Technical Report — Computational Probabilistic Non-Interference (Long
Version)*

Michael Backes and Birgit Pfitzmanh

1 IBM Zurich Research Laboratory, Ruschlikon, Switzerland
mbc@zurich.ibm.com

2 |BM Zurich Research Laboratory, Riischlikon, Switzerland
bpf@zurich.ibm.com

November 28, 2005

Abstract. Information flow and non-interference are popular concéptexpressing confidential-
ity and integrity properties. We present the first generéihdten of probabilistic non-interference
in reactive systems that includes a computational cases ddse is essential to cope with real
cryptography, since non-interference properties canllysaoaly be guaranteed if the underlying
cryptographic primitives have not been broken. This migiggen, but only with negligible prob-
ability. We show that our non-interference definition is mained under simulatability, the notion
of secure implementation of modern cryptography. Thisnalsecure composition of systems and
yields a general strategy for including cryptographic iras in information-flow proofs. As an
example we study a cryptographic firewall guarding two hoassrs from their environment.

1 Introduction

Information flow and non-interference are powerful consdpt expressing the confidentiality and integrity re-
quirements that a program or a cryptographic protocol shéulfill. The term “absence of information flow”
illustrates the confidentiality view: One requires that nformation flows from a secret system part or data item
into a less secure system part or data item, or from usershigthconfidentiality needs to less trusted users. The
term “non-interference” illustrates the integrity viewn®requires that no untrusted information should interfere
with data items with higher correctness needs, or that highkted users are not misinformed or bothered by
such information.

The concept of information flow was first investigated fonsewmperating systems by Bell and LaPadula [26]
and by Denning [35]. Subsequently, various definitions Haeen proposed that rigorously specify when infor-
mation flow is considered to occur. The first, nanmexh-interferencewas introduced by Goguen and Meseguer
[40,41] to analyze the security of computer systems. Theirkwvas limited to deterministic systems; never-
theless, subsequent work is still based on their ideasrwdiels, research focused on non-deterministic sys-
tems. The main distinction is between probabilistic andsfimkstic behaviors. Beginning with Sutherland [83],
the possibilistic case was treated in [63, 88, 67, 90, 58]lendefinitions handling probabilistic and information-
theoretic behaviors were proposed by Gray [47, 48] and Mel[@3]. Clark et. al. showed in [32] that possibilistic
information-flow analysis can be used to check for probstiilinterference in certain cases.

For reasoning about real cryptographic systems, we nedshpilgstic behaviors. On this probabilistic side,
Gray'’s definition of “Probabilistic Non-Interference” ogactive systems stands out. It is closely related to the
perfect case of our definition, but it does not cover comjutat aspects, which are essential for reasoning
about systems using real cryptographic primitives. As aamgXe, consider an arbitrary public-key encryption
scheme. Obviously, an adversary with unlimited computimger can break the scheme by computing all possible
encryptions of every plaintext and comparing the results &igiven ciphertext. Moreover, even polynomially
bounded adversaries may have a very small, so-cabgtigibleprobability of success, e.g., by trying just a few
encryptions of a few plaintexts. Thus, cryptographic dabins usually state that every polynomially bounded
adversary can only achieve its goal with a negligible pragbWe present the first general definition of non-
interference for thifomputationatase. Thus, non-interference properties can be expresseghbftive systems

* A more compact version of this paper appeared at ESORICS[2002nd 1JIS 2004 [13].

containing arbitrary cryptographic primitives, which isgreat importance for extensible systems like applets,
kernel extensions, mobile agents, virtual private netwpekc.

In contrast to other definitions, we do not abstract from tagpaphic details and probabilism a priori, e.g., by
using the common Dolev-Yao abstraction [37] or special tyyp&tems, but include the computational variant in
our definition. This enables sound reduction proofs witlpees to the security definitions of the included cryp-
tographic primitives, such as an underlying public-keyrgption scheme. This means that every possibility to
break the non-interference properties of the system carsée to break the underlying cryptography. Moreover,
we show that our definition behaves well under simulatab#ithich is the common concept in modern cryp-
tography for defining a notion of secure implementation. Wawsthat non-interference properties proved for an
abstract specification automatically carry over to a cdecraplementation if that implementation is correct in
the sense of simulatability. This theorem is essentialesinenables modular proofs of large systems, i.e., proofs
done for ideal systems not containing any probabilism sjreptry over to their real cryptographic counterparts.
Moreover, properties of these ideal systems could quitdyezesproved with machine assistance, so our theorem
provides a link between cryptography and formal proof tdotsion-interference.

