
Generating Unit Tests with
Structured System Interactions

Nikolas Havrikov, Alessio Gambi, and Andreas Zeller
Saarland University

Germany
{havrikov, gambi, zeller}@cs.uni-saarland.de

Andrea Arcuri
Westerdals Oslo ACT, Norway, and

the University of Luxembourg
arcand@westerdals.no

Juan Pablo Galeotti
University of Buenos Aires,

Argentina
jgaleotti@dc.uba.ar

Abstract—There is a large body of work in the literature about
automatic unit tests generation, and many successful results have
been reported so far. However, current approaches target library
classes, but not full applications.

A major obstacle for testing full applications is that they
interact with the environment. For example, they establish con-
nections to remote servers. Thoroughly testing such applications
requires tests that completely control the interactions between
the application and its environment.

Recent techniques based on mocking enable the generation of
tests which include environment interactions; however, generating
the right type of interactions is still an open problem.

In this paper, we describe a novel approach which addresses
this problem by enhancing search-based testing with complex test
data generation. Experiments on an artificial system show that
the proposed approach can generate effective unit tests. Com-
pared with current techniques based on mocking, we generate
more robust unit tests which achieve higher coverage and are,
arguably, easier to read and understand.

I. INTRODUCTION

Throughout the years, many successful techniques and tools
to automatically generate unit tests for object-oriented systems
have been developed [1]. Unfortunately, it is insufficient
to just generate sequences of function calls on the class
under test (CUT) and its parameters to achieve thorough unit
testing. In fact, when a CUT interacts with the environment,
its behavior becomes dependent on exogenous factors. For
example, classes that open connections to remote servers might
behave differently depending on how the servers respond to
their requests.

When writing unit tests for such classes, developers have
the following options to deal with the environment: 1) interact
with the environment, for example by connecting to remote
servers; 2) stub out the environment resources, for example by
implementing a local test server; 3) isolate the unit tests from
the environment by encapsulating interactions with resources
in specific classes which mock their behavior [2].

Modern unit test generation tools like EVOSUITE [3] can
generate tests using any of these techniques [4]–[6]. While
this reduces the burden of writing tests for the developers, it
might introduce issues which limit the applicability of each
technique. In fact, in many cases, developers must manually
inspect all tests to ensure their correctness.

execute against
class under test

XSDs from classpath
generate tests

gather coverage

Feedback loop:
Generate,
Execute,
Evaluate tests

Use XmlMate
to inject valid XML
strings from schemas
on the classpath

XmlMate
Java

JUnit

JUnit

JUnit

nextXML()

initialize()

Figure 1. Overview of the integration of EVOSUITE and XMLMATE for
generating unit tests with realistic environmental test data

Interacting with the real environment makes the test unre-
liable as its results become dependent on factors that are not
under the control of the developers.

Mocking libraries allow to control every aspect of the
behavior of the mocked objects, but provide no guidance in
doing so; as a consequence, the test generation tools might
create executions that would be impossible to obtain in practice
like configuring a mocked object to return null despite the
real object preventing this. This leads to frequent generation of
unit tests resulting in false positives and false negatives alike.

The ability to mock the environment also introduces issues
because tools can stub environmental resources only randomly.
This means that when complex inputs, like XML messages,
are required by the classes under test, it is unlikely that the
test generation tools provide syntactically correct values.

There are tools like XMLMATE [7] that can effectively
generate samples of complex test data for well defined
grammars like XML Schema definitions (XSD).

In this paper, we explore the possibility of using such tools
to enhance automatic unit test generation. Specifically, we
integrate EVOSUITE, a modern unit tests generation tool, and
XMLMATE into a prototype that can generate string data
representing XML files with arbitrary content. For a non-trivial
artificial system, our prototype generated a set of unit tests that,
compared to competitive solutions, are more robust, achieve
higher coverage, and result in no false positives.

II. MOTIVATING EXAMPLE

We introduce the challenges of automatically generating unit
tests with realistic environmental data and the limitations of
current approaches with a motivating example.

