
Analyzing Guarded Protocols: Better Cutoffs,
More Systems, More Expressivity

Swen Jacobs, Mouhammad Sakr

Reactive Systems Group, Saarland University, Germany
{jacobs,sakr}@react.uni-saarland.de

Abstract. We study cutoff results for parameterized verification and
synthesis of guarded protocols, as introduced by Emerson and Kahlon
(2000). Guarded protocols describe systems of processes whose transiti-
ons are enabled or disabled depending on the existence of other proces-
ses in certain local states. Cutoff results reduce reasoning about systems
with an arbitrary number of processes to systems of a determined, fixed
size. Our work is based on the observation that existing cutoff results for
guarded protocols are often impractical, since they scale linearly in the
number of local states of processes in the system. We provide new cutoffs
that scale not with the number of local states, but with the number of
guards in the system, which is in many cases much smaller. Furthermore,
we consider generalizations of the type of guards and of the specifications
under consideration, and present results for problems that have not been
known to admit cutoffs before.

1 Introduction

Concurrent systems are notoriously hard to get correct, and are therefore a
promising application area for formal methods like model checking or synthesis.
However, while such general-purpose formal methods can give strong correctness
guarantees, they have two drawbacks: i) the state explosion problem prevents
us from using them for systems with a large number of components, and ii)
correctness properties are often expected to hold for an arbitrary number of
components, which cannot be guaranteed without an additional argument that
extends a proof of correctness to systems of arbitrary size. Both problems can
be solved by approaches for parameterized model checking and synthesis, which
give correctness guarantees for systems with any number of components without
considering every possible system instance explicitly.

While the parameterized model checking problem (PMCP) is undecidable
even if we restrict systems to uniform finite-state components [25], there exist
several methods that decide the problem for specific classes of systems [2–4, 11,
15–17,19,21], many of which have been collected in surveys of the literature re-
cently [9,20]. Additionally, there are semi-decision procedures that are successful
in a number of interesting cases [1, 10, 12, 23, 24]. In this paper, we consider the
cutoff approach to the PMCP, that can guarantee properties of systems of ar-
bitrary size by considering only systems of up to a certain fixed size. Thus, it

2

provides a decision procedure for the PMCP if the model checking problem for
a fixed number of components is decidable, e.g., if components are finite-state.

Guarded protocols, the systems under consideration, are composed of an ar-
bitrary number of processes, each an instance of a finite-state process template.
The process templates can be seen as synchronization skeletons [14], i.e., they
only have to model the features of the system components that are important
for their synchronization. Processes communicate by guarded updates, where
guards are statements about other processes that are interpreted either con-
junctively (“every other process satisfies the guard”) or disjunctively (“there
exists a process that satisfies the guard”). Conjunctive guards can be used to
model synchronization by atomic sections or locks, while disjunctive guards can
model pairwise rendezvous or token-passing.

Emerson and Namjoshi [18] have shown that the PMCP for systems that
combine conjunctive and disjunctive guards is in general undecidable. Therefore,
research in the literature has focused on systems that are restricted to one type
of guard, called conjunctive or disjunctive systems, respectively. These classes
of systems have been studied by Emerson and Kahlon [15, 16], and cutoffs that
depend on the size of process templates are known for specifications of the form
∀p̄. Φ(p̄), where Φ(p̄) is an LTL\X property over the local states of one or more
processes p̄. Außerlechner et al. [6] have extended and improved these results, but
a number of open issues remain. We will explain some of them in the following.

initr

tr

¬w

w

tw

¬w ∧ ¬r

Motivating Example As an example, con-
sider the reader-writer protocol on the
right, modeling access to data shared be-
tween processes. A process that wants to
read the data enters state tr (“try-read”).
From tr, it can move to the reading state
r. However, this transition is guarded by
a statement ¬w. Formally, guards are sets
of states, and ¬w stands for the set of all states except w. Furthermore, this
example is a conjunctive system, which means that a guard is interpreted as “all
other processes have to be in the given set of states”. Thus, to take the transition
from tr to r, no other process should currently be in state w, i.e., writing the
data. Similarly, a process that wants to enter w has to go through tw, but the
transition into w is only enabled if no state is reading or writing.

For this example, consider parameterized safety conditions such as

∀i 6= j.G (¬(wi ∧ wj) ∧ ¬(wi ∧ rj)) ,
where indices i and j refer to processes in the system. Emerson and Kahlon [15]
show that properties from LTL\X of a single process have a cutoff of 2, which
generalizes to a cutoff of k + 1 for properties with k index variables. Moreover,
they show that a cutoff linear in the size of the process template is sufficient to
detect global deadlocks.

However, Außerlechner et al. [6] noted that for liveness properties such as

∀i.G ((tri → F ri) ∧ (twi → Fwi)) ,

3

an explicit treatment of fairness assumptions on the scheduling of processes is
necessary. They show that the cutoff for LTL\X properties also holds under
fairness assumptions, but a second aspect has to be considered to adequately
treat liveness properties in guarded protocols: the detection of local deadlocks,
i.e., whether some process stops after finite time. For this problem, they give a
cutoff that is linear in the size of the process template, but a major restriction
is that the cutoff only supports systems with 1-conjunctive guards, i.e., where
each guard can only exclude a single state. Note that the example above is not
supported by these results, since one of the guards excludes 2 states.

Another drawback of the existing results is that they use only minimal kno-
wledge about the process templates: their size and the interpretation of guards.
As a result, many cutoffs depend directly on the size of the process template.
Intuitively, the communication between processes should be more important for
the cutoff than their internal state space. This can also be seen in the example
above: out of the 5 states, only 2 can be observed by the other processes, and can
thus influence their behavior. In this paper, we will explore the idea of cutoffs
that depend on the number and form of guards in the system.

Contributions We provide new cutoff results for guarded protocols:

1. For conjunctive systems, we extend the class of process templates that are
supported by cutoff results, providing cutoff results for local deadlock de-
tection in classes of templates that are not 1-conjunctive, and include exam-
ples such as the one above. However, we do not solve the general problem,
and instead show that a cutoff for arbitrary conjunctive systems has to be
at least quadratic in the size of the template.

2. For both conjunctive and disjunctive systems, we show that by closer analysis
of process templates, in particular the number and the form of transition
guards, we can obtain smaller cutoffs in many cases. This circumvents the
tightness results of Außerlechner et al. [6], which state that no smaller cutoffs
can exist for the class of all processes of a given size.

3. For disjunctive systems, we additionally extend both the class of process
templates and the class of specifications that are supported by cutoff results.
We show that systems with finite conjunctions of disjunctive guards are also
supported by variations of the existing proof methods, and obtain cutoff
results for these systems. Furthermore, we give cutoffs that support checking
the simultaneous reachability (and repeated reachability) of a target set by
all processes in a disjunctive system.

2 Preliminaries

2.1 System Model

In the following, let Q be a finite set of states.

4

Processes. A process template is a transition system U = (QU , initU , δU) with1

– QU ⊆ Q is a finite set of states including the initial state initU ,
– δU : QU × P(Q)×QU is a guarded transition relation.