As an example, we present a cryptographic firewall which krsalvo honest users to communicate with each
other, but guards them from their environment, and proveessred non-interference property.

Further related literature. An important application of information flow is the staticadysis of program code
with respect to certain privacy requirements. This probieas first treated by Denning [36] using flow graphs
on I/O variables. Recently, type-based systems have begoged [85, 82, 86, 81] for detecting and eliminating
information flow in different kinds of languages. Some ofg¢haype systems were proven correct by Sabelfeld
and Sands [78, 79], who presented a semantic characterizitprobabilistic bisimulation and used it to express
non-interference for multi-threaded and sequential @mogy. Formal soundness proofs of security type systems
in general have been pioneered by Volpano et al. [87]. Maantdl Sabelfeld [62] investigated the integration
of security properties of programming languages and atistesiel properties of information flow, providing an
interesting overview of how models of different securitpjperties can be combined to increase the relative power
of their analysis. Moreover, a tool for automatically chiegkthe information flow in concurrent languages has
been developed by Focardi and Gorrieri [38] for a varietynddimation-flow models.

Today, there is no general definition of the absence of in&tion flow, but several of them coexist. Every
definition has advantages and disadvantages, and whichodake depends on the application area. Many of
these definitions have the shortcoming that they are noepred under refinement, cf. [65,51, 60]; moreover,
special care must be taken concerning the composition eofrsexystem when reasoning about comprehensive
security properties such as non-interference, see [68486, 68,61, 34, 23,5, 20,7, 21, 14]. Furthermore, many
definitions of non-interference were overly restrictive, that many useful systems did not fulfill them. This
problem is often tackled by downgrading certain informatieo that it may then leak from the system, see
[72,91]. In some cases, the amount of leaked informationbearnigorously defined using information-theoretic
techniques [71,53].

Some recent research also investigated non-interfererpeies involving real cryptographic primitives.
Laud [54] presented a sequential language for which he egptereal computational secrecy. Besides our work,
this paper contains the only definition of non-interfereimcéuding a computational case. However, the definition
is non-reactive, i.e., it does not comprise continuous&uiion between users, an adversary, and the system. This
is a severe restriction on the set of security systems timabedandled. Further, encryption is the only primitive
covered there so far, i.e., other important primitives gkehentication, pseudo-number generators, etc. are not
considered. Our definition is reactive and comprises amlyittryptographic primitives. Volpano [84] investigated
conditions for safely using one-way functions in a progrdmgmanguage, but his underlying definition does not
express non-interference, but the secrecy of a specifietseibadi and Blanchet [1] introduced type systems
where asymmetric communication primitives, especiallpljsukey encryption, can be handled, but these primi-
tives are only relative to a Dolev-Yao abstraction [37],,itee primitives are idealized so that no computational
non-interference definition is needed. The computatiooahdness of Dolev-Yao abstraction is currently still
subject to intenstive research, see, e.g., [73,2,19,24121,3, 14,70, 16,15, 6].

Outline of the paperin Section 2 we briefly review the underlying model of asymetous reactive system. The
original contributions are presented in Sections 3 to 5.dctiBn 3 we present our definition of non-interference.
This includes extending the underlying model to multiplerssin Section 4 we show that our definition behaves
well under simulatability, i.e., secure implementatioeslaot change the non-interference properties. In Section 5

we present an abstract specification and an implementati@eryptographic firewall guarding two honest users
from their environment, and we prove that they fulfill our défon of non-interference. We conclude with a
summary of our results and open issues for future research.

2 General System Model for Reactive Systems

In this section we recapitulate the model for probabilistiactive systems introduced by Pfitzmann and Waidner
in [74, 22]. Several definitions will only be sketched, whes¢hose that are important for understanding our new
definitions and proofs are given in full detail. All other dié¢ can be looked up in the original paper.

In particular, we repeat the scheduling model in full ddb@itause scheduling is important for achieving non-
interference: We cannot let the adversary schedule evagyind hence need special schedulers below. Crypto-
graphic asynchronous systems need two specific schedudperts compared with other asynchronous system
models: Schedulers are “normal” system machines, so tegtdthedule with realistic knowledge, and different
channels may be scheduled by different machines, e.g.astottal submachines can be represented.

