
Where Is the Bug and How Is It Fixed?
An Experiment with Practitioners∗

Marcel Böhme
National University of Singapore,

Singapore
marcel.boehme@acm.org

Ezekiel O. Soremekun
Saarland University, Germany
soremekun@cs.uni-saarland.de

Sudipta Chattopadhyay
Singapore University of Technology

and Design, Singapore
sudipta_chattopadhyay@sutd.edu.sg

Emamurho Ugherughe
SAP Berlin, Germany
emamurho@gmail.com

Andreas Zeller
Saarland University, Germany
zeller@cs.uni-saarland.de

ABSTRACT
Research has produced many approaches to automatically locate,
explain, and repair software bugs. But do these approaches relate
to the way practitioners actually locate, understand, and �x bugs?
To help answer this question, we have collected a dataset named
D��B����—the correct fault locations, bug diagnoses, and soft-
ware patches of 27 real errors in open-source C projects that were
consolidated from hundreds of debugging sessions of professional
software engineers. Moreover, we shed light on the entire debug-
ging process, from constructing a hypothesis to submitting a patch,
and how debugging time, di�culty, and strategies vary across prac-
titioners and types of errors. Most notably, D��B���� can serve as
reality check for novel automated debugging and repair techniques.

CCS CONCEPTS
• Software and its engineering → Software testing and debugging;

KEYWORDS
Debugging in practice, user as tool benchmark, evaluation, user study

ACM Reference Format:
Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where Is the Bug and How Is It Fixed?
An Experiment with Practitioners. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4-8, 2017 (ESEC/FSE’17), 12 pages.
https://doi.org/10.1145/3106237.3106255

1 INTRODUCTION
In the past decade, research has produced a multitude of automated
approaches for fault localization, debugging, and repair. Several
benchmarks have become available for the empirical evaluation of
such approaches. For instance, C�REB���� [7] and Defects4J [13]
∗All authors conducted this work while a�liated with Saarland University, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106255

contain a large number of real errors for C and Java, together with
developer-provided test suites and bug�xes. Using such bench-
marks, researchers can make empirical claims about the e�cacy of
their tools and techniques. For instance, an e�ective fault localiza-
tion technique would rank very high a statement that was changed
in the bug�x [49]. The assumption is that practitioners would iden-
tify the same statement as the fault. An e�ective auto-generated
bug�x would pass all test cases [27]. The assumption is that practi-
tioners would accept such �xes. Unfortunately, debugging is not
that simple, particularly not for humans. In this paper, we provide
another kind of benchmark; one that allows reality checks.

Given the complexity of the debugging process, one might as-
sume that it would be standard practice to evaluate novel techniques
by means of user studies [24]: Does the tool �t into the process?
Does it provide value? How? Yet, how humans actually debug is
still not really well explored. Between 1981 and 2010, Parnin and
Orso [31] identi�ed only a handful of articles that presented the
results of a user study—none of which involved actual practitioners
and real errors. Since the end of 2010, we could identify only three
(3) papers that evaluated new debugging approaches with actual
practitioners and real errors [8, 15, 41].

In this paper, we do not attempt to evaluate a speci�c approach.
Instead, we shed light on the entire debugging process. Speci�cally,
we investigate how debugging time, di�culty, and strategies vary
across practitioners and types of errors. For our benchmark, we
elicit which fault locations, explanations, and patches practition-
ers produce. We used 27 real bugs from C�REB���� [7] which
were systematically extracted from the 10,000 most recent commits
and the associated bug reports. We asked 12 software engineering
professionals from 6 countries to debug these software errors:
Participants received for each error
• a small but succinct bug report,
• the buggy source code and executable, and
• a test case that fails because of this error.

We asked participants
• to point out the buggy statements (fault localization),
• to explain how the error comes about (bug diagnosis), and
• to develop a patch (bug �xing).

We recorded for each error
• their con�dence in the correctness of their diagnosis / patch,
• the steps taken, the tools and strategies used, and
• the time taken and di�culty perceived in both tasks.

117

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Böhme, Soremekun, Cha�opadhyay, Ugherughe, and Zeller

(a) Bug Report and Test Case

Find “-mtime [+-n]” is broken (behaves as “-mtime n”)
Lets say we created 1 file each day in the last 3 days:
$ mkdir tmp
$ touch tmp/a -t $(date --date=�yesterday� +�%y%m%d%H%M�)
$ touch tmp/b -t $(date --date=�2 days ago� +�%y%m%d%H%M�)
$ touch tmp/c -t $(date --date=�3 days ago� +�%y%m%d%H%M�)

Running a search for files younger than 2 days, we expect
$./find tmp -mtime -2
tmp
tmp/a

However, with the current grep-version, I get
$./find tmp -mtime -2
tmp/b

Results are the same if I replace -n with +n, or just n.

(b) Bug diagnosis and Fault Locations

If find is set to print �les that are strictly
younger than n days (-mtime -n), it will
instead print �les that are exactly n days
old. The function get_comp_type actually
increments the argument pointer timearg
(parser.c:3175). So, when the function
is called the �rst time (parser.c:3109),
timearg still points to ’-’. However, when it
is called the second time (parser.c:3038),
timearg already points to ’n’ such that
it is incorrectly classi�ed as COMP_EQ
(parser.c:3178; exactly n days).

(c) Examples of (in-)correct Patches

Example Correct Patches
• Copy timearg and restore after �rst call

to get_comp_type.
• Pass a copy of timearg into �rst call of

get_comp_type.
• Pass a copy of timearg into call of

get_relative_timestamp.
• Decrement timearg after the �rst call to

get_comp_type.
Example an Incorrect Patch
• Restore timearg only if classi�ed as

COMP_LT (Incomplete Fix because it does
not solve the problem for -mtime +n).

Figure 1: An excerpt of D��B����. For the error find.66c536bb, we show (a) the bug report and test case that a participant
receives to reproduce the error, (b) the bug diagnosis that we consolidated from those provided by participants (including fault
locations), and (c) examples of ways how participants patched the error correctly or incorrectly.

We analyzed this data and

• derived for each error important fault locations and a diagnosis
• evaluated the correctness of each submitted patch, and
• provide new test cases that fail for incorrect patches.

Findings. To the best of our knowledge, we �nd the �rst evi-
dence that debugging can actually be automated and is no subjective
endeavour. In our experiment, di�erent practitioners provide es-
sentially the same fault locations and the same bug diagnosis for
the same error. If humans disagreed, how could a machine ever
produce the “correct” fault locations, or the “correct” bug diagnosis?
Moreover, we �nd that many of the participant-submitted patches
are actually incorrect: While 97% of all patches are plausible, i.e.,
pass the failing test case, only 63% are correct, i.e., pass our code
review. Taking human error out of the equation provides opportu-
nities for automated program repair [30]. We also �nd that three
in four incorrect patches introduce regression errors or do not �x
the error completely. This provides opportunities for automated re-
gression testing [5, 6]. We also �nd that practitioners are wary of
debugging automation. They might quickly adopt an auto-repair
tool for crashes but seem reluctant for functional bugs. Actual tools
might prove such beliefs unwarranted.

Benchmark. Since participants agree on essential bug features,
it is fair to treat their �ndings as ground truth. We have compiled
our study data for all 27 bugs into a benchmark named D��B����
[43], which is the second central contribution of this paper. An
excerpt of D��B���� for a speci�c bug is shown in Figure 1. D���
B���� can be used in cost-e�ective user studies to investigate how
debugging time, debugging di�culty, and patch correctness im-
prove with the novel debugging/repair aid. D��B���� can be used
to evaluate without a user study how well novel automated tools
perform against professional software developers in the tasks of
fault localization, debugging, and repair.

2 STUDY DESIGN
The study design discusses our recruitment strategy, the objects
and infrastructure, and the variables that we modi�ed and observed
in our experiment. The goal of the study design is to ensure that the
design is appropriate for the objectives of the study. We follow the
canonical design for controlled experiments in software engineering
with human participants as recommended by Ko et al. [17].

