4 can easily be seen by inspection of the commands.

4.7 A Small Example

Assume that a cryptographic protocol has to perform the step

u→ v : encpkev (signsksu(m,N1), N2),

where m is an input message and N1, N2 are two fresh nonces. Given our library, this is represented
by the following sequence of commands input at port inu?. We assume that u has already received
a handle pkehndv to the public encryption key of v, and created signature keys, which gave him a
handle skshndu .

1. mhnd ← store(m).

2. Nhnd
1 ← gen nonce().

3. lhnd1 ← list(mhnd, Nhnd
1).

4. sighnd ← sign(skshndu , lhnd1).

5. Nhnd
2 ← gen nonce().

6. lhnd2 ← list(sighnd, Nhnd
2).

7. enchnd ← encrypt(pkehndv , lhnd2).

8. mhnd ← list(enchnd).

9. send i(v,mhnd)

Note that the entire term is constructed by a local interaction of user u and the ideal library, i.e.,
the adversary does not learn anything about this interaction until Step 8. In Step 9, the adversary
gets an output (u, v, i,mhnd

a) with a handle mhnd
a for him to the resulting entry. In the real system

described below, the sequence of inputs for constructing and sending this term is identical, but real
cryptographic operations are used to build up a bitstring m until Step 8, and m is sent to v via a
real insecure channel in Step 9.

5 Real System

In a real system, the commands are implemented by real cryptographic algorithms, and messages
are actually sent between machines. We first describe the underlying algorithms; then we define
the machines of the real system in an order similar to the ideal system.

19

5.1 Cryptographic Operations

The real system uses digital signatures and public-key encryption. The ranges of all algorithms are
{0, 1}+ ∪ {↓}.

5.1.1 Digital Signatures

We denote a digital signature scheme by a tuple S = (genS, sign, test, pks len, sig len) of polynomial-
time algorithms. We write

(sk , pk)← genS(1
k, 1s)

for the generation of a secret signing key and a public test key based on a security parameter, k ∈ N,
and the desired maximum number of signatures, s ∈ N. The length of pk is pks len(k, s) > 0. By

sig ← signsk ,sc(m)

we denote the (probabilistic) signing of a message m ∈ {0, 1}+, where sc ∈ {1, . . . , s} is a counter
value.17 Verification

b := testpk (sig ,m)

is deterministic and returns true (then we say that the signature is valid) or false. Correctly gener-
ated signatures for correct key pairs must always be valid. The length of sig is sig len(k, s, |m|) >
0.18 This is also true for every sig ′ with testpk (sig

′,m) = true for a value pk ∈ {0, 1}pks len(k,s). The
functions pks len, sig len must be bounded by multivariate polynomials.

The accepted security definition for general-purpose signing is security against existential forgery
under adaptive chosen-message attacks [55]. We only use our notation for interacting machines.

Definition 5.1 (Signature Security) Given a signature scheme and a function s over N, the signer
machine Sigs is defined as follows: It has one input and one output port, variables sk , pk initialized
with ↓ and a counter sc initialized with 0, and the following transition rules:

• First generate a key pair, (sk , pk)← genS(1
k, 1s(k)), and output pk.

• On input (sign,mj), and if sc < s(k), set sc++ and return sigj ← signsk ,sc(mj).

The signature scheme is called existentially unforgeable under adaptive chosen-message attack
if for every efficiently computable, polynomially bounded s and every probabilistic polynomial-time
machine Asig that interacts with Sigs and outputs a pair (m, sig), the probability that testpk (sig ,m) =
true and m was not signed by Sigs during the interaction (i.e., a forged signature), is negligible (in
k). ✸

5.1.2 Encryption

We denote a public-key encryption scheme by a tuple E = (genE,E,D, pke len, enc len) of
polynomial-time algorithms. We assume that messages of arbitrary length can be encrypted and
that secrecy holds within all subsets of messages of the same length. We write

(sk , pk)← genE(1
k)

17The most efficient implementations of typical signature schemes needing counters also store a path in a tree.
Functionally, this or any other function of random values chosen during earlier applications of signsk is equivalent to
just a counter, because all random values needed can be seen as part of sk and chosen initially.

18For real signature schemes one often gets only upper bounds on these lengths. By appropriate padding one can
easily ensure that these bounds are met exactly.

20

for the generation of a secret decryption key and a public encryption key. The length of pk is
pke len(k) > 0. We denote the (probabilistic) encryption of a message m ∈ {0, 1}+ by

c← Epk (m),

and deterministic decryption by
m := Dsk (c).

The result m may be ↓ for wrong ciphertexts. The length of c is enc len(k, |m|) ≥ |m| > 0 for every
value pk ∈ {0, 1}pke len(k), and also for every c′ with m := Dsk (c

′) 6= ↓ for a correctly generated
secret key. The functions pke len, enc len must be bounded by multivariate polynomials.

The following security definition means that any two equal-length messages are indistinguishable
even in adaptive chosen-ciphertext attacks. Indistinguishability was introduced in [54], chosen-
ciphertext security in [73] and formalized as “IND-CCA2” in [33]. It is the accepted definition for
general-purpose encryption. An efficient encryption system secure in this sense is [43].

Definition 5.2 (Encryption Security) Given an encryption scheme, the decryptor machine Dec is
defined as follows: It has one input and one output port, variables sk , pk , c initialized with ↓, and
the following transition rules:

• First set (sk , pk)← genE(1
k) and output pk .

• On input (enc,m0,m1) (intuitively a pair of messages an adversary hopes to be able to dis-
tinguish), and if |m0| = |m1| and c = ↓, set b R← {0, 1} and store and output the encryption
c← Epk (mb).

• On input (dec, cj) and if cj 6= c, return m := Dsk (c).

The encryption scheme is called indistinguishable under adaptive chosen-ciphertext attack if for
every probabilistic polynomial-time machine Aenc that interacts with Dec and finally outputs a bit b∗

(meant as a guess at b), the probability of the event b∗ = b is bounded by 1/2 + g(k) for a negligible
function g. ✸

5.2 Structures

Given a signature scheme S and an encryption scheme E , we now define a real crypto-library, again
in a stand-alone and a localized version Syscry,real,stann,S,E,L′ and Syscry,real,locn,S,E,L′ . The parameter n denotes
the number of participants, and L′ is a tuple of parameters discussed in Section 5.3.

The systems are standard cryptographic systems as defined in [72] and sketched in Section 2.1.

• The intended structure has n machines {M1, . . . ,Mn}.

• The intended specified ports are defined via

S ∗,stanc := {inu !, outu? | u ∈ {1, . . . n}};

S ∗,locc := {inu !, outu?, inu
⊳! | u ∈ {1, . . . n}}.

• Correspondingly, each Mu has ports inu? and outu !, and in the localized version also outu
⊳!

• Each Mu has three connections to each Mv with v ∈ {1, . . . n}, called netu,v,s, netu,v,a and
netu,v,i. They are called network connections and the corresponding ports network ports. All
the network connections are scheduled by the adversary.

21

• The access structure ACC consists of all subsets H of {1, . . . , n}.

• The channel model χ maps each connection netu,v,x to x.

The channel model means that in an actual structure, an honest intended recipient gets all messages
output at ports of type s (secret) and a (authentic) and the adversary gets all messages output at
ports of type a and i (insecure). Furthermore, all messages received at an input port of type i come
from the adversary. This is shown in Figure 3. To ensure globally unique port names, some ports
get a superscript a according to the rules in [72]. In the following, the machine is always clear from
the context; thus we usually omit these superscripts.

M
u

D
u

M
v

D
v

A

H

in
u

out
u

in
V

out
V

S
H

net
u,v,s

net
u,v,i

net
u,v,a net

u,v,a

a

net
u,v,i

a

Figure 3: Connections from a correct machine to another in the real system. User in- and outputs
are scheduled as in the ideal system, network connections by the adversary.

5.3 Lengths and Bounds

The parameter L′ of the real system consists of functions max len(k), max skc(k), and max in(k)
as in the ideal system and a function nonce len(k) of the same type, where 2−nonce len(k) must be
negligible.

For use in preconditions and lemmas, we define the resulting lengths of data items in the real sys-
tem, i.e., the length functions of the corresponding ideal system, as a function L := R2Ipar(S, E , L′).
We abbreviate

• pks len′(k) := pks len(k,max skc(k));

• sig len′(k, l) := sig len(k,max skc(k), list len(nonce len(k), l)); and

• enc len′(k, l) := enc len(k, list len(nonce len(k), l)).

Now L consists of the following functions:

• data len∗(l) := list len(|data|, l);

• list len∗(l1, . . . , lj) := list len(|list|, l1, . . . , lj);

• nonce len∗(k) := list len(|nonce|, nonce len(k));

• pks len∗(k) := list len(|pks|, pks len′(k));

• sig len∗(k, l) := list len(|sig|, pks len′(k), nonce len(k), l, sig len′(k, l));

• pke len∗(k) := list len(|pke|, pke len(k));

22

• enc len∗(k, l) := list len(|enc|, pke len(k), enc len′(k, l), nonce len(k));

and max len, max skc and max in are taken unchanged from L′.
We require that nonce len∗(k), pks len∗(k), and pke len∗(k) are upper bounded by max len(k),

and we denote the set of parameters L′ that fulfill these constraints as ValidPar .

Lemma 5.1 For a tuple L′ ∈ ValidPar of parameters for the real crypto-library and correct
signature and encryption systems, the algorithm L := R2Ipar(S, E , L′) yields a correct tuple L of
parameters for the ideal crypto-library. ✷

Proof. We have to verify the conditions from Section 4.2. Clearly the range of all functions
type len∗ is indeed N. Next, type len∗(k) < max len(k) for type ∈ {nonce, pks, pke} andmax skc(k) <
max in(k) holds by direct preconditions. Finally, one easily sees that all the functions are bounded
by a multivariate polynomial and efficiently computable because all the basic functions in the
definitions are.

5.4 States of a Machine

The state of each machine Mu consists of a database Du and variables curhndu and stepsp? for each
input port p?.

5.4.1 Database Du

The main data structure of Mu is a database Du that contains implementation-specific data such
as ciphertexts and signatures produced during a system run. Its primary key attribute corresponds
to the handles for u in the ideal system. Each entry x in Du has attributes

(hndu ,word , type , add arg).

• x.hndu ∈ HNDS consecutively numbers all entries in Du. We use it as a primary key
attribute, i.e., we will write Du[i

hnd] for Du[hndu = ihnd].

• x.word ∈ {0, 1}+ is the real representation of x.

• x.type ∈ typeset ∪ {null} identifies the type of x. The value null denotes that the entry has
not yet been parsed. Again, the typeset can be extended.

• x.add arg is a list of (“additional”) arguments. Typically it is (), only for signing keys it
contains the counter.

5.4.2 Conventions about Handles

Initially, Du is empty. Mu maintains a counter curhndu of type HNDS denoting the current
number of elements in Du. New entries x always receive x.hndu := curhndu++, and x.hndu is never
changed. Thus, hndu is indeed a key attribute. By

(ihnd,Du) :← (i, type , add arg),

spoken “determine a handle ihnd for . . . inDu”, for i ∈ {0, 1}
+, type ∈ typeset , and add arg ∈ LIST ,

we abbreviate the following algorithm: If ihnd := Du[word = i∧ type 6∈ {sks, ske}].hndu 6= ↓, return
ihnd, assigning the input values type and add arg to the corresponding attributes of Du[i

hnd] only if
Du[i

hnd].type was null. Else if |i| > max len(k), return ihnd = ↓. Otherwise, set ihnd := curhndu++,
Du :⇐ (ihnd, i, type , add arg) and return ihnd.

23

5.4.3 Input Counters

For each of its input ports p?, Mu maintains a counter stepsp? ∈ N0 initialized with 0 for the number
of inputs at that port. All corresponding bounds boundp? are max in(k).

5.5 Inputs and their Evaluation

Now we describe how Mu evaluates individual inputs. Mainly, these are the cryptographic op-
erations with the modifications motivated in Section 2.3. For general unambiguity, not only all
cryptographic objects are tagged, but also data and lists.

5.5.1 General Conventions

The general conventions are similar to those in the ideal system. (In fact, the domains for inputs
at port inu? are the same as in THH in corresponding states, which will be defined later.)

Upon each input at a port p?, the machine Mu first increments the counter stepsp?, and once a
counter stepsp? has reached its bound max in(k), the length function for this port is always zero.

Otherwise, the length function is determined by the domain specified for each input in the part
“for . . . ” below. The domain of each parameter with subscript hnd is HNDS, and it must be
≤ curhndu at the time of execution. An input in the correct domain is called well-formed. If an
input is not well-formed, which is easily verifiable, Mu aborts the transition without further action.
(But the counter stepsp? has been incremented.) The overall length function for each port p? in
each state is the maximum of the possible lengths of well-formed inputs at that port in that state;
it can easily be computed.

In the localized version, Mu accompanies every output at the port outu ! by an output 1 at
outu

⊳!, i.e., it schedules that output immediately.
From now on, we only need to consider well-formed inputs further.

5.5.2 Constructors and One-level Parsing

Constructors For each type, we define the main constructor via an algorithm make type , which
is purely functional, i.e., it does not use or modify global variables, except that it uses k.19

Functional parsing We also define a functional algorithm parse, written

(type , arg)← parse(m),

for m ∈ {0, 1}+ and with outputs type ∈ typeset and a list arg with elements in Σ∗.
On inputm, it tests if m is of the form (type ,m1, . . . ,mj) with type ∈ typeset \{sks, ske, garbage}

and j ≥ 0. If this fails, it returns (garbage, ()). Otherwise it makes a call arg ← parse type(m) to
an algorithm which returns ↓ if m is not really of this type and otherwise computes the arguments.
These algorithms are described after the corresponding constructors in Section 5.5.3. If parse type
returns arg = ↓, parse again outputs (garbage, ()).

Parsing in Du By

“parse mhnd”

19This is mainly useful for the security proof. An implementation may be inline.

24

we abbreviate that Mu calls (type , arg) ← parse(Du[m
hnd].word), assigns Du[m

hnd].type := type if
it was still null, and may then use arg . By

“parse mhnd if necessary”

we mean the same except that Mu does nothing if Du[m
hnd].type 6= null.20

5.5.3 Basic Commands and parse type

We now define how Mu evaluates a command from basic cmds , entered at the port inu?. Basic
commands are again local, i.e., they produce a result at outu ! and possibly update the database
Du, but do not produce outputs at other ports. The basic commands are implemented by the
underlying cryptographic operations with the modifications motivated in Section 2.3. For general
unambiguousness, not only all cryptographic objects are tagged, but also data and lists.

Type and length queries

• Type query: t← get type(xhnd).

Parse xhnd if necessary. Then let t := Du[x
hnd].type .

• Length query: l← get len(xhnd).

Parse xhnd if necessary. If Du[x
hnd].type 6∈ {sks, ske} then let l := |Du[x

hnd].word |, otherwise
let l := 0.

Storing and retrieving data

• Constructor: d← make data(m), for m ∈ {0, 1}∗.

Let d := (data,m).

• Storing: mhnd ← store(m), for m ∈ {0, 1}∗ with |m| ≤ max len(k).

Let d← make data(m) and (dhnd,Du) :← (d, data, ()).

• Parsing: arg ← parse data(m).

If m is of the form (data,m′) with m′ ∈ {0, 1}∗, return (m′), else ↓.

• Retrieval: m← retrieve(mhnd).

Parse mhnd if necessary. Return parse data(Du[hndu = mhnd ∧ type = data].word)[1].

Lists

• Constructor: l← make list(x1, . . . , xj), for j ∈ N0 and xi ∈ {0, 1}
+ for i := 1, . . . , j.

Let l := (list, x1, . . . , xj).

• Generate a list: lhnd ← list(xhnd1 , . . . , xhndj), for 0 ≤ j ≤ max len(k).

If there is an i with Du[x
hnd
i].type ∈ {sks, ske}, return ↓.21 Else set l :=

make list(Du[x
hnd
1].word , . . . ,Du[x

hnd
j].word) and (lhnd,Du) :← (l, list, ()).

20This notation is mainly used for reasons of readability. Both algorithms can be formalized as arg ← parseDu (m
hnd)

and parse condDu (m
hnd) (with side effects).

21We need not parse the inputs because parsing never gives types from {sks, ske}, and garbage in lists is allowed.

25

• Parsing: arg ← parse list(l).

If l is of the form (list, x1, . . . , xj) with j ∈ N0 and xi ∈ {0, 1}
+ for i := 1, . . . , j, return

(x1, . . . , xj), else ↓. In the first case, we call l a tagged list.

• i-th projection: xhnd ← list proj(lhnd, i), for 1 ≤ i ≤ max len(k).

Parse lhnd, yielding arg . If Du[l
hnd].type 6= list, return ↓. Otherwise let x := arg [i]. If x = ↓,

return ↓, else let (xhnd,Du) :← (x, null, ()).

Nonces

• Constructor: n← make nonce().

Let n′ R← {0, 1}nonce len(k) and n := (nonce, n′).

• Generation: nhnd ← gen nonce().

Let n← make nonce(), nhnd := curhndu++ and Du :⇐ (nhnd, n, nonce, ()).

• Parsing: arg ← parse nonce(n).

If n is of the form (nonce, n′) with n′ ∈ {0, 1}nonce len(k), return (), else ↓.

Signatures

• Key constructor: (sk∗, pk∗)← make sig keypair().

Let (sk , pk)← genS(1
k, 1max skc(k)) and set sk∗ := (sks, sk , pk) and pk∗ := (pks, pk).

• Key generation: (skhnd, pkhnd)← gen sig keypair().

Let (sk∗, pk∗) ← make sig keypair(), skhnd := curhndu++, pkhnd := curhndu++, Du :⇐
(skhnd, sk∗, sks, (0)), and Du :⇐ (pkhnd, pk∗, pks, ()).22

• Public-key parsing: arg ← parse pks(pk∗).

If pk∗ is of the form (pks, pk) with pk ∈ {0, 1}pks len′(k), return (), else ↓.

• Signature constructor: s∗ ← make sig(sk∗, l, c), with sk∗, l ∈ {0, 1}+ and c ∈ N with c ≤
max skc(k).

Select r R← {0, 1}nonce len(k), set (sk := sk∗[2] and pk := sk∗[3], sign sig ← signsk ,c((r, l)), and
return s∗ := (sig, pk , r, l, sig).

• Signature generation: shnd ← sign(skhnd, lhnd).

Parse lhnd if necessary. (Secret keys are not received from the network and thus always parsed.)
If Du[sk

hnd].type 6= sks or Du[sk
hnd].add arg [1] ≥ max skc(k) or Du[l

hnd].type 6= list, then re-
turn ↓. Otherwise set sk∗ := Du[sk

hnd].word , c := Du[sk
hnd].add arg [1]++, l := Du[l

hnd].word ,
and s∗ ← make sig(sk∗, l, c). If |s∗| > max len(k), decrement Du[sk

hnd].add arg [1] again and
return ↓, else set shnd := curhndu++ and Du :⇐ (shnd, s∗, sig, ()).

• Signature parsing: arg ← parse sig(s∗).

If s∗ is not of the form (sig, pk , r, l, sig) with pk ∈ {0, 1}pks len′(k), r ∈ {0, 1}nonce len(k), l ∈
{0, 1}+, and sig ∈ {0, 1}sig len′(k,|l|), return ↓. Also return ↓ if l is not a tagged list or if
testpk (sig , (r, l)) = false. Otherwise set pk∗ := (pks, pk) and arg := (pk∗, l).

22The argument 0 of the secret key is the counter and will change.

26

• Signature verification: v ← verify(shnd, pkhnd, lhnd).

Parse shnd yielding arg . If Du[s
hnd].type 6= sig, return ↓. Else let (pk∗, l) := arg . Let v := true

if Du[pk
hnd].word = pk∗ and Du[l

hnd].word = l, else v := false.23

• Public-key retrieval: pkhnd ← pk of sig(shnd).

Parse shnd yielding arg . If Du[s
hnd].type 6= sig, return ↓. Otherwise, let (pkhnd,Du) :←

(arg [1], pks, ()).

• Message retrieval: lhnd ← msg of sig(shnd).

Parse shnd yielding arg . If Du[s
hnd].type 6= sig, return ↓. Otherwise, let (lhnd,Du) :←

(arg [2], list, ()).

Public-key encryption

• Key constructor: (sk∗, pk∗)← make enc keypair().