Define the size of U as |U | = |QU |. An instance of template U will be called
a U -process.

Guarded Protocols. Fix process templates A and B. A guarded protocol is a
system A‖Bn, consisting of one A-process and n B-processes in an interleaving
parallel composition.2 We assume that Q = QA ∪̇QB . Different B-processes are
distinguished by subscript, i.e., for i ∈ [1..n], Bi is the ith instance of B, and qBi

is a state of Bi. A state of the A-process is denoted by qA. We denote the set
{A,B1, . . . , Bn} as P, and write p for a process in P. For U ∈ {A,B}, we write
GU for the set of non-trivial guards that are used in δU , i.e., guards different
from Q and ∅. Then, let G = GA ∪GB .

Disjunctive and Conjunctive Systems. In a guarded protocols, a local tran-
sition (qp, g, q

′
p) ∈ δU of p is enabled in s if its guard g is satisfied for p in s,

written (s, p) |= g. We distinguish two types of guarded protocols, depending on
their interpretation of guards:

In disjunctive systems: (s, p) |= g iff ∃p′ ∈ P \ {p} : qp′ ∈ g.
In conjunctive systems: (s, p) |= g iff ∀p′ ∈ P \ {p} : qp′ ∈ g.

Let set(s) = {qA, qB1
, . . . , qBn

}, and for a set of processes P = {p1, . . . , pk},
let setP (s) = {qp1

, . . . , qpk
}. Then for disjunctive systems, we can more succinctly

state that (s, p) |= g iff setP\p(s) ∩ g 6= ∅, and for conjunctive systems (s, p) |=
g iff setP\p(s) ⊆ g. A process is enabled in s if at least one of its transitions is
enabled in s, otherwise it is disabled.

Like Emerson and Kahlon [15], we assume that in conjunctive systems initA
and initB are contained in all guards, i.e., they act as neutral states. For con-
junctive systems, we call a guard k-conjunctive if it is of the form Q\{q1, . . . , qk}
for some q1, . . . , qk ∈ Q. A state q is k-conjunctive if all non-trivial guards of
transitions from q are k′-conjunctive with k′ ≤ k. A conjunctive system is k-
conjunctive if every state is k-conjunctive.

Then, A‖Bn is defined as the transition system (S, initS , ∆) with

– set of global states S = (QA)× (QB)n,
– global initial state initS = (initA, initB , . . . , initB),
– and global transition relation ∆ ⊆ S × S with (s, s′) ∈ ∆ iff s′ is obtained

from s = (qA, qB1 , . . . , qBn) by replacing one local state qp with a new local
state q′p, where p is a U -process with local transition (qp, g, q

′
p) ∈ δU and

(s, p) |= g.

1 In contrast to Außerlechner et al. [6], for simplicity we only consider closed process
templates. However, our results extend to open process templates in the same way
as explained there.

2 By similar arguments as in Emerson and Kahlon [15], our results can be extended
to systems with an arbitrary number of process templates.

5

Runs. A path of a system is a sequence of states x = s1, s2, . . . such that for
all m < |x| there is a transition (sm, sm+1) ∈ ∆ based on a local transition of
some process pm. We say that process pm moves at moment m. A path can be
finite or infinite, and a maximal path is a path that cannot be extended, i.e., it
is either infinite or ends in a state where no transition is enabled.

A system run is a maximal path starting in the initial state. We say that a
run is initializing if every process that moves infinitely often also visits its initial
state init infinitely often.

Given a system path x = s1, s2, . . . and a process p, the local path of p in x
is the projection x(p) = s1(p), s2(p), . . . of x onto local states of p. A local path
x(p) is a local run if x is a run.

Deadlocks and Fairness. A run is globally deadlocked if it is finite. An infinite
run is locally deadlocked for process p if there exists m such that p is disabled for
all sm′ with m′ ≥ m. A run is deadlocked if it is locally or globally deadlocked. A
system has a (local/global) deadlock if it has a (locally/globally) deadlocked run.
Note that absence of local deadlocks for all p implies absence of global deadlocks,
but not the other way around.

A run s1, s2, . . . is unconditionally fair if every process moves infinitely often.
A run is strong fair if it is infinite and for every process p, if p is enabled infinitely
often, then p moves infinitely often.

Remark. We consider these different notions of fairness for the following reason:
we are interested in unconditionally fair runs of the system, which requires an
assumption about scheduling. However, directly assuming unconditional fairness
is too strong, since any run with a local deadlock will violate the assumption,
and therefore satisfy the overall specification. Thus, we consider strong fairness
as an assumption on the scheduler, and absence of local deadlocks as a property
of the system that has to be proved. Together, they imply unconditional fairness.

2.2 Specifications

We consider formulas in LTL\X, i.e., LTL without the next-time operator X. Let
h(A,Bi1 , . . . , Bik) be an LTL\X formula over atomic propositions from QA and
indexed propositions from QB×{i1, . . . , ik}. For a system A‖Bn with n ≥ k and
ij ∈ [1..n], satisfaction of Ah(A,Bi1 , . . . , Bik) and Eh(A,Bi1 , . . . , Bik) is defined
in the usual way (see e.g. Baier and Katoen [7]).

Parameterized Specifications. A parameterized specification is a temporal
logic formula with indexed atomic propositions and quantification over indices.
A k-indexed formula is of the form ∀i1, . . . , ik.Ah(A,Bi1 , . . . , Bik) or ∀i1, . . . , ik.
Eh(A,Bi1 , . . . , Bik). For given n ≥ k, by symmetry of guarded protocols (cp.
Emerson and Kahlon [15]) we have

A‖Bn|=∀i1, . . ., ik.Ah(A,Bi1 , . . ., Bik) iff A‖Bn |= Ah(A,B1, . . . , Bk).

The latter formula is denoted by Ah(A,B(k)), and we often use it instead of
the original ∀i1, . . . , ik.Ah(A,Bi1 , ..., Bik). For formulas with path quantifier E,
satisfaction is defined analogously, and equivalent to satisfaction of Eh(A,B(k)).

6

2.3 Model Checking Problems and Cutoffs

For a given system A‖Bn and specification h(A,B(k)) with n ≥ k,

– the model checking problem is to decide whether A‖Bn |= Ah(A,B(k)),
– the (global/local) deadlock detection problem is to decide whether A‖Bn has

(global/local) deadlocks,
– the parameterized model checking problem (PMCP) is to decide whether
∀m ≥ n : A‖Bm |= Ah(A,B(k)), and

– the parameterized (local/global) deadlock detection problem is to decide whet-
her for some m ≥ n, A‖Bm does have (global/local) deadlocks.

These definitions can be flavored with different notions of fairness, and with
the E path quantifier instead of A. According to our remarks about fairness
above, we are interested in proving the absence of local deadlocks under the
assumption of strong fairness, which implies unconditional fairness and therefore
allows us to separately prove the satisfaction of a temporal logic specification
under the assumption of unconditional fairness.

Corresponding problems for the synthesis of process templates can be defined
(compare Außerlechner et al. [6]). Parameterized synthesis based on cutoffs [22]
is also supported by our cutoff results, but the details will not be necessary for
understanding the results presented here.