2.1 Research Questions
The main objective of the experiment is to construct a benchmark
that allows to evaluate automated fault localization, bug diagnosis,
and software repair techniques w.r.t. the judgment of actual pro-
fessional software developers. We also study the various aspects of
debugging in practice and opportunities to automate diagnosis and
repair guided by the following research questions.
RQ.1 Time and Di�culty. Given an error, how much time do

developers spend understanding and explaining the error, and
how much time patching it? How di�cult do they perceive
the tasks of bug diagnosis and patch generation?

RQ.2 Fault Locations and Patches. Which statements do devel-
opers localize as faulty? How are the fault locations dis-
tributed across the program? How many of the provided
patches are plausible? How many are correct?

RQ.3 Diagnosis Strategies. Which strategies do developers em-
ploy to understand the runtime actions leading to the error?

RQ.4 Repair Ingredients. What are the pertinent building blocks
of a correct repair? How complex are the provided patches?

RQ.5 Debugging Automation. Is there a consensus among de-
velopers during fault localization and diagnosis? Hence, can
debugging be automated? Do they believe that diagnosis or
repair for an error will ever be automated and why?

2.2 Objects and Infrastructure
The objects under study are 27 real software errors systematically
extracted from the bug reports and commit logs of two open-source
C projects (�nd & grep). The infrastructure is a lightweight Docker
container that can quickly be installed remotely on any host OS [44].
The errors, test cases, bug reports, source code, and the complete
Docker infrastructure is available for download [43].

The objects originate from a larger error benchmark calledC�RE�
B���� [7]. Errors were systematically extracted from the 10,000
most recent commits and the bug reports in four projects. Find and
grep are well-known, well-maintained, and widely-deployed open-
source C programs with a codebase of 17k and 19k LoC, respectively.
For each error, we provide a failing test case, a simpli�ed bug report,
and a large regression test suite (see Figure 1-a). We chose two
subjects out of the four available to limit the time a participant
spends in our study to a maximum of three working days and to
help participants to get accustomed to at most two code bases.

118

Where Is the Bug and How Is It Fixed? An Experiment with Practitioners ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Figure 2: Screenshot of the provided virtual environment.

To conduct the study remotely and in an unsupervised manner,
we developed a virtual environment based on Docker [43, 44]. The
virtual environment is a lightweight Docker image with an Ubuntu
14.2 Guest OS containing a folder for each buggy version of either
grep or �nd (27 in total). A script generates the participant ID for the
responses by a participant. This ensures anonymity and prevents
us from establishing the identity of any speci�c participant. At the
same time we can anonymously attribute a response for a di�erent
error to the same participant to measure, for instance, how code
familiarity increases over time. The same script does some folder
scrambling to randomize the order in which participants debug the
provided errors: The �rst error for one participant might be the last
error for another. The scrambling controls for learning e�ects. For
instance, if every participant would start with the same error, this
error might incorrectly be classi�ed as very di�cult. The docker
image contains the most common development and debugging tools
for C, including gdb, vim, and Eclipse. Participants were encouraged
to install their own tools and copy the created folders onto their
own machine. A screenshot is shown in Figure 2.

2.3 Pilot Studies: Researchers and Students
Ko et al. [17] note that the design of a study with human partici-
pants is necessarily an iterative process. Therefore, a critical step
in preparing an experiment is to run pilot studies. Hence, we �rst
evaluated our design and infrastructure in a sandbox pilot where we,
the researchers, were the participants. This allowed us to quickly
catch the most obvious of problems at no extra cost. Thereupon, we
sought to recruit several graduate students from Saarland Univer-
sity for the pilot study. We advertised the study in lectures, pasted
posters on public bulletin boards, and sent emails to potentially
interested students. From 10 interested students, we selected �ve
(5) that consider their own level of skill in the programming with C
as advanced or experts.1 We conducted the pilot study as supervised,
observational study in-house, in our computer lab. After �lling the
consent form and answering demographic questions, we introduced
the errors and infrastructure in a small hands-on tutorial that lasted
about 30 minutes. Then, the students had eight (8) hours, including
a one hour lunch break, to debug as many errors as they could. We
recorded the screen of each student using a screen capturing tool.

1Note that self-assessment of level of skill should always be taken with a grain of salt
(cf. Dunning-Kruger e�ect [20]).

Independent of the outcome, all participants received EUR 50 as
monetary compensation. While none of the data collected in the
pilot studies was used for the �nal results, the pilot studies helped
us to improve our study design in several ways:

1) No Students. For the main study, we would use only software
engineering professionals. In seven hours our student partici-
pants submitted only a sum total of �ve patches. On average, a
student �xed one (1) error in eight (8) hours (while in the main
study a professional �xed 27 errors in 21.5 hours). The feedback
from students was that they under-estimated the required e�ort
and over-estimated their own level of skill.

2) No Screen Capturing. The video of only a single participant
would take several Gigabyte of storage and it needs to be trans-
ferred online to a central storage. This was deemed not viable.

3) Good Infrastructure. The setup, infrastructure, and training
material was deemed appropriate.

2.4 Main Study: Software Professionals
We make available the training material, the virtual infrastructure,
the questionnaire that was provided for each error, the collected
data [43]. The experiment procedure speci�es the concrete steps a
participant follows from the beginning of the experiment to its end.

Recruitment. First, participants would need to be recruited. To
select our candidates, we designed an online questionnaire. The
questionnaire asks general questions about debugging in practice
after which developers have the option to sign up for the experi-
ment. We sent the link to more than 2,000 developers on Github
and posted the link to 20 software development usergroups at
Meetup.com, on six (6) freelancer platforms, including Freelancer,
Upwork, and Guru, and on social as well as professional networks,
such as Facebook and LinkedIn. The job postings on the freelancer
platforms were the most e�ective recruitment strategy. We started
three advertisement campaigns in Aug’15, Mar’16, and July’16 fol-
lowing which we had the highest response rate lasting for about
one month each. We received the �rst response in Aug’15 and the
most recent response more than one year later in Oct’16. In total,
we received 212 responses out of which 143 indicated an interest in
participating in the experiment.

Selection. We selected and invited 89 professional software
engineers based on their experience with C programming. However,
in the two years of recruitment only 12 participants actually entered
and completed the experiment. There are several reasons for the
high attrition rate. Interested candidates changed their mind in
the time until we sent out the invitation, when they understood
the extent of the experiments (2–3 working days), or when they
received the remote infrastructure and understood the di�culty of
the experiment (17k + 19k unfamiliar lines of code).

Demographics. The �nal participants were one researcher and
eleven professional software engineers from six countries (Russia,
India, Slovenia, Spain, Canada, and Ukraine). All professionals had
pro�les with Upwork and at least 90% success rate in previous jobs.

Training. Before starting with the study, we asked participants
to set up the Docker image and get familiar with the infrastruc-
ture. We made available 1 readme, 34 slides, and 10 tutorial videos
(⇠2.5 minutes each) that explain the goals of our study and provide
details about subjects, infrastructure, and experimental procedure.

119

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Böhme, Soremekun, Cha�opadhyay, Ugherughe, and Zeller

(1) How di�cult was it to understand the runtime actions leading to the error?
(Not at all di�cult, Slightly di�cult, Moderately di�cult, Very di�cult, Extremely di�cult)

(2) Which tools did you use to understand the runtime actions leading to the error?
[Textbox]

(3) How much time did you spend understanding the runtime actions leading to the error?
(1 minute or less, 2–5 minutes, 5–10 minutes, 10–20 minutes, . . . , 50–60 minutes, 60 minutes or more)

(4) Enter 3 to 5 code regions needed to explain the root cause of the error.
[Textbox 1], [Textbox 2], [Textbox 3], [Textbox 4], [Textbox 5]

(5) What is the root cause of the error? How does it come about?
[Textbox]

(6) How con�dent are you about the correctness of your explanation?
(Not at all con�dent, Slightly con�dent, Moderately con�dent, Very con�dent, Extremely con�dent)

(7) If you could not explain the error, what prevented you from doing so?
[Textbox]

(8) Which concrete steps did you take to understand the runtime actions?
[Textbox]

(9) Do you believe that the root cause of the error can be explained intuitively by the push of a button?
Yes, in principle a tool might be able to explain this error. No, there will never be a tool that can explain this error.

(10) Why do you (not) believe so?
[Textbox]

Figure 3: Questions on the fault locations and bug diagnosis

Participants could watch the slides and the tutorial videos at their
own pace. The training materials are available [43]. Moreover, we
informed them that they could contact us via Email in case of
problems. We provided technical support whenever needed.