2.1 General System Model

Systems mainly consist of several interacting machinesalliswe consider real systems containing asebf
machineg My, ..., M,}, one for each user from a setM = {1,...,n}, and ideal systems containing only one
machine{TH}.

Communication between different machines is done via pbripired by the CSP-notation [50], we write
input and output ports g andp!, respectively. The input and output ports in a portRBetre writtenin(P) and
out(P), respectively. Connections are defined by naming convengiortp! sends messages p3. To achieve
asynchronous timing, a message is not immediately detiMerds recipient, but first stored in a special machine
p called a buffer, where it waits to be scheduled. This can e dy the machine with the unique clock-out port
p?!. To schedule thé-th message of buffegs, it outputs: at p“!, see Figure 1. The buffer then delivers thih
message and removes it from its internal list. Most buffeesseheduled either by a specific master scheduler or
by the adversary, i.e., one of those has the clock-out portspB! andp?, in contrast to the other four port types
occurring at the buffers, are callsinple and asimple machinéas only simple ports and clock-out ports.

Scheduler for

g~ | buffer q
) - q=?
Sendin q-? Y ~
machin?e q! > [m]]:[m:m Buffer q
ety 1
~ Receiving
—>19? | machine

Fig. 1. Naming of ports around a buffer. Later one can often absfrant the buffer and simply regargl andq? as asyn-
chronously connected.

The precise definition of machines is a variant of probadizlstate-transition machines, similar to probabilis-
tic /0O automata as sketched by Lynch [57]. If a machine igdved, it reads an input tuple at its input ports and
performs its transition function. This yields a new statd an output tuple. A probabilistic transition function
actually describes a finite distribution over the pairs ofa state and an output tuple. Furthermore, each machine
has bounds on the length of considered inputs. This allows biounds independent of the environment.

Definition 1. (Machines)A maching(for an alphabeft)) is a tuple
M = (namewm, Portswm, Statesm, om, Im, Inim, Finm)

of a machine nameamey € X, a finite sequencBortsy of ports, aseSta_tesM C X* of states, a probabilistic
state-transition functiody, a length functioriy : Statesm — (N U {oo})lin(Pertsw)l - and setslniy, Finy C

Statesy of initial and final states. Its input set &, := (X*)lin(Portsm)l: the j-th element of an input tuple
denotes the input at theth in-port. Its output set i®y := (X*)/out(Portsw)l The empty worde, denotes no in-
or output at a portdy maps each pais, I) € Statesm x I to a finite distribution oveStatesy x Owm.

If s€ Finmorl =(e,...,e), thendu(s,I) = (s, (e, ..., €)) deterministically. Inputs are ignored beyond the
length bounds, i.edm(s, I) = om(s, I [, (s)) forall I € Zy, where(I[y,,(s)): := ILi[1,(s), for alli.

In the text, we often write M” also for nameyp. In the following, the initial states of all machines are aws#ty
parametek € N in unary representation.

We only briefly state here that these machines have a naeabtation as probabilistic Turing machines,
which is used to define runtimes [22].

A collectionC of machines is a finite set of machines with pairwise différeachine names and disjoint sets
of ports. All machines start with the same security paranieteet furtherports(C’) denote the set of all ports of
all machines mC Thecompletior{é‘l of a collectionC consists of all machines @i and the buffers needed for
all the portsinC'. Thefreeportsfree(C) in a collection are those to which no other port in the coitectonnects.
A collection ' is closedif its completion[é] has no free ports except a special master clock-ingkft. The
machine with this port is thmaster scheduleto which control returns as a default.

For a closed collection, a probability spacerofs (sometimes called traces or executions) is defined. The
machines switch sequentially, i.e., there is exactly otigemachineVl at any time, called theurrent scheduler
If this machine has clock-out ports, it can select the nex$sage to be scheduled as explained above. If that
message exists, it is delivered by the buffer and the retfjigethe next active machine. M tries to schedule
multiple messages, only one is taken. If it schedules norteeomessage does not exist, the master scheduler is
activated.

Formally, runs are sequencesstépsdefined as follows (where the state-transition functionudfdrs is as
explained above).

