
Local Analysis for Global Inputs
Alexander Kampmann

Saarland University
Saarbrücken, Germany

kampmann@st.cs.uni-saarland.de

Abstract—Fuzz testing and symbolic test generation both face
their own challenges. While symbolic testing has scalability issues,
fuzzing cannot uncover faults which require carefully engineered
inputs. In this paper I propose a combination of both approaches,
compensating weaknesses of each approach with the strength of
the other approach.

I present my plans for evaluation, which include applications
of the hybrid tool to programs which neither of the approaches
can handle on its own.

I. INTRODUCTION

Most software developers see testing as boring and tedious.
This motivates attempts to automate test generation. There are
two opposing strategies for automated bug finding:

1) The main idea in fuzzing is to use randomized inputs (e.g.
[1], [2]). One would expect that the input validation of the
program under test filters most of those, but surprisingly
fuzzers can e.g. trigger the Heartbleed-Bug[3]. The reason
is that fuzzing tries many different inputs really quickly,
thereby rapidly exploring the program under test.
Whether fuzzing discovers a bug or not depends on
the probability of generating an input which triggers
the bug. If only a few specific inputs in a large input
space do, it will likely remain undiscovered. For most
programs, fuzzing is already unlikely to generate a valid
input. Therefore, fuzzing mostly uncovers problems in
the validation logic.

2) Another approach to automated testing is symbolic
execution. This technique selects a program path and
generates a path constraint, a logical formula which
describe conditions on the input that need to be fulfilled
in order to execute this program path. A constraint solver
can solve the constraint, and thereby generate an input
which executes precisely the selected program path.
However, large programs or large inputs structures lead
to huge constraints, so the constraint solver needs a long
time to solve them. Thus symbolic execution requires
much more computational resources than fuzzing.

While fuzzing is fast and lacks precision, symbolic analysis
is precise and lacks speed. In this proposal, I present the
Basilisk-Framework, a hybrid approach, which combines the
precision of symbolic techniques with the rapid exploration
capabilities of fuzzers. The basic idea is to use system-level
fuzzing to explore the program input space rapidly and unit-
level symbolic execution to gain precision. This technique
will be faster than symbolic test generation, because symbolic
analysis is applied to parts of the system, rather than the whole

1. Fuzzer

5.
Validation

2. Carving 3. Symbolic
Analysis

4. Lifting

System
Test

Unit
 Test

Improved
Unit Test

System
Test

System
Test

Figure 1. Overview of the Basilisk-Framework

system. At the same time, the Basilisk-Framework is more
precise than fuzzing, because it leverages symbolic analysis
for hard-to-reach parts of the system.

An overview of the proposed framework can be found in
Figure 1. The Basilisk-Framework generates system tests in
five steps:

1) Fuzzing. First, large numbers of randomized system tests
are generated. For example, the string {"M7NR":0}
may be generated.

2) Carving. If a substring of the random input, say M7NR,
occurs as a function argument in the program execution,
I generate a unit test which invokes the observed function
with the observed arguments. This technique is known
as carving [4].

3) Symbolic Analysis. The unit tests will be analyzed with
symbolic techniques, which yields more unit-level inputs.
With respect to the running example, suppose the input
testitem covers a new branch.

4) Lifting. The unit-level inputs will be lifted back up to
the system level, which generates new system tests.
In the running example, lifting generates the input
{"testitem":0}.

5) Validation. The system tests will be executed to check
whether they show the same behavior as their unit-level
counterparts. If so, they become part of the generated
test suite. New tests may again be subject to carving.

My hypothesis is that in this framework, fuzzing and
symbolic execution cancel out each other’s weaknesses. My
research questions are designed to validate this hypothesis:

1) Does a hybrid approach outperform symbolic execution?
2) Does a hybrid approach outperform fuzzing?
Right now, automated unit-level test generation is useless.

The reason is that the tests most of the time contain unit-level
interactions which lead to misbehavior in the unit, but will

never occur in the context of the whole system. This is called
a false positive. However, unit-level test generation is faster
than system-level test generation. I believe that my lifting and
validation techniques can be integrated with any unit-level test
generator in order to mitigate false positives. This opens the
possibility to make unit-level test generation useful. Thereby
research questions 3 and 4 are:

3) Can unit-level test generation be improved with lifting
and validation?

4) Does unit-level fuzzing with lifting and validation out-
perform system-level fuzzing?

Also, existing research implies that there are programs where
fuzzing or symbolic execution respectively are effective. This
triggers another research question.