Tasks. After getting familiar with the infrastructure and the
programs, participants chose a folder containing the �rst buggy
version to debug. This folder contains a link to the questionnaire
that they are supposed to �ll in relation with the current buggy
version. The text �eld containing the participant’s ID is set auto-
matically. The questionnaire contains the technical questions, is
made available [43], and is discussed in Section 2.5 in more details.
We asked each participant to spend approximately 45 minutes per
error in order to remain within a 20 hour time frame. From the pilot
study, we learned that incentive is important. So, we asked them to
�x at least 80% of the errors in one project (e.g., grep) before being
able to proceed to the next project (e.g., �nd).

Debrie�ng. After the experiment, participants were debriefed
and compensated. We explained how the data is used and why our
research is important. Participants would �ll a �nal questionnaire to
provide general feedback on experiment design and infrastructure.
For instance, participants point out that sometimes it was di�cult
to properly distinguish time spent on diagnosis from time spent on
�xing. Overall, the participants enjoyed the experiment and solving
many small challenges in a limited time.

Compensation. It is always di�cult to determine the appro-
priate amount for monetary compensation. Some guidelines [35]
recommend the average hourly rate for professionals, the rationale
being that professionals in that �eld cannot or will not participate
without pay for work-time lost. Assuming 20 working hours and an
hourly rate of USD 27, each participant received USD 540 in com-
pensation for their time and e�orts. The modalities were formally
handled via Upwork [45].

2.5 Variables and Measures
The main objective of this study is to collect the fault locations, bug
diagnoses, and software patches that each participant produced for
each error. To assess the reliability of their responses, we use a trian-
gulation question which asks for their con�dence in the correctness
of the produced artifacts. In addition to these artifacts, for each
error, we also measure the perceived di�culty of each debugging
task (i.e., bug diagnosis and bug �xing), the time spent with each

(12) How di�cult was it to �x the error?
(Not at all di�cult, Slightly di�cult, Moderately di�cult, Very di�cult, Extremely di�cult)

(13) How much time did you spend �xing the error?
(1 minute or less, 2–5 minutes, 5–10 minutes, 10–20 minutes, . . . , 50–60 minutes, 60 minutes or more)

(14) IMPORTANT: Copy & paste the generated patch here.
[Textbox]

(15) In a few words and on a high level, what did you change to �x for the error?
[Textbox]

(16) How con�dent are you about the correctness of your �x?
(Not at all con�dent, Slightly con�dent, Moderately con�dent, Very con�dent, Extremely con�dent)

(17) In a few words, how did you make sure this is a good �x?
[Textbox]

(18) If you could not �x the bug, what prevented you from doing so?
[Textbox]

(19) Do you believe that this error can be �xed reliably by the push of a button?
Yes, in principle a tool could �x this error reliably. No, there will never be a tool that can �x this error reliably.

(20) Why do you (not) believe so?
[Textbox]

Figure 4: Questions on generating the software patch

debugging task, and their opinion on whether bug diagnosis or re-
pair will ever be fully automated for the given error. The questions
that we ask for each error are shown in �gures 3 and 4.

To measure qualitative attributes, we utilize the 5-point Likert
scale [29]. A 5-point Likert scale allows to measure otherwise qual-
itative properties on a symmetric scale where each item takes a
value from 1 to 5 and the distance between each item is assumed to
be equal.2 For instance, for Question 12 in Figure 4, we can assign
the value 1 to Not at all di�cult up to the value 5 for Extremely
di�cult. An average di�culty of 4.7 would indicate that most re-
spondents feel that this particular error is very to extremely di�cult
to �x while only few think it was not at all di�cult.

We note that all data, including time, is self-reported rather than
recorded during observation. Participants �ll questionnaires and
provide the data on their own. This allowed us to conduct the study
fully remotely without supervision while they could work in their
every-day environment. Since freelancers are typically payed by the
hour, Upwork provides mechanisms to ensure that working time is
correctly reported. While self-reports might be subject to cognitive
bias, they also reduce observer-expectancy bias and experimenter
bias [12]. Perry et al. [33] conducted an observational study with 13
software developers in four software development departments and
found that the time diaries which were created by the developers
correspond su�ciently with the time diaries that were created by
observers. In other words, in the software development domain
self-reports correspond su�ciently with independent researcher
observations.

We checked the plausibility of the submitted patches by exe-
cuting the complete test suite and the previously failing test case.
We checked the correctness of the submitted patches using internal
code reviews. Two researchers spent about two days discussing and
reviewing the patches together. Moreover, we designate a patch as
incorrect only if we can provide a rationale.

Generally, every qualitative analysis was conducted by at least
one researcher and cross-checked by at least one other researcher.

3 STUDY RESULTS
Overall, 27 real errors in 2 open-source C programs were diagnosed
and patched by 12 participants who together spent 29 working days.

2However, the Likert-scale is robust to violations of the equal distance assumption:
Even with larger distortions of perceived distances between items (e.g., slightly vs.
moderately familiar), Likert performs close to where intervals are perceived equal [23].

120

Where Is the Bug and How Is It Fixed? An Experiment with Practitioners ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

Combined Bug Diagnosis Patching

Not at all difficult

Slightly difficult

Moderately difficult

Very difficult

Extremely difficult

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Debugging/Fixing Time (in min)

Type
● Crash

Functional

Infinite Loop

Resource Leak

Figure 5: Relationship between average time spent and di�culty perceived for patching and diagnosing a bug. Each point is
one of 27 bugs, the shape of which determines its bug type (i.e., crash, functional error, in�nite loop, or resource leak).

RQ.1 Time and Di�culty
Our data on debugging time and di�culty can be used in cost-
e�ective user-studies that set out to show how a novel debugging
aid improves the debugging process in practice.We also elicit causes
of di�culties during the manual debugging process.

Time and Di�culty. On average, participants rated an error as
moderately di�cult to explain (2.8) and slightly di�cult to patch
(2.3). On average, participants spent 32 and 16 minutes on diagnosing
and patching an error, respectively. There is a linear and positive
relationship between perceived di�culty and the time spent debugging.
As we can see in Figure 5, participants perceived four errors to be
very di�cult to diagnose. These are three functional errors and one
crash. Participants spent about 55 minutes diagnosing the error that
was most di�cult to diagnose. However, there are also nine errors
perceived to be slightly di�cult to diagnose with the main cluster
situated between 15 and 20 minutes of diagnosis time. Participants
perceived one (functional) error as very di�cult to patch and spent
about 40 minutes patching it. However, there are also two bugs
perceived to be not at all di�cult to patch and took about 5 minutes.

Why are some errors very di�cult? There are four errors
rated as very di�cult to diagnose. In many cases, missing documen-
tation for certain functions, �ags, or data structures were mentioned
as reasons for such di�culty. Other times, developers start out with
an incorrect hypothesis before moving on to the correct one. For in-
stance, the crash in grep.3c3bdace is caused by a corrupted heap, but
the crash location is very distant from the location where the heap
is corrupted. The crash and another functional error are caused by a
simple operator fault. Three of the four bugs which are very di�cult
to diagnose are actually �xed in a single line. For the only error that
is both very di�cult to diagnose and patch, the developer-provided
patch is actually very complex, involving 80 added and 30 deleted
lines of code. Only one participant provided a correct patch.

RQ.2 Fault Locations and Patches
Our data on those program locations which practitioners need to
explain how an error comes about (i.e., fault locations) can be used
for a more realistic evaluation of automated fault localization, and
motivates the development of techniques that point out multiple
pertinent fault locations. Our data on multiple patches for the same
error can be used to evaluate auto-repair techniques, and motivates
research in automated repair and its integration with automated
regression test generation to circumvent the considerable human
error.

●

●

●●

●

●

●

●
●

●●

●

●●

●

●
●

●●

●●

●

●

●

Regions per Error Statements per Error Statements per Region

2

4

6

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Lo
ca

tio
ns

Figure 6: Boxplots showing the number of contiguous re-
gions per bug diagnosis (left), the number of statements per
diagnosis (middle), and the number of statements per con-
tiguous region (right). For example, �le.c:12-16,20 speci�es
six statements in two contiguous regions.