Let (sk , pk)← genE(1
k) and set sk∗ := (ske, sk) and pk∗ := (pke, pk).

• Key generation: (skhnd, pkhnd)← gen enc keypair().

Set (sk∗, pk∗) ← make enc keypair(), skhnd := curhndu++, pkhnd := curhndu++, Du :⇐
(skhnd, sk∗, ske, ()), and Du :⇐ (pkhnd, pk∗, pke, ()).

• Public-key parsing: arg ← parse pke(pk∗).

If pk∗ is of the form (pke, pk) with pk ∈ {0, 1}pke len(k), return (), else ↓.

• Encryption constructor: c∗ ← make enc(pk∗, l), for pk∗, l ∈ {0, 1}+.

Let pk := pk∗[2], set r R← {0, 1}nonce len(k), encrypt c← Epk ((r, l)), and let c∗ := (enc, pk , c, r).

• Encryption: chnd ← encrypt(pkhnd, lhnd).

Parse pkhnd and lhnd if necessary. If Du[pk
hnd].type 6= pke or Du[l

hnd].type 6= list, then return ↓.
Otherwise, set pk∗ := Du[pk

hnd].word , l := Du[l
hnd].word , and c∗ ← make enc(pk∗, l). If c∗ =

↓ or |c∗| > max len(k) then return ↓, else set chnd := curhndu++ and Du :⇐ (chnd, c∗, enc, ()).

• Ciphertext parsing: arg ← parse enc(c∗).

If c∗ is not of the form (enc, pk , c, r) with pk ∈ {0, 1}pke len(k), c ∈ {0, 1}+, and r ∈
{0, 1}nonce len(k), return ↓, else arg := (pk∗) := ((pke, pk)).

• Functional decryption: l← parse decrypt(sk∗, c∗).

Let sk := sk∗[2], c := c∗[3], and r := c∗[4]. Decrypt l∗ := Dsk (c). If l
∗ = ↓ or l∗[1] 6= r or l∗[2]

is not a tagged list, return l := ↓, else l := l∗[2].

• Decryption: lhnd ← decrypt(skhnd, chnd).

Parse chnd yielding arg =: (pk∗). Return ↓ if Du[sk
hnd].type 6= ske or Du[c

hnd].type 6= enc or
Du[sk

hnd + 1].word 6= pk∗.24 Otherwise, set sk∗ := Du[sk
hnd].word , c∗ := Du[c

hnd].word , and
l← parse decrypt(sk∗, c∗). If l = ↓, return ↓. Otherwise let (lhnd,Du) :← (l, list, ()).

23The actual signature test is already performed when shnd is parsed. We simply return false if a test is attempted
with another public key or message than those contained in the signature.

24This means that one never tries to decrypt with respect to another public key than the one contained in the
ciphertext.

27

• Public-key retrieval: pkhnd ← pk of enc(chnd).

Parse chnd yielding arg . If Du[c
hnd].type 6= enc, return ↓. Otherwise let (pkhnd,Du) :←

(arg [1], pke, ()).

5.5.4 Send Commands

• send x (v, lhnd), for x ∈ {s, a, i} and v ∈ {1, . . . , n}.

Parse lhnd if necessary. If Du[l
hnd].type = list, output Du[l

hnd].word at port netu,v ,x !.

5.5.5 Network Inputs

• Network input: On input l at a port netw ,u,x ?, for l ∈ {0, 1}
+ and |l| ≤ max len(k).

Test if l = (list, x1, . . . , xj) for some j ∈ N0 and values xi ∈ {0, 1}
+. If yes, let (lhnd,Du) :←

(l, list, ()) and output (w, x, lhnd) at outu !.

5.6 Properties of the Real System

The following properties of the real system are useful:

Lemma 5.2 The real systems Syscry,real,xn,S,E,L′ for x ∈ {stan, loc} have the following properties:

1. The argument hndu of Du is a key attribute.

2. The only modifications to existing entries x in Du are that x.type changes from null to some-
thing else and that x.add arg changes from () to something else at the same time, and counter
updates in entries of type sks.

3. At all times we have |x.word | ≤ max len(k) for all x ∈ Du, except possibly if x.type ∈ {sks,
ske}.

4. The systems are polynomial-time.

✷

Proof.

1. This was already shown in Section 5.4.2.

2. This can easily be seen by inspection of the commands.

3. By Part 2, we only need to consider commands that produce new entries. In most cases,
the subroutine “(xhnd,Du) :← . . .” is used, which tests for this bound. For signatures and
encryptions, the outer command contains the test. For nonces and public keys, their lengths
are nonce len∗(k), pks len∗(k), and pke len∗(k), respectively, which are bounded by max len(k)
by Section 5.3.

4. We have to show that each Mu only accepts a polynomial number of polynomial-length inputs;
the action in each command is then clearly polynomial-time because all basic algorithms used
are this. For the numbers, this holds because there is a counter stepsp? for inputs at each
port p?, each with the polynomial bound max in(k). As each input adds at most 2 entries
to Du, the dynamic bound curhndu for handle parameters is also polynomially bounded. All
other input parameters have static polynomial domain restrictions. Hence the length bounds
on inputs (recall Section 4.5.1) are indeed polynomial in k.

28

6 Simulator

We claim that every real system Syscry,real,xn,S,E,L′ for x ∈ {stan, loc} in Section 5 is as secure as the ideal

system Syscry,id,xn,L in Section 4 for the corresponding parameters L := R2Ipar(S, E , L′), even with a
blackbox simulation. The first major step in this proof is to construct a simulator SimH for each
set H such that for every real adversary A, the combination SimH(A) of SimH and A achieves the
same effects in the ideal system as the adversary A in the real system, see Figure 4.

net
u,v,x

(a)

• • •

out
a

in
u

out
u

S
H

in
a

net_id
u,v,x

A

Sim'
H

D
a

with sk's for u H

clk !

Sim
H
(A)

H

TH
H

D

Msg. here:

word l

Msg. here:

(u, v, x, lhnd)Msg. here: index lind

• Results of cmds

• Received msgs

• Basic cmds

• Adv cmds

• Send cmds

net
u,v,x

(a)

Figure 4: Set-up of the simulator. User in- and outputs are scheduled as in the ideal system.

Basically SimH has to translate real messages from the real adversary A into handles as THH

expects them at its adversary input port ina? and vice versa, see Figure 4. In both directions, SimH

has to parse messages completely because it can only construct the other version (abstract or real)
bottom-up. This is done by recursive algorithms. In some cases, the simulator cannot produce
any corresponding message. We collect these cases in so-called error sets and show later that they
cannot occur at all or only with negligible probability.

6.1 Ports and Scheduling

The ports of SimH are shown in Figure 4. In particular, the clock ports, i.e., the scheduling, are as
follows: A remains the master scheduler. It also still schedules the connections between itself and
H, the network connections netu,v,x with (u, v, x) 6∈ ch honest (including the doubled connections
netau,v,x), and in the stand-alone version the user in- and outputs, i.e., these clock ports of A are
unchanged. Each clock port netu,v ,x

⊳! with (u, v, x) ∈ ch honest is renamed into net idu,v ,x
⊳! so

that A also schedules the ideal secure channels. (Port renaming is allowed in blackbox reductions,
cf. [72].) Recall that THH schedules its outputs at outa!.

Thus SimH mainly schedules the connection ina. It immediately does this (by outputting 1 at
ina

⊳!), whenever it makes an output at ina!; we do not repeat this below. For local commands, we
abbreviate subroutine behavior as follows:

“Call y ← x at ina!, expecting . . .”,

29

means that SimH outputs x at port ina! and schedules it, waits for an input at outa? by setting all
other length functions to 0, and assigns the input to a variable y. If y is not in the domain given
after “expecting”, SimH aborts all current recursive algorithms and its outermost transition. As
THH reacts to local commands with an output at outa! and schedules it immediately, we really get
subroutine behavior.

6.2 Long-term States of the Simulator

The state of SimH consists of a database Da and variables curhnda and stepsp? for each input port
p?.

6.2.1 Database Da

To ensure that the same abstract message is always mapped to the same real message and vice
versa, SimH maintains a database Da of already mapped adversary handles. Each entry in Da has
attributes

(hnd a,word , add arg).

For each tuple x ∈ Da:

• x.hnd a ∈ HNDS is used as the primary key attribute. However, its use is not as straightfor-
ward as in the ideal and real system, compare Lemma 6.2.

• x.word ∈ {0, 1}∗ is the real representation of x, or ǫ for unknown secret keys (of the adversary).

• x.add arg is a list of additional arguments. Typically it is (). However, for public keys
received from the adversary it is (adv), and for keys from honest users, where the simulator
generated a key pair, it is of the form (honest, sk∗).

6.2.2 Conventions about Handles

Initially, Da is empty. SimH keeps a counter curhnda of type HNDS, which denotes the current
size of Da, except temporarily within the algorithm id2real defined below.

6.2.3 Input Counters

For each of its input ports p?, SimH maintains a counter stepsp? ∈ N0 initialized with 0 for the
number of inputs at that port. The corresponding bounds boundp? are max in(k) for the network
ports and max ina(k) = 10n2max in(k)max len(k) for outa?.

6.3 Input Evaluation

6.3.1 General Conventions

Upon each input at a port p?, the main simulator SimH first increments the counter stepsp?. This
is the only case where such a counter is increased. Once a counter stepsp? has reached boundp?, the
length function for this port is always zero.

Otherwise, the length functions are determined by the domain specified for each input below.

30

6.3.2 Send Commands

In this section, we define the behavior of SimH when it receives an input from THH. We only
consider “unsolicited” inputs here, not the immediate results of local commands. These inputs are
the results of send commands by honest users.

• Input from THH: On input m at port outa?, for m = (u, v, x, lhnd) with (u, v, x) ∈ ch to adv
and lhnd ≤ max hnd(k) := 6n2max in(k)max len(k).

If Da[l
hnd] 6= ↓, let l := Da[l

hnd].word . Else set curhnda++ and produce such a word with an
algorithm l← id2real(lhnd) (with side-effects). Then output l at port netu,v ,x !.

We will show that max hnd(k) is an upper bound on the database size in THH if THH interacts
with SimH. Actually THH always uses lhnd = curhnda++ for new adversary handles. Hence SimH’s
update of curhnda restores “correct derivation”.

Overall structure of id2real The algorithm id2real recursively parses an abstract message, builds
up a corresponding real message, and enters all new message parts into Da. It only interacts with
THH by local commands, so that we get an uninterrupted dialogue between SimH and THH.

The domain expectations of id2real and certain additional format claims made will be proven
in Section 7 for interaction with THH. The main explanation is that id2real is only called for new
handles. They only occur if the corresponding entry in THH was constructed at the request of an
honest user, and thus by a basic command. Hence none of the exceptional data formats occurs.

Now id2real(mhnd) is defined as follows.

1. Call (type , (mhnd
1 , . . . ,mhnd

j)) ← adv parse(mhnd) at ina! (we use the superscript hnd although
not all ideal attributes are handles), expecting type ∈ typeset \ {sks, ske, garbage} and j ≤
max len(k), and mhnd

i ≤ max hnd(k) if mhnd
i ∈ HNDS and otherwise |mhnd

i | ≤ max len(k).

2. For i := 1, . . . , j: If mhnd
i ∈ HNDS and mhnd

i > curhnda, set curhnda++.

3. For i := 1, . . . , j: If mhnd
i 6∈ HNDS, set mi := mhnd

i . Else if Da[m
hnd
i] 6= ↓, let mi :=

Da[m
hnd
i].word . Else make a recursive call mi ← id2real(mhnd

i). Let arg real := (m1, . . . ,mj).

4. Construct and enter the real message m depending on type :

• If type ∈ {data, list, nonce}, set m← make type(arg real) and Da :⇐ (mhnd,m, ()).

• If type ∈ {pks, pke}, call (sk∗, pk∗) ← make sig keypair() or (sk∗, pk∗) ←
make enc keypair(), respectively, and set m := pk∗ and Da :⇐ (mhnd,m, (honest, sk∗)).

• If type = sig, we claim that arg real is of the form (pk∗, l, c) with c ∈ N. Let pkhnd :=
mhnd

1 . We claim that Da[pk
hnd].add arg is of the form (honest, sk∗). Then set m ←

make sig(sk∗, l, c) and Da :⇐ (mhnd,m, ()).

• If type = enc, we claim that lhnd := mhnd
2 6=↓, and distinguish two cases:

If lhnd ∈ HNDS (i.e., a cleartext handle, not only a length was output), let m ←
make enc(arg real) and Da :⇐ (mhnd,m, ()).

Otherwise arg real is of the form (pk∗, len) with len ∈ N. Then SimH encrypts a fixed
message of the correct length; it must not be a list. Let pk := pk∗[2] and len∗ :=
list len(nonce len(k), len). Encrypt c ← Epk (1

len∗

) and set r R← {0, 1}nonce len(k), m :=
(enc, pk , c, r), and Da :⇐ (mhnd,m, ()).

31

6.3.3 Network Inputs

Now we define the behavior of SimH when it receives an input from A.

• Network input: On input l at a port netw ,u,x ? with (w, u, x) ∈ ch from adv , for l ∈ {0, 1}+

and |l| ≤ max len(k).

If l is not a tagged list, abort the transition. Otherwise translate l into a corresponding
handle lhnd by an algorithm lhnd ← real2id(l) (with side-effects). Then output the command
adv send x (w, u, lhnd) at port ina!.

Overall structure of real2id The algorithm real2id recursively parses a real message, builds up
a corresponding term in THH, and enters all subterms into Da. It only interacts with THH by local
commands. As these have a subroutine behavior, we get an uninterrupted dialogue between SimH

and THH.

• mhnd ← real2id(m), for m ∈ {0, 1}+.

If there is already a handle mhnd with Da[m
hnd].word = m, return that. Otherwise set

(type , arg) := parse(m) and call a type-specific algorithm add arg ← real2id type(m, arg)
(with side-effects). Set mhnd := curhnda++ and Da :⇐ (mhnd,m, add arg).

In the definitions of real2id type, we write the parameter arg in the form that it must have when
parse returned (type , arg). Each real2id type ignores the results of its calls to THH, which are
predictable handles. Thus the length function for outa? can be 1 in those states.

Garbage add arg ← real2id garbage(m, ()). Call mhnd ← adv garbage(|m|) at ina!. Then return
().

Data add arg ← real2id data(m, (m′)). Call mhnd ← store(m′) at ina!. Return ().

Lists add arg ← real2id list(m, (m1, . . . ,mj)). Make recursive calls mhnd
i ← real2id(mi) for i :=

1, . . . , j (in this order). Then call mhnd ← list(mhnd
1 , . . . ,mhnd

j) at ina!. Return ().

Nonces add arg ← real2id nonce(m, ()). Call mhnd ← gen nonce() at ina!. Return ().

Signatures

• add arg ← real2id pks(m, ()).

Call (skhnd, pkhnd)← gen sig keypair() at ina!. Set Da :⇐ (curhnda++, ǫ, ()) for the secret key
and return add arg := (adv) for the public key.25

• add arg ← real2id sig(s∗, (pk∗, l)).

Make recursive calls pkhnd ← real2id(pk∗) and lhnd ← real2id(l).

25Here m is a new public key from the adversary. THH sets skhnd := curhnda++; pk
hnd := curhnda++, while SimH

does not know a real secret key. SimH therefore makes an “empty” entry in Da for the secret key, while the public
key is entered in Da by the last step of real2id as for all other data types.

32

If Da[pk
hnd].add arg = (adv), set skhnd := pkhnd − 1. Then call shnd ← sign(skhnd, lhnd) at ina!

and return ().26

Otherwise, let (sig, pk , r, l, sig) := s∗. Verify whether the adversary has seen another sig-
nature on the same message, i.e., if there exist shnd, r′, and sig ′ with Da[s

hnd].word =
(sig, pk , r′, l, sig ′) and Da[s

hnd].type = sig. If yes, call thnd ← adv transform sig(shnd) at ina!
and return ().

Otherwise, SimH gives up the simulation.27

Public-key encryption

• add arg ← real2id pke(m, ()).

Call (skhnd, pkhnd)← gen enc keypair() at ina!. Set Da :⇐ (curhnda++, ǫ, ()) for the secret key
and return add arg := (adv) for the public key.

• add arg ← real2id enc(c∗, (pk∗)).

Make a recursive call pkhnd ← real2id(pk∗). Now, to produce a corresponding abstract cipher-
text in THH, we try to find out the message.

If Da[pk
hnd].add arg = (adv), then SimH does not know the corresponding secret key. Call

chnd ← adv invalid ciph(pkhnd, |c∗|) at ina! and return ().28

If Da[pk
hnd].add arg = (honest, sk∗), let l ← parse decrypt(sk∗, c∗). If l = ↓, call chnd ←

adv invalid ciph(pkhnd, |c∗|) at ina! and return (). Else make a recursive call lhnd ← real2id(l),
call chnd ← encrypt(pkhnd, lhnd) at ina!, and return ().

6.4 Properties of the Simulator

We first show that the simulator is valid.

Lemma 6.1 Each machine SimH is polynomial-time. Hence for every polynomial-time adversary
A on the real system, the joint machine SimH(A) is polynomial-time and thus a valid adversary on
the ideal system. ✷

Proof. For each of its input ports, SimH has a polynomially bounded input counter and polynomially
bounded length functions. Further, every transition is polynomial-time because an execution of
id2real without inner recursions is clearly polynomial-time, and every inner recursion starts with
an output at ina! and thus ends a transition. The combination SimH(A) of two polynomial-time
machines SimH and A is clearly polynomial-time again.

26THH typically uses another counter value c for this signature than that used in the real adversary signature.
Honest users cannot notice this because there is no basic command to retrieve c. Neither can A retrieve c with
adv parse, because SimH only uses that command when constructing signatures it has not seen before.

27This is the case of a forged signature on a new message, and no command of THH allows that. It is easy to see
that an adversary against SimH indeed forged a signature here. However, in the real system such a signature may
already exist, but not be available to the adversary. Thus the proof that this case is cryptographically impossible is
more complicated; see Section 7.9.6.

28In the real system, this ciphertext is not necessarily invalid. However, it was made by A with its own public key.
(If it had been produced by an honest participant, SimH would have first entered it into Da upon a send command.)
Thus no real machine Mv will try to decrypt it, so that the honest users do not notice the difference. Further, if they
send it back to A, then SimH sends the original.

33

The following properties of the simulator are useful for the correctness proof.

Lemma 6.2 Each machine SimH has the following properties:

1. Each call id2real(mhnd) leads to Da[m
hnd] 6= ↓ unless the execution aborts.

2. If SimH interacts with THH, the following holds for the algorithm id2real:

• Calls id2real(mhnd) are only made for mhnd ≤ max hnd(k), and at most one such call for
each mhnd.

• At most max hnd(k) outputs at ina! are made.

• No new entries in D (of THH) are made.

3. Each call real2id(m) leads to a recursion tree with the following properties:

• At most |m| − 1 additional calls real2id(mi), each with |mi| > 0 are made.

• At most |m| outputs at are made at ina!.

• curhnda is increased by at most 2|m|, and thus at most 2|m| new entries are made in
Da.

4. If SimH interacts with THH, the following holds:

• The argument hnda of Da is a key attribute.

• Outside any execution of id2real, the entries in Da are consecutively numbered, i.e.,
{x.hnd a | x ∈ Da} = {1, . . . , curhnda}.

5. In interaction of THH and SimH, the following holds:

• No handle output by THH is rejected by SimH.

• The counters stepsouta? of SimH and steps ina? of THH never reach their bounds.

✷

Proof.

1. Unless an execution of id2real(mhnd) aborts, it ends in Step 4 with an assignment Da :⇐
(mhnd, . . .).

2. Calls id2real(mhnd) are only made by the outer transition for send commands and in Step 3
of id2real. Both times it was verified that mhnd ≤ max hnd(k) and Da[m

hnd
i] 6= ↓. We want to

show that every mhnd is used in at most one call.

By Part 1, this can only be violated if a first call id2real(mhnd) has not finished when a second
one is made, i.e., the second call is a node in the recursion tree of the first one. In a recursion
tree, SimH only obtains new handles with the command adv parse. Hence THH only follows
the components of a term. By Lemma 4.1.2, all components of a term in THH have smaller
indices. In particular, no index and thus no adversary handle occurs twice, which proves our
claim.