Definition 2. (Runs)Given a closed collection’ with master schedulét and a security parametgy the proba-
bility space ofrunsis defined inductively by the following algorithm. It has iaylesr for the run under construc-
tion andMcs for the current scheduler, and treats each port as a vaoable.*. Herer is an initially empty list,
Mcs a machine name initialized witk, and all port variables are initially except forclk®? := 1. Probabilistic
choices only occur in Phase 1.

1. Switch current scheduleBwitch machindcs, i.e., sef(s’, O) « dm (s, I) forits current state and in-port
values!. Then assign to all in-ports ofMcs.

2. Termination:If X is in a final state, the run stops.

3. Buffer new messageBor each simple out-pogt of Mcs, switch bufferq with inputq*? := q!, cf. Figure 1.
Then assigr to all these portg! andq©?.

4. Clean up schedulindf at least one clock out-port d¥lcs has a valueZ ¢, let q°! denote the first such port
and assign to the others. Otherwise letk“? := 1 andMcs := X and go back to Phase 1.

5. Deliver scheduled messaggwitch bufferg with inputq?? := q9! (see Figure 1), sef? := q*’! and then
assigre to all ports ofg and toq“!. Let Mcs := M’ for the unique machin®!’ with q? € ports(M’). Go back
to Phase 1.

Whenever a machine (this may be a buffer) with nameey is switched from(s, I) to (s’, O), we append a
step(namew, s, I', s', O) to the runr for 1" := I[,;, (5), exceptifsisfinalorl’ = (e, ..., €). This gives a family
of random variables

rung = (Tung g)ken.

For a numbet € N, thel-stepprefixof a runr is the list of the first steps.

Next we define what a machine (e.g., an untrusted user in amerierence definition) sees in a run and what
events happen at a set of ports, and the probabilities ofweals and events.

Definition 3. (Views and Restrictions to Port§heviewof a set of machines? in a runr is the subsequence of
all steps(namew, s, I, s’, O) wherenamey is the name of a machind < M. Therestrictionr[s of arunto a
setS of ports is a sequence derived as follows: First only retaaitputs and output$/, O), from each step,
and further restricf andO to the ports inS. Then delete pairs where boftandO have become empty.

The corresponding families of random variables (in the plility space over the runs) are denoted by

~

view & (M) = (view ¢ 5, (M))en and

rungls= (rung ;[s)ken
With an additional inde¥, we denote thé(k)-step prefixes of the views and restrictions.

For a one-element séf = {H} we write view 5 (H) for view 5 ({H}).

2.2 Security-specific System Model

For security purposes, we have to define how adversaries @meshusers connect to specified machines of a
collection. First, an adversary may take over parts of tlitelly intended machines. These machines are then
absorbed into the adversary, and the remaining machinesdatructure Formally, a structure is a collection
of machines in which one additionally distinguishes at Wwhiiee ports honest users can connect and expect
some reasonable service (e.g., message transport in agrgphic firewall), and which ports are only used by
adversaries. The former are theecified portsn the following definition. A valid honest user should neithry
to connect to the remaining free ports of a structure, noyfdque naming, have ports that already occur inside
the structure. This is expressedfoybidden ports

Depending on which machines the adversary has taken carffnok obtain different structures, and we call
the set of all structures systemTypically, a system is defined by means of a so-called irgdrafructure and a
trust model. The intended structure represents a beniglil wdrere each machine behaves as specified, and the
trust model is then used to designate the potential sets cffiimas which are considered to be under control of the
adversary. An example of the typical derivation of thesaddtires from an intended structure and a trust model
occurs in Section 5.

The ports connecting to a given port getare expressed by the complement notatitin e.g.,q!° = q*?,
q!° = q97,q*!° = q? in Figure 1, and vice versa.

Definition 4. (Structures and Systems)

a) Astructureis a pair(M, S) where is a collection of simple machines calledrrect machinesand$ C
free([M]) is calledspecified ports X X i B

b) If M is clear from the context, le§ := free([M]) \ S. We callforb(M, S) := ports(M) U S° theforbidden
ports A

c) A systemSys is a set of structures. It is polynomial-time iff all machéna all its collectionsiM are

polynomial-time.

A structure is completed to eonfigurationby adding machinesl and A, modeling the joint honest users and
the adversary. As explained abov¥edoes not have certain ports.connects to the remaining free ports of the
structure. Both machines can interact, e.g., in order toehclibsen-message attacks.