Fault Locations. The middle 50% of consolidated bug diagnoses
references three to four contiguous code regions, many of which can
appear in di�erent functions or �les. In other words, practitioners often
reference multiple statements to explain an error. A contiguous code
region is a consecutive sequence of program statements. In most
cases, the regions for one error are localized in di�erent functions
and �les. As shown in Figure 6, the majority of contiguous regions
(below the median) contain only a single statement, the middle
50% contains between 1 and 3 statements. A typical bug diagnosis
references 10 statements.

Patches. While 282 out of 290 (97%) of the submitted patches are
plausible and pass the provided test case, only 182 patches (63%) are
actually correct and pass our code review.3 A correct patch does not
introduce new errors and does not allow to provide other test cases
that fail due to the same error. We determined correctness by code
review and plausibility by executing the failing test case. For each
incorrect patch, we also give a reason as to why it is incorrect and
whether the test case passes.

3Note that participants were asked to ensure the plausibility of their submitted patch
by passing the provided test case.

121

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Böhme, Soremekun, Cha�opadhyay, Ugherughe, and Zeller

●

Correctness

Plausibility

0% 25% 50% 75% 100%

Figure 7: Boxplots showing the proportional patch correct-
ness and plausibility. For instance, if the proportional patch
correctness for an error is 50%, then half of the patches sub-
mitted for this error are correct. The boxplot shows the pro-
portional plausibility and correctness over all 27 errors.

Figure 7 shows that the median proportional plausibility is 100%,
meaning that for the majority of errors (above the median), all
patches that participants submit pass the provided test case. Even
for the middle 50% of errors, more than 90% of patches are plausible.
However, the median proportional correctness is 69%, meaning that
for the majority of errors (above the median), only 69% of patches
submitted by participants pass our code review. For the middle 50%
of errors only between 45% and 82% of patches are actually correct.

0

20

40

60

Incomplete Fix Incorrect
Workaround

Regression Treating the
Symptom

C
ou

nt

Figure 8: Histogram showing reasons why 108 of patches
that were submitted by participants failed our code review.

Figure 8 shows that more than half of the incorrect patches (60
of 108) actually introduce regressions. A regression breaks existing
functionality; we could provide a test that fails but passed before.
22 patches do not �x the error completely. An incomplete �x does
not patch the error completely; we could provide a test that fails
with and without the patch because of the bug. 19 patches are
treating the symptom rather than �xing the error. A patch is treating
the symptom if it does not address the root cause. For instance, it
removes an assertion to stop it from failing. Seven (7) patches
apply an incorrect workaround than �xing the error. An incorrect
workaround changes an artifact that is not supposed to be changed,
like a third-party library.

RQ.3 Bug Diagnosis Strategies
For each error, we asked participants which concrete steps they
took to understand the runtime actions leading to the error. We
analyzed 476 di�erent responses for this question and we observed
the following bug diagnosis strategies.

Classi�cation. We extend the bug diagnosis strategies that have
been identi�ed by Romero and colleagues [14, 36]:
• (FR) Forward Reasoning. Programmers follow each computational step
in the execution of the failing test.
• (BR) Backward Reasoning. Programmers start from the unexpected
output following backwards to the origin.
• (CC) Code Comprehension. Programmers read the code to understand
it and build a mental representation.

• (IM) Input Manipulation. Programmers construct a similar test case
to compare the behavior and execution.
• (OA) O�ine analysis. Programmers analyze an error trace or a core-
dump (e.g. via valgrind, strace).
• (IT) Intuition. Developer uses her experience from a previous patch.

Speci�cally, we identi�ed the Input Manipulation (IM) bug diagno-
sis strategy. Developers would �rst modify the failing test case to
construct a passing one. This gives insight into the circumstances
required to observe the error. Next, they would compare the pro-
gram states in both executions. IM is reminiscent of classic work
on automated debugging [52], which might again re�ect the poten-
tial lack of knowledge about automated techniques that have been
available from the research community for over a decade.

 0

 20

 40

 60

 80

 100

 120

BR CC FR IM OA IT#t
im

es
 th

e
di

ag
no

si
s

st
ra

te
gy

 w
as

 u
se

d
Diagnosis strategy

Diagnosis strategies used w.r.t. a bug type

crash
resource leak

functional
infinite loop

Figure 9: Diagnosis strategies for di�erent error types.

Frequency. We discovered that forward reasoning and code com-
prehension (FR+CC) are the most commonly used diagnosis strategies
in our study. The number of usage of di�erent bug diagnosis strate-
gies is shown in Figure 9 for the di�erent error types. We observe
that past experience (IT) is used least frequently. Many participants
used input modi�cation (IM) as diagnosis strategy. Therefore, the
integration of automated techniques that implement IM (e.g. [52])
into mainstream debugger will help improve debugger productivity.

Error Type. We observe that forward reasoning (FR) is the most
commonly used diagnosis strategy for bugs re�ecting in�nite loops
(26 out of a total 45 responses). Intuitively, there is no last executed
statement which can be used to reason backwards from. Out of a
total 137 responses for crash-related bugs, we found that backward
reasoning (BR) was used 55 times. Intuitively, the crash location
is most often a good starting point to understand how the crash
came about. For functional errors, 112 responses, out of a total
270 responses, re�ect forward reasoning (FR). If the symptom is
an unexpected output, the actual fault location can be very far
from print statement responsible for the unexpected output. It may
be better to start stepping from a location where the state is not
infected, yet. Finally, we observed that input modi�cation (IM)
strategy was used for 31 out of 270 scenarios to diagnose functional
errors. This was to understand what distinguishes the failing from
a passing execution.

Tools. Every participant used a combination of trace-based and
interactive debugging. For resource leaks, participants further used
tools such as valgrind and strace. We also observed that partic-
ipants use bug diagnosis techniques that have been automated
previously [52], albeit with manual e�ort, to narrow down the
pertinent sequence of events.

122

Where Is the Bug and How Is It Fixed? An Experiment with Practitioners ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

RQ.4 Repair Ingredients
Out of 290 submitted patches, 100 (34%) exclusively a�ect the control-
�ow, 87 (30%) exclusively a�ect the data-�ow, while the remaining
103 patches (36%) a�ect both, control- and data-�ow.

Control-Flow. In automated repair research, the patching of
control-�ow is considered tractable because of the signi�cantly
reduced search space [50]: Either a set of statements is executed or
not. The frequency with which participants �x the control-�owmay
provide some insight about the e�ectiveness of such an approach for
the errors provided with D��B����. The control-�ow is modi�ed
by 200 patches (69%). Speci�cally, a branch condition is changed by
126 patches and the loop or function �ow is modi�ed by 38 patches.4
A new if-branch is added by 86 patches whereupon, in many cases,
an existing statement is then moved into the new branch or a new
function call is added.5

Data-Flow. The data-�ow is modi�ed by 187 of 290 submitted
patches (64%). Speci�cally, 57 patches modify a variable value or
function parameter. G��P��� [27] copies, moves, or deletes exist-
ing program statements, e�ectively relying on the Plastic Surgery
Hypothesis (PSH) [3]. In our study, the PSH seems to hold. 44
patches move existing statements while 29 patches delete existing
statements. However, 73 patches add new variable assignments
while 40 patches add new function calls, for instance to report an
error or to release resources. A completely new variable is declared
in 27 patches. Only 8 patches introduce complex functions that
need to be synthesized.

Patch Complexity. On average, a submitted patch contained
six (6) Changed Lines of Code (CLoC). The median patch contained
3 CLoC. The mean being to the far right of the median points to
a skewed distribution. Indeed, there are many not very complex
patches but there are a few that require more than 50 CLoC.

RQ.5 Debugging Automation
We investigate whether there is consensus among the developers
during fault localization, diagnosis and �xing. Suppose, there is not.
Then, how should there ever be consensus onwhether an automated
debugging technique has produced the correct fault locations, the
correct bug diagnosis, or the correct patch for an error? We also
examine if participants believe that the diagnosis and repair of these
bugs can be fully automated and the reasons for their beliefs.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

0%

25%

50%

75%

100%

Location 1 Location 2 Location 3

● find

grep

Figure 10: Proportional agreement onTop-3most suspicious
fault locations showing box plots with jitter overlay (each
shape is one of 27 errors).