The other bound follows immediately because each subcall (without inner recursions) makes
one output at ina! (in Step 1).

As the only command to THH is adv parse, no new entries in D are made.

34

3. We consider a call real2id(m) with L := |m|. Once we have shown the bound on the number
of recursive calls, the other bounds follow immediately because each subcall (without inner
recursions) makes at most one output at ina! and increases curhnda by at most 2.

We show the first claim inductively over L. Subcalls only happen when parsing results in
type ∈ {list, sig, enc}. The basis L = 1 is clear because no subcall happens for a message of
length 1. Now let L > 1.

For lists, we have m = (list,m1, . . . ,mj) and all mi are non-empty. By the preconditions on
list len we have |mi| < L for all i. Hence we can use the induction hypothesis for each mi.
This immediately gives that all subcalls are made for non-empty messages, and the number
of subcalls is bounded by j + (|m1| − 1) + . . .+ (|mj | − 1) = |m1|+ . . .+ |mj | ≤ L− 1.

For signatures, we have m = s∗ = (sig, pk , r, l, sig) and subcalls are made for pk∗ = (pks, pk)
and l. Clearly |pk∗| > 0, and |l| > 0 was verified in parsing. Parsing pk∗ yields type = pks;
thus no further subcalls are made for it. Further, |l| ≤ L − 4 because all components are
non-empty. By the induction hypothesis, at most L − 5 subcalls are made for it, and thus
overall at most L− 3.

For ciphertexts, we have m = c∗ = (enc, pk , c, r), and subcalls are made for pk∗ = (pks, pk)
and possibly l := l∗[2], where l∗ is the result of decrypting with the encryption machine and
|l∗| ≤ |c| was verified. Clearly |pk∗| > 0, and |l| > 0 by a test that l is a tagged list before
the recursive call. Parsing pk∗ yields type = pke; thus no further subcalls are made for it.
Further, |c| ≤ L− 3 because all components are non-empty, and thus also |l| ≤ L− 3. By the
induction hypothesis, at most L− 3 subcalls are made for it, and thus overall at most L− 2.

4. We show these conditions on handles inductively over the inputs.

Upon network inputs, new entries in Da are always made with the handle curhnda++. The
first two claims follow immediately.

Upon inputs from THH, curhnda is always immediately updated when THH sends a new
handle; thus curhnda equals THH’s variable curhnda, for which the claim holds with THH’s
handles. Further, THH immediately outputs each handle (Lemma 4.2.4), and by Part 1 each
call id2real(mhnd) ends with a new entry x with x.hnd a = mhnd. Hence at the end of an
outermost execution of id2real the claim also holds for the handles in Da.

5. In the given combination, the free ports are inu? for u ∈ H and netw ,u,x ? with (w, u, x) ∈
ch from adv and the clock ports for the secure channels (recall Figure 4). We first consider
the effects of inputs there separately.

• User inputs. There are at most n user ports, each accepting at most max in(k) inputs.

These inputs directly lead to at most 2nmax in(k) new entries in D.

Further, each such input leads to at most one direct output at outa! (if it is a send
command), which leads to one call id2real(mhnd). These calls lead to at most max hnd(k)
outputs at ina! and thus at most max hnd(k) responses at outa!, whose consequences we
have already covered by considering the entire executions of id2real, and to no new entries
in D.

• Network inputs. There are at most 2n2 network ports, each accepting at most max in(k)
inputs of length at most max len(k). Each input m leads to at most one direct output at

35

ina! (the final ideal message) and a call real2id(m). This call leads to at most max len(k)−
1 further outputs at ina!. Overall this gives at most

max ina net(k) := 2n2max in(k)max len(k)

outputs at ina!. This also gives max ina net(k) responses at outa!, whose consequences
we have already covered by considering the entire execution of real2id(m).

Hence in THH, these inputs lead to at most 2max ina net(k) new entries in D.

• Ideal secure channels. Inputs at a port net idu,v,x? in THH neither lead to new entries in
D nor to outputs at outa!.

Altogether, we get at most

2nmax in(k) + 2max ina net(k)

entries in D (independent of how we chose the bounds for the inner ports), and this bounds
curhnda in THH. Thus SimH’s handle bound max hnd(k) = 6n2max in(k)max len(k) is safe.

The outputs at outa! and ina! are bounded by, respectively,

nmax in(k) +max hnd(k) +max ina net(k);

max hnd(k) +max ina net(k).

Both are smaller than the value max ina(k) = 10n2max in(k)max len(k), which is used as
boundina? by THH and as boundouta? and boundoutenc,u ? by SimH. This proves the remaining
claims.

7 Security Proof

In the following, we omit the index x ∈ {stan, loc} (stand-alone or localized system version). The
theorem and proof hold for both versions. In the following, let a secure signature scheme S and a
secure encryption scheme E be given. Informally, we state that for all n ∈ N, all correct parameters
L′, and all H ⊆ {1, . . . , n}, there is a simulator SimH such that for all polynomial-time honest
users H and adversaries A, the view of H while interacting with the correct machines Mu,H (i.e., the
derivations according to the channel model) for u ∈ H and A is polynomially indistinguishable from
the view of H while interacting with THH and SimH(A) for the parameters L := R2Ipar(S, E , L′).
Since for each structure of the real library, there is a unique structure of the ideal library that
has the same set of specified ports, we have a canonical mapping f between the ideal and the real
structures. Using the terminology of [72], this means that the real library is as secure as the ideal
library for the canonical mapping and for polynomial indistinguishability of views, which is denoted
by the relation ≥f,poly

sec .

Theorem 7.1 (Security of Cryptographic Library) Let a secure signature scheme S and a secure
encryption scheme E be given. For all n ∈ N and L′ ∈ ValidPar and for L := R2Ipar(S, E , L′), we
have

Syscry,realn,S,E,L′ ≥
f,poly
sec Syscry,idn,L

for the canonical mapping f with blackbox simulatability. ✷

36

7.1 The Cryptographic Bisimulation Technique

Given the simulator, we show that arbitrary polynomial-time users H and an arbitrary polynomial-
time adversary A cannot distinguish the combination of the real machines Mu,H from the combina-
tion of THH and SimH. In the following, we consider a fixed H and we write Mu instead of Mu,H for
simplicity. The standard technique in non-cryptographic distributed systems for rigorously prov-
ing that two systems have identical visible behaviors is a bisimulation, i.e., one defines a mapping
between the respective states and shows that identical inputs in mapped states retain the mapping
and produce identical outputs. We need a probabilistic bisimulation because the real system and
the simulator are probabilistic, i.e., identical inputs should yield mapped states with the correct
probabilities and identically distributed outputs. (To achieve the former, we indeed use mappings,
not arbitrary relations for the bisimulation.)

In the presence of cryptography and active attacks, however, a normal probabilistic bisimula-
tion is still insufficient for three crucial reasons. First, the adversary might succeed in attacking
the real system with a very small probability, while this is impossible in the ideal system. This
means that we have to cope with error probabilities. Secondly, encryption only gives computational
indistinguishability, which cannot be captured by a bisimulation, because the actual values in the
two systems may be quite different. Thirdly, the adversary might guess a random value, e.g., a
nonce that has already been created by some machine but that the adversary has ideally not yet
seen. (Formally, “ideally not yet seen” just means that the bisimulation fails if the adversary sends
a certain value which already exists in the databases but for which there is no command to give
the adversary a handle.) In order to perform a rigorous reduction proof in this case, we have to
show that no partial information about this value has already leaked to the adversary because the
value was contained in a nested term, or because certain operations would leak partial information.
For instance, here the proof would fail if we allowed arbitrary signatures according to the definition
of [55], which might divulge previously signed messages, or if we did not additionally randomize
probabilistic ciphertexts made with keys of the adversary.

We meet these challenges by first factoring out the computational aspects by a special treatment
of ciphertexts. Then we use a new bisimulation technique that includes a static information-flow
analysis. It is followed by the remaining cryptographic reductions.

7.2 Outline of our Proof

We first give an outline of the proof, see Figure 5.

• Introducing encryption machines. We use the two encryption machines EncH and Encsim,H

from [72] to handle the encryption and decryption needs of the system. Roughly, the first
machine calculates the correct encryption of every message m, whereas the second one always
encrypts the fixed message 1|m| and answers decryption requests for the resulting ciphertexts
by table look-up. By [72], EncH is at least as secure as Encsim,H. We rewrite the machines
Mu such that they use EncH (Step 1 in Figure 5); this yields modified machines M′

u. We
then replace EncH by its idealized counterpart Encsim,H (Step 2 in Figure 5) and use the
composition theorem to show that the original system is at least as secure as the resulting
system.

• Combined system. We now want to compare the combination MH of the machines M′
u and

Encsim,H with the combination THSimH of the machines THH and SimH. However, there is
no direct invariant mapping between the states of these two joint machines. Hence we define

37

• • •

S
H

H

M
u

M
v

• • •

S
H

H

M'
u

M'
v

Enc
H

• • •

S
H

A

H

M'
u

M'
v

Enc
sim,H

A

A
0 A

Sim
H

• • •
S
H

H

TH
H

A

• • •
S
H

H

THSim
H

C
H

1. Rewrite

2. Idealize,

composition theorem

M
H

3. Combine

with ideal

state 4a. Bisimulation

4b. Bisimulation
5.

sec

poly

6.
sec

poly

Figure 5: Overview of the proof of Theorem 7.1.

38

an intermediate machine CH with a state space combined from both these systems (Step 3 in
Figure 5).

• The cryptographic bisimulation. We show that the joint view of H and A is equal in inter-
action with the combined machine CH and the two machines THSimH and MH, except for
certain runs, which we collect in error sets. We show this by performing two bisimulations
simultaneously (Step 4 in Figure 5). Transitivity and symmetry of indistinguishability then
yield the desired result for THSimH and MH. Besides several normal state invariants of CH,
we also define and prove an information-flow invariant on the variables of CH.

• Reduction proofs. We show that the aggregated probability of the runs in error sets is neg-
ligible, as we could otherwise break the underlying cryptography. I.e., we perform reduction
proofs against the security definitions of the primitives. For signature forgeries and collisions
of nonces or ciphertexts, these are relatively straightforward proofs. For the fact that the
adversary cannot guess “official” nonces as well as additional randomizers in signatures and
ciphertexts, we use the information-flow invariant on the variables of CH to show that the
adversary has no partial information about such values in situations where correct guessing
would put the run in an error set. This proves that MH is computationally at least as secure
as the ideal system (Step 5 in Figure 5).

Finally, simulatability is transitive [72]. Hence the original real system is also as secure as the ideal
system (Step 6 in Figure 5).

The reason for treating encryption separately at the beginning (and not in the final reduction
proofs like the other primitives), although every additional machine makes a bisimulation more
complex, is that computational indistinguishability of real and simulated ciphertexts does not give
us a mapping that is almost everywhere correct.

Recall that the cryptographic bisimulation must be by hand at the current state of the art,
because the real cryptographic library contains cryptographic objects. Further, it cannot be sim-
plified by any obvious modularization techniques: If several small machines together compute one
nested term, the real ones must exchange cryptographic objects. However, in the overall system
hiding the intermediate results from the adversary, these objects must be hidden. Hence there are
still two relatively different distributed systems with cryptographic objects to be compared. Thus,
we still need a hand-proved cryptographic bisimulation. Then, any further modularization, e.g.,
an introduction of signature and nonce machines similar to the encryption machines, makes the
bisimulation more complex because of larger state spaces.

In the following, we present the proof in detail.

7.3 Introducing Encryption Machines

First we want to replace the encryption of each messagem sent among honest users by an encryption
of the fixed message 1|m|, and the decryption of each ciphertext generated that way by table look-up.

7.3.1 Encryption Machines

We use the two encryption systems EncH and Encsim,H from [72]; we only exploit our more powerful
database notation for a slightly different, but equivalent presentation.

Scheme 7.1 (Ideal and “Real” Encryption Systems) Let an encryption scheme
(genE,E,D, pke len, enc len) and parameters n ∈ N and skeys , sencs : N ⇒ N be given. The

39

functions skeys and sencs must be polynomially bounded in k. skeys(k) denotes the maximum
number of keys generated in the system and sencs(k) the maximum number of encryptions per key.
We define two systems

• Sysenc,realn,skeys ,sencs
:= {({EncH},Senc,H) | H ⊆ {1, . . . , n}},

• Sysenc,simn,skeys ,sencs
:= {({Encsim,H},Senc,H) | H ⊆ {1, . . . , n}}.

For every H, the ports are

• PortsEncH := PortsEncsim,H
:= {inenc,u?, outenc,u !, outenc,u

⊳! | u ∈ H},

• S c
enc,H := {inenc,u !, inenc,u

⊳!, outenc,u? | u ∈ H}.

Each machine maintains a key counter curkey ∈ N initialized with 0, and initially empty databases
keys and ciphers . Entries in keys have attributes (owner , skenc, pkenc, ec). Entries in ciphers have
attributes (msg , pkenc, ciph) and are used to look up intended cleartexts in the ideal system. The
transition functions are given by the following rules. Let inenc,u? be the port where the current
input is made; the resulting output goes to outenc,u ! with outenc,u

⊳! := 1.

• pk ← (generate). (In EncH and Encsim,H.) If curkey < skeys(k) then set curkey++, (sk , pk)←
genE(1

k), and keys :⇐ (u, sk , pk , 0), where 0 is the initial value of an encryption counter, and
return pk . Otherwise return ↓.

• c ← (encrypt, pk ,m), for pk ,m ∈ {0, 1}+. Let K := keys [pkenc = pk]. If K = ↓ or K.ec ≥
sencs , return ↓, else set K.ec++ and

– in EncH: Return c← Epk (m);

– in Encsim,H: Set c← Epk (1
|m|) and ciphers :⇐ (m, pk , c) and return c.

• m← (decrypt, pk , c), for pk , c ∈ {0, 1}+. (Note that pk is used to designate the desired secret
key.) Let K := keys[pkenc = pk ∧ owner = u]. If K = ↓, return ↓, else let sk := K.skenc and

– in EncH: Return m := Dsk (c);

– in Encsim,H: Let m := ciphers [pkenc = pk ∧ ciph = c].msg . If m 6= ↓, return m, else
return m := Dsk (c).

29

✸

We need the following properties of these encryption machines.

Lemma 7.1 The encryption systems have the following properties:

1. The two systems are computationally indistinguishable (without even a simulator), i.e.,

Sysenc,realn,skeys ,sencs
≥f,poly

sec Sysenc,simn,skeys ,sencs
holds for the canonical mapping f and all parameters

n ∈ N and skeys , sencs ∈ N[x].

29If two entries with this condition existed, the notation in [72] would lead to a non-deterministic choice, while we
get ↓. However, the proof in [72] immediately yields that m in all such entries would be equal, and our definition of
databases as sets joins equal entries.

40

2. Each transition is polynomial-time.

✷

The first part was shown in [72] for polynomials skeys and sencs . Inspection of the proof easily
reveals that this also holds for polynomially bounded functions. The second part is obvious.

7.3.2 Rewriting the Real System with Encryption Machines

We now rewrite the real machines Mu such that they use one of the encryption systems instead of
doing all the work themselves. We call the modified machines M′

u. We set the parameters for the
encryption system to skeys := sencs := max in(k) + 1. This will ensure that the encryption system
does not refuse actions that the overall system needs.

Each M′
u has three additional ports inenc,u !, inenc,u

⊳!, and outenc,u? for connecting to the encryp-
tion machine. It maintains a counter stepsoutenc,u? with bound boundoutenc,u ? := max in(k) + 1; the
counter and length functions are treated as in the other systems. By “call the encryption machine
with y ← x, expecting y . . .” we abbreviate the same subroutine behavior as in the simulator, where
M′

u uses the port inenc,u !.
The state is unmodified; only the actual entries in Du for secret decryption keys are different.
The following transitions are modified:

• (skhnd, pkhnd)← gen enc keypair().

Set skhnd := curhndu++; pkhnd := curhndu++. Call the encryption machine with pk ←
(generate), expecting |pk | = pke len(k), and store Du :⇐ (skhnd, ǫ, ske, ()) and Du :⇐
(pkhnd, (pke, pk), pke, ()). Note that the secret key is only stored in the encryption machine.

• c∗ ← make enc(pk∗, l), for pk∗, l ∈ {0, 1}+. (Note that this function is no longer state-less.)

If enc len∗(k, |l|) > max len(k), return ↓. Otherwise let pk := pk∗[2], r R← {0, 1}nonce len(k), and
l∗ := (r, l). Call the encryption machine with c← (encrypt, pk , l∗), expecting |c| ≤ max len(k).
If c = ↓ (it was an adversary key), encrypt directly as c← Epk (l

∗). Set c∗ := (enc, pk , c, r).

• lhnd ← decrypt(skhnd, chnd).

Parse chnd yielding arg =: (pk∗). Return ↓ if Du[sk
hnd].type 6= ske or Du[c

hnd].type 6= enc

or Du[sk
hnd + 1].word 6= pk∗. Otherwise, set pk := pk∗[2], c := Du[c

hnd].word [3], and r :=
Du[c

hnd].word [4]. Call the encryption machine with l∗ ← (decrypt, pk , c), expecting |l∗| ≤ |c|.
If l∗ = ↓ or l∗[1] 6= r or l := l∗[2] is not a tagged list, then lhnd := ↓; else let (lhnd,Du) :←
(l, list, ()).

The commands make enc keypair and parse decrypt can be omitted, while parse pke, encrypt,
parse enc, and pk of enc remain unchanged.

The following properties of the rewritten system are useful:

Lemma 7.2 The rewritten real machines M′
u have the following properties:

1. They are polynomial-time.

2. If they are used together with EncH or Encsim,H, no counter stepsoutenc,u?, curkey, or K.ec
reaches its bound.

41

3. If used with EncH, their behavior is perfectly indistinguishable (for A and H) from the real
system.

✷

Proof.

1. Each machine M′
u is polynomial-time because the new input port outenc,u ! only allows a

polynomial number of inputs because of the corresponding counter, the length function for
this port is polynomially bounded and each modified transition only takes a polynomial
number of steps.

2. First we consider a counter stepsoutenc,u? for u ∈ H. Each output by EncH or Encsim,H at
outenc,u ! is preceded by an input at inenc,u !, and M′

u only makes such an input upon a basic
command, i.e., an input at inu?. Thus there are at most max in(k) such outputs.

Similarly, the counter curkey in EncH or Encsim,H is only incremented upon key generation
commands input at a port inu? with u ∈ H, and thus at most nmax in(k) < skeys times. Each
counter keys .ec is only incremented upon encryption commands input at a port inu? with
u ∈ H, and thus at most nmax in(k) < sencs times.

3. To prove equal outside behavior, we tacitly use Part 2. The major change is that secret
decryption keys are no longer stored in Du, but in ciphers . However, considering key gen-
eration and decryption together one easily sees that the same secret key is always used in
both systems. As the search in the subroutine :← does not include secret keys, no other
command operates on secret keys. The other change is that M′

u returns ↓ in make enc if
|c| > max len(k), while Mu returns c∗. However, this does not matter since Mu then rejects
c∗ in the surrounding command encrypt.

7.3.3 Replacing the Encryption Machine in the Real System

We now want to replace the system EncH with Encsim,H. This can be achieved by using the
composition theorem of [72], i.e., it is possible to securely replace a subsystem of a larger system if
the subsystem is as secure as the replacement in the sense of simulatability. We only have to show
that the preconditions of the theorem are fulfilled. This is straightforward except for showing that
the system on top of the replaced subsystem is polynomial-time, and this was shown in Lemma 7.2.

7.4 Combined System

We have to show that the modified real system, using the encryption machine, is at least as secure
as the ideal system. We even show the stronger statement that the joint view of H and A, together
with the buffers of connections leading to or from them, is indistinguishable.

In other words, we compare the joint machine THSimH consisting of THH and SimH with the
combination MH of the correct machines M′

u with u ∈ H and Encsim,H (recall Figure 5).
A method to compare the observable behavior of two distributed systems is to define a mapping

between their states and to show that the same input in corresponding states leads to the same
output and corresponding states again, i.e., a bisimulation. However, the states of THSimH and MH

are not immediately comparable: a simulated state has no real versions for data that the adversary

42

has not yet seen, while a real state has no global indices, adversary handles, and entries for data
that are still unparsed in the correct machines. Similarly, the respective encryption machines are
not always in a comparable state, e.g., because basic commands from the honest users cause the
subsystems of MH to generate keys and ciphertexts, whereas for the subsystems of the simulator,
this only happens when such a message is sent to A.