5) What properties of a program make fuzzing, symbolic
execution or a hybrid approach effective (or ineffective)?

II. RELATED WORK

In automated software testing, fuzzing and symbolic testing
usually are perceived as two opposite approaches.

Symbolic testing analyzes the software under test and
generates test cases which are carefully designed to cover
specific test goals. Usually, those test goals are obtained from
structural coverage criteria like branch coverage (e.g. [5]).
Empirical studies (e.g. [6]) suggest that those criteria might
not be sufficient.

Symbolic tools fall into two categories1.
• Tools for symbolic execution, such as [5], execute the

program symbolically, that is, all values are symbolic. In
case of a branch, the tool decides which branch it wants
to take and generates the constraint for it.

• In dynamic symbolic execution (e.g. [7], [8]) concrete
and symbolic execution happen in parallel. In case of a
branch, the concrete execution decides which branch to
take, and the symbolic engine collects the constraint for
this concrete path only.

While those approaches require instrumentation of the
program under test, Fuzz testing[1] works with no or very
limited knowledge of the program under test.

However, the distinction between black-box and white-box
approaches is not that clear any longer. Feedback-driven fuzz
testing tools like AFL [2] are based on search algorithms.
They use program telemetry data to guide the search process.
Still, they are much more randomized than the aforementioned
white-box approaches. Some researchers refer to this kind of
lightweight instrumentation as grey-box.

Grammar-based fuzzers like Peach [9], LangFuzz [10] or
XMLMate [11] use a description of the input format, a grammar,
to generate valid inputs only. This enables them to reach deeper
layers of the program under test, however, a grammar needs
to be written manually. In a personal conversation, one of
the authors of LangFuzz reported that writing a grammar for
JavaScript took more time than developing the fuzzer itself.

1And different researchers name the categories differently. There is even a
paper([7]) which describes a symbolic technique with the term ”fuzzing”.

Höschele et al. [12] present how to use program telemetry
to obtain input specifications. They utilize tainting in order
to capture the data flow of programs and build context-free
grammars from the data flow. This means the tedious process
of manually writing a grammar can be automated.

There is some work on hybrid approaches as well. Pǎsǎreanu
et al. [13] presents a framework which combines system-
level concrete executions with unit-level symbolic executions.
However, they select values for the system-level executions via
model-based simulations, which requires a pre-existing model.

Adding more and more program analysis to fuzzing comes
with a price. Namely, the runtime of analysis is usually higher
than that of program executions. Böhme et al. [14] analyze
the probability of reaching a coverage goal and observe that if
too much time is spent on collecting and analyzing telemetry
data from test runs, it may not pay off, because randomized
approaches may by chance reach the same goal faster.

In the evaluation of automated testers, known bugs in old
versions of software may be used. There are several collections
of programs with known bugs. Böhme et al. [15] created the
COREBENCH suite, a collection of 70 realistic regression errors
from GNU COREUTILS. Another collection is presented by
Do et al. [16]. In the absence of real bugs, artificial bugs can
be seeded. This technique is known as mutation testing [17].

III. THE ENVISIONED FRAMEWORK

My envisioned framework works in five steps:
1) Fuzzing generates large numbers of randomized system

tests.
2) Carving generates unit tests from the system tests, in a

similar fashion to the technique by Elbaum et al. [4].
3) Symbolic Analysis analyzes the unit tests and yields more

unit-level inputs.
4) Lifting translates the unit tests to system tests which

trigger similar behavior.
5) Validation executes the system tests in order to eliminate

false positives.
In the following, each step will be discussed in the context

of an example.

A. Motivating example

I am using the program in Figure 2 as an example. It utilizes
a JSON parser for input validation. JSON represents data in a
recursive structure of key-value pairs.

The program first reads in a file (Line 2) and forwards it to
the parser (Line 3). Afterwards, the function process checks
whether the string testitem is used as a key within the
input (Line 8). If so, lines 14 and 15 simulated a programming
mistake.

Despite being highly artificial, this example demonstrates
the limitations of both approaches. I executed a symbolic tool,
KLEE [5], with a timeout of ten minutes on the example. It
generated 52153 inputs, but none of them contained the string
testitem.