Definition 5. (Configurations)

a) A configurationof a systemSys is a tupleconf = (M, S,H,A) where(M, S) € Sys is a structureH is a
simple machine without forbidden ports, i.garts(H) N forb(M, S) = §, andC := M U {H, A} is a closed
collection.

For simplicity, we often writeun .ons andview cons (M) instead ofrun 5 andview (M)

b) The set of configurations is writteétonf (Sys). The subset of configurations with polynomial-time udeand

adversanA is calledConf,q (Sys). The index,, is omitted if it is clear from the context.

3 Expressing Non-Interference

In this section we define non-interference for reactiveesystas introduced in Section 2. Information flow proper-
ties consist of two componentstlaw policyand adefinition of information flowFlow policies specify restrictions
on the information flow within a system. They presuppose thstence of security domains, between which
information flow is either permitted or forbidden. Roughdwr flow policies are graphs with the users as nodes.
In the definition of information flow, we want to express thatre is no information flow from a uséty to a
userH, iff the view of Hz, does not allow to distinguish (perfectly or computatiopgdiny behaviors oH ;.

LWH
Fig. 2. A Typical Flow-Policy Graph Consisting of High and Low Users

3.1 Multi-Party Configurations

In Definition 5, all honest users were modeled by a single nm&di. For expressing non-interference between
two users based on their individual views, we must modeediffit users as different user machines. Hence we
first define multi-party configurations. The only differertoenormal configurations is that we have a $&bf
user machines instead of the joint machihe

Definition 6. (Multi-Party ConfigurationsA multi-party configuratiorof a systemSys is a tuple(M, S, U,A)
where(M, §) € Sys is a structure[is a set of machines callagserswithout forbidden ports, i.eports(U) N
forb(M, S) =), and the completiod’ := [M U U U{A}] is a closed collection. The set of these configurations is
denoted byConf™(Sys), those with polynomial-time users and a polynomial-timeadary byConfg“jy(Sys).

We omit the indicesnp andpoly if they are clear from the context.

Runs and views are automatically defined for multi-partyfigamations because they are defined for all closed
collections, here'.

3.2 Flow Policies
We start by defining flow policy graphs independent of our nhode

Definition 7. (General Flow Policy)A general flow policyis a graphF = (S,~») with a non-empty sef and
~ C § x §. We use infix notation, i.e., we writg ~» s5 for (s1,s2) € ~, ands; % s, for the negation. We
demands ~ sforall s € S.

A general flow policy igransitiveif the relation~ is transitive.

Intuitively, s; ~ s means that information may flow frosy to so, ands; % ss means that it must not.
Transitivity means that whenever indirect flow is possilbteri s, to s, via some other elements, direct flow from
s1 10 s5 is also permitted. In this paper, we only consider transitiow policies.

Example 1.The setS often has only two elementS = {L, H}, called low and high users. The typical flow
policy for this case is that information flow from high to lovgers is forbidden, i.ed - L, while L ~ L,
L~ H,andH ~» H; see Figure 2.

This definition is quite general since it uses an arbitratySséVe now refine it to our model of reactive systems.
The intuition is to define a graph on the users and the adwerdaivever, a definition over the machine set
U U {A} would depend on internal details of the user and adversachimes. Instead, we designate each user
by the set of specified ports it connects to, and the advenséiy connects to the remaining free ports of each
structure, by a symbaidv.

Thus our flow policies only depend on the specified ports obthectures of a systetsiys.

Definition 8. (Flow Policy)A flow policy for a port setS is a general flow policy A, ~») whereA = ' U {adv}
andI’ = {S; | i € Z} is a partition ofS for a finite index sef.

A flow policy for a systenSys is a mappingF that assigns each structL(rM S) € Sys aflow pohcy]—'
for the setS of specified ports. We require th.ﬁ}M) only depends ot¥, and also writeFs.

Note that the adversary is explicitly included in the flowipgpl This will be essential to capture that, e.g., the
adversary does not learn any information from an honest user
Some abbreviations will be useful.

Definition 9. (Additional Flow-Policy Notation)Given a flow policy 7 for a systemSys, we write A y; o,
~ 1.5y L (ar,), @NAZ g) for the components of the flow policigg ;), and similarlyAg etc. If the structure
or at leasts is clear from the context, we even just writeetc.