Cutoffs. We define cutoffs with respect to a class of systems (either disjunctive
or conjunctive), a class of process templates T , and a class of properties, which
can be k-indexed formulas for some k ∈ N or the existence of (local/global)
deadlocks. A cutoff for a given class of properties and a class of systems with
processes from T is a number c ∈ N such that for all A,B ∈ T , all properties ϕ
in the given class, and all n ≥ c:

A‖Bn |= ϕ ⇔ A‖Bc |= ϕ.

Like the problem definitions above, cutoffs may additionally be flavoured
with different notions of fairness.

Cutoffs and Decidability. Note that the existence of a cutoff implies that the
parameterized model checking and parameterized deadlock detection problems
are decidable iff their non-parameterized versions are decidable.

3 New Cutoff Results for Conjunctive Systems

In this section, we state our new results for conjunctive systems, and compare
them to the previously known results in Table 1. We give improved cutoffs for
global deadlock detection in general (Section 3.1), and for local deadlock de-
tection for the restricted case of 1-conjunctive systems (Section 3.2). After that,
we explain why local deadlock detection in general is hard, and identify a num-
ber of cases where we can solve the problem even for systems that are not 1-
conjunctive (Sections 3.3 and 3.4). We do not improve on the cutoffs for LTL\X
properties, since they are already very small and only depend on the number of
index variables in the specification.

7

Additional Definitions. To analyze deadlocks in a given conjunctive system
A‖Bn, we introduce additional definitions. A deadset is a minimal set D of local
states of other processes that block all outgoing transitions of one process in its
current state q. Formally, we say that D ⊆ Q is a deadset of q ∈ Q if:

i) ∀(q, g, q′) ∈ δ : ∃q′′ ∈ D : q′′ /∈ g,

ii) D contains at most one state from QA, and

iii) there is no D′ that satisfies i) and ii) with D′ ⊂ D.

For a given local state q, dead∧q is the set of all deadsets of q:

dead∧q = {D ⊆ Q | D is a deadset of q}.

If dead∧q = ∅, then we say q is free. If a state q does not appear in dead∧q′ for
any q′ ∈ Q, then we say q is non-blocking. If a state q does not appear in dead∧q ,
then we say q is not self-blocking.

For example, in a system where B is the process template from Sect. 1,
we have dead∧tw = {{w}, {r}} and dead∧tr = {{w}}. For all other states q ∈
{init, r, w}, we have dead∧q = ∅. Regardless of A, none of the deadsets contain a
state from A, since the guards of B do not mention states of A.

In these terms, a globally deadlocked run is a run that ends in a global state
s such that for every process p and its local state q, some D ∈ dead∧q is contained
in set(s). Similarly, a locally deadlocked run is a run such that one process p will
eventually always remain in state q, and from some point on, we always have
D ⊆ set(s) for some D ∈ dead∧q . Note that in this case, it can happen that there
does not exist a single deadset D that is contained in set(s) all the time, but the
run may alternate between different deadsets of q that are contained in set(s) at
different times.

3.1 Global Deadlock Detection

For global deadlock detection, we show how to obtain improved cutoffs based on
the number of free, non-blocking, and not self-blocking states in a given process
template.

Theorem 1. For conjunctive systems and process templates A,B, let

– k1 = |D1|, where D1 ⊆ QB is the set of free states in B,

– k2 = |D2 \D1|, where D2 ⊆ QB is the set of non-blocking states in B, and

– k3 = |D3 \ (D1 ∪D2)|, where D3 ⊆ QB is the set of not self-blocking states
in B.

Then 2|B| − 2k1 − 2k2 − k3 is a cutoff for global deadlock detection.

8

Proof Sketch. In order to simulate a globally deadlocked run x = s0, s1, . . . , sm of
a large system by a run y in the cutoff system, by Emerson and Kahlon [15] the
following is sufficient. We analyze the set of local states q ∈ Q that are present
in the final state sm of x, and distinguish whether any such q appears once in
sm, or multiple times. If q appears once, we identify one local run of x that ends
in q, and replicate it in the cutoff system. If q appears multiple times, we do the
same for two local runs of x that end in q. This construction ensures that in the
resulting global run x′ = s′0, . . . , s

′
m of the cutoff system, for any point in time

t and any process p, we have setp(s′t) ⊆ setp(st). Therefore, all transitions in x′

will be enabled, and x′ is deadlocked in s′m. If x′ does not contain all local runs
of x then there are stuttering steps in x′, where no process moves. By removing
these stuttering steps, we obtain the desired run y.

The construction of Emerson and Kahlon assumes that in the worst case all
local states of B appear in the deadlocked state sm. However, if D1 ⊆ QB are free
local states, then we know that no state from D1 can ever appear in sm, and thus
the cutoff is reduced by 2|D1|. Similarly, if D2 ⊆ QB are non-blocking states,
then we know that no state from D2 can be necessary for the deadlock in sm,
and therefore the construction will also work if we remove the local runs ending
in D2. This also reduces the cutoff by 2|D2|. Moreover, the original construction
assumes that all local states q may be self-blocking, which requires the second
local run that ends in q. If we know that D3 ⊆ QB are not self-blocking, then
we only need one local run for each of these states, reducing the cutoff by |D3|.
If we combine all three cases, we get the statement of the theorem.

Note that the sets of free, non-blocking, and not self-blocking states can be
identified by a simple analysis of a single process template, and the cost of this
analysis is negligible compared to the cost of a higher cutoff in verification of
the system.

3.2 Local Deadlock Detection in 1-conjunctive Systems

For local deadlock detection, we first show that smaller cutoffs can be found by
taking into account the transitions and guards of the process template. For a
1-conjunctive process template U ∈ {A,B}, let GU,B be the set of guards of U
that exclude one of the states of B, i.e., that are of the form g = Q\{q} for some
q ∈ QB . Furthermore, let maxDU = max{|D ∩ QB | | D ∈ dead∧q for some q ∈
QU} be the maximal number of states from B that appear in any deadset of a
state in U .

Theorem 2. For conjunctive systems with process templates A,B, if process
template U ∈ {A,B} is 1-conjunctive, then the following are cutoffs for local
deadlock detection in a U -process in non-fair runs:

– maxDU + 2, and

– |GU,B |+ 2.

9

Proof Sketch. In order to simulate a locally deadlocked run x = s0, s1, . . . of
a large system by a run y in the cutoff system, the following construction has
been presented by Außerlechner et al. [5] for non-fair runs. Suppose process p is
locally deadlocked in local state q after the system has entered state sm. We first
copy the local runs of A and p. Since the system is 1-conjunctive, every local
state has a unique deadset. For each q′ in the deadset D of q, we copy a local run
from x that is in q′ at time m, and modify it such that it stays in q′ forever after
this point in time. Thus, the process in q is locally deadlocked because all states
in D will be present at any time after m. Finally, we copy one additional local
run of a process that moves infinitely often in x. As in the proof of Theorem 1,
all transitions of the resulting global run x′ will be enabled, and we can obtain
the desired run y by de-stuttering.