In a second experiment, I wrote a simple Python script which
randomly generates valid JSON documents. Those reached the

1 int main(int argc, char **argv) {
2 char *text = readEntireFile(argv[1]);
3 cJSON *json = cJSON_Parse(text);
4 return process(json);
5 }
6
7 int process(cJSON *json) {
8 cJSON *out = cJSON_GetObjectItem(
9 json, "testitem");

10 if(NULL == out) {
11 fprintf(stderr, "Invalid input!");
12 return 1;
13 } else {
14 char *test = NULL;
15 test[0] = ’c’;
16 }
17 cJSON_Delete(json);
18 return 0;
19 }

Figure 2. Example code for JSON processing

{"M7NR": "UyXFx",
"6T": 0.302331771192897,
"0XQ": {"Z2qmQqSmys": []},
"8wcwBs": 0.17965215716521588}

Figure 3. Randomly generated JSON input.

process function, but none of them triggered the bug. The
probability of generating testitem as a random string is too
small.

B. Fuzzing

The first step in my proposed framework is fuzzing. For the
example, I used randomly generated JSON documents like the
one in Figure 3.

In my dissertation, I will not get involved with developing
fuzzing tools, but rely on pre-existing tools like Peach or
XMLMate.

C. Carving

The proposed framework executes the generated test inputs
and collects information on branch coverage. Table I shows
the coverage data for the five least covered methods. One

Function branch coverage
cJSON Delete 0

parse hex4 0
parse string 0.217

cJSON strcasecmp 0.3333
main 0.3333

Table I
COVERAGE PER METHOD FOR RANDOMLY GENERATED INPUTS.

1 void snippet() {
2 cJSON_strcasecmp("M7NR", "testitem");
3 }

Figure 4. The code snippet that was carved from the system test in Figure 3.

{"testitem": "UyXFx",
"6T": 0.302331771192897,
"0XQ": {"Z2qmQqSmys": []},
"8wcwBs": 0.17965215716521588}

Figure 5. Improved JSON input.

of them is cJSON_strcasecmp. This method is called by
cJSON_GetObjectItem (line 8) to compare the existing
keys with the search key.

I can observe several calls to cJSON_strcasecmp, includ-
ing an invocation with M7NR and testitem as parameters.
Test carving [4] uses this invocation to generate the code snippet
in Figure 4. This method is small and can easily be analyzed
with symbolic execution.

For the example, I am using KLEE as a symbolic execution
tool. M7NR was part of the original input, so the Basilisk-
Framework instructs KLEE to find a replacement which covers
more branches. KLEE is not allowed to change the second input,
testitem, because it was not part of the JSON document.
KLEE reports that the string testitem covers more branches
within cJSON_strcasecmp than M7NR. Thereby, a unit test
which calls cJSON_strcasecmp with testitem as first
and second argument is generated.

Simple string comparisons may not always be precise enough
to generate a meaningful mapping from inputs to function
arguments. In this case, dynamic tainting may offer more
precision, however, it also comes with greater runtime costs.

D. Lifting

In the last step, the framework lifts the analysis results
from the unit tests back to the system level. In the example, I
can replace M7NR with testitem in the system level input
(Figure 3). This generates the input in Figure 5 which triggers
the bug.

Grammar inference tools like AUTOGRAM automatically
generate a context-free grammar of the input format. Most
likely, a constituent of the grammar is handled as one piece
by the program under test. If this holds true, the constraints
that symbolic execution generates in the carving step deal
with those input parts as a unit. In this case, the constraint
can be translated into a representation which reasons about
the constituents of the grammar, rather than individual input
characters. Then, the grammar can be augmented with this
constraint and fuzzers can generate inputs which fulfill the
constraint. In this setup, the Basilisk-Framework uses symbolic
execution to get a complicated condition right, and it uses the
fuzzer again to explore the parts of the program which were
not reachable without fulfilling this constraint.

E. Validation

The system test may fail to trigger the interactions that were
observed in the unit test. That is because the program path
of the original system test and the newly generated system
test may diverge before the unit under analysis is reached. In
the example, this would happen if the string replacement in

the previous step yields an invalid JSON document. In this
case, the unit test is a false positive. The system test will be
discarded.

IV. EXPECTED CONTRIBUTIONS

In my dissertation, I am planning to evaluate hybrid
approaches in automated test generation. I will answer the
following questions:

1) Does a hybrid approach outperform symbolic execution?
2) Does a hybrid approach outperform fuzzing?
3) Can unit-level test generation be improved with lifting

and validation?
4) Does unit-level fuzzing with lifting and validation out-

perform system-level fuzzing?
5) What properties of a program make fuzzing, symbolic

execution or a hybrid approach effective (or ineffective)?
Also, my implementation will be available as a basis for

future experiments.