1 @XmlRootElement
2 @XmlAccessorType(XmlAccessType.FIELD)
3 public class Dto {
4 @XmlElement(required = true)
5 private Boolean a;
6 @XmlElement(required = true)
7 private Boolean b;
8 /* getters and setters follow */
9 }

Figure 2. Source code of the Dto class

1 public class Retriever {
2

3 final String httpUrl = "http://www.
someExternalService.org/dto.xml";

4 final String schemaLocation = "/DtoSchema.xsd";
5

6 public Dto retrieveDto(){
7 return fromXML(getXmlContent());
8 }
9

10 private String getXmlContent() throws Exception{
11 /* return string read from httpUrl */
12 }
13

14 private Dto fromXML(String xml) throws Exception{
15 /* return xml unmarshalled according to

schema */
16 }
17 }

Figure 3. Source code of the Retriever class

Consider the Java classes described in Figures 2, 3, and 4.
These three classes implement a system which interacts with a
remote Web service and elaborate the values returned by it:

• Dto is a POJO (Plain Old Java Object) which encapsulates
the data transferred from the remote Web service to
the application and implements the data transfer object
pattern [8].

• Retriever handles the HTTP connections, contacts the
remote Web service, and reads back the data. Additionally,
this class converts the server data, i.e. the content of an
XML file, into complex Java objects which it then returns
to its caller. We must note that Retriever expects the
XML data to adhere to a specific XML Schema Definition
(XSD) defined by the remote Web service.

• Checker takes as input a boolean val and a reference
to a Retriever, uses the Retriever to read data from
the remote Web service, and computes a result based on
some properties of two variables: the boolean val, which
is passed as input, and a Dto instance, which is returned
by the Retriever.

From the point of view of unit testing, those three classes pose
quite different challenges which relate to accessing external
resources and dealing with dependencies.

Challenges in Class Dto

The class Dto is a simple POJO with a default constructor,
and setters and getters for all its fields. This makes it the easiest

1 public class Checker {
2

3 static boolean check(Boolean val, Retriever r) {
4 Dto dto = r.retrieveDto();
5 if(val && dto.getA() && ! dto.getB())
6 return true;
7 else
8 return false;
9 }

10 }

Figure 4. Source code of the Checker class

1 @Test(timeout = 4000)
2 public void test1() throws Throwable {
3 EvoSuiteURL evoSuiteURL0 = new EvoSuiteURL("http

://www.someExternalService.org/dto.xml");
4 NetworkHandling.createRemoteTextFile(

evoSuiteURL0, "J*&#efc!g*");
5 Retriever retriever0 = new Retriever();
6 Dto dto0 = retriever0.retrieveDto();
7 assertNull(dto0);
8 }

Figure 5. Testing Retriever with environmental mocking and random
test data.

class to test. Modern tools like EVOSUITE can easily generate
tests which cover all the code of Dto.

Challenges in Class Retriever

The class Retriever does not require any special initial-
ization and its sole public method retrieveDto() takes
no arguments. In theory, generating tests for Retriever

should not be problematic; in practice, however, this task is
challenging as the execution of retrieveDto() involves some
environment interactions which include:

• creating a TCP connection toward an external server;
• making an HTTP request;
• retrieving the corresponding HTTP response;
• elaborating its payload.

For this method, any automated test generation approach
must control the availability of the environmental resources.
Additionally, it must also control the data inside the payload
to avoid generating flaky tests.

In order to deal with environmental dependencies while
achieving high code coverage, EVOSUITE employs a technique
called Environment Mocking. This technique allows EVOSUITE
to intercept the interactions with the external resources and
override the values they return, such that unit tests are
isolated from the environment. This way during execution
the tests do not directly interact with any external resource,
which improves their robustness. For example, the execution
of getInputStream() in the class Retriever is mocked
by EVOSUITE, which replaces the byte stream with values
generated during EVOSUITE’s search.

Although EVOSUITE is effective in mocking external re-
sources and Web services, the problem of generating mean-
ingful output data remains. Take as example the test case
for the Retriever class in Figure 5. EvoSuite generated a
random string instead of a valid XML input. As a consequence,

1 @Test(timeout = 4000)
2 public void test4() throws Throwable {
3 Boolean boolean0 = Boolean.TRUE;
4 Dto dto0 = mock(Dto.class, new

ViolatedAssumptionAnswer());
5 doReturn((Boolean) null).when(dto0).getA();
6 Retriever retriever0 = mock(Retriever.class, new

ViolatedAssumptionAnswer());
7 doReturn(dto0).when(retriever0).retrieveDto();
8 try {
9 Checker.check(boolean0, retriever0);

10 fail("Expecting exception: NullPointerException
");

11 } catch(NullPointerException e) {
12 }
13 }

Figure 6. An example of a test for Checker which employs functional
mocking, but results in a false positive.

the class Retriever only is exercised when returning null
values, and the achieved code coverage is far from optimal.
To achieve higher coverage, the test generator should not only
generate a valid XML string, but an XML string which satisfies
the XSD of the connecting Web service.