4Examples of changing the loop or function �ow are adding a return, exit, continue,
or goto statement.
5Note that one patch can modify several statements!

Consensus on Fault Locations. For most errors (above the me-
dian), more than 75% of participants independently localize the same
location as pertinent to explain the error (Location 1). For each error,
we count the proportion of participants independently reporting a
fault location. Sorted by proportion, we get the top-most, 2nd-most,
and 3rd-most suspicious locations (Location 1–3). For the middle
50% of errors, between half and two third of participants indepen-
dently report the same 2nd-most suspicious location while between
one third and half of participants still independently report the
same 3rd-most suspicious location. However, note that a participant
might mention less or more than three locations. The consensus
of professional software developers on the fault locations suggests
that every bug in D��B���� is correctly localized by at least two
(2) speci�c statements. These locations can serve as ground truth
for the evaluation of automated fault localization tools.

Consensus on Bug Diagnosis. 10 of 12 participants (85%) give
essentially the same diagnosis for an error, on average. In other words,
there can be consensus on whether an automated technique has pro-
duced a correct bug diagnosis. These participants are very con�dent
(3.7 on the Likert scale) about the correctness of their diagnosis.
On the other hand, participants who provide a diagnosis that is
di�erent from the consensus are only slightly con�dent (2.4) about
the correctness of their diagnosis. The ability to generate a con-
solidated, concise bug diagnosis that agrees with the majority of
diagnoses as provided by professional software engineers shows
that understanding and explaining an error is no subjective en-
deavor. The consolidated bug diagnoses in D��B���� can serve as
the ground truth for information that is relevant to practitioners.

Consensus on Bug Fix. For 18 of 27 bugs (67%), there is at
least one other correct �x that conceptually di�ers from the original
developer-provided patch. In other words, often, there are several
ways to patch an error correctly, syntactically and semantically. It
might seem obvious that a correct patch can syntactically di�er
from the patch that is provided by the developer. However, we also
found correct patches that conceptually di�er from the original
patch that was provided by the original developer. For each bug
in D��B����, there are 1.9 conceptually di�erent correct �xes on
average. Five (5) bugs (19%) have at least two other conceptually
di�erent but correct �xes. For instance, to patch a null pointer ref-
erence, one participant might initialize the memory while another
might add a null pointer check. To patch an access out-of-bounds,
one participant might double the memory that is allocated initially
while others might reallocate memory only as needed. For the error
in grep.9c45c193 (Fig. 1), some participants remove a negation to
change the outcome of a branch while others set a �ag to change
the behavior of the function which in�uences the outcome of the
branch.

Automation of Bug Diagnosis. Most professional software de-
velopers do not believe that the diagnosis of the errors in D��B����
can be fully automated. The boxplot in Figure 11 provides more
details. For the middle 50% of errors, one to two third of participants
believe that bug diagnosis can be automated. However, this varies
with bug type. For instance, for 5 of 7 crashes, more than three quar-
ter of participants believe that the crash can be explained intuitively.
Functional bugs seem much more involved and intricate such that
for the median functional bug only one third of participants believe
that it will ever be explained intuitively by a machine.

123

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Böhme, Soremekun, Cha�opadhyay, Ugherughe, and Zeller

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

Overall Resource Leak Crash Infinite Loop Functional

Be
lie

ve
 in

 A
ut

om
at

io
n

(P
ro

po
rti

on
) Subject

● find

grep

Figure 11: Distribution over all errors (of a certain type) of
the proportion of participants who believe that a certain er-
ror may ever be explained intuitively by a machine. Each
shape in the jitter plot overlay represents one error.

Automation of Program Repair. For the median bug in D���
B����, only a quarter of participants believes that it can be �xed
reliably by a machine (cf. Figure 12). Again this di�ers by bug type.
While half the participants would still think that 4 of 7 crashes can
be �xed reliably by a machine, functional bugs are believed to be
most di�cult to be �xed automatically. The single resource leak
appears to be most easy to �x reliably.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Overall Resource Leak Crash Infinite Loop Functional

Be
lie

ve
 in

 A
ut

om
at

io
n

(P
ro

po
rti

on
) Subject

● find

grep

Figure 12: Distribution over all errors (of a certain type) of
the proportion of participants who believe that a certain er-
ror may ever be �xed reliably by a machine. Each shape in
the jitter plot overlay represents one error.

Points in Favor ofAutomation. Participants believe in automa-
tion of bug diagnosis and repair primarily due to the following reasons:
(i) sophisticated static or dynamic analysis, (ii) the possibility to check
contracts at runtime and (iii) the possibility to cross check with a
passing execution. For instance, for the resource leak, where most
participants agree that an automated diagnosis and patch is achiev-
able, they re�ect on the possibilities of dynamic or static analysis to
track the lifetime of resources and to discover the right location in
the code to release the resources. For the seven crashes, many par-
ticipants believe in automation via systematic analysis that tracks
changes in variable values and explains the crash through these
changes. Intuitively, this captures the mechanism employed in dy-
namic slicing. Besides, participants think of the possibility of having
contracts (e.g. a range of expected variable values) in the source
code and checking their satis�ability during a buggy execution to
explain the error. For functional bugs, the most common rationale in
favor of automation was due to the possibility to compare a buggy
execution with a passing execution.

Points Against Automation. The majority of participants did
not believe in automation due to the lack of a complete speci�cation
and due to the di�culty in code comprehension. For functional bugs,
most participants think that an automated tool cannot explain such
bugs intuitively. This is because such tools are unaware of correct
behaviours of the respective program. Similarly, for automated
program repair, participants think that it is impossible for a tool
to change or add any functionality to a buggy program. Moreover,
even in the presence of a complete speci�cation, participants do
not believe in automated repair due to the challenges involved in
code comprehension (e.g. the meaning of a variable or statement
in the code). Finally, the di�culty to analyze side-e�ects of a �x is
also mentioned as a hindrance for automated bug repair.

4 A BENCHMARK FOR DEBUGGING TOOLS
As our study participants agree on so many points, one can actually
treat their joint diagnosis and other bug features as ground truth:
For each bug, the joint diagnosis and �x is what a debugging tool
should aim to support and produce. To support realistic evaluation
of automated debugging and repair approaches, we have compiled
a benchmark named D��B����, which encompasses the totality
of our data. Using the example in Figure 1, we illustrate how D���
B���� (and thus the results of our study) can be used to evaluate
fault localization and automated repair tools.

4.1 Evaluating Automated Fault Localization
Statistical fault localization techniques produce a list of statements
ranked according to their suspiciousness score. We used Ochiai [1]
to compute the suspiciousness score for the statements in the moti-
vating example (Figure 13). In order to evaluate the e�ectiveness of
a fault localization (FL) technique, researchers �rst need to identify
the statements which are actually faulty and determine the rank of
the highest ranked faulty statement (a.k.a. wasted e�ort [49]).

Ordinal Rank (1) (2) (3) (4) (5) (6)
Line in parser.c 3055 3057 3058 3061 3062 3067

Ochiai Score 0.98 0.98 0.98 0.98 0.98 0.98
Ordinal Rank (7) (8) (9) (10) (11) (12)

Line in parser.c 3094 3100 3103 3107 3109 3112
Ochiai Score 0.98 0.98 0.98 0.98 0.98 0.98

Figure 13: Top-12most suspicious statements in �le parser.c.
There are 26 statements with the same suspiciousness (0.98),
including parser.c:3109 mentioned by our participants.

Using D��B����, researchers can use the actual fault locations
that practitioners point out. For instance, in Figure 1-b, the highest
ranked faulty statement in D��B���� is parser.c:3109. As it turns
out, this statement is also within the set of most suspicious state-
ments with an Ochiai-score of 0.98. Thus, D��B���� provides a
useful artifact to validate the e�ectiveness of FL techniques.

Without D��B����, the “faulty” statements are typically identi-
�ed as those statements which were changed in the original patch
to �x error [7, 13, 49]. However, this assumption may not always
hold [42]. Figure 14 shows the original patch for our example. No
statement was changed in the buggy version. The original patch
merely introduced new statements. In fact, only 200 of 290 patches
(69%) submitted by our participants modify at least one statement
that is referenced in the consolidated bug diagnosis.