Note that the original proof uses one process for every state in the unique
deadset D of the deadlocked local state q, and assumes that in the worst case we
have D ⊇ QB , resulting in the cutoff of |QB |+ 2 for all process templates with a
given set of states QB . However, if we take into account the guards of transitions
and the individual deadsets, we can obtain smaller cutoffs: in particular, instead
of assuming that the size of some deadset is |QB |, we can compute the maximal
size of actual deadsets maxDU , and replace |QB | by maxDU to obtain a cutoff
of maxDU + 2. Further, note that (since the system is 1-conjunctive) maxDU is
bounded by |GU,B |, so |GU,B |+ 2 also is a cutoff.

Theorem 3. For conjunctive systems and process templates A,B, if process
template U ∈ {A,B} is 1-conjunctive, then 2|GU,B | is a cutoff for local deadlock
detection in a U -process in strong-fair runs.

Proof Sketch. For fair runs, the construction by Außerlechner et al. [5] is similar
as in the previous proof, but additionally we need to ensure that all processes
either move infinitely often or are locally deadlocked. We explain the original
construction in a new way that highlights our insight.

First, identify all states q′ ∈ QB in the deadset D of q such that there exists
a locally deadlocked local run in x that eventually stays in q′. For each of these
states, copy this local run. To ensure that these local runs are locally deadlocked
also in the constructed run, add the states in their deadsets to D, and if q′

is self-blocking then also copy another local run from x that eventually visits
the state q′ and stays there. Then repeat the procedure until no more states are
added to D. Note that only states that are excluded in one of the (1-conjunctive)
guards can be added to D, and for each state we have copied up to two local
runs from x. Thus, the size of D is bounded by |GU,B |, and in the worst case we
have added 2|GU,B | processes until now.

Then, let D′ ⊆ D be the set of states for which no process has been added
thus far, and let m′ be the time when all local runs that have been added until
now are locally deadlocked. Copy for each of the states q′ ∈ D′ one local run
from x that is in q′ at time m′, and add a process that stays in initB until time
m′. Then after moment m′ we can let all processes that are in D′ move in the
following way: (i) choose some q′ ∈ D′ (ii) let the process that is in initB move

10

to q′ (iii) let the process that was waiting in q′ move to initB (iv) repeat with
fair choices of q′ ∈ D′. Since each of these states must appear in x at any time
after m′ without a process being locally deadlocked in the state, there must
be a local path from this state to itself in one of the local runs in x. Since for
fair conjunctive systems we assume that they are initializing, this path must go
through initB , and the construction is guaranteed to work.

Note that overall, for each state in D we have copied either one or two local
runs from x, so the bound for the number of these processes is still 2|GU,B |. Also
note that the additional process that waits in initU is only needed if at least one
of the other processes is not locally deadlocked, thus it does not increase the
needed number of processes. Finally, for the original locally deadlocked process
we can distinguish two cases: i) if we have added 2|GU,B | processes thus far, then
the original process is deadlocked in a state that does not block any transition,
and we can remove it since the run will exhibit a local deadlock regardless, or
ii) if this is not the case, then even with the original process we need at most
2|GU,B | processes overall.

Note that in a 1-conjunctive process template U , we have |GU,B | ≤ |QB |−1.
Thus, our new cutoffs are always smaller or equal to the known cutoff from
Außerlechner et al. [6].

Table 1: Cutoff Results for Conjunctive Systems

EK [15] AJK [6] our work

k-indexed LTL\X non-fair k + 1 k + 1 unchanged

k-indexed LTL\X fair - k + 1 unchanged

Local Deadlock non-fair - |B|+ 1∗ maxDU + 2 and |GU,B |+ 2∗

Local Deadlock fair - 2|B| − 2∗∗ 2|GU,B |∗∗

Global Deadlock 2|B|+ 1 2|B| − 2 2|B| − 2k1 − 2k2 − k3
∗ : systems need to have alternation-bounded local deadlocks (see Sect. 3.4)

∗∗ : systems need to be initializing and have alternation-bounded local deadlocks
k1: number of free states

k2: number of non-blocking states that are not free
k3: number of not self-blocking states that are not free or non-blocking

3.3 Local Deadlock Detection: Beyond 1-conjunctive Systems

While Theorems 2 and 3 improve on the local deadlock detection cutoff for con-
junctive systems in some cases, the results are still restricted to 1-conjunctive
process templates. The reason for this restriction is that when going beyond
1-conjunctive systems, the local deadlock detection cutoff (even without consi-
dering fairness) can be shown to grow at least quadratically in the number of
states or guards, and it becomes very hard to determine a cutoff.

11

To analyze these cases, define the following: given a process template U ∈
{A,B}, a sequence of local states q1, . . . , qk is connected if ∀qi ∈ {q1, . . . , qk} :
∃(qi, gi, qi+1) ∈ δU . A cycle is a connected sequence of states q, q1, . . . , qk, q such
that ∀qi, qj ∈ {q1, . . . , qk} : qi 6= qj . We denote such a cycle by Cq. By abuse of
notation, Cq is also used for the set of states on Cq. We denote the set of guards
of the transitions on Cq as GCq

.

Example 1. If we consider the process template in Figure 1 without the dashed
parts, then it exhibits a local deadlock in state q0 for 9 processes, but not for 8
processes: one process has to move to q0, which has four deadsets: {a, c}, {a, d},
{b, c}, and {b, d}. To preserve a deadlock in q0, the processes need to alternate
between different deadsets while always at least covering one of them. To achieve
this, for each cycle that starts and ends in states a, b, c, d, we need 2 processes
that move along the cycle to keep all guards of q0 covered at all times. Intuitively,
one process per cycle has to be in the state of interest, or ready to enter it, and
the other process is traveling on the cycle, waiting until the guards are satisfied.

init

u2

¬b ∧ ¬d ∧¬e

u1

¬a ∧ ¬c∧¬f

q0

¬a ∧ ¬b

q1

¬c ∧ ¬d

q2
¬e ∧ ¬f

abe c d f

Fig. 1: Process Template with Quadratic Cutoff for Local Deadlocks

Now, consider the modified template (including the dashed parts) where we
i) add two states e, f in a similar way as a, b, c, d, ii) add a new state connected
to q0 with guard ¬e∧¬f , and iii) change the guards in the sequence from u1 to
init to ¬a ∧ ¬c ∧ ¬e and ¬b ∧ ¬d ∧ ¬f , respectively. Then we have 6 cycles that
need 2 processes each, and we need 13 processes to reach a local deadlock in q0.

Moreover, consider the modified template where we increase the length of
the path from u1 to init by adding states u3 and u4, such that we obtain a
sequence (u1, u2, u3, u4, init), where transitions alternate between the two guards
from the original sequence. Then, for every cycle we need 3 processes instead

12

of 2, as otherwise they cannot traverse the cycle fast enough to ensure that
the local deadlock is preserved infinitely long. That is, the template with both
modifications now needs 19 processes to reach a local deadlock.