Therefore we define an intermediate system CH (“combined”) with a combined state space of
MH and THSimH. We then compare CH with MH using a mapping from the states of CH to those
of MH, and similarly with THSimH. By the transitivity of indistinguishability (of the families of
views of the same A and H in all three configurations), we obtain the desired result.

7.4.1 Timing

The goal of a bisimulation is to prove that each input from A or H leads to the same outputs to A

and H and to mapped states in the two pairs of configurations (except for the error sets). In this
section, we show how this corresponds to our scheduling model.

We have already informally introduced machines THSimH, MH, and CH as combinations of
other machines. However, a combination in the standard sense (formally defined in [72]) leaves all
buffers separate, and thus its transitions are micro-transitions where only one submachine switches.
Here we want macro-transitions where the submachines run until control is returned to A or H.
Thus buffers that are entirely within the combination (i.e., their in, out and clock port) become a
normal part of the state of the combined machine. Only for these macro-transitions can we hope
for the bisimulation properties. We have to show that they are well-defined for our combinations.

MH is mainly a standard combination of the correct machines M′
u because A schedules all the

network connections. Only the connections to Encsim,H become internal. As at most one subroutine
call to Encsim,H is made in each transition, every macro-transition clearly terminates.

In THSimH, the buffers ina and outa become internal. When THH obtains a send command or
SimH a network input, the entire sequence of steps including id2real or real2id, respectively, becomes
one macro-transition. Each one is a legitimate state transitions, because it terminates, as shown
in Lemma 6.2, and leads to at most one output at each external port. (A send command leads to
at most one network output, but possibly into duplicated buffers, and a network input leads to at
most one user output.)

7.4.2 Definition of the Combined System

We now briefly define the combined system. Possible ambiguities will disappear below, where we
compare the effects of all inputs in the three systems.

States of CH The main part of CH is a database D∗ structured like D in THH. An entry x may
have the following additional attributes:

• x.word ∈ {0, 1}∗ is always defined and contains real data as in MH or SimH under the same
handle(s). For x.type ∈ {sks, ske}, it is ǫ for adversary keys, i.e., if owner(x) = a (recall
Lemma 4.1.6), else a real secret key. For all other types, the word is non-empty.

• x.parsedu ∈ {true, false} for u ∈ H is ↓ if x.hndu = ↓; otherwise true indicates that the entry
would be parsed in Du, and false that it would still be of type null.

• x.owner for ciphertexts with honest-user keys is adv if the ciphertext was received from the
adversary, otherwise honest. For other ciphertexts it is ↓.

43

• x.ec for secret encryption keys corresponds to the encryption counter in ciphers of the en-
cryption machines.

Its state also contains variables size and curhndu as in THH, the inner buffer variables outa and
ina, all variables stepsp? as in THSimH, and variables stepsoutenc,u? equal to the step counters in MH.

Transitions of CH The D-part of CH’s database D∗, the variables size and curhndu , and the
ideal secure channels are treated exactly as in THH. An entry whose first handle x.hndu is for
u ∈ H gets the word that M′

u would contain under this handle except that also the secret keys from
Encsim,H are entered, and otherwise that from SimH. Thus, essentially, entries created due to basic
commands from H get the words that M′

u and Encsim,H would construct, while words received in
network inputs from A are parsed completely and entered as by SimH. Outputs to H are made as
in THH, outputs to A as in MH.

7.4.3 Derivations

We now define the derivations of the original systems from the combined system. They are the
mappings that we will show to be bisimulations. We use the following additional notation:

• Let ω abbreviate word lookup, i.e., ω(i) := D∗[i].word if i ∈ HNDS, else ω(i) := i. Let ω∗,
applied to a list, denote that ω is applied to each element.

• We give most derived variables and entire machine states a superscript ∗, because in the
bisimulation we have to compare them with the “original” versions. We make an exception
with some variables of THSimH that are equal by construction in CH; in particular D∗ is CH’s
extended database and the derived D-part for THH is immediately called D again.

We now assume that a state of CH is given and define derived states corresponding to the original
systems.

THH: D: This is the restriction of D∗ to all attributes except word and parsedu .

curhndu (for u ∈ H ∪ {a}), size, and stepsp?: All these variables are equal to those in CH.

MH
∗: D∗

u: (For every u ∈ H.) We derive D∗
u as follows, starting with an empty database: For every

xhnd ≤ curhndu , let x := D∗[hndu = xhnd].ind , type := D∗[x].type , andm := D∗[x].word .
Then

• If D∗[x].parsedu = false, then D∗
u :⇐ (xhnd,m, null, ()).

• Else if type 6= {sks, ske}, then D∗
u :⇐ (xhnd,m, type , ()).

• Else if type = sks, then D∗
u :⇐ (xhnd,m, sks,D∗[x].arg). (Both have a signature

counter.)

• Else if type = ske, then D∗
u :⇐ (xhnd, ǫ, ske, ()). (A secret key of an honest user is

only in Encsim,H.)

curhnd∗
u : This variable equals curhndu of CH.

steps∗p?: These variables equal stepsp? of CH, except for p? = netu,v ,x ? with (u, v, x) ∈
ch honest , where they equal stepsnet idu,v,x?.

net∗u,v ,x : (For every (u, v, x) ∈ ch honest .) Let net∗u,v ,x := ω∗(net idu,v ,x).

SimH
∗: D∗

a: We derive D∗
a as follows, starting with an empty database: For all xhnd ≤ curhnda, let

x := D∗[hnd a = xhnd].ind , type := D∗[x].type , and m := D∗[x].word .

44

• If type 6∈ {pks, pke} (i.e., not a public key), then D∗
a :⇐ (xhnd,m, ()).

• If type ∈ {pks, pke}, let sk ind := x − 1. If owner(D∗[sk ind]) = a, then D∗
a :⇐

(xhnd,m, (adv)), else D∗
a :⇐ (xhnd,m, (honest, ω(sk ind))).

curhnd∗
a : This variable equals curhnda of CH.

stepsp?: These variables are identical to those in CH.

THSimH: outa, ina: These buffer contents are equal to those in CH, and we claim that they are
empty after each macro-transition.

net idu,v,x: (For every (u, v, x) ∈ ch honest .) The buffers of messages on secure channels are
equal to those in CH.

Enc∗sim,H: keys∗: We derive keys∗ as follows, starting with an empty database: For all sk ind ≤

size with D∗[sk ind].type = ske and u := owner(D∗[sk ind]) ∈ H, let keys∗ :⇐
(u,D∗[sk ind].word [2],D∗[sk ind + 1].word [2],D∗[sk ind].ec). Thus we take the owner, un-
tagged secret key and counter from the secret-key entry and the untagged public key
from the corresponding public-key entry.

ciphers∗: We derive ciphers∗ as follows, starting with an empty database: For all c ind ≤ size
with D∗[c ind].type = enc and D∗[c ind].owner = honest, let (pk ind, l ind) := D∗[c ind].arg ,
(l, pk∗, c∗) := ω∗((l ind, pk ind, c ind)), and l∗ = (c∗[4], l). Then set ciphers∗ :⇐
(l∗, pk∗[2], c∗[3]).

curkey∗: Let curkey∗ = |keys∗|.

The buffers to and from Enc∗sim,H are empty after each macro-transition.

In the comparison between CH and MH and THSimH, we show that the derived states and outputs
are the same as in the original systems except for certain cases that we collect in (families of) error
sets. We show in Section 7.9 that the error sets have negligible probability.

7.4.4 Invariants in CH

For the bisimulation, we need invariants about CH. Those that concern only the D-part of the state
have already been presented in Lemma 4.1. They are index and handle uniqueness, well-defined
terms, message correctness, key secrecy, length bounds, and correct key pairs. This lemma also holds
for CH because CH always treats the D-part of its state with transitions of THH. We now present
new invariants.

• Fully defined. For every x ∈ D∗, the attributes x.ind , x.type , x.arg , x.length, and x.word are
never ↓.

• Word uniqueness. For each word m ∈ {0, 1}∗, we have |D∗[word = m ∧ type 6∈ {sks,
ske}]| ≤ 1.

• Correct length. For all i ≤ size, D[i].len = |D∗[i].word |, except if D[i].type ∈ {sks, ske}.

• No unparsed secret keys. If u ∈ owners(D∗[i])∩H and D∗[i].parsedu = false, then D∗[i].type 6∈
{sks, ske}.

• Correct arguments. For all i ≤ size, the real message m := D∗[i].word and the abstract type
and arguments, type id := D∗[i].type and arg ind := D∗[i].arg , are compatible. More precisely,
let arg real := ω∗(arg ind). Then we require:

45

– If m = ǫ, then type id ∈ {sks, ske}.

– If type id 6∈ {sks, ske}, let (type , argparse) := parse(m). Then type = type id, and:

∗ If type 6∈ {sig, enc}, then argparse = arg real.

∗ If type = sig, then argparse = arg real[1, 2]. (Parsing does not output a counter.)

∗ If type = enc, then argparse[1] = arg real[1].
Further, let o := D∗[i].owner and sk ind := arg ind[1] − 1. Then (owner(D∗[sk ind]) =
a ⇐⇒ o = ↓). For o = honest, we only claim that l ind := arg ind[2] 6= ↓.
For o = adv, we claim that the decrypted and looked-up cleartexts are equal: Let
sk∗ := ω(sk ind), l ind := arg ind[2], and l := parse decrypt(sk∗,m). We claim that
l = ω(l ind).

• Strongly correct arguments if a 6∈ owners(D∗[i]) or D∗[i].owner = honest. Let type :=
D∗[i].type , arg ind := D∗[i].arg and arg real := ω∗(arg ind). Then type 6= garbage and m :=
D∗[i].word has the following probability distribution:30

– If type ∈ {data, list, nonce}, then m← make type(arg real).

– If type ∈ {sks, pks, ske, pke}, the formula is applied to pairs, i.e., we have pk ind =
sk ind + 1 with appropriate types, and (sk∗, pk∗) ← make sig keypair() or (sk∗, pk∗) ←
make enc keypair(), respectively, for (sk∗, pk∗) := ω∗(sk ind, pk ind).

– If type = sig, then arg ind is of the form (pk ind, l ind, c) with c ∈ N and c ≤ max skc(k).
Let sk ind := pk ind − 1 and arg ′real := ω∗(sk ind, l ind, c). Then a 6= owner(D∗[sk ind]) and
m← make sig(arg ′real).

– If type = enc, then arg real is of the form (pk∗, l) andm of the form (enc, pk , c, r) with pk =
pk∗[2] and where r is distributed as r R← {0, 1}nonce len(k). Further, o := D∗[i].owner 6=
adv.

The distribution of c depends on o: If o = honest (a ciphertext among honest users),
then c← Epk (1

|(r,l)|). If o = ↓ (a ciphertext from an honest user to the adversary), then
c← Epk ((r, l)).

• Word secrecy. We require that the adversary never obtains information about nonce-like
word components without adversary handles. For this, we define a set Pub Var of “public”
variables that A may know or get to know later as follows: It contains

– all words D∗[i].word with D∗[i].hnd a 6= ↓;

– the state of A and H;

– the THH-part of the state of CH and the ideal secure channels;

– secret keys where the public keys are public, i.e., if D∗[i].hnd a 6= ↓ and D∗[i].type ∈
{pks, pks}, then also D∗[i− 1].word .31

We claim that at all times, no information from outside has flown into Pub Var in the sense
of information flow in programming languages (static program analysis).

30Here one sees that the bisimulation is probabilistic, i.e., we actually consider distributions of states before and
after a transition. This invariant says that in such a state distribution, and given the mentioned arguments, m is
distributed as described independent of other state parts.

31These secret keys are included because information from them flows into the public keys, signatures, and decryp-
tions, but they do not get adversary handles when those values are published. Note that we do not use this analysis
for security proofs about the signature and encryption systems.

46

“Word secrecy” implies that no information from “official” nonces n′, random values r in signatures
and ciphertexts, and public keys has flown into Pub Var unless these values have adversary handles.
There, the treatment of absence of information flow in the static sense implies absence of Shannon
information. We need this stronger notion for the bisimulation because it is inductive: If two
variables x and y individually obtain no information flow about a variable z, then neither does the
pair (x, y), in contrast to Shannon information.

The following definition summarizes what we plan to do with these invariants:

Definition 7.1 (Bisimulation Property) By “an input retains all invariants” we mean the follow-
ing:

• The resulting macro-transition of CH retains the invariants if they were true before the input.

• If the input is made to MH or THSimH in the state derived from CH, then the probability
distribution of the next state equals that of the states derived from the next state of CH. We
call this “correct derivation”.

All conditions are obviously true initially, when all databases and buffers are empty and the counters
0. ✸

We use the following general lemma about transitions of CH:

Lemma 7.3 The combined machine CH has the following property:

1. The only modifications to existing entries x in D∗ of CH are assignments to previously unde-
fined attributes x.hndu together with x.parsedu := false, changes of x.parsedu from false to
true, and (via the commands sign and encrypt) modifications to the counters in entries of type
sks and ske.

2. The function owner of a secret key never changes.

3. If a state change in CH only consists in a new handle x.hndu in an existing entry x in D∗ and
an assignment to x.parsedu , only the following invariants have to be shown:

• “Correct derivation” of Du and curhnd∗
u .

• “Word secrecy” if u = a.

✷

Proof. Part 1 follows immediately from the definition of CH, and can easily be verified by inspection
of the detailed commands.

For Part 3, it is clear that the other derivations are not affected. “Fully defined”, “word
uniqueness”, and “correct length” are clear, and so is “correct arguments” given Part 2. “Strongly
correct arguments” is required for fewer entries if an adversary handle is added, and clear for those.
For “no unparsed secret keys”, our preconditions never occur for secret keys by “key secrecy”. For
“word secrecy” in the case u 6= a, the new handle does not change which words belong to Pub Var ,
and the information in x.hndu is from the D-part of D∗ and thus within Pub Var .

47

7.5 Comparison of Basic Commands

We first consider the effects of a basic command c input at a port inu? with u ∈ H. Recall that the
actions of CH on a large part of its state are by definition equal to those of THH, and so is CH’s
output at outu !. We will not always mention this again.

7.5.1 General Aspects

Lemma 7.4 For an individual basic command c input at inu?, we can assume it is well-formed
and we only have to show the following properties:

• The outputs at outu ! in CH (where it is defined to be as in THH) and MH are the same.

• “Correct derivation” of Du and curhndu .

• For the commands gen enc keypair and encrypt, “correct derivation” of the state of Encsim,H.

• The invariants in D∗ are retained, where “word secrecy” is already clear.

✷

Proof. The length functions in THH, and thus CH, and M′
u are defined from identical variables

stepsinu?, with identical bounds boundsinu ? = max in(k), and from identical input domains. The
latter follows because the domains are textually equal, and the only dynamic condition is that
handle parameters are < curhndu , which is also equal. Hence CH and M′

u obtain the same actual
inputs. Then they both increment stepsinu?. Next follow domain tests, which are equal as we just
saw. Hence the general conventions lead to abortion in the same cases. Hence from now on, we
assume that c is well-formed.

Now we exploit that c is local in both THH and M′
u. First this implies that the only output

in all systems is made at outu !, and that all buffer contents and remaining step variables remain
correctly derived.

Secondly, the submachine SimH of THSimH is not involved, nor is any other machine M′
v. We

show that their derived counterparts D∗
v and curhnd∗

v with v ∈ H ∪ {a} \ {u} are also unchanged.
Locality also means that THH and thus CH does not modify handles for such a value v. Thus
curhnd∗

v is indeed unchanged, and the database D∗
v can change at most by changes to a non-handle

attribute of an existing entry x of D∗ with x.hndv 6= ↓. By Lemma 7.3.1, this can only happen
if x.type = sks and in a sign command. (The attribute x.ec for x.type = ske is only used in the
derivation of Encsim,H.) However, by “key secrecy” (Lemma 4.1.6), this would imply x.hndu = ↓,
and we easily see below that this is not the case in such a sign command (honest users only sign
with their own keys). This proves all the derivations that are not shown individually.

Basic commands other than gen enc keypair and encrypt clearly do not change the state of
Encsim,H. Further, they do not modify entries of type ske, pke and enc, upon which the derivation
relies.

Finally, we show word secrecy: The output at outu ! and the updates to the D-part of D∗ are
made entirely with commands of THH and thus within Pub Var . New or existing words only get
a handle for u, so that nothing is added to Pub Var .

48

7.5.2 One-level Parsing

Many command executions in M′
u contain a subroutine “parse xhnd (if necessary)”. We show that

it retains the invariants and ensures Du[x
hnd].type 6= null.

The subroutines assign Du[x
hnd].type by parsing Du[x

hnd].word = D∗[hndu = xhnd].word if it
was still null. By “correct arguments” this is D∗[hndu = xhnd].type unless we would use it for secret
keys, which is excluded by “no unparsed secret keys”. Here CH setsD∗[hndu = xhnd].parsedu := true

if it was still false. Thus in the derived D∗
u we change from (xhnd,m, null, ()) to (xhnd,m,D∗[hndu =

xhnd].type , ()). (Again, exceptions for secret keys are excluded by “no unparsed secret keys”.)
This retains “correct derivation” of Du, the only invariant that could be affected, and ensures
Du[x

hnd].type 6= null.

7.5.3 Type and Length Queries

We only have to show equal outputs because no state changes are made (beyond possibly that in
parsing).

• Type query: t← get type(xhnd).

In THH and thus in CH, we get t = D∗[hndu = xhnd].type . In M′
u, parsing ensures

Du[x
hnd].type 6= null, and thus by “correct derivation” t = Du[x

hnd].type = D∗[hndu =
xhnd].type . This is equal.

• Length query: l← get len(xhnd).

In THH, we get l = D∗[hndu = xhnd].len . In M′
u, parsing ensures Du[x

hnd].type 6= null. Thus,
if Du[x

hnd].type 6∈ {sks, ske}, we get l = |Du[x
hnd].word | = |D∗[hndu = xhnd].word |. By the

invariant “correct length”, this is equal. For Du[x
hnd].type ∈ {sks, ske}, both output l = 0.

7.5.4 Storing and Retrieving Data

• Storing: mhnd ← store(m), for m ∈ {0, 1}∗.

Let m∗ := (data,m). Correct arguments for the type data means that for every i, D∗[i].type =
data and D∗[i].arg = (m) if and only if D∗[i].word = m∗. THH first searches for the former
kind of entry, M′

u for the latter in the derived Du. If it exists and has a u-handle mhnd, both
return mhnd. (By word and handle uniqueness, there is at most one.)

If it exists but has no u-handle, THH and thus CH assigns a new handle mhnd := curhnd++.
M′

u verifies (in the subroutine :←) that |m∗| ≤ max len(k); this is true by “correct length”
for D∗[i]. Thus it makes a new entry (mhnd,m∗, data, ()) with the same handle (by “correct
derivation” of curhndu). Thus CH sets D∗[i].parsedu := true. The outputs are equal and
“correct derivation” is retained. By Lemma 7.3.3, this is all we have to show.

If there is no such entry, THH, and thus CH, verifies data len∗(|m|) ≤ max len(k). M′
u

acts as in the previous case. The length tests are equivalent because data len∗(|m|) =
list len(|data|, |m|) = |m∗|. Then both make an entry with mhnd := curhnd++ and re-
sulting in D∗ :⇐ (ind := size++, type := data, arg := (m), hnd u := mhnd, len :=
data len∗(|m|), parsedu := true,word := m∗). The outputs are equal, and “correct derivation”
is clearly retained. The invariants are shown as follows: “Fully defined” and “no unparsed
secret keys” are obvious. “Word uniqueness” holds by the preconditions of this case. “Correct
length” holds because we already showed |m∗| = data len∗(|m|). “Correct arguments” was
already written out above. “Strongly correct arguments” holds by construction.

49

• Retrieval: m← retrieve(mhnd).

Let m ind := D∗[hndu = mhnd].ind and m := D∗[m ind].word . THH returns ↓ if D∗[m ind].type 6=
data, and M′

u if Du[m
hnd] 6= data after parsing. This is equivalent. Otherwise THH re-

turns D∗[m ind].arg [1], and M′
u returns parse data(Du[m

hnd].word)[1]. This is equal by “correct
derivation” and “correct arguments”.