124

Where Is the Bug and How Is It Fixed? An Experiment with Practitioners ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

static boolean get_relative_timestamp (const char *str, ...)
3038 if (get_comp_type(&str, ...))
...
static boolean parse_time (...)
3099 const char *timearg = argv[*arg_ptr];
3100 + const char *orig_timearg = timearg;
...
3109 if(get_comp_type(&timearg, &comp))
... ...
3126 + timearg = orig_timearg;
3127 if (!get_relative_timestamp(timearg, ...))
3128 return false;

Figure 14: Original developer-patch for bug in Figure 1.

4.2 Evaluating Automated Program Repair
Automated Program Repair (APR) techniques automatically gener-
ate a patch for a buggy program such that all test cases pass. We ran
R������ [40] to generate the following patch for our motivating ex-
ample. The generated patch directly uses the original value assigned
to timearg before calling get_comp_type the second time. This
is in contrast to the developer-provided patch in Figure 14 which
copies timearg and restores it after the �rst call to get_comp_type.
Is the auto-generated patch correct?

static boolean parse_time (...)
3127 - if (!get_relative_timestamp(timearg, ...))
3127 + if (!get_relative_timestamp(argv[*arg_ptr], ...))
3128 return false;

Using D��B����, we can evaluate the correctness of the auto-
generated patch. First, for many participant-provided patches we
provide new test cases that fail for an incorrect patch even if the
original test cases all pass. For instance, we constructed a new test
case for the incorrect-patch-example in Figure 1-c, where the actual
output of ./find -mtime +n is compared to the expected output.
Executing it on R������’s auto-generated patch above, we would
see it passes. We can say that the auto-generated patch does not
make the same mistake. While we can still not fully ascertain the
correctness of the patch, we can at least be con�dent the auto-repair
tool does not make the same mistakes as our participants.

However, to establish patch correctnesswithmuchmore certainty
and to understand whether practitioners would actually accept an
auto-generated patch, we suggest to conduct a user study. Within
such a user study, D��B���� can signi�cantly reduce the time and
e�ort involved in the manual code review since the available bug
diagnosis, simpli�ed and extended regression test cases, the bug
report, the bug diagnosis, fault locations, and developer-provided
patches are easily available. For instance, while R������’s auto-
generated patch conceptually di�ers from the original in Figure 14,
it is easy to determine from the provided material that the auto-
generated patch is in fact correct.

D��B���� includes time taken by professional software engi-
neers to �x real-world software bugs. We can use these timing
information to evaluate the usefulness of an automated program
repair tool. To this end, we can design an experiment involving sev-
eral software professionals and measure the reduction in debugging
time while using an automated program repair tool.

4.3 D��B���� Artifact
D��B���� was given the highest badge by the ESEC/FSE Artifact
Evaluation Committee. D��B���� is the �rst human-generated
benchmark for the qualitative evaluation of automated fault local-
ization, bug diagnosis, and repair techniques.
Objectives. The objectives of the D��B���� artifact are two-fold:

(1) To facilitate the sound replication of our study for other re-
searchers, participants, subjects, and languages, we publish our
battle-tested, formal experiment procedure, and e�ective strate-
gies to mitigate the common pitfalls of such user studies. To
the same e�ect, we publish tutorial material (videos and slides),
virtual infrastructure (Docker), and example questionnaires
which elicit the studied debugging artefacts.

(2) To facilitate the e�ective evaluation of automated fault local-
ization, diagnosis, and repair techniques w.r.t. the judgement
of human experts, we publish all collected data. This includes
the fault locations, bug diagnoses, and patches that were pro-
vided by the practitioners. For each error, it also includes the
error-introducing commit, the original and a simpli�ed bug
report, a test case failing because of the error, and the developer-
provided patch. Moreover, this artefact contains our reconciled
bug diagnoses, our classi�cation of the patches as correct and
incorrect together with the general �xing strategies, and which
rationale we have to classify a patch as incorrect.

Provided data. Speci�cally, we make the following data available:

• The benchmark summary containing the complete list of errors,
their average debugging time, di�culty, and patch correctness,
human-generated explanations of the runtime actions leading
to the error, and examples of correct and incorrect �xes, sorted
according to average debugging time.
• The complete raw data containing the responses to the questions
in Figure 3 and Figure 4 for each debugging session:
– the error ID to identify error,
– the participant ID to identify participant,
– the timestamp to follow participants accross errors,
– fault Locations, bug diagnosis, and patches,
– the con�dence in the correctness of their diagnosis or patch,
– the di�culty to diagnose or patch the error,
– the time taken to diagnose or patch the error,
– what would have helped reducing diagnosis or patch time,
– the steps taken to arrive at the diagnosis or patch,
– the tools used to arrive at the diagnosis or patch,
– the problems if they could not diagnose or patch the error,
– whether he/she believes that generating the diagnosis or
patch for this error would ever be automated,

– why he/she believes so,
– the code familiarity as it increases over time,
– the diagnosis techniques used, and
– how he/she ensured the correctness of the submitted patch,

• The complete cleaned data containing for each error:
– the regression-introducing commit,
– the simpli�ed and original bug reports,
– the important fault locations,
– the reconciled bug diagnosis,
– the original, developer-provided patch,

125

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Böhme, Soremekun, Cha�opadhyay, Ugherughe, and Zeller

– the patches submitted by participants,
– our classi�cation of patches as correct or incorrect,
– our rationale of classifying a patch as incorrect, and
– test cases that expose an incorrect patch.

• An example questionnaire to elicit the raw data above.
• The Docker virtual infrastructure and instructions how to use.
• The tutorial material, incl. slides, videos, and readme �les.

4.4 Disclaimer
D��B���� is a �rst milestone towards the realistic evaluation of
tools in software engineering that is grounded in practice. D���
B���� can thus be used as necessary reality check for in-depth
studies. When conducting user studies,D��B���� can signi�cantly
reduce the time and cost that is inherent in large user studies involv-
ing professional software engineers. In the absence of user studies,
D��B���� allows in-depth evaluations while minimizing the num-
ber of potentially unrealistic assumptions. For example, we found
a high consensus among participants on the location of the faults.
They would often point out several contiguous code regions rather
than a single statement. We also found no overlap of fault locations
with �x locations. Existing error-benchmarks might assume that
an arti�cially injected fault (i.e., a single mutated statement) or
�x locations (i.e., those statements changed in the original patch)
are representative of realistic fault locations. D��B���� dispenses
with such assumptions and directly provides those fault locations
that practitioners would point out with high consensus. D��B����
allows the realistic evaluation of automated debugging techniques
that is grounded in practice.

However, we would strongly suggest to also utilize other bench-
marks, such as C�REB���� [7] or Defects4J [13], for the empirical
evaluation. Only an empirical evaluation, the use of a su�ciently
large representative set of subjects, allows to make empirical claims
about the e�cacy of an automated debugging technique. Going
forward, we hope that more researchers will produce similar realis-
tic benchmarks which take the practitioner into account. To this
end, we also publish our battle-tested, formal experiment procedure,
e�ective strategies to mitigate common pitfalls, and all our material.
We believe that no single research team can realistically produce a
benchmark that is both representative and re�ects the realities of
debugging in practice. Hence, we propose that similar benchmarks
be constructed alongside with user studies. Software engineering
research, including debugging research, must serve the needs of
users and developers. User studies are essential to properly evaluate
techniques that are supposed to automate tasks that are otherwise
manual and executed by a software professional. Constructing new
benchmarks as artifacts during user studies would allow to build
an empirical body of knowledge and at the same time minimize the
cost and e�ort involved in user studies.

5 LIMITATIONS
Generalizability of Findings. For the results of our experiment
we do not claim generalizability of the �ndings. We decided on two
subjects to limit the time a participant spends in our study to a
maximum of three working days and to help participants to get
accustomed to at most two code bases. We chose 27 reproducible
real errors in single-threaded open-source C projects where bug

reports and test cases are available. Our �ndings may not apply to
(irreproducible) faults in very large, distributed, multi-threaded or
interactive programs, to short-lived errors that do not reach the
code repository, to errors in programs written in other languages,
or to errors in programs developed within a software company. We
see D��B���� as an intermediate goal for the community rather
than the �nal benchmark.