Observe that by increasing the height of the template, we increase the ne-
cessary number of processes without increasing the number of different guards.
Moreover, when increasing both the width and height of the template, the num-
ber of processes that are necessary for a local deadlock increases quadratically
with the size of the template.

This example leads us to the following result.

Theorem 4. A cutoff for local deadlock detection for the class of all conjunctive
systems must grow at least quadratically in the number of states. Furthermore,
it cannot be bounded by the number of guards at all.

Proof Sketch. For a system that does exhibit a local deadlock for some size n,
but not for n− 1, the cutoff cannot be smaller than n. Thus, the example shows
that a cutoff for local deadlock detection in general is independent of the number
of guards, and must grow at least quadratic in the size of the template.

Cutoffs that can in the best case be bounded by |B|2 will not be very useful
in practice. Therefore, instead of solving the general problem, we identify in the
following a number of cases where the cutoff remains linear in the number of
states or guards.

3.4 Systems with Alternation-bounded Local Deadlocks

When comparing the proof of Theorem 2 to Example 1, we note that the re-
ason that the cutoff in Theorem 2 does not apply is the following: while in
1-conjunctive systems every state has a unique deadset, in the general case a
state may have many deadsets, and the structure of the process template may
require infinitely many alternations between different deadsets to preserve the
local deadlock. Moreover, as shown in the example, the number of processes nee-
ded to alternate between deadsets may increase with the size of the template,
even if the set of guards (and thus, the number of different deadsets) remains
the same.

However, we can still obtain small cutoffs in some cases, based on the follo-
wing observation: even if states have multiple deadsets, an infinite alternation
between them may not be necessary to obtain a local deadlock. In the following,
we will first show that for systems where infinite alternation between different
deadsets is not necessary, the cutoff for 1-conjunctive systems applies, and then
give a number of sufficient conditions to identify such systems.

Alternation-bounded Local Deadlocks. We say that a run x = s0, s1, . . .
where process p is locally deadlocked in state q is alternation-bounded if there is a
moment m and a single set D ⊆ QB such that for all m′ > m: D ⊆ setP\q(sm′)
and for some qA ∈ QA, D ∪ qA is a deadset of q. Intuitively, this means the
B-states in the deadset that preserves the deadlock only change finitely often.

13

For q ∈ Q, we say that q has alternation-bounded local deadlocks for c ∈ N if
the following holds for all n ≥ c:

if A‖Bn has a local deadlock in q
then A‖Bn has an alternation-bounded local deadlock in q.

Theorem 5. For conjunctive systems and process templates A,B, the cutoffs
of Theorem 2 apply for non-fair runs, and the cutoff of Theorem 3 applies for
strong-fair runs if every q ∈ Q has alternation-bounded local deadlocks for the
cutoff value. In particular, this implies that the parameterized local deadlock de-
tection problem is decidable.

Proof Sketch. Suppose in run x of A‖Bn, with n greater than the cutoff value,
process p is locally deadlocked in local state q ∈ Q, and q has alternation-
bounded local deadlocks. Then there exists an alternation-bounded run x′ of
A‖Bn in which p is locally deadlocked in q. That is, either the local deadlock
in x′ eventually is preserved by a sequence of deadsets with unique restriction
to B-states, or a number of processes that is bounded by the size of the largest
deadset is sufficient to preserve the local deadlock in q. In the latter case, we are
done. In the former case, based on the set D, the run x′ can be simulated with
the same constructions as in the proofs of Theorems 2 and 3.

Sufficient Conditions for Alternation-bounded Local Deadlocks. In the
following, we will identify four sufficient conditions that imply that a state q has
alternation-bounded local deadlocks, and that can easily be checked directly on
the process template.

Effectively 1-conjunctive states. We say that a state q is effectively 1-conjunctive
if it is either 1-conjunctive or free.

Lemma 1. If q ∈ Q is effectively 1-conjunctive, then it has alternation-bounded
local deadlocks for c = 1.

Proof Sketch. If q is 1-conjunctive, then it has alternation-bounded local dead-
locks since it has only a single deadset. If q is free, then a local deadlock in q is
not possible, so the condition holds vacuously.

In the reader-writer example from Section 1, all states except tw are effecti-
vely 1-conjunctive.

Relaxing 1-conjunctiveness. For q ∈ Q, let Gq be the set of non-trivial guards
in transitions from q. We say that state q is relaxed 1-conjunctive if Gq only
contains guards of the form Q \ {q1, . . . , qk}, where either

– at most one of the qi is from QB , or
– whenever more than one qi is from QB , then Gq must also contain a guard

of the form Q \ {q′1, . . . , q′k, qi} for one of these qi and where all q′j are from
QA.

Lemma 2. If q ∈ Q is relaxed 1-conjunctive, then it has alternation-bounded
local deadlocks for c = 1.

14

Proof Sketch. Note that the guards we allow on transitions from a relaxed 1-
conjunctive state each have at most one state from QB that can block the transi-
tion. Thus q does not necessarily have a unique deadset, but for each deadset D
the restriction to states of B is unique. Thus, every run that is locally deadlocked
in q will be alternation-bounded.

Alternation-free. For a given state q ∈ Q, let D be the set of all local states that
disable one of the k-conjunctive guards, with k > 1, on transitions from q. Then
we say that q is alternation-free if the following condition holds for at most one
q′ ∈ D:

there exists a cycle Cq′ = q′, . . . , q′ ∈ U with

– q 6∈ Cq′ , and
– ∀g ∈ GCq′ : (q ∈ g ∧ @g′ ∈ Gq : g′ ⊇ g).

Intuitively, this means that there is at most one state q′ ∈ D that is on a
cycle that can be traversed while the local deadlock is preserved — and at least
two such states would be needed to alternate between different deadsets.

In the reader-writer example from Section 1, state tw is alternation-free: i)
{w, r} is the set of states that disables the only guard that is not 1-conjunctive,
and ii) all cycles that start and end in w contain also tw.

The following lemma directly follows from the explanation above.

Lemma 3. If q ∈ Q is alternation-free, then it has alternation-bounded local
deadlocks for c = 1.

Process templates with freely traversable lassos. While the three conditions above
guarantee the existence of a fair alternation-bounded run if the original run was
fair, the following condition in general returns a run that is not strong-fair.
A lasso lo is a connected sequence of local states q0, . . . , qi, . . . , qk such that
q0 = init and qi, . . . , qk is a cycle. We denote by Glo the set of guards of the
transitions on lo. We say that a lasso lo is freely traversable with respect to a
state q ∈ Q if it does not contain q and for every deadset D of q, every g ∈ Glo

contains D ∪ {q}. Intuitively, these conditions ensure that lo can be executed
after the system has reached any of the (minimal) deadlock configurations for q.

Lemma 4. If there exists a freely traversable lasso in B with respect to q ∈ Q,
then q has alternation-bounded local deadlocks in non-fair runs for c = maxDU +
2.