Challenges in class Checker

The class Checker contains only a very simple predicate
(line 5); however, covering all of its branches depends on
Retriever getting a valid XML input from the remote Web
service, thereby returning non-null instances of Dto. In
other words, even if the class Checker does not directly access
the remote Web service, its unit tests require a suitable setup
of the environment.

Although the Checker class does not directly depend on
the environment, it has dependencies on the other two classes,
Retriever and Dto. A common practice to generate unit
tests for classes like Checker is to rely on mocking [2]
and programmatically define interesting behaviors for the
dependency classes.

EVOSUITE applies a technique called Functional Mocking1

to address those cases. This technique allows the test generator
to automatically synthesize mock objects that are fed to the
target class. Figure 6 presents a test case which relies on
functional mocking for exercising the target class Checker.

Although thanks to functional mocking EVOSUITE achieves
full code coverage of the class Checker, problems still remain.
For example, Figure 6 shows a test case that mocks an instance
of Dto that forces Checker to throw a null pointer exception
(NPE). However, after inspecting the class Retriever it
becomes clear that none of the instances of Dto which can
be created in practice would lead to a NPE. In fact, in the
case of null values the XSD validation step for Dto would fail
before reaching the point of execution that throws the NPE.
This results in false positives, i.e. test executions that would
be impossible in the original, non-mocked code.

In summary, by relying solely on environmental and func-
tional mocking, tools like EVOSUITE might not be able to test

1A term used to differentiate from environment mocking.

all the code of classes like Retriever that interact with the
environment, and they might not be able to generate effective
test suites for classes like Checker that depend on other classes
and have indirect environment interactions.

To overcome those problems and automatically generate
unit tests which achieve higher coverage, are stable, and result
in less false positives, we propose to integrate modern test
generation tools, like EVOSUITE, with state-of-art generators
of complex data, like XMLMATE.

III. INTEGRATING EVOSUITE AND XMLMATE

We enable the automatic generation of unit tests that require
realistic environmental data by extending EVOSUITE with the
ability to call the generator of structural data XMLMATE
during the search. We depict this approach in Figure 1.

Specifically, we extend the current implementation of EVO-
SUITE’s environmental mocking to query XMLMATE with
some configurable probability whenever the class under test
interacts with an external resource. As a response, XMLMATE
generates a random, yet syntactically valid XML string which
is used as test data.

From EVOSUITE’s perspective a string representing a valid
XML is similar to any other (random) string. As a consequence,
given the nature of EVOSUITE’s search to reuse data, XML
strings might end up in places where they are not expected,
for example inside the URL constructor, possibly causing ex-
ceptions, like java.net.MalformedURLException. Despite
this, we must note that tools like EVOSUITE are robust against
this type of behavior as, given enough time, they will eventually
rule out misplaced XML strings, thus generating meaningful
unit tests.

To generate valid XML content, XMLMATE needs an XML
Schema which specifies what type of XML must be created. In
fact, each XSD describes concrete XML formats by specifying
the elements (also known as tags) and their attributes that
are allowed to be part of the document. Additionally, XSD
supports a type system, which can assign not only primitive
types like boolean, string, or int, but also complex types,
which allow to compose multiple elements into larger trees by
means of concatenating or alternating child elements. When
given an element definition to instantiate, XMLMATE looks
up its type and recurses for any children until it reaches types
that can be instantiated and for which random values can be
generated in a conventional manner. Therefore, EVOSUITE
must first understand what XSD files are available and then
decide which one to use for each environmental interaction.

Java programs are commonly delivered as packages that
contain all the resources necessary for their execution. This
means that if XSD files belong to the program, they will
be located somewhere on its classpath. Therefore, we force
EVOSUITE to scan the program classpath for collecting the
available XSD files before starting the search.

During the search, EVOSUITE randomly selects which of the
available XSD files to use for creating XML content of different
types. As before, different XML content might be expected in
different parts of the code, hence this approach might result

in exceptions during the search. Once again, we rely on the
ability of the search to try out the various possibilities and
eventually find the correct schema to use for each injection
site.

As we show in the next section, this technique does not
impair the search and lets EVOSUITE generate effective unit
tests. Moreover, by employing this technique we can deal with
two counter-intuitive cases that are common with XSD files,
which improves the robustness of our solution. On one hand,
not all the XSD files correspond to concrete types, therefore,
such XSD files cannot be used to generate any valid XML
content. During the search, EVOSUITE must, and eventually
does, get rid of them. On the other hand, some XSD files
contain multiple top-level elements, hence, the same XSD files
can be used to generate XML content of different types. During
the search, EVOSUITE eventually figures out which type can
be used where.