Hence, we encourage fellow researchers to extend and conduct
similar experiments in order to build an empirical body of knowl-
edge and to establish the means of evaluating automated debugging
techniques more faithfully, without having to resort to unrealistic
assumptions [32] during the evaluation of an automated technique.
To facilitate replication, the questionnaires, the virtual infrastruc-
ture, and the tutorial material are made available [43]. While we do
not claim generality, we do claim that D��B���� is the �rst dataset
for the evaluation of automated diagnosis and repair techniques
with respect to the judgment of twelve expert developers. In the
future, D��B���� may serve as subject for in-depth experiments.

In empirical research, in-depth experiments may mistakenly be
taken to provide little insight for the academic community. How-
ever, there is evidence to the contrary. Beveridge observed that
“more discoveries have arisen from intense observation than from
statistics applied to large groups” [21]. This does not mean that re-
search focusing on large samples is not important. On the contrary,
both types of research are essential [16].

Cognitive Bias. Results may su�er from cognitive bias since
participants �ll a questionnaire for each errors, such that all re-
sponses are self-reported [2, 9, 20]. However, Perry et al. [33] found
that self-reports produced by the developers, in their case, often cor-
responded su�ciently with observations independently recorded
by a researcher. As standard mitigation of cognitive bias,

(1) we avoid leading questions and control for learning e�ects,
(2) we reinforce con�dentiality for more truthful responses,
(3) we use triangulation [37] by checking the consistency of replies

to separate questions studying the same subject,
(4) we mostly utilize open-ended questions that provide enough

space for participants to expand on their replies
(5) and otherwise utilize standard measures of qualitative attributes,

such as the Likert scale [29].

While our experiment was fairly long-running, we also suggest
to replicate our study at a di�erent point in time with di�erent
participants to check whether the responses are consistent.

Observer-Expectancy Bias. To control for expectancy bias
where participants might behave di�erently during observation, we
conducted the study remotely in a virtual environment with mini-
mal intrusion. Participants were encouraged to use their own tools.
We also stressed that there was no “right and wrong behavior”.

Imposed Time Bound. We suggested the participants to com-
plete an error in 45 minutes so as to remain within a 20 hours time
frame. Some errors would take much more time. So, given more
time, the participants might form a better understanding of the
runtime actions leading to the error and produce a larger percent-
age of correct patches. However, participants told us that they felt
comfortable to diagnose and patch each error within the stipulated
time-bound. They tended to stretch the bounds whenever necessary,
taking time from errors that were quickly diagnosed and patched.

126

Where Is the Bug and How Is It Fixed? An Experiment with Practitioners ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

6 RELATEDWORK
In 1997, Liebermann introduced the CACM special section on ���
��������� ������� ��� ���� �� �� ����� �� with the words
“Debugging is still as it was 30 years ago, largely a matter of trial
and error” [28]. Recently, Beller et al. [4] conducted a substantial
mixed methods study involving 600+ developers and found that
developers do not use the interactive debugger as often as expected
since trace-based debugging (i.e., printf debugging) remains a viable
choice. Furthermore, both the knowledge and the use of advanced
debugging features are low.

In 2015, Perscheid et al. [34] set out to determine whether the
state-of-the-practice had since improved and could only answer in
the negative: Debugging remains what it was 50 years ago, largely
manual, time-consuming, and a matter of trial-and-error rather
than automated, e�cient, and systematic. We believe that, at least
in part, the debugging scandal is brought about by the absence
of user studies and the assumptions that researchers had to make
when evaluating the output of a machine without involving the
human. Only recently, several studies have uncovered that many
of these assumptions are not based upon empirical foundations
[7, 32, 39, 42, 53]. In this work, we attempt to remedy this very
problem.

While several researchers investigated debugging strategies that
developers generally employ in practice, it remains unclear whether
developers who independently debug the same error essentially
localize the same faulty statements, provide the same explanation
(i.e., diagnosis) and generate the same patch. Perscheid et al. [34]
visited four companies in Germany and conducted think-aloud ex-
periments with a total of eight developers during their normal work.
While none was formally trained in debugging, all participants used
a simpli�ed, implicit form of Scienti�c Debugging [51]: They men-
tally formulated hypotheses and performed simple experiments to
verify them. Katz and Anderson [14] classify bug diagnosis strate-
gies broadly into forward reasoning where the programmer forms
an understanding of what the code should do compared to what
it actually does, and backward reasoning where the programmer
reasons backwards starting from the location where the bug is
observed (e.g., [47]). Romero et al. [36] explore the impact of graph-
ical literacy on the choice of strategy. Lawrance et al. [25] model
debugging as a predator following scent to �nd prey. The authors
argue that a theory of navigation holds more practical value for
tool builders than theories that rely on mental constructs. Gilmore
et al. [11] studied di�erent models of debugging and their assump-
tions. The authors argue that the success of experts at debugging
is not attributed to better debugging skills, but to better compre-
hension. Our evaluation of the impact of “Code Comprehension"
in this paper further validates these �ndings.

Several colleagues have investigated debugging as a human ac-
tivity. Ko et al. [19] observed how 10 developers understand and de-
bug unfamiliar code. The authors found that developers interleaved
three activities while debugging, namely, code search, dependency
analysis and relevant information gathering. Layman et al. [26]
investigated how developers use information and tools to debug, by
interviewing 15 professional software engineers at Microsoft. The
authors found that the interaction of hypothesis instrumentation
and software environment is a source of di�culty when debugging.

Parnin and Orso [31] also conducted an empirical study to investi-
gate how developers use and bene�t from automated debugging
tools. The authors found that several assumptions made by auto-
mated debugging techniques do not hold in practice. While these
papers provide insights on debugging as a human activity, none
of these studies provides the data and methods that would allow
researchers to evaluate debugging tools against fault locations, bug
diagnosis, and patches provided by actual software engineering
professionals.

Many researchers have proposed numerous tools to support de-
velopers when debugging, but only a few have evaluated these tools
with user studies, using real bugs and professional developers. For
instance, between 1981 and 2010, Parnin and Orso [31] identi�ed
only a handful of articles [10, 18, 22, 38, 46, 48] that presented the
results of a user study: Unlike this paper, none of these studies
involved actual practitioners and real errors. In our own literature
survey,6 studying whether the state-of-the-research has since im-
proved, we could identify only three (3) papers that conduct user
studies with actual practitioners and real errors in the last �ve years.
Two articles employed user studies to evaluate the acceptability of
the auto-generated patches [8, 15] while one had practitioners to
evaluate the e�ectiveness of an auto-generated bug diagnosis [41].7
We believe that this general absence of user studies is symptomatic
of the di�culty, expense, and time spent conducting user studies.
This is the problem we address with D��B����.

7 CONCLUSION
Given how much time practitioners spend on debugging, it still is
a scandal how little we know about debugging. Yet, knowing how
humans do debug is an important prerequisite for suggesting how
they could debug. With our study, we hope to have shed some light
into this under-researched area; with our D��B���� benchmark,
we hope to contribute some ground truth to guide the development
and evaluation of future debugging tools towards the needs and
strategies of professional developers. The D��B���� benchmark
as well as all other study data is available at our project site

https://dbgbench.github.io

ACKNOWLEDGMENTS
We thank the anonymous reviewers in the PC and AEC for their
helpful and constructive comments. Next, we thank Shin Hwei Tan
for her help with R������, as well as Sebastian Proksch for his help-
ful feedback on experiment design. Finally, we greatly appreciate
the generous �nancial support from Saarland University. This work
was partially supported by SUTD research grant number SRIS17123.

6We surveyed the following conference proceedings: ACM International Conference
on Software Engineering (ICSE’11–16), ACM SIGSOFT Foundations of Software Engi-
neering (FSE’11–16), ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA’11–16), IEEE/ACM International Conference on Automated Software
Engineering (ASE’11–16), and International Conference on Software Testing, Veri�ca-
tion and Validation (ICST’11–16) and identi�ed 82 papers on automated debugging
or software repair only 11 of which conducted user studies. From these only three (3)
involved software engineering professionals and real errors.
7Tao et al. [41] measured debugging time and the percentage of correct repairs provided
by the participants, after they had received an auto-generated patch as bug diagnosis

127

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Böhme, Soremekun, Cha�opadhyay, Ugherughe, and Zeller

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund. 2006. An Evaluation of Similarity

Coe�cients for Software Fault Localization. In Proceedings of the 12th Paci�c Rim
International Symposium on Dependable Computing (PRDC’06). 39–46.