Proof Sketch. Suppose there exists a freely traversable lasso with respect to
q, and x is a run where process p is locally deadlocked in q, where p is not
enabled anymore after time m. Then we obtain an alternation-bounded locally
deadlocked run x′ by picking a deadset D of q with D ⊆ setP\p(xm) and for every
q′ ∈ D a local run from x that is in q′ at time m. Since n ≥ c = maxDU +2, there
is at least one other process in A‖Bn. We replace the local run of this process
with a local run that stays in initB until m, and after m is the only process that

15

moves, along the freely traversable lasso we assumed to exist. Any further local
runs stay in initU forever.

Theorem 5 and Lemmas 1 to 4 allow us to analyze the process templates,
state by state, and to conclude the existence of a small cutoff for local deadlock
detection in certain cases. The lemmas provide sufficient but not necessary con-
ditions for the existence of alternation-bounded cutoffs. They provide a template
for obtaining small cutoffs in certain cases, and for a given application they may
be refined depending on domain-specific knowledge.

3.5 Local Deadlock Detection under Infinite Alternation

For systems that do not have alternation-bounded local deadlocks, it is very
difficult to obtain cutoff results. For example, even in systems with a single 2-
conjunctive and otherwise only 1-conjunctive guards, one can show that a cutoff
based on the number of guards in general cannot exist. Moreover, the cutoff
grows at least linearly in the number of states, or, more precisely, in the number
of alternations between different deadsets that are necessary to traverse a cycle
Cq for a state q from a deadset.

4 Verification of the Reader-Writer Example

We consider again the reader-writer example from Section 1, and show how our
new results allow us to check correctness, find a bug, and check a fixed version.

With our results, we can for the first time check the given liveness property
in a meaningful way, i.e., under the assumption of fair scheduling. Since all states
in the process template have alternation-bounded local deadlocks for c = 1, by
Theorems 3 and 5 the local deadlock detection cutoff for the system is 2|GB,B | =
4. No cutoff for this problem was known before. Moreover, compared to previous
results we reduce the cutoff for global deadlock detection by recognizing that
k1 = 3 states can never be deadlocked, and k2 = 2 additional states never appear
in any guard. This reduces the cutoff to 2|B| − 2k1 − 2k2 = 10− 6− 4 = 0, i.e.,
we detect that there are no global deadlocks without further analysis.

However, checking the system for local deadlocks shows that a local dead-
lock is possible: a process may forever be stuck in tw if the other processes
move in a loop (init, tr, r)ω (and always at least one process is in r). To fix
this, we can add an additional guard ¬tw to the transition from init to tr,

initr

tr

¬tw¬w

w

tw

¬w ∧ ¬r

as shown in the process template to the right.
For the resulting system, our results give a
local deadlock detection cutoff of 2|GB,B | =
6, and a global deadlock detection cutoff of
2|B|−2k1−2k2−k3 = 10−6−2−1 = 1 (where
k3 is the number of states that do appear in
guards and could be deadlocked themselves,
but do not have a transition that is blocked
by another process in the same state).

16

5 New Cutoff Results for Disjunctive Systems

In this section, we state our new cutoff results for disjunctive systems, and
compare them to the previously known results in Table 2. Moreover, we show
two extensions of the class of problems for which cutoffs are available:

1. systems where transitions are guarded with a conjunction of disjunctive
guards (Section 5.4), and

2. two important classes of specifications that cannot be expressed in prenex
indexed temporal logic (Section 5.5).

To state our results, we need the following additional definitions. Fix process
templates A,B with G = GA ∪GB . Let |B|G = |{q ∈ QB | ∃g ∈ G : q ∈ g}|. For
a state q ∈ QB in a disjunctive system, define Enableq = {q′ ∈ Q | ∃(q, g, q′′) ∈
δB : q′ ∈ g}, i.e., the set of states of A and B that enable a transition from q.

5.1 Linear-Time Properties

Theorem 6. For disjunctive systems, process templates A,B, and k-indexed
properties Φk:

– |G|+ k + 1 and |B|G + k + 1 are cutoffs in non-fair runs,
– |B|G + |G|+ k and 2|B|G + k are cutoffs in unconditionally fair runs.

Proof Sketch. Given a run x of A‖Bn where x(B1), . . . , x(Bk) satisfy Φk, Emer-
son and Kahlon [15] showed how to construct a non-fair run y in the cutoff
system that satisfies Φk. The run y includes the local runs x(B1), . . . , x(Bk),
and additional runs that ensure that all the transitions are enabled: for every
state q ∈ QB that appears in x and the local run that first visits q, we add the
prefix of that local run up to q, and then let it stay in q forever. One additio-
nal local run may have to be copied from x to ensure that the resulting run is
infinite. Thus, the resulting cutoff is |B|+ k + 1 in non-fair runs.

Based on an analysis of the process template B, we can find better cutoffs:
as a first option, we can statically check which states do appear in a guard,
and conclude that only those may need to be copied. This reduces the cutoff to
|B|G + k + 1. Furthermore, since our goal is to enable all transitions, it is also
sufficient to only copy a local run for one representative state of each guard (the
one that is visited first in x). In this way, we need at most one additional process
per guard in B, i.e., |G|+ k + 1 also is a cutoff for non-fair runs.

Außerlechner et al. [6] gave a construction that builds on the steps explained
above, and additionally preserves unconditional fairness in a given run. To this
end, distinguish local states that appear finitely often or infinitely often in x.
If state q appears infinitely often, there must be a cycle Cq = q, . . . , q in one
of the local runs. To ensure fairness while always covering q, we add two copies
of the shortest local path to q, and let the two processes take turns in moving
through Cq (i.e., while one of them moves through Cq, the other one stays in
q). If state q appears finitely often in x, we add a copy of the shortest path to

17

q, and identify the moment mq when q appears for the last time in x. Instead
of staying in q forever, we let the copied local run stay in q until mq, and then
move along the local path that leaves q at that time in x, until it reaches a state
q′ that appears infinitely often. From that point on, we let the process move in
a fair way based on a cycle Cq′ taken from x. This original construction gives a
cutoff of 2|B|+k−1, since in the worst case all states appear infinitely often and
we need two copies for each, but at least one of them must also appear infinitely
often in the k processes that have to satisfy the specification.

Like in the non-fair case, an analysis of the template gives us better cutoffs.
As a first approximation, we can again limit the construction to states in |B|G,
and obtain the cutoff 2|B|G + k (now we can not assume that one of the states
also appears in the k processes). Moreover, from the states in |B|G that appear
infinitely often we can again chose one representative for each guard, and only
add two local runs for each representative. This does not work for the processes
that are visited finitely often, since we need to move them into an infinitely
visited state to ensure fairness, and then need a different representative. To
compute the cutoff, suppose f states from |B|G are visited finitely often, and
i states infinitely often. From the latter, there are r states for which we added
two local runs, with r ≤ |G| and r ≤ i. Then we need at most f + 2r + k local
runs (including the k processes that satisfy the specification). However, we have
f ≤ |B|G − i, and therefore f + 2r + k ≤ |B|G − i + 2r + k ≤ |B|G + r + k ≤
|B|G + |G|+ k.