IV. CASE STUDY

We conducted a preliminary evaluation by running our
extension of EVOSUITE with XMLMATE on the motivating
example with the aim of assessing how beneficial the proposed
approach is.

We compared our prototype (in which EVOSUITE uses
XMLMATE with a probability of 0.5) to the following
EVOSUITE configurations:

• Basic, in which EVOSUITE does not employ any of the
available techniques for mocking;

• Environmental Mock, in which EVOSUITE mocks the
interactions with the network and the file system;

• Functional Mock, in which EVOSUITE mocks objects with
a probability of 0.5.

Since the purpose of this evaluation is mostly illustrative, i.e.
we are not performing a thorough empirical analysis on the
subject, we conducted a limited number of repetitions (i.e. 5
repetitions) using a low budget (i.e. 30 seconds).

We report the averaged results of the experiments in Table I
where the labels D, R, and C, identify the results that the
various configurations of EvoSuite achieved for the classes Dto,
Retriever, and Checker respectively. We report the number
of tests generated (# Tests)2 as well as the code coverage
achieved by the generated test suite (Coverage).

By extending EVOSUITE with XMLMATE, we achieved
almost full coverage (above 95% on average) on all the classes
in the motivating example by means of a test suite of reasonable
size (ca. 16 tests in total). Compared to the other techniques,
we achieved the same code coverage on Dto, but higher code
coverage on classes Retriever and Checker. It is worth
noting that we did so with only a few additional tests.

V. CONCLUSIONS

In this paper, we have presented a novel technique that
enhances search-based unit test generation with the ability to
generate realistic environmental test data.

2EVOSUITE performs test suite minimization to remove redundant tests.

Table I
COMPARISON OF RESULTS ACHIEVED BY EVOSUITE IN DIFFERENT

CONFIGURATIONS

Configuration Coverage # Tests

D R C D R C

Basic 100% 39% 33% 6 1 3
Environment Mock 100% 88% 69% 6 2 4
Functional Mock 100% 39% 100% 6 1 6
XMLMATE 100% 94% 100% 6 3 7

The table reports the average results for the classes Dto (col. D),
Retriever (col. R), and Checker (col. C)

As a proof of concept, we extended the EVOSUITE unit
test generation tool to use XMLMATE and focused on the
generation of string data in XML format, which is a typical
case when systems interact with external Web Services.

Our experiments on an illustrative set of three artificial,
albeit non-trivial, classes show that our technique outperforms
the current state-of-the-art techniques in automatic unit test
generation. Not only higher code coverage is achieved, but also
no false-positive tests are created. Our prototype of EVOSUITE

and XMLMATE, the motivating example, and the instructions
for reproducing our preliminary study, are publicly available
for download at:

https://www.st.cs.uni-saarland.de/testing/ast2017/

ACKNOWLEDGMENTS.

This work was supported by the ERC Advanced Grant
SPECMATE, and by the National Research Fund, Luxembourg
(FNR/P10/03).

REFERENCES

[1] E. Daka and G. Fraser, “A Survey on Unit Testing Practices and Problems,”
in Proceedings of the 2014 IEEE 25th International Symposium on
Software Reliability Engineering, ser. ISSRE ’14, 2014, pp. 201–211.

[2] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, “Mock Roles, Not Ob-
jects,” in Proceedings of the International Conference on Object-oriented
Programming Systems, Languages, and Applications, ser. OOPSLA ’04,
2004, pp. 236–246.

[3] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions
on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[4] A. Arcuri, G. Fraser, and J. P. Galeotti, “Generating TCP/UDP network data
for automated unit test generation,” in 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 2015, pp.
155–165.

[5] ——, “Automated Unit Test Generation for Classes with Environment
Dependencies,” in IEEE/ACM Int. Conference on Automated Software
Engineering (ASE). New York, NY, USA: ACM, 2014, pp. 79–90.

[6] A. Arcuri, G. Fraser, and R. Just, “Private API Access and Functional
Mocking in Automated Unit Test Generation,” in Proceedings of the
International Conference on Software Testing, Verification and Validation,
ser. ICST ’17, 2017 to appear.

[7] N. Havrikov, M. Höschele, J. P. Galeotti, and A. Zeller, “XMLMate: Evolu-
tionary XML Test Generation,” in Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. ACM, 2014, pp. 719–722.

[8] M. Fowler, “The data transfert object pattern,”
https://martinfowler.com/eaaCatalog/dataTransferObject.html.

https://www.st.cs.uni-saarland.de/testing/ast2017/