V. EVALUATION

RQs 1, 2, 3 and 4 deal with the effectiveness of hybrid
approaches. In order to evaluate those, runs of hybrid tools on
different test subjects are needed. Interesting factors are the
selection of test subjects as well as the criteria to collect.

Section II already discussed different criteria, including
structural criteria, mutation scores and bug finding capabilities
on software with known bugs. COREBENCH contains only
bugs from GNU COREUTILS. Those can be handled by KLEE.
I will use them for comparison to KLEE, but as my approach is
supposed to be more powerful, I do need additional challenges.
The collection by Do et al. contains several programs which
do not read rich input data (e.g. tcas), are not written in C
(e.g. ant) or are part of the GNU COREUTILS as well (e.g.
grep). So they may not be suitable either. I do not intend to
compile my own collection of known bugs, so I will work with
mutation scores and structural coverage criteria.

The second question is test subject selection. This is vital
for RQ 5, which asks for properties of programs. So a diverse
set of programs with different properties is needed. I think the
relevant axis will be how much structure the input has and
how large the program is. Those dimensions are most likely
not independent.

GNU COREUTILS rank as medium to low size, with only
very little input structure. It has been shown that KLEE can
handle those [5]. Web servers like Apache HTTPD or nginx
are larger, and, at the same time, HTTP requests are much
more structured than the inputs of COREUTILS. The ultimate
challenge are compilers, e.g. gcc, or interpreters, e.g. php or
lua. Here the inputs are turing-complete, so input validation
rules are complex, and the input structure is very rich.

VI. CONCLUSION

As strategies for automated bug finding, fuzzing suffers
from a lack of precision and symbolic execution lacks speed.
I presented an artificial example which demonstrates both
problems in just a few hundred lines of code.

My plan is to implement a hybrid approach which combines
the strength of each of the individual approaches, mitigating
each other’s weaknesses. I demonstrated that this approach
would be capable of detecting the bug in my example. My
evaluation plans were presented in Section V.

My prototypical implementation already handles small
examples. I expect full evaluation capabilities by May 2017.

ACKNOWLEDGMENT

This research has received funding from the European
Research Council under the European Union’s Seventh Frame-
work Programme (FP7) / ERC Grant Agreement n. 290914
SPECMATE.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[2] american fuzzy lop. [Online]. Available: http://lcamtuf.coredump.cx/afl/
[3] How heartbleed could’ve been found. [Online]. Available: https://blog.

hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
[4] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving Differential

Unit Test Cases from System Test Cases,” Sigsoft’06, pp. 253–263, 2006.
[5] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs,”
Proceedings of the 8th USENIX conference on Operating systems design
and implementation, pp. 209–224, 2008.

[6] M. Staats, G. Gay, M. Whalen, and M. Heimdahl, “On the danger of
coverage directed test case generation,” in International Conference on
Fundamental Approaches to Software Engineering. Springer, 2012, pp.
409–424.

[7] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[8] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” in Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. ESEC/FSE-13. New York,
NY, USA: ACM, 2005, pp. 263–272.

[9] Peach fuzzer: Discover unknown vulnerabilities. [Online]. Available:
http://www.peachfuzzer.com/

[10] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in
Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA: USENIX, 2012, pp. 445–458.

[11] N. Havrikov, M. Höschele, J. P. Galeotti, and A. Zeller, “XMLMate:
Evolutionary XML Test Generation,” Proceedings of the 22Nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
pp. 719–722, 2014.

[12] M. Höschele and A. Zeller, “Mining input grammars from dynamic
taints,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2016. New York, NY,
USA: ACM, 2016, pp. 720–725.

[13] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level symbolic
execution and system-level concrete execution for testing nasa software,”
Proceedings of the 2008 international symposium on Software testing
and analysis ISSTA 08, pp. 15–26, 2008.

[14] M. Böhme and S. Paul, “A Probabilistic Analysis of the Efficiency
of Automated Software Testing,” IEEE Transactions on Software
Engineering, vol. 42, no. 4, pp. 345–360, 2016.

[15] M. Böhme and A. Roychoudhury, “Corebench: Studying complexity
of regression errors,” in Proceedings of the 23rd ACM/SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA,
2014, pp. 105–115.

[16] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,”
Empirical Softw. Engg., vol. 10, no. 4, pp. 405–435, Oct. 2005.

[17] R. J. Lipton, R. A. DeMillo, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” IEEE computer, vol. 11, no. 4, pp.
34–41, 1978.