5.2 Global Deadlock Detection

Let N = {q ∈ QB | q ∈ Enableq}, and let N ∗ be the maximal subset (wrt.
number of elements) of N such that ∀qi, qj ∈ N ∗ : qi /∈ Enableqj ∧ qj /∈ Enableqi .

Theorem 7. For disjunctive systems and process templates A,B, |B|G + |N ∗|
is a cutoff for global deadlock detection.

Proof Sketch. To construct a globally deadlocked run in the cutoff system, for
each state from N that appears in the deadlock, we copy the according local
run. To simulate the remaining part of x, we use the same construction as for
fair runs in the proof of Thm. 6, except that local states that appear in the
deadlock are considered to be visited infinitely often (and we don’t need the
fair extension of runs after reaching the state). Thus, the resulting run will be
globally deadlocked, and all transitions up to the deadlock will be enabled. The
number of local runs is bounded by |N |+ f + i, where i is the number of states
from |B|G that appear in the deadlock and are not in N , and f is the states from
|B|G that appear in the run, but not in the deadlock. Since f + i ≤ |B|G and
N ∗ is the maximal subset of N that can appear together in a global deadlock,
the number of needed local runs is bounded by |N ∗|+ |B|G.

Remark. To compute N ∗ exactly, we need to find the smallest set of states in
N that do not satisfy the additional condition. This amounts to finding the

18

minimum vertex cover (MVC) for the graph with vertices from N and edges
from qi to qj if qi ∈ Enableqj .

5.3 Local Deadlock Detection

Theorem 8. For disjunctive systems and process templates A,B:

– m + |G| + 1 is a cutoff for local deadlock detection in non-fair runs, where
m = maxq∈Q∗B{|Enableq|} for Q∗B = {q ∈ QB | |Enableq| < |B|},

– |B|G + |G| + 1 and 2|B|G + 1 are cutoffs for local deadlock detection in
unconditionally fair runs.

Proof Sketch. Based on what we have already shown, the fair case is simpler: we
copy the local runs of A and the deadlocked process, and for the other processes
use the same construction as in the fair case of Thm. 6. The local deadlock is
preserved since states that appear finitely often in the original run also appear
finitely often in the constructed run, and the cutoffs are 2|B|G + 1 and |B|G +
|G|+ 1.

For the non-fair case, we use a combination of the constructions for the fair
and non-fair case from Thm. 6: if in run x a process is locally deadlocked in
local state q, then for states in Enableq that appear in x we use the construction
for finitely appearing states in fair runs. For the remaining states, we use the
non-fair construction, i.e., we find one representative per guard and stay there
forever, except that representatives now can never be from Enableq. The con-
struction ensures that all transitions that are taken are enabled, and eventually
all transitions from q are disabled. Since m gives a bound on the number of
states that can be in Enableq, the cutoff we get is m+ |G|+ 1.

Table 2: Cutoff Results for Disjunctive Systems

EK [15] AJK [6] our work

k-indexed LTL\X non-fair |B|+ k + 1 |B|+ k + 1 |G|+ k + 1 and |B|G + k + 1

k-indexed LTL\X fair - 2|B|+ k − 1 |B|G + |G|+ k and 2|B|G + k

Local Deadlock non-fair - |B|+ 2 m + |G|+ 1, with m < |B|

Local Deadlock fair - 2|B| − 1 |B|G + |G|+ 1 and 2|B|G + 1

Global Deadlock - 2|B| − 1 |B|+ |N ∗| with |N ∗| < |B|

5.4 Systems with Conjunctions of Disjunctive Guards

We consider systems where a transition can be guarded by a set of sets of states,
interpreted as a conjunction of disjunctive guards. I.e., a guard {D1, . . . , Dn} is

19

satisfied in a given global state if for all i = 1, . . . , n, there exists another process
in a state from Di.

We observe that for this class of systems, most of the original proof ideas
still work. For results that depend on the number of guards, we have to count
the number of different conjuncts in guards.

Theorem 9. For systems with conjunctions of disjunctive guards, cutoff results
for disjunctive systems that do not depend on the number of guards still hold
(first and second column of results in Table 2, and cutoffs in the third column
that only refer to |B|G and constants).

Cutoff results that depend on the number of guards (last column of Table 2)
hold if we consider the number of conjuncts in guards instead. For results that
additionally refer to some measure of the sets of enabling states (m and |N ∗|,
respectively), we obtain a valid cutoff for systems with conjunctions of disjunctive
guards if we replace this measure by |B| − 1.

In particular, the existence of a cutoff implies that the respective PMCP and
parameterized deadlock detection problems are decidable.

Proof Ideas. The cutoff results that are independent of the number of guards
still hold since all of the original proof constructions still work. To simulate a run
x of a large system in a run y the cutoff system, one task is to make sure that
all necessary transitions are enabled in the cutoff system. The construction that
is used to do this works for conjunctions of disjunctive guards just as well. By
a similar argument, deadlocks are preserved in the same way as for disjunctive
systems.

For cutoffs that depend on the number of guards, transitions with conjuncti-
ons of disjunctive guards require us to use one representative for each conjunct
in a guard, in the construction explained in the proof of Theorem 6.

Finally, the reductions of the cutoff based on the analysis of states that can
or cannot appear together in a deadlock do not work in these extended systems,
and we have to replace m and |N ∗| by |B| − 1 in the cutoffs. The reason is that
Enableq is now not a set of states anymore, but a set of sets of states. A more
detailed analysis based on this observation may be possible, but is still open.

5.5 Simultaneous Reachability of Target States

An important class of properties for parameterized systems asks for the rea-
chability of a global state where all processes of type B are in a given local
state q (compare Delzanno et al. [13]). This can be written in indexed LTL\X
as F∀i.qi, but is not expressible in the fragment where index quantifiers have to
be in prenex form. We denote this class of specifications as Target. Similarly,
repeated reachability of q by all states simultaneously can be written GF∀i.qi,
and is also not expressible in prenex form. We denote this class of specifications
as Repeat-Target.

Theorem 10 (Disjunctive Target and Repeat-Target). For disjunctive
systems: |B| is a cutoff for checking Target and Repeat-Target.

20

In particular, the PMCP with respect to Target and Repeat-Target in
disjunctive systems is decidable.

Proof Ideas. We can simulate a run x in a large system where all processes are in
q at time m in the cutoff system by first moving one process into each state that
appears in x before m, in the same order as in x. To make all processes reach
q, we move them out of their respective states in the same order as they have
moved out of them in x. For this construction, we need at most |B| processes.

If in x the processes are repeatedly in q at the same time, then we can simulate
this also in the cutoff system: if m′ > m is a point in time where this happens
again, then we use the same construction as above, except that we consider all
states that are visited between m and m′, and we move to these states from q
instead from init. The correctness argument is the same, however.

Finally, if the run with Repeat-Target should be fair, then we do not select
any m′ with the property above, but we choose it such that all processes move
between m and m′. If the original run x is fair, then such an m′ must exist.

6 Conclusion

We have shown that better cutoffs for guarded protocols can be obtained by ana-
lyzing properties of the process templates, in particular the number and form of
transition guards. We have further shown that cutoff results for disjunctive sys-
tems can be extended to a new class of systems with conjunctions of disjunctive
guards, and to specifications Target and Repeat-Target, that have not been
considered for guarded protocols before.