We assume without loss of generality that ¢ 7 for every occurring index séf and always defing2 :=
Z U {adv}. Given a structureJ\Z/ S), we further writeS,q4, := S and sometimes identifydv with S.q4,. Then the
node setA of a flow policy 7y ¢, is identified with a partition ofree([M]) with index setZ2®".

BIT,| |OUT,
5 *
pblt p bit
HH HL
A
v v
Sy & S

Fig. 3. Sketch of our Non-Interference DefinitioHy, tries to guess a bit th&ty tries to transfer.

Given a structuré¢}/,) and a flow policy(A, ~) for S, the relationSy + Sy, for two port setsSy, S, € A
intuitively means that no information must flow from the usesichines connected t&; to the user machines
connected taS;, in any configuration of this structure. With the identificetiwve made, this also holds for the
adversary, who is connected to the portSat = S.

3.3 Definition of Non-Interference

We now define the semantics of the non-interference relgtiotJsually, expressing this semantics is the most
difficult part of an information-flow definition. Given our derlying model, it is a bit easier because we already
have definitions of runs, views, and indistinguishabiliye first present the intuitive idea of the semantics and
give the formal definition afterwards.

Figure 3 contains a sketch of our definition of non-intenfeeebetween two useksy andHj ; one of them
may be the adversary. Intuitivelid;; should not be able to transfer a bit, or even part of one, taiegH .

This is modeled as follows. At the start of the run, atbi {0, 1} is chosen at random and inputtly;. Perfect
non-interference means thidi; should not be able to change the viewtdf at all, soH;, should be unable to
output the bib with a probability better thaé. For statistical non-interference, we alldly, a small advantage in
guessing the bit, modeled by a clasSMA LL of small functions in the security parameter=or computational
non-interference, we only consider polynomial-time comfégions, and the advantage should be negligible; this
is a special class of small functions. The approach of gngsaibit is essential to extend the notion of non-
interference to the computational case. It is a fundameotatept in cryptography, so our definition serves as a
link between prior work in non-interference and securitfirdéons of real cryptographic primitives.

Formally, to close the configurations, we add machidgs; andOUT ;, that produce and consume the bit,
respectively. They do this at pors;;! andpj.,? connected to special ports Hfy andH ..

The configurations with these bit machines will be calteth-interference configurationénother charac-
teristic of non-interference configurations is that thded#nt user machines and the adversary have no direct
connections, because otherwise they could trivially tr@ihshe bit. Moreover, these configurations contain a
master scheduleX™". It mainly schedules the users. Where correct machineglstdheach other is fixed in
the structures, and which inputs to correct machines aredsgéd by the adversary must be taken as given after
the trust model. However, some way is needed to transferadrgtween different user (and adversary) groups
even if they cannot interfere with each other. Here the masteeduler is needed. Our specific master scheduler
essentially performs round-robin scheduling of users,ningers get the control in the configuration at all, but
lets the users choose certain subsequent system ihputs.

The ports where the users get these master schedulingsayeatallednaster;?. For the master scheduler to
get control once a user was scheduled (to prevent loops aanemgll user group and some correct machines), the
users have no clock-out ports. Each gottthat a useH,; would have according to its sé of specified ports is
taken over by the master scheduler. Instégdyets an outpup®! to the master scheduler. When iHs's turn, the
master scheduler reads there whetHewants to schedulg next. This is shown in Figure 4 for a pgrt! € S§.

! Instead of considering round-robin scheduling only, itrisgably also sufficient for most applications to considévestulers
with the following two properties: They are polynomiallyirfgl7], i.e., they ensure that each user is always schedifted
a fixed polynomial number of steps, and their scheduling eebe affected by previous inputs from the users and the
adversary so that it is not possible to transmit informabgnnterfering with the scheduler.

TTTTTIIIId I S
masterBlTH v . Xn_in !
Y |
TA T T AT I
master,, lps?) ! | |
| . i |
Y Y | . i 3 |
v v Lot v v
BIT, » H, o i i H, y ouT,
A [bit
! .
(P V. N
p?
A, A
A
S, " S,

Fig. 4. Main Parts of a Non-Interference Configuration. The portthefmaster schedul¢™" and the two emphasized users
Hx andH;, are sketched.