7.5.5 Lists

• Generate a list: lhnd ← list(xhnd1 , . . . , xhndj), for j ≥ 0.

Let xi := D∗[hndu = xhndi].ind for i = 1, . . . , j. THH returns ↓ if any D∗[xi].type ∈ {sks,
ske}, and M′

u if Du[x
hnd
i].type ∈ {sks, ske}. This is equivalent even though Du[x

hnd
i].type

may still be null, i.e., D∗[xi].parsedu = false, by “no unparsed secret keys”. Otherwise let
l := (list,D∗[x1].word , . . . ,D

∗[xj].word).

The rest is similar to store; thus we are briefer: By “correct arguments”, for every i we have
D∗[i].type = list and D∗[i].arg = (x1, . . . , xj) iff D∗[i].word = l. If such an entry exists, both
THH and M′

u determine and return a handle for u to it; M′
u’s verification that |l| ≤ max len(k)

(in :←) is true by “correct length” for D∗[i]. Thus they make the same output and retain
“correct derivation”.

If no such entry exists, THH sets length := list len∗(D∗[x1].len , . . . ,D
∗[xj].len) and verifies

length ≤ max len(k). M′
u acts as in the previous case. The length tests are equivalent

because length = list len(|list|,D∗[x1].len , . . . ,D
∗[xj].len) = |l| by “correct length” for the

entries D∗[xi], which are not secret keys. Then both make an entry with lhnd := curhnd++
and resulting in D∗ :⇐ (ind := size++, type := list, arg := (x1, . . . , xj), hndu := lhnd, len :=
length, parsedu := true,word := l).

The outputs are equal and “correct derivation” is clearly retained. The invariants “fully
defined” and “no unparsed secret keys” are obvious, “word uniqueness” holds by the pre-
conditions of this case, “correct length” was already shown, and “correct arguments” and
“strongly correct arguments” are obvious.

• i-th projection: xhnd ← list proj(lhnd, i), for i ∈ N.

Both THH and M′
u return ↓ if D∗[hndu = lhnd].type 6= list. This is equivalent because M′

u

first parses. Otherwise THH uses x ind
i := D∗[hndu = lhnd].arg [i], while M′

u parses D∗[hndu =
lhnd].word , yielding arg , and sets xi := arg [i]. By “correct arguments”, D∗[x ind

i].word = xi.

If xhnd := D∗[x ind
i].hndu already exists, THH returns it, and as D∗[x ind

i].type 6∈ {sks, ske} by
“key secrecy”, M′

u also finds this entry in the subroutine :← and returns xhnd. Otherwise
THH adds it as xhnd := curhndu++. By “word uniqueness” and “correct derivation”, M′

u does
not find another entry with the word xi, and thus makes a new entry (xhnd, xi, null, ()) with
the same handle. (Its test |xi| ≤ max len(k) is true by “correct length” for D∗[x ind

i].) Equal
outputs and “correct derivation” is clear. By Lemma 7.3.3, this is all we have to show.

7.5.6 Nonces

• Generation: xhnd ← gen nonce().

Both THH and M′
u set xhnd := curhndu++ and make a new entry. In CH this results in

D∗ :⇐ (ind := size++, type := nonce, arg := (), hndu := nhnd, len := nonce len∗(k), parsedu :=
true,word := (nonce, n′)) with n′ R← {0, 1}nonce len(k).

50

Equal outputs and “correct derivation” are clear, and so are “fully defined” and “no unparsed
secret keys”. If “word uniqueness” is not fulfilled, i.e., n′ equals an old nonce, we put the
run in an error set Nonce Coll . “Correct length” is fulfilled by obvious computation, and
“correct arguments” and “strongly correct arguments” obviously.

7.5.7 Signatures

• Key generation: (skhnd, pkhnd)← gen sig keypair().

Both THH and M′
u set skhnd := curhndu++; pk

hnd := curhndu++ and make two new entries. In
CH this gives D∗ :⇐ (ind := size++, type := sks, arg := (0), hnd u := skhnd, len := 0, parsedu :=
true,word := sk∗) and D∗ :⇐ (ind := size++, type := pks, arg := (), hndu := pkhnd, len :=
pks len∗(k), parsedu := true,word := pk∗), where (sk∗, pk∗)← make sig keypair().

The outputs are equal. “Correct derivation” follows with the special definition for type
sks. “Fully defined” is clear, and “no unparsed secret keys” holds because the secret key
is parsed. If “word uniqueness” is not fulfilled, we put the run in an error set Key Coll .
In this case, pk matches an already existing value. (Recall that “word uniqueness” is not
required for entries of type sks.) “Correct length” is fulfilled by the exception for secret keys,
and because pks len∗(k) = list len(|pks|, pks len′(k)) = |pk∗| by definition of make sig keypair.
Under “correct arguments”, nothing is required for type sks, and for pks it is clearly fulfilled.
“Strongly correct arguments” is obvious.

• Signature generation: shnd ← sign(skhnd, lhnd).

Let sk ind := D∗[hndu = skhnd].ind and l ind := D∗[hndu = lhnd].ind . Both THH and M′
u return

↓ if D∗[sk ind].type 6= sks or D∗[l ind].type 6= list or D∗[sk ind].arg [1] ≥ max skc(k). Their tests
are equivalent by “correct derivation” and although M′

u only ensures that Du[l
hnd] is parsed

by “no unparsed secret keys”.

Further, THH returns ↓ if length := sig len∗(k,D∗[l ind].len) > max len(k). Else it sets shnd :=
curhndu++, pk

ind := sk ind + 1 and c := D∗[sk ind].arg [1]++. Then THH makes a new entry
D :⇐ (ind := size++, type := sig, arg := (pk ind, l ind, c), hnd u := shnd, len := length).

M′
u uses (sk∗, l) := ω(sk ind, l ind) and sets c := Du[sk

hnd].add arg [1]++ and s∗ ←
make sig(sk∗, l, c). If |s∗| > max len(k), it decrements Du[sk

hnd].add arg [1] again and re-
turns ↓. This length test equals that in THH: By “strongly correct arguments”, the key pair
including sk∗ was generated with make sig keypair (because by “key secrecy” the secret key
has at most one handle, and this is D∗[sk ind].hndu by the input condition). With the notation
from inside make sig, this means that sk was correctly generated, and thus by Section 5.1.1,
we have |sig| = sig len(k,max skc(k), |(r, l)|) = sig len′(k, |l|). This yields |s∗| = sig len∗(k, |l|),
and by “correct length” for the entry D∗[l ind] (which is not a secret key) this is what THH

verified.

Hence either both do not change their state and return ↓, or both make the described updates
and M′

u sets shnd := curhndu++ and makes an entry Du :⇐ (shnd, s∗, sig, ()).

The outputs are equal, and the update to D∗[sk ind] retains “correct derivation” because the
counters are updated consistently, and no invariants is affected.

Now we consider the new signature entry: “Correct derivation” is clear if we augment THH’s
entry with the word s∗ and parsedu = true. “Fully defined” and “no unparsed secret keys”
are clear. If “word uniqueness” is not fulfilled, then r within s∗ equals an old value in the

51

same place in a word; hence we put the run in an error set Nonce Coll . “Correct length” is
fulfilled as shown above.

“Correct arguments” follows by comparing the output format of make sig with the predicate
in parse sig. Here we exploit that correctly generated signatures for correct key pairs are
always valid (Section 5.1.1), that l is a tagged list by “correct arguments” for D∗[l ind], and
that D∗[pk ind] = pk∗ as returned by parsing by “strongly correct arguments” for the key pair.
“Strongly correct arguments” holds by construction and because c ≤ max skc(k).

• Signature verification: v ← verify(shnd, pkhnd, lhnd).

Let s ind := D∗[hndu = shnd].ind . Both THH and M′
u return ↓ if D∗[s ind].type 6= sig. (Indeed

M′
u has parsed the entry.) Otherwise, let (pk ind, l ind, c) := D∗[s ind].arg , s∗ := D∗[s ind].word ,

and (pk∗, l)← parse sig(s∗). By “correct arguments” for the entry D∗[s ind], we have (pk∗, l) =
ω∗(pk ind, l ind).

Then THH outputs true if pkhnd = D∗[pk ind].hndu and lhnd = D∗[l ind].hndu , and M′
u if

D∗[hndu = pkhnd].word = pk∗ and D∗[hndu = lhnd].word = l. By the previous paragraph, the
former clearly implies the latter. By “word uniqueness”, the latter also implies the former.
Otherwise both output false.

• Public-key retrieval: pkhnd ← pk of sig(shnd).

We start exactly as in signature verification: Let s ind := D∗[hndu = shnd].ind . Both THH

and M′
u return ↓ if D∗[s ind].type 6= sig. (Indeed M′

u has parsed the entry.) Otherwise, let
(pk ind, l ind, c) := D∗[s ind].arg , s∗ := D∗[s ind].word , and (pk∗, l) ← parse sig(s∗). By “correct
arguments” for the entry D∗[s ind], we have (pk∗, l) = ω∗(pk ind, l ind).

The rest is as in list projection: If D∗[pk ind].hndu already exists, both return it. Otherwise
THH adds it as pkhnd := curhndu++. By “word uniqueness” and “correct derivation”, M′

u does
not find another entry with the word pk∗, and thus makes a new entry (pkhnd, pk∗, null, ())
with the same handle. (Its test |pk∗| ≤ max len(k) is true by “correct length” for D∗[pk ind].)
Equal outputs and “correct derivation” are clear. By Lemma 7.3.3, this is all we have to
show.

• Message retrieval: lhnd ← msg of sig(shnd).

This is exactly like public-key retrieval, only with the second argument, l ind, of D∗[s].arg .

7.5.8 Public-key Encryption

For the first two of the following commands, Lemma 7.4 requires us to also consider the encryption
machine. Recall that the counters curkey and K.ec of entries in keys never reach their bounds.
(This follows from Lemma 7.2.2 inductively with the fact that the derived real system that we
actually consider equals a normal real one.)

• Key generation: (skhnd, pkhnd)← gen enc keypair().

Both THH and M′
u set skhnd := curhndu++, pk

hnd := curhndu++.

Then M′
u calls the encryption machine with pk ← (generate) at port inenc,u?. As curkey has

not reached its bound, Encsim,H generates a key pair as (sk , pk) ← genE(1
k) and makes an

entry (u, sk , pk , 0) in keys. This implies |pk | = pke len(k) and thus M′
u accepts pk .

52

Then THH andM′
u each make two new entries. In CH, this gives D

∗ :⇐ (ind := size++, type :=
ske, arg := (), hndu := skhnd, len := 0, parsedu := true,word := (ske, sk), ec := 0) and
D∗ :⇐ (ind := size++, type := pke, arg := (), hnd u := pkhnd, len := pke len∗(k), parsedu :=
true,word := (pke, pk)).

Equal outputs and “correct derivation” of Du and curhndu are clear. In the derived keys∗,
the new secret-key entry in D∗ leads to an entry (u, sk , pk , 0). This equals the new entry in
keys . The counters curkey and curkey∗ clearly remain equal, and nothing changes in ciphers
and ciphers∗.

“Fully defined” is clear, and “no unparsed secret keys” holds because the secret key is parsed.
“Word uniqueness” is only required for the public key. If it is not fulfilled, and thus pk equals
an old key, we put the run in an error set Key Coll . “Correct length” is only needed for the
public key and follows from the definition of pke len∗. “Correct arguments” is only needed
for the public key and clear there. “Strongly correct arguments” holds by simple comparison
with the algorithm make enc keypair.

• Encryption: chnd ← encrypt(pkhnd, lhnd).

Let pk ind := D∗[hndu = pkhnd].ind and l ind := D∗[hndu = lhnd].ind . Both THH and M′
u

return ↓ if D∗[pk ind].type 6= pke or D∗[l ind].type 6= list. (Indeed, M′
u has parsed both entries.)

Let (pk∗, l) := ω∗((pk ind, l ind)) and pk := pk∗[2]. We have |pk | = pke len(k) even if it is an
adversary key because “correct arguments” for D∗[pk ind] implies that parse pke(pk∗) does not
return ↓.

Further, THH returns ↓ if length := enc len∗(k,D∗[l ind].len) > max len(k), and so does M′
u

if enc len∗(k, |l|) > max len(k) (by the rewritten algorithm make enc). This is equivalent by
“correct length” for D∗[l ind].

Now M′
u sets r R← {0, 1}nonce len(k) and l∗ := (r, l), and calls the encryption machine with

c ← (encrypt, pk , l∗) at port inenc,u?. We distinguish two cases, where sk ind := pk ind − 1 and
v := owner(D∗[sk ind]):

– If v ∈ H, then by “correct derivation” of keys , there is an entryK in keys withK.pkenc =
pk . Encsim,H sets K.ec++, and CH reflects that in D∗[sk ind].ec++. Then Encsim,H sets
c← Epk (1

|l∗|) and ciphers :⇐ (l∗, pk , c) and returns c. Clearly |c| = enc len′(k, |l|).

– If v = a, then by “correct derivation” of keys and “word uniqueness”, there is no such
entry K in keys . Then Encsim,H immediately returns ↓, and M′

u itself encrypts c ←
Epk (l

∗). Again we have |c| = enc len′(k, |l|). (Recall that pk is of correct length even for
adversary keys.)

In both cases, M′
u sets c∗ := (enc, pk , c, r), and we get |c∗| = enc len∗(k, |l|). Thus c∗ passes

the length test in the outer algorithm encrypt.

Now both THH and M′
u set chnd := curhndu++ and make a new entry. In CH, this gives

D∗ :⇐ (ind := size++, type := enc, arg := (pk ind, l ind), hndu := chnd, len := length, parsedu :=
true,word := c∗), and additionally D∗[size].owner := honest if v ∈ H.

The outputs are equal. “Correct derivation” of Du and curhndu is clear for the new entry,
and the counter update in D∗[sk ind] does not influence this derivation. If v = a, then Encsim,H

does not change its state and the new entry in D∗ does not influence Enc∗sim,H either. If v ∈ H,
the update K.ec++ occurs in both keys and keys∗. Further, the new entry in D∗ leads to an
entry ((c∗[4], l), pk∗[2], c∗[3]) in ciphers∗, which equals the new entry in ciphers .

53

Among the invariants, “fully defined” and “no unparsed secret keys” are clear. If “word
uniqueness” is not fulfilled, then r equals a previous value in an encryption entry. Hence we
put the run in an error set Nonce Coll . “Correct length” was already shown. For “correct
arguments”, only the public-key equality and the conditions involving o are required in both
our cases, which are obvious. “Strongly correct arguments” holds by construction, exactly
according to our two cases.

• Decryption: lhnd ← decrypt(skhnd, chnd).

Let sk ind := D∗[hndu = skhnd].ind and c ind := D∗[hndu = chnd].ind . Both THH and M′
u

return ↓ if D∗[sk ind].type 6= ske or D∗[c ind].type 6= enc. Their tests are equivalent by “correct
derivation” and although M′

u only ensures that Du[c
hnd] is parsed by “no unparsed secret

keys”. Otherwise, let pk ind := D∗[c ind].arg [1], c∗ := D∗[c ind].word , and (pk∗)← parse enc(c∗).
By “correct arguments” for the entry D∗[c ind], we have pk∗ = D∗[pk ind].word .

Next, THH returns ↓ if pk ind 6= sk ind + 1, while M′
u sets pkhnd := skhnd + 1 and returns ↓

if Du[pk
hnd].word 6= pk∗. This is equivalent to THH’s test: We have u = owner(D∗[sk ind])

by key secrecy and because there is the handle skhnd for u. Hence if pk ind = sk ind + 1, then
by “correct key pairs” we have D∗[pk ind].hndu = pkhnd and the word is indeed pk∗. Else by
“word uniqueness” it is not.

Now both machines are willing to decrypt. THH uses l ind := D∗[c ind].arg [2]. We have l ind = ↓
or D∗[l ind].type = list, as D∗[c ind] must have been constructed with the command encrypt or
adv invalid ciph. Hence l := ω(l ind) is either ↓ or, by “correct arguments”, a tagged list. We
show that M′

u’s internal result equals l.

M′
u sets pk := pk∗[2] and (c, r) := c∗[3, 4] and calls the encryption machine with l∗ ←

(decrypt, pk , c) at port inenc,u !. By “correct derivation” of keys, there is an entry K =
(u, sk , pk , ec) ∈ keys , where sk = sk∗[2] for sk∗ := D∗[sk ind].word . Encsim,H finds exactly
this entry because pkenc is a key attribute. Now it decrypts to some l∗. We distinguish two
cases according to o := D∗[c ind].owner , where o 6= ↓ because u = owner(D∗[sk ind]) ∈ H.

– If o = honest, then by “correct arguments”, l ind 6= ↓. Thus by “correct derivation”,
ciphers contains the entry e := ((r, l), pk , c). If there is another entry e′ with the same
pk and c and another attribute e′.msg , we put the run in an error set Ciph Coll . Thus
we now assume that Encsim,H finds entry e. Hence it returns (r, l), which passes M′

u’s
tests in decrypt. Hence M′

u obtains l.

– If o = adv, no entry in ciphers is derived from D∗[c ind]. Typically Encsim,H will therefore
return l∗ := Dsk (c). Together with the rest of decrypt this means that M′

u derives its
result as l′ := parse decrypt(sk∗, c∗). (The additional length test |l∗| ≤ |c| is fulfilled by
Section 5.1.2.) “Correct arguments” for this case implies l′ = l.

– If o = adv, there might nevertheless be an entry ((r1, l1), pk , c) ∈ ciphers , derived from
another entry in D∗ with D∗[chnd1].owner = honest and (using “word uniqueness”),
D∗[chnd1].arg [1] = pk ind, ω(D∗[chnd1].arg [2]) = l1, and D∗[chnd1].word = (enc, pk , c, r1).
“Word uniqueness” implies c∗1 6= c∗ and thus r1 6= r. Then Encsim,H returns (r1, l1) and
in decrypt, the comparison with r from c∗ fails. (This is the non-malleability of the
encryption system with additional randomization.) Hence M′

u sets l := ↓.

We have to show that also l ind = ↓. “Strongly correct arguments” applies to D∗[chnd1].
Thus c was chosen as Epk (1

|(r1,l1)|). This implies Dsk (c) = 1|(r1,l1)|. Hence for the entry

54

D∗[c ind], where “correct arguments” applies, we have parse decrypt(sk∗, c∗) = ↓ because
the intermediate result l∗ = 1|(r1,l1)| is not a list. This implies l ind = ↓ as desired.

The next part is as in list projection: IfD∗[l ind].hndu already exists, both return it. Otherwise
THH adds it as lhnd := curhndu++. By “word uniqueness” and “correct derivation”, M′

u does
not find another entry with the word l , and thus makes a new entry (lhnd, l , list, ()) with
the same handle. (Its test |l | ≤ max len(k) is true by “correct length” for D∗[l ind].) Equal
outputs are clear, and for “correct derivation” D∗[l ind].type = list was already shown. By
Lemma 7.3.3, this is all we have to show.

• Public-key retrieval: pkhnd ← pk of enc(chnd).

This works almost exactly as for signatures: Let c ind := D∗[hndu = chnd].ind . Both THH

and M′
u return ↓ if D∗[c ind].type 6= enc. (Indeed M′

u has parsed the entry.) Otherwise, let
(pk ind, l ind) := D∗[c ind].arg , c∗ := D∗[c ind].word , and (pk∗) ← parse enc(c∗). By “correct
arguments” for the entry D∗[c ind], we have pk∗ = ω(pk ind).

IfD∗[pk ind].hndu already exists, both return it. Otherwise THH adds it as pkhnd := curhndu++.
By “word uniqueness” and “correct derivation”, M′

u does not find another entry with the
word pk∗, and thus makes a new entry (pkhnd, pk∗, null, ()) with the same handle. (Its test
|pk∗| ≤ max len(k) is true by “correct length” for D∗[pk ind].) Equal outputs and “correct
derivation” are clear. By Lemma 7.3.3, this is all we have to show.

7.6 Send Command from Honest User

We now consider an input send x (v, lhndu) at a port inu? with u ∈ H. Intuitively, this part of the
proof shows that the adversary does not get any information in the real system that it cannot get
in the ideal system, because any real information can be simulated indistinguishably given only the
outputs from THH.