[2] Elizabeth J. Austin, Ian J. Deary, Gavin J. Gibson, Murray J. McGregor, and
J.Barry Dent. 1998. Individual response spread in self-report scales: personality
correlations and consequences. Personality and Individual Di�erences 24, 3 (1998),
421 – 438.

[3] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica
Sarro. 2014. The Plastic Surgery Hypothesis. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2014). 306–317.

[4] Moritz Beller, Niels Spruit, and Andy Zaidman. 2017. How developers debug.
PeerJ Preprints 5 (2017), e2743v1.

[5] Marcel Böhme, Bruno C. d. S. Oliveira, and Abhik Roychoudhury. 2013. Partition-
based Regression Veri�cation. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE ’13). 302–311.

[6] Marcel Böhme, BrunoC. d. S. Oliveira, andAbhik Roychoudhury. 2013. Regression
Tests to Expose Change Interaction Errors. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2013). 334–344.

[7] Marcel Böhme andAbhik Roychoudhury. 2014. CoREBench: Studying Complexity
of Regression Errors. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis (ISSTA 2014). 105–115.

[8] Wensheng Dou, Shing-Chi Cheung, and Jun Wei. 2014. Is Spreadsheet Ambigu-
ity Harmful? Detecting and Repairing Spreadsheet Smells Due to Ambiguous
Computation. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014). 848–858.

[9] Xitao Fan, Brent C. Miller, Kyung-Eun Park, Bryan W. Winward, Mathew Chris-
tensen, Harold D. Grotevant, and Robert H. Tai. 2006. An Exploratory Study
about Inaccuracy and Invalidity in Adolescent Self-Report Surveys. Field Methods
18, 3 (2006), 223–244.

[10] Margaret Ann Francel and Spencer Rugaber. 2001. The value of slicing while
debugging. Science of Computer Programming 40, 2-3 (2001), 151–169.

[11] David J Gilmore. 1991. Models of debugging. Acta psychologica 78, 1 (1991),
151–172.

[12] Jerald Greenberg and Robert Folger. 1988. Experimenter Bias. Springer New York,
121–138.

[13] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). 437–440.

[14] Irvin R. Katz and John R. Anderson. 1987. Debugging: An Analysis of Bug-
location Strategies. International Journal of HumanâĂŞComputer Interaction 3, 4
(Dec. 1987), 351–399.

[15] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-written Patches. In Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13). 802–811.

[16] Barbara A. Kitchenham and Shari L. P�eeger. 2008. Personal Opinion Surveys.
Springer London, London, 63–92.

[17] Andrew J. Ko, Thomas D. Latoza, and Margaret M. Burnett. 2015. A Practical
Guide to Controlled Experiments of Software Engineering Tools with Human
Participants. Empirical Software Engineering 20, 1 (Feb. 2015), 110–141.

[18] Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging
Interface for Asking Questions About Program Behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’04). 151–158.

[19] Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. 2006. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on software engineering
32, 12 (2006).

[20] Justin Kruger and David Dunning. 1999. Unskilled and Unaware of It: How
Di�culties in Recognizing One’s Own Incompetence Lead to In�ated Self-
Assessments. Journal of Personality and Social Psychology 77, 6 (1999), 1121–1134.

[21] Adam Kuper and Jessica Kuper. 1985. The Social Science Encyclopedia. Routledge.
[22] Shinji Kusumoto, Akira Nishimatsu, Keisuke Nishie, and Katsuro Inoue. 2002.

Experimental evaluation of program slicing for fault localization. Empirical
Software Engineering 7, 1 (2002), 49–76.

[23] Sanford Labovitz. 1967. Some observations on measurement and statistics. Social
Forces 46, 2 (1967), 151–160.

[24] Thomas D. LaToza and Brad A. Myers. 2011. Designing Useful Tools for Develop-
ers. In Proceedings of the 3rd ACM SIGPLANWorkshop on Evaluation and Usability
of Programming Languages and Tools (PLATEAU ’11). 45–50.

[25] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D. Fleming.
2013. How Programmers Debug, Revisited: An Information Foraging Theory
Perspective. IEEE Transactions on Software Engineering 39, 2 (Feb 2013), 197–215.

[26] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert
DeLine, and Gina Venolia. 2013. Debugging revisited: Toward understanding the
debugging needs of contemporary software developers. In Empirical Software

Engineering and Measurement, 2013 ACM/IEEE International Symposium on. IEEE,
383–392.

[27] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (Jan. 2012), 54–72.

[28] Henry Lieberman. 1997. The Debugging Scandal and What to Do About It
(Introduction to the Special Section). Commun. ACM 40, 4 (1997), 26–29.

[29] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

[30] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (ICSE ’16). 691–701.

[31] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques ac-
tually helping programmers?. In Proceedings of the 20th International Symposium
on Software Testing and Analysis (ISSTA). 199–209.

[32] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating & improving fault
localization techniques. In Proceedings of the 39th International Conference on
Software Engineering (ICSE 2017).

[33] Dewayne E. Perry, Nancy Staudenmayer, and Lawrence G. Votta. 1994. People,
Organizations, and Process Improvement. IEEE Software 11, 4 (July 1994), 36–45.

[34] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
2016. Studying the advancement in debugging practice of professional software
developers. Software Quality Journal (2016), 1–28.

[35] Research Ethics Policy and Advisory Committee, University of Toronto. 2017.
Guidelines for Compensation and Reimbursement of Research Participants.
(2017).

[36] Pablo Romero, Benedict du Boulay, Richard Cox, Rudi Lutz, and Sallyann Bryant.
2007. Debugging strategies and tactics in a multi-representation software envi-
ronment. International Journal of Human-Computer Studies 65, 12 (2007), 992 –
1009.

[37] Paulette Rothbauer. 2008. Triangulation. The SAGE Encyclopedia of Qualitative
Research Methods, 892–894.

[38] Jonathan Sillito, Kris De Voider, Brian Fisher, and Gail Murphy. 2005. Managing
software change tasks: An exploratory study. In Empirical Software Engineering,
2005. 2005 International Symposium on. IEEE, 10–pp.

[39] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the Validity
and Value of Empirical Assessments of the Accuracy of Coverage-based Fault
Locators. In Proceedings of the 2013 International Symposium on Software Testing
and Analysis (ISSTA 2013). 314–324.

[40] Shin Hwei Tan and Abhik Roychoudhury. 2015. Reli�x: Automated Repair
of Software Regressions. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1 (ICSE ’15). 471–482.

[41] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically Gen-
erated Patches As Debugging Aids: A Human Study. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). 64–74.

[42] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the useful-
ness of IR-based fault localization techniques. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis. ACM, 1–11.

[43] Website. 2017. DBGBench: From Practitioners for Researchers. https://dbgbench.
github.io. (2017). Accessed: 2017-06-30.

[44] Website. 2017. Docker Infrastructure – Homepage. http://docker.com/. (2017).
Accessed: 2017-06-30.

[45] Website. 2017. Upwork - Hire Freelancers and Post Programming Jobs. https:
//www.upwork.com/. (2017). Accessed: 2017-06-30.

[46] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE ’81). 439–449.

[47] Mark Weiser. 1982. Programmers Use Slices when Debugging. Commun. ACM
25, 7 (July 1982), 446–452.

[48] Mark Weiser and Jim Lyle. 1986. Experiments on slicing-based debugging aids.
In Papers presented at the �rst workshop on empirical studies of programmers on
Empirical studies of programmers. Ablex Publishing Corp., 187–197.

[49] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (Aug. 2016), 707–740.

[50] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. Lamelas Marcote, T. Durieux,
D. Le Berre, and M. Monperrus. 2016. Nopol: Automatic Repair of Conditional
Statement Bugs in Java Programs. IEEE Transactions on Software Engineering PP,
99 (2016), 1–1.

[51] Andreas Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[52] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.

[53] Hao Zhong and Zhendong Su. 2015. An Empirical Study on Real Bug Fixes. In
Proceedings of the 37th International Conference on Software Engineering (ICSE’15).
913–923.

128