For conjunctive systems, previous works have treated local deadlock detection
only for the restricted case of systems with 1-conjunctive guards. We have con-
sidered the general case, and have shown that it is very difficult — the cutoffs
grow independently of the number of guards, and at least quadratically in the
size of the process template. To circumvent this worst-case behavior, we have
identified a number of conditions under which a small cutoff can be obtained
even for systems that are not 1-conjunctive.

By providing cutoffs for several problems that were previously not known to
be decidable, we have in particular proved their decidability.

Our work is inspired by applications in parameterized synthesis [8,22], where
the goal is to automatically construct process templates such that a given speci-
fication is satisfied in systems with an arbitrary number of components. In this
setting, deadlock detection and expressive specifications are particularly impor-
tant, since all relevant properties of the system have to be specified.

Acknowledgements. We thank Ayrat Khalimov for fruitful discussions on guarded

protocols, Martin Zimmermann for suggestions regarding a draft of this work, and the

reviewers for insightful comments and suggestions. This work was supported by the

German Research Foundation (DFG) through project Automatic Synthesis of Distri-

buted and Parameterized Systems (JA 2357/2-1).

21

References

1. P. A. Abdulla, F. Haziza, and L. Hoĺık. All for the price of few. In VMCAI, volume
7737 of LNCS, pages 476–495. Springer, 2013. doi:10.1007/978-3-642-35873-9_
28.

2. B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking of
token-passing systems. In VMCAI, volume 8318 of LNCS, pages 262–281. Springer,
2014. doi:10.1007/978-3-642-54013-4_15.

3. B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model
checking of rendezvous systems. In CONCUR, volume 8704 of LNCS, pages 109–
124. Springer, 2014. doi:10.1007/978-3-662-44584-6_9.

4. Benjamin Aminof and Sasha Rubin. Model checking parameterised multi-token
systems via the composition method. In IJCAR, volume 9706 of LNCS, pages
499–515. Springer, 2016. doi:10.1007/978-3-319-40229-1_34.

5. Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cutoffs for guarded
protocols with fairness. CoRR, abs/1505.03273, 2015. Extended version with full
proofs. URL: http://arxiv.org/abs/1505.03273.

6. Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cutoffs for guarded
protocols with fairness. In VMCAI, volume 9583 of LNCS, pages 476–494. Springer,
2016. doi:10.1007/978-3-662-49122-5_23.

7. Christel Baier and Joost-Pieter Katoen. Principles of model checking, volume
26202649. MIT press Cambridge, 2008.

8. Roderick Bloem, Swen Jacobs, and Ayrat Khalimov. Parameterized synthesis case
study: AMBA AHB. In SYNT, volume 157 of EPTCS, pages 68–83, 2014. doi:

10.4204/EPTCS.157.9.

9. Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Hel-
mut Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2015.
doi:10.2200/S00658ED1V01Y201508DCT013.

10. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking.
In CAV, volume 1855 of LNCS, pages 403–418. Springer, 2000. doi:10.1007/

10722167_31.

11. E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network de-
composition. In CONCUR, volume 3170 of LNCS, pages 276–291. Springer, 2004.
doi:10.1007/978-3-540-28644-8_18.

12. E. M. Clarke, M. Talupur, and H. Veith. Proving ptolemy right: The environment
abstraction framework for model checking concurrent systems. In TACAS, volume
4963 of LNCS, pages 33–47. Springer, 2008. doi:10.1007/978-3-540-78800-3_4.

13. Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized ve-
rification of ad hoc networks. In CONCUR, volume 6269 of LNCS, pages 313–327.
Springer, 2010. doi:10.1007/978-3-642-15375-4_22.

14. E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program., 2(3):241–266, 1982. doi:10.

1016/0167-6423(83)90017-5.

15. E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few.
In CADE, volume 1831 of LNCS, pages 236–254. Springer, 2000. doi:10.1007/

10721959_19.

16. E. A. Emerson and V. Kahlon. Model checking guarded protocols. In LICS, pages
361–370. IEEE Computer Society, 2003. doi:10.1109/LICS.2003.1210076.

http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-642-54013-4_15
http://dx.doi.org/10.1007/978-3-662-44584-6_9
http://dx.doi.org/10.1007/978-3-319-40229-1_34
http://arxiv.org/abs/1505.03273
http://dx.doi.org/10.1007/978-3-662-49122-5_23
http://dx.doi.org/10.4204/EPTCS.157.9
http://dx.doi.org/10.4204/EPTCS.157.9
http://dx.doi.org/10.2200/S00658ED1V01Y201508DCT013
http://dx.doi.org/10.1007/10722167_31
http://dx.doi.org/10.1007/10722167_31
http://dx.doi.org/10.1007/978-3-540-28644-8_18
http://dx.doi.org/10.1007/978-3-540-78800-3_4
http://dx.doi.org/10.1007/978-3-642-15375-4_22
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1007/10721959_19
http://dx.doi.org/10.1007/10721959_19
http://dx.doi.org/10.1109/LICS.2003.1210076

22

17. E. A. Emerson and K. S. Namjoshi. On reasoning about rings. Foundations of
Computer Science, 14(4):527–549, 2003. doi:10.1142/S0129054103001881.

18. E. Allen Emerson and Kedar S. Namjoshi. Automatic verification of parameterized
synchronous systems (extended abstract). In CAV, volume 1102 of LNCS, pages
87–98. Springer, 1996. doi:10.1007/3-540-61474-5_60.

19. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.
In LICS, pages 352–359. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.
782630.

20. Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verifica-
tion (invited talk). In STACS, volume 25 of LIPIcs, pages 1–10. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.1.

21. S. M. German and A. P. Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992. doi:10.1145/146637.146681.

22. S. Jacobs and R. Bloem. Parameterized synthesis. Logical Methods in Computer
Science, 10:1–29, 2014. doi:10.2168/LMCS-10(1:12)2014.

23. A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameterized
concurrent programs. In CAV, volume 6174 of LNCS, pages 645–659. Springer,
2010. doi:10.1007/978-3-642-14295-6_55.

24. R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes.
Inf. and Comp., 117(1):1–11, 1995. doi:10.1006/inco.1995.1024.

25. I. Suzuki. Proving properties of a ring of finite state machines. Inf. Process. Lett.,
28(4):213–214, 1988. doi:10.1016/0020-0190(88)90211-6.

http://dx.doi.org/10.1142/S0129054103001881
http://dx.doi.org/10.1007/3-540-61474-5_60
http://dx.doi.org/10.1109/LICS.1999.782630
http://dx.doi.org/10.1109/LICS.1999.782630
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.1
http://dx.doi.org/10.1145/146637.146681
http://dx.doi.org/10.2168/LMCS-10(1:12)2014
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1006/inco.1995.1024
http://dx.doi.org/10.1016/0020-0190(88)90211-6

	Analyzing Guarded Protocols: Better Cutoffs, More Systems, More Expressivity