7.6.1 General Aspects

As with basic commands, the length function for the port inu?, and thus the actual input, is equal
in THH, and thus CH, and M′

u. Then they all increment stepsinu? and make the same domain test.
Hence from now on, we assume that the input is well-formed. Let l ind := D∗[hndu = lhndu].ind .
Both THH and M′

u continue only if D∗[l ind].type = list. (The conditions are equivalent by “correct
derivation” and because M′

u has parsed the entry.)
Now M′

u always outputs l := D∗[l ind].word (here we used “correct derivation” again) at port
netu,v ,x ! without further action. We distinguish two overlapping cases.

Secure Channel: (u, v, x) ∈ ch honest . Then THH and CH output l ind at net idu,v ,x ! without
further action. The only invariant that could be affected is correct derivation of secure-channel
buffers. This holds by definition for THSimH. For MH, we retain net∗u,v ,x = ω∗(net idu,v ,x) because

we already showed l = D∗[l ind].word .

Output to Adversary: (u, v, x) ∈ ch to adv . Here netu,v ,x ! is connected to A, and thus CH

outputs l there like M′
u at the end. However, it first continues to update the THH-part of its state.

If lhnd := D∗[l ind].hnda already exists, THH outputs (u, v, x, lhnd) at outa! and schedules it. By
Lemma 6.2.5, handles output by THH are always accepted by SimH and the counters stepsouta? of

55

SimH and steps ina? of THH never reach their bounds. This also holds for the counters in CH; this
follows (inductively) from the equality of these values with the state of THSimH.

Thus SimH accepts the resulting input. By “correct derivation”, SimH finds Da[l
hnd].word =

D∗[l ind].word = l and outputs it at netu,v ,x !. This ensures equal outputs. Also “correct derivation”
of the buffers outa and ina and the corresponding counters is clear. The only other invariant that
could be affected is “word secrecy”. It follows because the output already had an a-handle, so that
the flow is within Pub Var .

Thus the case D∗[l ind].hnd a = ↓ remains. Here THH assigns lhnd := curhnda++ and outputs
(u, v, x, lhnd) at outa!. As above, this input is accepted by SimH. By “correct derivation”, SimH

findsDa[l
hnd] = ↓. It sets curhnda++, thus maintaining “correct derivation” of these variables. Then

SimH calls l← id2real(lhnd) and outputs l at netu,v ,x !. It is therefore sufficient to show that id2real
together with the commands it inputs to THH retains all invariants and yields l = D∗[l ind].word .

7.6.2 General Aspects of id2real

We use an inductive proof that id2real retains all invariants and produces the right output. The
following lemma defines the weaker conditions that hold for all subcalls, and proves some invariants
once and for all.

Lemma 7.5 It is sufficient to show the following for each recursive call m← id2real(mhnd):

• Initially,

– mhnd ≤ curhnda,

– the entry e := D∗[hnda = mhnd] has e.type = list or is a component of another entry,
and

– the entry e already existed with a 6∈ owners(e).

• The following invariants hold before every subcall and at the end:

– Weakly correct derivation of Da: We have curhnda = curhnd∗
a and Da is a subset of D∗

a .

– Weak word secrecy. Secret information only must not flow into the smaller set Pub Var ′

containing only the words Da[i
hnd].word instead of all D∗[i ind].word with D∗[i ind].hnd a 6=

↓, and the corresponding secret keys.

• At the end, the following holds:

– Result: The result is m = m∗ := e.word .

– Progress: If Da and curhnda are the values before the call, and D′
a and curhnd ′

a those
after the call, then D′

a is a superset of Da and contains entries D′
a[m

hnd] and D′
a[x

hnd]
for all curhnda < x ≤ curhnd ′

a.

The initial conditions and invariants are fulfilled before the outermost call. ✷

Proof. All normal invariants were true before CH, like THH, assigned D∗[l ind].hnd a := lhnd :=
curhnda++ before the outermost call. After this assignment, they still hold except that the entry
D∗

a [l
hnd] is missing in Da, and that we do not know about “word secrecy” for the entry with the

new adversary handle. Thus the weaker invariants of this lemma hold. The initial conditions also

56

hold because D∗[l ind].type = list was explicitly verified, and the entry had D∗[l ind].hnd a = ↓ before
the assignment.

As only D∗
a [l

hnd] is missing before the outermost call, “weakly correct derivation” and “progress”
imply that normal “correct derivation” of Da holds after this call. This also implies “word secrecy”.
Furthermore, the result is then l = D∗[hnd a = lhnd].word = D∗[l ind].word , as required.

We now show why the remaining invariants hold automatically. “Correct derivation” of the
state of THH holds by definition, as well as of the buffers outa and ina and the corresponding
counters. These buffers are empty after the macro-transition by the subroutine behavior within
id2real.

In MH and its encryption machine Encsim,H, nothing changes, and nor does it in the derived
version because only the command adv parse is executed in THH during id2real, and it only assigns
new adversary handles (recall Lemma 7.3.3).

As CH only assigns adversary handles in D∗, the invariants except for “word secrecy” are
unaffected.

Now we consider one of these recursive calls m ← id2real(mhnd) and show that it retains
the invariants of Lemma 7.5. Let m ind := D∗[hnda = mhnd].ind and m∗ := D∗[m ind].word and
(m ind

1 , . . . ,m ind
j) := D∗[m ind].arg .

7.6.3 Steps 1 and 2: Parsing and Handle Updates

In Step 1, id2real calls (type , (mhnd
1 , . . . ,mhnd

j)) ← adv parse(mhnd) at ina!. By definition,

this gives type := D∗[m ind].type , and, except if type = enc, also (mhnd
1 , . . . ,mhnd

j) :=

ind2hnd∗a((m
ind
1 , . . . ,m ind

j)).
We show that the domain expectations of id2real are fulfilled:

• type ∈ typeset \ {sks, ske, garbage}: For garbage this follows from “strongly correct argu-
ments”, because D∗[m ind] already existed without adversary handle by the preconditions of
Lemma 7.5. For sks, ske it follows from key secrecy, because D∗[m ind] is of type list or a
component of another entry.

• j ≤ max len(k): The only type of entry in D∗ with multiple arguments is list, and in list
generation THH, and thus CH, verifies this condition.

• mhnd
i ≤ max hnd(k) if mhnd

i ∈ HNDS follows from Lemma 6.2.5. (We already showed that it
also holds in CH.)

• Otherwise |mhnd
i | ≤ max len(k) holds because arguments that are not handles only occur for

the following types: data, where THH verified it when storing; sks, which was excluded; sig,
where it is a counter c that can become at most max skc(k) by “strongly correct arguments”,
so that |c| ≤ max len(k) follows from the conditions on length functions; enc if the ciphertext
length len is output; then it follows from Lemma 4.1.4.

The only resulting change inD∗ is that new a-handles may have been assigned to some of the entries
D∗[m ind

i]. (We do not mention the step-counters because we already know “correct derivation” for
them and that they do not reach their bounds.) Clearly these handles are in HNDS and appear
in increasing order in (mhnd

1 , . . . ,mhnd
j).

Hence Step 2 of id2real updates curhnda consistently. This reestablishes “weak correct derivation
of Da”. Further, it clearly retains “weak word secrecy”.

57

7.6.4 Step 3: Recursion

In Step 3, id2real considers the values mhnd
i ∈ HNDS. For those with Da[m

hnd
i] 6= ↓, it sets

mi := Da[m
hnd
i].word without any state changes, so that the invariants are clearly retained. For

the others, it makes recursive calls mi ← id2real(mhnd
i).

We have to show that the initial conditions from Lemma 7.5 hold for these calls.

• mhnd
i ≤ curhnda is clear by the updates of curhnda in Step 2.

• The entries D∗[hnd a = mhnd
i] are components of the entry D∗[hnda = mhnd] by definition of

components and adv parse.

• The entry D∗[hnd a = mhnd
i] already existed before the outermost call (because no new entries

are made). At that time a 6∈ owners(D∗[hnd a = mhnd
i]) must have been true because normal

“correct derivation of Da” held.

Thus by the induction hypothesis, these calls retain the invariants.
We show that they also establish the second “progress” property for our call id2real(mhnd): The

first “progress” property of each subcall, the existence of an entry Da[m
hnd
i], means that entries in

Da now exist for all values assigned to curhnda directly in our call id2real(mhnd) (in Step 2). The
second “progress” property of the subcalls ensures that entries also exist for all further increments
they made to curhnda. Hence indeed entries exist for all new values of curhnda of our call and its
subcalls.

By the “result” properties of the subcalls, we obtain mi = D∗[hnda = mhnd
i].word =

D∗[m ind
i].word = ω(m ind

i) for all mhnd
i ∈ HNDS. As id2real sets mi := mhnd

i = m ind
i for the

other i’s, it obtains
arg real := (m1, . . . ,mj) = ω∗(arg ind),

except in certain cases for type = enc, and where arg real equals that in the formulation of “strongly
correct arguments”.

7.6.5 Step 4: General Aspects of Type-specific Part

Now id2real proceeds depending on type . Each of these variants ends with an assignment to m,
which is then output, and Da :⇐ (mhnd,m, add arg) for certain arguments add arg . No further
changes to Da are made and THH is not involved.

Lemma 7.6 For the individual types, we only have to show:

• a correct result m = m∗, where we can assume “strongly correct arguments” for m∗, i.e., the
entry D∗[m ind];

• “correct derivation” of add arg in the new entry, and only for type ∈ {pks, pke};

• “word secrecy” for m, i.e., no flow of secret information into m, where arguments mi are not
secret information.

✷

Proof. “Strongly correct arguments” holds for D∗[m ind] because it had no adversary handle initially
by Lemma 7.5. The rest of “weakly correct derivation” follows from the correctness of m and
because add arg is always () for the other types, as required (recall that the types sks and ske are

58

not possible). The new entry in Da gives us the missing first part of “progress”. For “weak word
secrecy”, only m is added to Pub Var . All values mi already belong to Pub Var : If mhnd

i ∈ HNDS
they were entered into Da at the latest in Step 3, and if mhnd

i 6∈ HNDS they were output by THH.

7.6.6 Data, Lists, and Nonces

If type ∈ {data, list, nonce}, then id2real sets m← make type(arg real).
“Strongly correct arguments” for these types means thatm∗ also has the probability distribution

m∗ ← make type(arg real). Thus derivation of D∗
a gives the same distribution as we get in Da.

“Word secrecy” for m holds for data and list because their generation depends only on the
arguments mi (the list elements or the raw data). For nonces it holds since each nonce generation
does not depend on prior information.

7.6.7 Public Signature Keys

If type = pks, then id2real sets (sk∗, pk∗) ← make sig keypair(), m := pk∗ and add arg :=
(honest, sk∗).

Let sk ind = m ind − 1 and (sk∗real, pk∗real) := (D∗[sk ind].word ,m∗). By “strongly correct
arguments” (sk∗real, pk∗real) was chosen with make sig keypair(). “Correct key pairs” implies
a 6= owner(D∗[sk ind]), because otherwise D∗[m ind] would also have got an a-handle at once. In
the derived D∗

a , we therefore have an entry (mhnd, pk∗real, (honest, sk∗real)) with the same distribu-
tion as id2real’s choice.

“Word secrecy” for m = pk∗ holds since key generation does not depend on prior information,
and both pk∗ and sk∗ become elements of Pub Var .

7.6.8 Signatures

If type = sig, “strongly correct arguments” implies that arg ind is of the form (pk ind, l ind, c) with
c ∈ N. Let (pk∗, l, c) := arg real = ω∗(arg ind). First this implies c 6= false, as claimed in id2real.
Let sk ind := pk ind − 1 and sk∗ := ω(sk ind). By “strongly correct arguments”, m∗ is distributed as
m∗ ← make sig(sk∗, l, c). Furthermore, it implies a 6= owner(D∗[sk ind]). By “correct derivation” of
Da for the existing entries, this implies Da[pk

hnd].add arg = (honest, sk∗), where pkhnd = D∗[pk ind].
This proves the second format claim in id2real, and id2real sets m← make sig(sk∗, l, c). This is the
same distribution.

For proving “word secrecy” for m, we only have to consider the parameter sk∗, because l and
c are parameters mi (and make sig is functional). By definition of “word secrecy”, sk∗ belongs
to Pub Var , but may contain information from the corresponding public key pk∗. As this is our
parameter m1, it belongs to Pub Var already. This proves “word secrecy”.

7.6.9 Public Encryption Keys

If type = pke, then id2real sets (sk∗, pk∗) ← make enc keypair(), m := pk∗, and add arg :=
(honest, sk∗).

Let sk ind = m ind − 1 and (sk∗real, pk∗real) := (D∗[sk ind].word ,m∗). By “strongly correct
arguments” (sk∗real, pk∗real) was chosen with make enc keypair(). “Correct key pairs” implies
a 6= owner(D∗[sk ind]), because otherwise D∗[m ind] would also have got an a-handle at once. In

59

the derived D∗
a , we therefore have an entry (mhnd, pk∗real, (honest, sk∗real)) with the same distribu-

tion as id2real’s choice.
“Word secrecy” for m = pk∗ holds since key generation does not depend on prior information,

and both pk∗ and sk∗ become elements of Pub Var .

7.6.10 Ciphertexts

If type = enc, then by “strongly correct arguments”, arg ind is of the form (pk ind, l ind) with l ind 6= ↓.
This proves the format claim in id2real. Let (pk∗, l) := ω∗(pk ind, l ind), sk ind := pk ind − 1, v :=
owner(D∗[sk ind]), and o := D∗[m ind].owner .

“Strongly correct arguments” further implies that o 6= adv and m∗ is of the form (enc, pk , c, r)
with pk = pk∗[2] and r distributed as r R← {0, 1}nonce len(k).

Case 1: Ciphertext for Adversary If v = a, no exception occurred in adv parse and id2real ob-
tained arg real = (pk∗, l) as usual. Then it sets m← make enc(pk∗, l) (for the unmodified make enc)
and add arg := ().

For m∗, “correct arguments” implies o = ↓. Thus by “strongly correct arguments”, c is dis-
tributed as c← Epk ((r, l)). Hence altogether m∗ is also distributed as make enc(pk∗, l).

“Weak word secrecy” holds because only parameters mi are used and make enc is functional.

Case 2: Ciphertext for Honest User If v ∈ H, the output of adv parse was arg = (pk ind, len)
with len := D∗[l ind].len , and id2real derived arg real = (pk∗, len) as claimed. Then it sets
len∗ := list len(nonce len(k), len), c′ ← Epk (1

len∗

), r′ R← {0, 1}nonce len(k), m := (enc, pk , c′, r′), and
add arg := ().

For m∗, “correct arguments” and o 6= adv imply o = honest. Thus by “strongly correct argu-
ments”, c is distributed as c← Epk (1

|(r,l)|). Here |l| = len by “correct length” for D∗[l ind], and thus
|(r, l)| = len∗. Thus the distributions of c and c′ are equal, and hence also those of m and m∗.

For “weak word secrecy”, the variables used in computing m are len, constants, pk∗, and r′,
where len is an output of THH and thus already in Pub Var , pk∗ is m1 and need not be considered,
and r′ is a newly generated nonce r′ and not stored in other variables. Hence, “weak word secrecy”
holds.

7.7 Network Input from the Adversary

We now consider the effects of an input l from A at a port netw ,u,x ? with (w, u, x) ∈ ch from adv .
Recall that on such an input CH acts entirely like THSimH.

7.7.1 General Aspects

The length function for the port netw ,u,x?, and thus the actual input, is equal in SimH, and thus
CH, and M′

u. Then they all increment stepsnetw,u,x ? and only continue if l is a tagged list. Hence
from now on, we assume this.

Now SimH and thus CH call lhnda ← real2id(l) to parse the input. We first reduce our goals to
properties of this algorithm and its side effects.

Lemma 7.7 To show that network inputs give equal outputs and retain all invariants, it is sufficient
to prove the following properties of each call lhnda ← real2id(l) with 0 < |l| ≤ max len(k) and
l ∈ Pub Var :

60

• At the end, D∗[hnd a = lhnda].word = l and D∗[hnd a = lhnda].type 6∈ {sks, ske}.

• “Correct derivation” of Da and curhnda.

• The invariants within D∗ are retained, where “strongly correct arguments” is already clear
and “word secrecy” need only be shown for the outermost call (without subcalls) if more
entries than D∗[hnda = lhnda] are made or updated there.

✷

Proof. Correct derivation of entire state for real2id: First we show that the execution of real2id
retains the remaining derivations:

For the state of THH this holds by definition, as well as for the buffers outa and ina and the
corresponding counters. These buffers are empty after the macro-transition by the subroutine
behavior within real2id.

In MH, nothing changes. We show that its derived counterparts D∗
v and curhnd∗

v with v ∈ H are
also unchanged. As real2id only uses local commands, handles for these users are not affected. Thus
curhnd∗

v is indeed unchanged, andD∗
v can change at most by changes to a non-handle attribute of an

existing entry x ∈ D∗ with x.hndv 6= ↓. By Lemma 7.3.1, this can only happen if x.type = sks and
in a sign command. (The changeable attribute x.ec for x.type = ske is not involved in derivations.)
However, by “key secrecy” (Lemma 4.1.6), this would imply x.hnd a = ↓, and we easily see below
that this is not the case in such a sign command.

Nothing changes in Encsim,H becauseMH is not involved. The derived Encsim,H could only change
by updates to secret-key entries with honest owner, which is clearly impossible by commands entered
at ina?, and new entries of type enc with attribute owner = honest, which is also impossible.

Remaining invariants for real2id: “Strongly correct arguments” holds because all new entries in C∗

due to inputs at ina? get an adversary handle and do not get the attribute owner = honest, so that
nothing is required. For “word secrecy”, we need not consider the entry D∗[hnd a = lhnda] because
the content l of D∗[hnda = lhnda].word is already in Pub Var by a precondition.

Actions after real2id: Now we show that the remaining actions of the macro-transition retain all
invariants and produce the same output in all systems. When real2id returns lhnda , SimH outputs
and schedules adv send x (w, u, lhnda) at ina!. Let l ind := D∗[hnda = lhnda].ind . Then THH verifies
that D∗[l ind].type = list; this is true by “correct arguments” because D∗[l ind].word = l is a tagged
list.

If lhndu := D∗[l ind].hndu 6= ↓, THH outputs (w, x, lhndu) at outu !. By “correct derivation” of Du,
M′

u finds the same handle when executing (lhndu ,Du) :← (l, list, ()) and makes the same output.
Then all invariants are clearly maintained.

Otherwise THH adds this handle as lhndu := curhndu++. By “word uniqueness” and “cor-
rect derivation”, M′

u does not find another entry with the word l, and thus makes a new entry
(lhndu , l, list, ()) with the same handle. (The test |l| ≤ max len(k) in :← is true by the initial domain
test.) “Correct derivation” is clear. By Lemma 7.3.3, this is all we have to show.

7.7.2 General Aspects of real2id

We show inductively that for every m ∈ {0, 1}+ with |m| ≤ max len(k) and m ∈ Pub Var , the
execution of mhnd ← real2id(m) together with its side effects fulfills the conditions from Lemma 7.7.

61

If there is already a handle mhnd with Da[m
hnd].word = m, real2id returns that. The output

condition of Lemma 7.7 is fulfilled by “correct derivation”, and the others because no state changes
are made.

Otherwise, the word m is not yet present in Da. Then id2real sets (type , arg) := parse(m). This
yields type ∈ typeset \ {sks, ske}. As parse is a functional algorithm, no invariants are affected.
Then id2real calls an algorithm add arg ← real2id type(m, arg) with side-effects. Finally it sets
mhnd := curhnda++ and Da :⇐ (mhnd,m, add arg).

We therefore have to show the properties from Lemma 7.7 for these type-specific algorithms
together with those last two assignments. In the following, we write arg in the form it must have
in an output (type , arg) of parse.

7.7.3 Garbage

The algorithm real2id garbage(m, ()) calls mhnd ← adv garbage(|m|) at ina! and sets add arg := ().
Then THH makes a new entry with mhnd := curhnda++. Together with the new entry in Da, this
results in D∗ :⇐ (ind := size++, type := garbage, arg := (), hnd a := mhnd, len := |m|,word := m).
(Attributes parsedu are only defined for u ∈ H and are all still ↓.)

“Correct derivation” is clearly retained, and the new entry is as required in Lemma 7.7. “Fully
defined”, “correct length”, “no unparsed secret keys”, and “correct arguments” are obvious. “Word
secrecy” is clear as no other entries are involved.

Now assume that “word uniqueness” were not fulfilled. Then there is a prior entry x ∈ D∗

with x.word = m and x.type 6∈ {sks, ske}. Further, it has x.hnd a = ↓ because the word m does not
exist in Da. By “correct arguments”, it has x.type ∈ {sks, ske, garbage}. This leaves only the case
garbage, but that is impossible because such entries are only made due to adversary commands and
thus with x.hnd a 6= ↓.

7.7.4 Data

When the algorithm real2id data(m, (m′)) is called, we know that m = (data,m′).
It simply calls mhnd ← store(m′) at ina! and sets add arg := (). THH accepts this input because

|m′| < |m| ≤ max len(k) by the preconditions. Then THH checks whether there is an m ind with
D∗[m ind].type = data and D∗[m ind].arg = (m′). By “correct arguments”, this is equivalent to
D∗[m ind].word = m. If this entry exists, it has no a-handle yet, because that would contradict
the absence of m in Da by “correct derivation”. Thus THH assigns mhnd := curhnda++. “Correct
derivation” together with the new entry in Da is then clear, and the other conditions of Lemma 7.7
clearly hold.

Otherwise, THH verifies data len∗(|m′|) ≤ max len(k). This holds because data len∗(|m′|) = |m|.
Then THH makes a new entry with mhnd := curhnda++. Together with the new entry in
Da, this results in D∗ :⇐ (ind := size++, type := data, arg := (m′), hnd a := mhnd, len :=
data len∗(|m′|),word := m). “Correct derivation” is clearly retained, and the output condition
of Lemma 7.7 fulfilled. “Fully defined”, “correct length”, and “no unparsed secret keys” are obvi-
ous. “Word uniqueness” holds by the preconditions of this case. “Correct arguments” was already
written out above. “Word secrecy” is clear as no other entries are involved.

7.7.5 Lists

When the algorithm real2id list(m, (m1, . . . ,mj) is called, we know that m = (list,m1, . . . ,mj)
with mi ∈ {0, 1}

+ for all i. The precondition |m| ≤ max len(k) implies j ≤ max len(k) and

62

|mi| ≤ max len(k) for all i. Further mi ∈ Pub Var for all i because they have been generated from
m ∈ Pub Var by the functional algorithm parse.

Hence when real2id list starts with recursive calls mhnd
i ← real2id(mi) for i := 1, . . . , j, these

calls fulfill the preconditions of Lemma 7.7. Thus each call retains all the invariants and ensures
D∗[hnd a = mhnd

i].word = mi for i = 1, . . . , j. Let mi
ind := D∗[hnda = mhnd

i].ind .
Then real2id list calls mhnd ← list(mhnd

1 , . . . ,mhnd
j) at ina! and sets add arg := (). THH’s domain

expectations j ≤ max len(k) and m ind
i 6= ↓ are fulfilled, and D∗[m ind

i].type 6∈ {sks, ske} is also a
consequence of Lemma 7.7.

Thus THH checks whether there is an m ind with D∗[m ind].type = list and D∗[m ind].arg =
(m ind

1 , . . . ,m ind
j). By “correct arguments”, this is equivalent to D∗[m ind].word = m. If this en-

try exists, it has no a-handle yet, because that would contradict the absence of m in Da by “correct
derivation”. Thus THH assigns one as mhnd := curhnda++. “Correct derivation” together with the
new entry in Da is then clear, and the other conditions of Lemma 7.7 clearly hold.

Otherwise, THH sets length := list len∗(D∗[m ind
1].len , . . . ,D∗[m ind

j].len) and verifies length >
max len(k). This holds because by “correct length” length = list len∗(|m1|, . . . , |mj |) = |m|. Then
THH makes a new entry with mhnd := curhnda++. Together with the new entry in Da, this results in
D∗ :⇐ (ind := size++, type := list, arg := (m ind

1 , . . . ,m ind
j), hnd a := mhnd, len := length,word := m).

“Correct derivation” is clearly retained, and the output condition of Lemma 7.7 fulfilled. “Fully
defined” and “no unparsed secret keys” are obvious. “Word uniqueness” holds by the preconditions
of this case. “Correct length” was already shown, and “correct arguments” was written out above.
“Word secrecy” is clear as no other entries are involved.

7.7.6 Nonces

The algorithm real2id nonce(m, ()) calls mhnd ← gen nonce() at ina! and sets add arg := (). Then
THH makes a new entry with mhnd := curhnda++. Together with the new entry in Da, this results
in D∗ :⇐ (ind := size++, type := nonce, arg := (), hnd a := mhnd, len := nonce len∗(k),word := m).

“Correct derivation” is clearly retained, and the output condition of Lemma 7.7 fulfilled. “Fully
defined”, “no unparsed secret keys”, and “correct arguments” are obvious. For “correct length”,
the tests in parse imply that m is of this length. “Word secrecy” is clear as no other entries are
involved.

For “word uniqueness”, assume there is a prior entry x ∈ D∗ with x.word = m. We then
put this run in the error set Nonce Guess . We have x.hnd a = ↓ by “correct derivation” of Da,
because m is not present in Da. Thus x.word 6∈ Pub Var . By “correct arguments”, clearly also
x.type = nonce.

7.7.7 Public Signature Keys

The algorithm real2id pks(m, ()) calls (skhnd,mhnd) ← gen sig keypair() at ina! and sets Da :⇐
(curhnda++, ǫ, ()) for the secret key and add arg := (adv) for the public key.

THH then also makes two new entries with skhnd := curhnda++ and mhnd := curhnda++. In CH,
the secret-key entry results in D∗ :⇐ (ind := size++, type := sks, arg := (0), hnd a := skhnd, len :=
0,word := ǫ). Here “correct derivation” and “fully defined” are clear, nothing is required under
“word uniqueness”, “correct length”, and “correct arguments”, nor under “no unparsed secret
keys” because the owner is a. “Word secrecy” for this additional entry holds because D∗[hnd a =
skhnd].word = ǫ is a constant.

The public-key entry results in D∗ :⇐ (ind := size++, type := pks, arg := (), hnd a :=
mhnd, len := pks len∗(k),word := m). It fulfills the output conditions of Lemma 7.7. Let

63

pk ind := size. Then “correct derivation” holds because sk ind := pk ind − 1 designates the secret-
key entry with owner(D∗[sk ind]) = a, so that add arg = (adv) is the correct choice in Da. “Fully
defined”, “no unparsed secret keys”, and “correct arguments” are obvious. For “correct length”,
the tests in parse imply that m is of this length. “Word secrecy” need not be shown for this entry.

For “word uniqueness”, assume there is a prior entry x ∈ D∗ with x.word = m. We then put
this run in the error set Key Guess. We have x.hnd a = ↓ by “correct derivation” of Da, because
m is not present in Da. Thus x.word 6∈ Pub Var .

7.7.8 Signatures

When real2id sig(m, (pk∗, l)) is called, we know from parsing that pk∗ is of the form (pks, pk) and
|pk∗| = pks len∗(k) ≤ max len(k). Further, l is a tagged list and shorter than m, so that also
|l| ≤ max len(k). Moreover, pk∗, l ∈ Pub Var because they were generated from m ∈ Pub Var by
the functional algorithm parse.

Hence when real2id sig starts with recursive calls pkhnd ← real2id(pk∗) and lhnd ← real2id(l),
these calls fulfill the preconditions of Lemma 7.7. Thus they retain all invariants and ensure
D∗[hnd a = pkhnd].word = pk∗ and D∗[hnd a = lhnd].word = l.

Let pk ind := D∗[hnda = pkhnd].ind , l ind := D∗[hnd a = lhnd].ind , and sk ind := pk ind − 1. The
consequences on pk∗ and l from parsing m imply that they parse to type pks and list, respectively.
Hence “correct arguments” implies D∗[pk ind].type = pks and D∗[l ind].type = list, and “correct key
pairs” implies D∗[sk ind].type = sks.

Case 1: Adversary Key If Da[pk
hnd].add arg = (adv), then real2id sig sets skhnd := pkhnd − 1 ,

calls mhnd ← sign(skhnd, lhnd) at ina! and sets add arg := ().
By “correct derivation” for pkhnd, this case implies owner(D∗[sk ind]) = a. With “correct key

pairs” this further implies D∗[sk ind].hnd a = D∗[pk ind].hnd a − 1 = skhnd.
Thus the input passes THH’s type checks. Next THH sets length := sig len∗(k,D∗[l ind].len) and

verifies length ≤ max len(k). This holds because |m| ≤ max len(k) and we know from parsing that
|m| = list len(|sig|, pks len′(k), nonce len(k), |l|, sig len′(k, |l|)) = sig len∗(k, |l|) and from “correct
length” that D∗[l ind].len = |l|. As owner(D∗[sk ind]) = a, THH does not verify the counter size.

Hence THH sets mhnd := curhnda++, obtains pk
ind as sk ind+1, updates the signature counter and

makes a new entry. Together with the new entry in Da, this results in c := D∗[sk ind].arg [1]++ and
D∗ :⇐ (ind := size++, type := sig, arg := (pk ind, l ind, c), hnd a := mhnd, len := length,word := m).

The change in the entry D∗[sk ind] retains “correct derivation”. Among the invariants, it can
only affect “correct arguments”, but for secret keys nothing is required, and “word secrecy”, but
the update information is from within THH and A.

We now consider the signature entry. “Correct derivation” is clearly retained, and the output
condition of Lemma 7.7 fulfilled. “Fully defined” and “no unparsed secret keys” are obvious, and
so is “correct arguments” given the special definition for type sig. “Correct length” was already
shown above. “Word secrecy” need not be shown for this entry.

Finally, we prove “word uniqueness”: Assume there were a prior entry x ∈ D∗ with x.word = m.
It has x.hnda = ↓ because the word m does not exist in Da. However, such an adversary signature
without a-handle is impossible: “Correct arguments” and “word uniqueness” for pk∗ and l imply
x.type = sig and x.arg = (pk ind, l ind, c′) for some c′. Such entries arise only from commands sign

and adv transform sig in THH and thus in CH. The latter always gives an a-handle, and so does
the former if input at ina?. If input at inu? with u ∈ H, it needs an argument sk′hndu where

64

sk ′ind + 1 = pk ind for sk ′ind := D∗[hndu = sk′hndu].ind . This implies sk ′ind = sk ind, and this
contradicts “key secrecy” because we know the handle D∗[sk ind].hnda = skhnd.

Case 2: Transformed Signature Now let Da[pk
hnd].add arg = (honest, sk∗). By “correct

derivation” for pkhnd, this implies v := owner(D∗[sk ind]) ∈ H. Further, m can be written as
(sig, pk , r, l, sig) by parsing.

Now assume there exist shnd, r′, and sig ′ with m′ := Da[s
hnd].word = (sig, pk , r′, l, sig ′) and

Da[s
hnd].type = sig. Then real2id sig callsmhnd ← adv transform sig(shnd) at ina! and sets add arg :=

().
Let s ind := D∗[hnd a = shnd].ind . By “correct derivation”, we have D∗[s ind].type = sig. With the

preconditions about m′, “correct arguments” for s ind, and “word uniqueness” for pk∗ and l, this
implies D∗[s ind].arg = (pk ind, l ind, c) for some c.

Hence THH sets mhnd := curhnda++ and makes a new entry. Together with the new entry in
Da, this results in D∗ :⇐ (ind := size++, type := sig, arg := (pk ind, l ind, false), hnd a := mhnd, len :=
D∗[s ind].len ,word := m).

“Correct derivation” is clearly retained, and the output condition of Lemma 7.7 fulfilled. “Fully
defined” and “no unparsed secret keys” are obvious. “Correct arguments” holds because we showed
that the arguments copied from D∗[s ind] are those that we get by parsing m. “Word uniqueness”
is shown exactly as in Case 1. For “correct length”, we use that D∗[s ind].len = |m′| by “correct
length” for s ind. Thus we only have to show |m| = |m′|. This holds because both parse as signatures
with the same component l. “Word secrecy” need not be shown for this entry.

Case 3: Forged Signature In the final case, we have Da[pk
hnd].add arg = (honest, sk∗) and

thus v := owner(D∗[sk ind]) ∈ H as in Case 2 and again m =: (sig, pk , r, l, sig). However, now there
exist no shnd, r′, and sig ′ with Da[s

hnd].word = (sig, pk , r′, l, sig ′) and Da[s
hnd].type = sig. Here

SimH gives up. We distinguish two cases.
If there exists an entry x ∈ D∗ and sig ′ with x.word = (sig, pk , r, l, sig ′) and x.type = sig, we

put the run in the error set Nonce Guess . (The adversary has guessed the nonce-part r.) We have
x.hnd a = ↓ by “correct derivation” of Da, because in Case 3 no such word is present in Da. Thus
x.word 6∈ Pub Var .

Otherwise, we put the run in the error set Forge and designate the forgery (pk , (r, l), sig).
Note that testpk (sig , (r, l)) = true because this was verified when parsing m, and that v =
owner(D∗[sk ind]) ∈ H. Further, “key secrecy” and “strongly correct arguments” for D∗[sk ind]
imply that pk was chosen in gen sig keypair together with sk := D∗[sk ind].word [2], and thus as
(sk , pk)← genS(1

k, 1max skc(k)).

7.7.9 Public Encryption Keys

The algorithm real2id pke(m, ()) calls (skhnd,mhnd) ← gen enc keypair() at ina! and sets Da :⇐
(curhnda++, ǫ, ()) for the secret key and add arg := (adv) for the public key.

THH then also makes two new entries with skhnd := curhnda++ and mhnd := curhnda++. In CH,
the secret-key entry results in D∗ :⇐ (ind := size++, type := ske, arg := (), hnd a := skhnd, len :=
0,word := ǫ). Here “correct derivation” and “fully defined” are clear. Nothing is required under
“word uniqueness”, “correct length”, and “correct arguments”, nor under “no unparsed secret
keys” because the owner is a. “Word secrecy” for this additional entry holds because D∗[hnd a =
skhnd].word = ǫ is a constant.

65

The public-key entry results in D∗ :⇐ (ind := size++, type := pke, arg := (), hnd a :=
mhnd, len := pke len∗(k),word := m). It fulfills the output conditions of Lemma 7.7. Let
pk ind := size. Then “correct derivation” holds because sk ind := pk ind − 1 designates the secret-
key entry with owner(D∗[sk ind]) = a, so that add arg = (adv) is the correct choice in Da. “Fully
defined”, “no unparsed secret keys”, and “correct arguments” are obvious. For “correct length”,
the tests in parse imply that m is of this length. “Word secrecy” need not be shown for this entry.

For “word uniqueness”, assume there is a prior entry x ∈ D∗ with x.word = m. We then put
this run in the error set Key Guess. We have x.hnd a = ↓ by “correct derivation” of Da, because
m is not present in Da. Thus x.word 6∈ Pub Var .

7.7.10 Ciphertexts

When real2id enc(m, (pk∗)) is called, we know from parsing that pk∗ = (pke, pk) with |pk∗| =
pke len∗(k) ≤ max len(k). Further, pk∗ ∈ Pub Var because it was generated from m ∈ Pub Var by
the functional algorithm parse.

Hence when real2id enc starts with a recursive call pkhnd ← real2id(pk∗), this call fulfills the
preconditions of Lemma 7.7. Thus it retains all invariants and ensures D∗[hnda = pkhnd].word =
pk∗.

Let pk ind := D∗[hnd a = pkhnd].ind and sk ind := pk ind−1. The consequences on pk∗ from parsing
m imply that it parses to type pke. Hence “correct arguments” implies D∗[pk ind].type = pke, and
“correct key pairs” implies D∗[sk ind].type = ske. Let v := owner(D∗[sk ind]).

In all cases of real2id enc, only the entry for mhnd is made, and always with wordm and type enc;
further always add arg = (). Thus “correct derivation” is clearly retained, and the output condition
of Lemma 7.7 fulfilled. Further, “fully defined” and “no unparsed secret keys” are obvious, and
“word secrecy” need not be shown for this entry. For “word uniqueness”, we put the run in the
error set Nonce Guess if there is a prior entry x ∈ D∗ with x.word = m. (The adversary has
guessed the nonce-part r of m.) We have x.hnd a = ↓ because the word m does not exist in Da.
Thus x.word 6∈ Pub Var . By “correct arguments”, clearly also x.type = enc.

Hence in the individual cases, “correct length” and “correct arguments” remain to be shown.

Case 1: Adversary Key If v = adv, then “correct derivation” implies Da[pk
hnd].add arg =

(adv). Hence real2id enc calls mhnd ← adv invalid ciph(pkhnd, |m|) at ina! and sets add arg := ().
This input passes THH’s domain and type check. Hence THH sets mhnd := curhnda++ and makes

a new entry. Together with the new entry in Da, this results in D∗ :⇐ (ind := size++, type :=
enc, arg := (pk ind), hnd a := mhnd, len := |m|,word := m).

“Correct length” is obvious. For “correct arguments”, the general requirement for the public-
key argument is clearly fulfilled. The fact o := D∗[size].owner = ↓ is correct for v = a, and nothing
else needs to be shown in this case.

Case 2: Invalid Ciphertext for Honest User If v ∈ H, then “correct derivation” im-
plies Da[pk

hnd].add arg = (honest, sk∗) with sk∗ = ω(sk ind). Thus real2id enc computes l :=
parse decrypt(sk∗,m).

For this case, assume l = ↓. Then real2id enc calls chnd ← adv invalid ciph(pkhnd, |m|) at ina!
and sets add arg := ().

As above, this input passes THH’s domain and type check, and THH sets mhnd := curhnda++ and
makes a new entry. Together with the new entry in Da, this results in D∗ :⇐ (ind := size++, type :=
enc, arg := (pk ind), hnd a := mhnd, len := |m|,word := m, owner := adv).

66

“Correct length” is obvious. For “correct arguments”, the general requirement for the public-
key argument is clearly fulfilled. The fact o := D∗[size].owner = adv is correct for v ∈ H. The
resulting requirement on decryption is fulfilled by construction because l ind := arg ind[2] = ↓, and
l := parse decrypt(sk∗,m) = ↓ is the precondition of this case.

Case 3: Valid Ciphertext for Honest User Let v ∈ H again and sk∗ and l be defined as in
Case 2, but now l 6= ↓.

Then real2id enc makes a recursive call lhnd ← real2id(l). We have to show that this call fulfills
the preconditions of Lemma 7.7. First, |l| ≤ max len(k) because the construction of parse decrypt

implies |l| ≤ |m|. Secondly, l only depends on sk∗ and m. By a precondition, m ∈ Pub Var .
Further, by the definition of Pub Var , the existence of D∗[pk ind].hnd a implies that also sk∗ ∈
Pub Var . Thus also l ∈ Pub Var .

Thus the recursive call retains all invariants and ensures D∗[hnd a = lhnd].word = l . Now
real2id enc calls chnd ← encrypt(pkhnd, lhnd) at ina! and sets add arg := ().

The arguments pass THH’s domain check and the type check for pkhnd. Further, l is a tagged
list by the tests in parse decrypt, and thus by “correct arguments”, D∗[l ind].type = list for l ind :=
D∗[hnd a = lhnd].ind . Thus THH sets length := enc len∗(k,D∗[l ind].len), where D∗[l ind].len = |l|.
The tests made when parsing m and in parse decrypt imply that length = |c| ≤ max len(k). Thus
THH sets mhnd := curhnda++ and makes a new entry. Together with the new entry in Da, this
results in D∗ :⇐ (ind := size++, type := enc, arg := (pk ind, l ind), hnd a := mhnd, len := |m|,word :=
length, owner := adv).

“Correct length” was just shown. For “correct arguments”, the general requirement for the
public-key argument is clearly fulfilled. The fact o := D∗[size].owner = adv is correct for v ∈ H.
The resulting requirement on decryption is fulfilled by construction because indeed ω(l ind) = l
where l was defined as l := parse decrypt(sk∗,m).

7.8 Scheduling of a Secure Channel

Finally, we consider a scheduling signal i from A for a secure channel, i.e., for (w, u, x) ∈ ch honest .
By “correct derivation”, we have netw ,u,x = ω∗(net idw ,u,x), where the former is the buffer in MH

and the latter in THSimH and CH. This implies that the buffers are of the same length i′. If i > i′,
nothing happens. Otherwise, THH gets the input l ind := net idw ,u,x [i] andM′

u gets l := netw ,u,x [i] =
D∗[l ind.word]. By “message correctness” (recall Lemma 4.1), we have D[l ind].type = list, and thus
by “correct arguments”, l is a tagged list. Further, |l| ≤ max len(k) by “correct length” and “length
bounds”. Hence M′

u accepts l.
If D∗[l ind].hndu already exists, both return it. Otherwise THH adds it as lhnd := curhndu++.

By “word uniqueness” and “correct derivation”, M′
u does not find another entry with the word l,

and thus makes a new entry (lhnd, l, list, ()) with the same handle. “Correct derivation” is clear. By
Lemma 7.3.3, this is all we have to show.

7.9 Error Sets

We now show that the union of all error sets has negligible probability. More precisely, this means
sequences of error sets, indexed by the basic security parameter k, such as (Forgek)k∈N. We continue
to omit the parameter k when it is irrelevant. The proofs rely on the security of the cryptographic
primitives.

Recall that we had error sets Nonce Coll , Key Coll , Ciph Coll , Nonce Guess , Key Guess ,
and Forge . This gives a constant number of sequences. Hence, if each sequence has negligible

67

probability, then so has the sequence of the set unions. Hence we now assume for contradiction
that one sequence has a larger probability for certain polynomial-time users H and adversary A.

Recall that the elements of the error sets are runs of the combined system CH. The proofs rely
on the fact that the execution of CH with H and A is polynomial-time. CH is even polynomial-time
on its own, because THSimH and MH are polynomial-time by Lemmas 4.2.1, 6.1, and 7.2.1, and
essentially all actions of CH occur in one of these systems.

7.9.1 Nonce Collisions

The error set Nonce Coll occurs in Sections 7.5.6, 7.5.7, and 7.5.8 for the generation of “official”
nonces, and the nonce-components r in ciphertexts and signatures. A run is put into this set if a
new nonce, created randomly as r R← {0, 1}nonce len(k), matches an already existing value. Hence
for every pair of a new nonce and an old value, the success probability is bounded by 2−nonce len(k),
which we required to be negligible. As there are only polynomially many such pairs, the overall
probability is also negligible.

7.9.2 Key Collisions

The error set Key Coll occurs in Sections 7.5.7 and 7.5.8 for the generation of public signature and
encryption keys. We first consider encryption keys. A run is put into this set if a new public key
pk , created correctly with (sk , pk)← genE(1

k), matches an already existing value, which may have
been chosen by the adversary.

Let Pmax ,k be the maximum probability of any particular value of pk for security parameter k.
Then Pmax ,k is an upper bound for the collision probability of every pair of an old value and new
public key. As there are only polynomially many such pairs, it is sufficient to prove that Pmax ,k is
negligible. Assume for contradiction it were not.

Let an adversary Aenc on the encryption system, given a key pk , independently generate a key
pair (sk ′, pk ′) ← genE(1

k). Then the probability of pk ′ = pk is at least Pmax ,k
2, which is still not

negligible. In this event, we have m = Dsk ′(c) for every ciphertext c← Epk (m), i.e., the adversary
can decrypt ciphertexts intended for the honest participant, which clearly contradicts the security
of the encryption system.

The argument for signature keys is completely analogous, where signatures made with sk ′ pass
the test with pk .

7.9.3 Ciphertext Collisions

The error set Ciph Coll occurs in Section 7.5.8 for the basic command decrypt. A run is put into
this set if the encryption machine Encsim,H has generated two entries (l∗1, pk , c) and (l∗2, pk , c) with
the same public and ciphertext, but l∗1 6= l∗2, in ciphers . In the real encryption machine EncH, this
situation is impossible because the ciphertexts are actually under the messages l∗1 and l∗2 (while
in Encsim,H they are under fixed messages), and decryption is unique for correctly generated key
pairs. Indistinguishability of Encsim,H and EncH, and the fact that the content of ciphers is visible
externally, implies that the probability of the same event is at most negligible in Encsim,H.

7.9.4 Nonce Guessing

The error set Nonce Guess occurs in Section 7.7.6, 7.7.8, and 7.7.10. A run is put into this set if
the adversary has guessed an existing nonce value that ideally he should not have seen. In all these

68

cases we showed that the adversary had guessed the word of an entry x ∈ D∗ with x.hnd a = ↓,
x.word 6∈ Pub Var , and x.type ∈ {nonce, sig, enc}.

“Strongly correct arguments” applies to these entries. Thus each of them contains a nonce part
generated as r R← {0, 1}nonce len(k) independently of everything else.

“Word secrecy” means that no information flowed from r into Pub Var , which is a superset of
the information known to the adversary A. Hence for one guess at one value, the success probability
is 2−nonce len(k) and thus negligible, and there are only a polynomially many values and polynomially
many opportunities of guessing.

7.9.5 Key Guessing

The error set Key Guess occurs in Sections 7.7.7 and 7.7.9. A run is put into this set if the
adversary has guessed an existing public key that ideally he should not have seen. Similar to nonce
guessing, we showed that the adversary had guessed the word of an entry x ∈ D∗ with x.hnd a = ↓,
x.word 6∈ Pub Var , and x.type ∈ {pks, pke}.

As above, word secrecy implies that the adversary had no information at all about the com-
ponent pk := x.word [2]. Hence for one guess at one value, the success probability is bounded by
Pmax ,k as in Section 7.9.2 and thus negligible, and there are only a polynomially many guesses and
values.

7.9.6 Signature Forgery

The error set Forge occurs in Section 7.7.8 for signature forgeries. In the runs put into this set we
designated a triple (pk , (r, l), sig) as a forgery and showed that testpk (sig , (r, l)) = true for a key
pair chosen correctly as (sk , pk)← genS(1

k, 1max skc(k)).
In the combined system CH, this secret key sk was a component D∗[sk ind].word [2] with v =

owner(D∗[sk ind]) ∈ H. Thus it is only used if the command sign is entered at port inv?, and there
within normal signing operations sig ← signsk ,c((r, l)), executed with an internal signature counter
c which is incremented with each signature and not used otherwise.

Further, if (r, l) had ever been signed with sk before, the command sign would lead to an entry
x ∈ D∗ with x.type = sig and x.word of the form (sig, pk , r, l, sig ′). However, the existence of such
an entry was excluded in the conditions for putting the run in the set Forge . Thus we have indeed
a valid forgery for the underlying signature system.

This argument was almost a rigorous reduction proof already: We construct an adversary Asig

against the signer machine Sigs from Definition 5.1 with the function s := max skc by letting
Asig execute CH, using the given A and H as blackboxes. It only has to choose an index i R←
{1, . . . , n · max in(k)} indicating for which of the up to n · max in(k) key pairs generated due to
inputs at ports inu? with u ∈ H it uses pk obtained from the signer machine Sigs instead. We
showed above that the use of sk can be perfectly rewritten by interaction with Sigs, and that Asig

obtains a valid forgery if its guess i was correct.
Hence the success probability of Asig for each k is at least (n · max in(k))−1 (from guessing i

correctly) times the probability of Forgek . Hence the security of the signature scheme implies that
the probability of the sets Forgek is negligible.

8 Conclusion

We have presented a faithful abstraction of a crypto-library, which comprises important crypto-
graphic operations like public-key encryption, digital signatures, and nonces. We already showed

69

that the library can be extended in a modular way by adding symmetric authentication [26] and
symmetric encryption [17]. The abstraction is deterministic and does not contain any cryptographic
objects, hence it is abstract in the sense needed for theorem provers. Faithful means that we can
implement the abstraction securely in the cryptographic sense, so that properties proved for the
abstraction carry over to the implementation without any further work. We provided one possible
implementation whose security is based on provably secure cryptographic systems.

This faithfulness of the cryptographic library now allows for a meaningful analysis of protocol
properties on the abstract level. We already demonstrated this with a proof of the well-known
Needham-Schroeder-Lowe public-key protocol [13] as well as several additional well-known protocols
that come with a symbolic representation. Further, the abstractness of the library makes such an
analysis accessible for formal verification techniques, see, e.g., [75, 10]. Exploring the complexity of
our abstraction and further reducing it by developing or adapting currently used data-independence
techniques is of independent interest.

As many protocols commonly analyzed in the literature can be expressed with our library, this
enables the first formal, machine-aided verification of these protocols which is not only meaningful
for Dolev-Yao-like abstractions, but whose security guarantees are equivalent to the security of
the underlying cryptography. This bridges the up-to-now missing link between cryptography and
formal methods for arbitrary attacks.

Acknowledgments

We thank Andre Adelsbach, Matthias Schunter, and Michael Steiner for interesting discussions.
This work was partially supported by the European IST Project MAFTIA. However, it rep-

resents the view of the authors. The MAFTIA project was partially funded by the European
Commission and the Swiss Department for Education and Science.

References

[1] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In Proc. 4th
International Symposium on Theoretical Aspects of Computer Software (TACS), pages 82–94, 2001.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of
formal encryption. Journal of Cryptology, 15(2):103–127, 2002.

[3] R. Anderson and R. Needham. Robustness principles for public key protocols. In Advances in Cryp-
tology: CRYPTO ’95, volume 963 of Lecture Notes in Computer Science, pages 236–247. Springer,
1995.

[4] M. Backes. Quantifying probabilistic information flow in computational reactive systems. In Proceedings
of 10th European Symposium on Research in Computer Security (ESORICS), volume 3679 of Lecture
Notes in Computer Science, pages 336–354. Springer, 2005.

[5] M. Backes. Real-or-random key secrecy of the Otway-Rees protocol via a symbolic security proof.
Electronic Notes in Theoretical Computer Science (ENTCS), 155:111–145, 2006.

[6] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptographically sound security
proofs for basic and public-key kerberos. In Proceedings of 11th European Symposium on Research
in Computer Security(ESORICS), volume 4189 of Lecture Notes in Computer Science, pages 362–383.
Springer, 2006. Preprint on IACR ePrint 2006/219.

[7] M. Backes and M. Duermuth. A cryptographically sound Dolev-Yao style security proof of an electronic
payment system. In Proceedings of 18th IEEE Computer Security Foundations Workshop (CSFW),
pages 78–93, 2005.

[8] M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of security proto-
cols. In Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume
2607 of Lecture Notes in Computer Science, pages 675–686. Springer, 2003.

70

[9] M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound implementations using
composition and formally verified bisimulation. In Proc. 11th Symposium on Formal Methods Europe
(FME 2002), volume 2391 of Lecture Notes in Computer Science, pages 310–329. Springer, 2002.

[10] M. Backes and P. Laud. Computationally sound secrecy proofs by mechanized flow analysis. In Pro-
ceedings of 13th ACM Conference on Computer and Communications Security (CCS), pages 370–379,
2006.

[11] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and automated veri-
fication of the direct anonymous attestation protocol. In IEEE Symposium on Security and Privacy,
Proceedings of SSP’08, pages 202–215, 2008. Preprint on IACR ePrint 2007/289.

[12] M. Backes, S. Moedersheim, B. Pfitzmann, and L. Vigano. Symbolic and cryptographic analysis of
the secure WS-ReliableMessaging Scenario. In Proceedings of Foundations of Software Science and
Computational Structures (FOSSACS), volume 3921 of Lecture Notes in Computer Science, pages 428–
445. Springer, 2006.

[13] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-Lowe
public-key protocol. In Proc. 23rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), 2003.

[14] M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic purposes. In Proc. 24th
IEEE Symposium on Security & Privacy, pages 140–152, 2003.

[15] M. Backes and B. Pfitzmann. Computational probabilistic non-interference. International Journal of
Information Security (IJIS), 3(1):42–60, 2004.

[16] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-Lowe
public-key protocol. IEEE Journal on Selected Areas of Computing (JSAC), 22(10):2075–2086, 2004.

[17] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic
library. In Proceedings of 17th IEEE Computer Security Foundations Workshop (CSFW), pages 204–
218, 2004.

[18] M. Backes and B. Pfitzmann. Limits of the cryptographic realization of Dolev-Yao-style XOR. In
Proceedings of 10th European Symposium on Research in Computer Security (ESORICS), volume 3679
of Lecture Notes in Computer Science, pages 178–196. Springer, 2005.

[19] M. Backes and B. Pfitzmann. Relating cryptographic und symbolic secrecy. IEEE Transactions on
Dependable and Secure Computing (TDSC), 2(2):109–123, 2005.

[20] M. Backes and B. Pfitzmann. On the cryptographic key secrecy of the strengthened Yahalom protocol.
In Proceedings of 21st IFIP International Information Security Conference (SEC), pages 233–245, 2006.

[21] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active attacks -
BRSIM/UC-soundness of symbolic encryption with key cycles. In Proceedings of 20th IEEE Computer
Security Foundation Symposium (CSF), 2007. Preprint on IACR ePrint 2005/421.

[22] M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial liveness. Journal of Computer
Security, 12(3-4):589–617, 2004.

[23] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations.
In Proceedings of 10th ACM Conference on Computer and Communications Security (CCS), pages 220–
230, 2003.

[24] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive system.
In Proceedings of 1st Theory of Cryptography Conference (TCC), volume 2951 of Lecture Notes in
Computer Science, pages 336–354. Springer, 2004.

[25] M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems. IACR Cryptology
ePrint Archive, 2004:82, 2004.

[26] M. Backes, B. Pfitzmann, and M. Waidner. Reactively secure signature schemes. International Journal
of Information Security (IJIS), 4(4):242–252, 2005.

[27] M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable crypto-
graphic library. International Journal of Information Security (IJIS), 4(3):135–154, 2005.

[28] M. Backes, B. Pfitzmann, and M. Waidner. Limits of the reactive simulatability/UC of Dolev-Yao
models with hashes. In Proceedings of 11th European Symposium on Research in Computer Secu-
rity(ESORICS), volume 4189 of Lecture Notes in Computer Science, pages 404–423. Springer, 2006.

[29] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability framework for asynchronous
systems. Information and Computation, 2007. Preprint on IACR ePrint 2004/082.

71

[30] M. Backes and D. Unruh. Computational soundness of symbolic zero-knowledge proofs against active
attackers. In 21st IEEE Computer Security Foundations Symposium, CSF 2008, pages 255–269, 2008.
Preprint on IACR ePrint 2008/152.

[31] D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty minority.
Journal of Cryptology, 4(2):75–122, 1991.

[32] G. Bella, F. Massacci, and L. C. Paulson. The verification of an industrial payment protocol: The
set purchase phase. In Proc. 9th ACM Conference on Computer and Communications Security, pages
12–20, 2002.

[33] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-
key encryption schemes. In Advances in Cryptology: CRYPTO ’98, volume 1462 of Lecture Notes in
Computer Science, pages 26–45. Springer, 1998.

[34] M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in ssh: Provably fixing the ssh
binary packet protocol. In Proc. 9th ACM Conference on Computer and Communications Security,
pages 1–11, 2002.

[35] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in Cryptology:
CRYPTO ’93, volume 773 of Lecture Notes in Computer Science, pages 232–249. Springer, 1994.

[36] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption standard
PKCS. In Advances in Cryptology: CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science,
pages 1–12. Springer, 1998.

[37] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
3(1):143–202, 2000.

[38] R. Canetti. A unified framework for analyzing security of protocols. IACR Cryptology ePrint Archive
2000/067, Dec. 2001. http://eprint.iacr.org/.

[39] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proc.
42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–145, 2001.

[40] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure channels
(extended abstract). In Advances in Cryptology: EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 337–351. Springer, 2002. Extended version in IACR Cryptology ePrint
Archive 2002/059, http://eprint.iacr.org/.

[41] R. Cramer and I. Damg̊ard. Secure signature schemes based on interactive protocols. In Advances in
Cryptology: CRYPTO ’95, volume 963 of Lecture Notes in Computer Science, pages 297–310. Springer,
1995.

[42] R. Cramer and I. Damg̊ard. New generation of secure and practical RSA-based signatures. In Ad-
vances in Cryptology: CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 173–185.
Springer, 1996.

[43] R. Cramer and V. Shoup. Practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In Advances in Cryptology: CRYPTO ’98, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer, 1998.

[44] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In Proc. 6th ACM
Conference on Computer and Communications Security, pages 46–51, 1999.

[45] Z. Dang and R. Kemmerer. Using the ASTRAL model checker for cryptographic protocol analysis.
In Proc. DIMACS Workshop on Design and Formal Verification of Security Protocols, 1997. http:

//dimacs.rutgers.edu/Workshops/Security/.
[46] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Communications of the

ACM, 24(8):533–536, 1981.
[47] Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. In Advances in

Cryptology: EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 557–572.
Springer, 2000.

[48] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

[49] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication protocols. In
Proc. International Conference on Theorem Proving in Higher Order Logics (TPHOL), volume 1275 of
Lecture Notes in Computer Science, pages 121–136. Springer, 1997.

72

[50] D. Fisher. Millions of .Net Passport accounts put at risk. eWeek, May 2003. (Flaw detected by
Muhammad Faisal Rauf Danka).

[51] R. Gennaro, S. Halevi, and T. Rubin. Secure hash-and-sign signatures without the random oracle. In
Advances in Cryptology: EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages
123–139. Springer, 1999.

[52] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In Advances in
Cryptology: CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 104–110. Springer,
1986.

[53] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority. In
Advances in Cryptology: CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages 77–93.
Springer, 1990.

[54] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28:270–299, 1984.

[55] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[56] J. D. Guttman, F. J. Thayer Fabrega, and L. Zuck. The faithfulness of abstract protocol analysis:
Message authentication. In Proc. 8th ACM Conference on Computer and Communications Security,
pages 186–195, 2001.

[57] M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multiparty
computation. Journal of Cryptology, 13(1):31–60, 2000.

[58] D. Hofheinz, J. Müller-Quade, and R. Steinwandt. Initiator-resilient universally composable key ex-
change. In Proc. 8th European Symposium on Research in Computer Security (ESORICS), 2003.

[59] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis. Journal
of Cryptology, 7(2):79–130, 1994.

[60] P. Laud. Semantics and program analysis of computationally secure information flow. In Proc. 10th
European Symposium on Programming (ESOP), pages 77–91, 2001.

[61] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol
analysis. In Proc. 5th ACM Conference on Computer and Communications Security, pages 112–121,
1998.

[62] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Proc.
2nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055 of Lecture Notes in Computer Science, pages 147–166. Springer, 1996.

[63] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology: CRYPTO ’91, volume 576
of Lecture Notes in Computer Science, pages 392–404. Springer, 1991.

[64] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using murφ. In
Proc. 18th IEEE Symposium on Security & Privacy, pages 141–151, 1997.

[65] R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers.
Communications of the ACM, 12(21):993–999, 1978.

[66] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. In Proc. 11th In-
ternational Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in Computer
Science, pages 748–752. Springer, 1992.

[67] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Cryptology,
6(1):85–128, 1998.

[68] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems. Presented at
the DERA/RHUL Workshop on Secure Architectures and Information Flow, 1999, Electronic Notes in
Theoretical Computer Science (ENTCS), March 2000. http://www.elsevier.nl/cas/tree/store/

tcs/free/noncas/pc/menu.htm.
[69] B. Pfitzmann, M. Schunter, and M. Waidner. Secure reactive systems. Research Report RZ 3206, IBM

Research, 2000.
[70] B. Pfitzmann and M. Waidner. How to break and repair a “provably secure” untraceable payment

system. In Advances in Cryptology: CRYPTO ’91, volume 576 of Lecture Notes in Computer Science,
pages 338–350. Springer, 1992.

[71] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. In
Proc. 7th ACM Conference on Computer and Communications Security, pages 245–254, 2000.

73

[72] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure
message transmission. In Proc. 22nd IEEE Symposium on Security & Privacy, pages 184–200, 2001.

[73] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In Advances in Cryptology: CRYPTO ’91, volume 576 of Lecture Notes in Computer Science,
pages 433–444. Springer, 1992.

[74] P. Rogaway. Authenticated-encryption with associated-data. In Proc. 9th ACM Conference on Com-
puter and Communications Security, pages 98–107, 2002.

[75] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically sound theorem
proving. In Proceedings of 19th IEEE Computer Security Foundations Workshop (CSFW), pages 153–
166, 2006.

[76] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIX Workshop on
Electronic Commerce, pages 29–40, 1996.

[77] B. Warinschi. A computational analysis of the needham-schroeder-(lowe) protocol. In Proc. 16th IEEE
Computer Security Foundations Workshop (CSFW), page To appear, 2003.

[78] A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 80–91, 1982.

74