Definition 10. (Non-Interference Configuratioibet a systentys be given and a structu(d?[, S) € Sys. LetA
be a permitted node set for a flow policy fSrwith index setZ, and letH, L € 73% with H # L. Let conf =
(M, S, U™ A) be a multi-party configuration with’ ™" = 7 U{BIT;,0UT, X"} andU = {H; | i € T},
and letH,q4, := A. We call it anon-interference configuratidior A, H, and[L if the following holds.

a) Ports of Special MachinesThe ports ofBIT ;; are{mastergT,, 7, pyit!, ppit *!}. The machin®©UT 1, has only
one portp;;,.?. The master schedulX™" has the following ports:
— {clk*?}: The master clock-in port.
— {master;!, master;?! | i € Z*% U {BITx}}: The ports for fair scheduling of the users, the adversady an
BITy.
= {p¥| p¥ € S} U {p;.“!}: The clock-out ports that the honest users would have had.
— {p7,p* | p! € S U {p*?, Pri ! }: The ports for receiving scheduling proposals from the sigar
the previous set of porfs.

b) Ports of Normal Users: The ports ofH; with i € 7\ {H, L} are{master;?} U (S£ \ {p! | p! € SF}) U
{p*! | p?! € S¢}, as explained above. Additionallyl; has a porpy:?, andH, has ports;;, ! andpst;,!.2

c) Behavior of BITy and OUT: If BITy receives an input anastergt,, ?, it chooses a bib € {0,1} at
random, output$ at py;;!, and schedules it by outputtinigat p,;;¥!. The machindDUT;, does nothing on
inputs atpy;;. 7. (It just “catches” the inputs to close the collection.)

d) Behavior of X"-'": The machineX"™" maintains two flagstart and sched_demand over{0, 1}, initialized
with 0, and a counternt over the index sef2?, initialized with adv. Without loss of generality we as-
sumeZ := {1,...,n} andadv := 0, so the counter is defined ové®, ..., n}. Additionally, to allow for
polynomial-time versions oK™, it has a countesteps and a boundP. (Formally this gives a family of
master scheduleis’s", one for each polynomiaP and for P = oc.) If X™" is scheduled, it behaves as
follows:

Case 1: Start of the runif start = 0: Setstart := 1 and outputl at mastergt, ! and atmastergt,, “!.

Case 2: Schedule usell$.start = 1 andsched_demand = 0, incrementsteps if cnt = n and stop forever
if steps > P(k). Setent := cnt + 1 mod (n + 1) and outputl at master,;! andmaster.,,;!. If ent # 0,
i.e., the clocked machine is an honest user, additionatly8ed_demand := 1 to handle the scheduling
demands of this user next.

Case 3: Handle scheduling demantfsstart = 1 andsched_demand = 1, outputl at every porps“! with
p?l € S¢ ., and forent = L also atp®; ... “!. Then test whether there was a non-empty inpattexactly one
portps?.4 If yes, output atp?!, i.e., follow the user’s proposal. In both casess#étd_demand := 0.

2 \We assume without loss of generality that there is a systemaining scheme for such new ports that does not clash with
prior names.

% The adversary always closes the collection; hendé i adv or L = adv this also holds foH.q, = A. The adversary
always has the portmaster;?} U S°.

* More formally, X™" first sendsl at the first of these ports. The buffer either delivers a ngssaX"™" or does nothing. In
both caseX™" is scheduled again, so it can sehdt the second clock-out port, etc. It stores all receivedsamss in an
internal array.

We denote the set of non-interference configurations of acttre (M,S) for given A, H, and L by
Confly'y (M, S) and the subset of polynomial-time ones ®@ynf’s"y; ; oo, (M, S). All non-interference con-

figurations of a systerfys are writtenConf™"(Sys) andCon ggf;’(Sys), respectively.

Now we can define the probability that the low user correctiggges the bit that the high user tries to transmit.

Definition 11. (Guessing Probabilitylror a non-interference configuratioonf € Con Z‘fﬁ’L(M, S) of a struc-
ture(M, S), theguessing probability’y,ess, cons IS defined as

Pauess,conf 1= P(b=b"| 1 Tuncons k3 b 1= 1[5 0" == rfpz 7).
This is a function of the security parameter

Several times we need notions that functions are small, tbgyadvantage of the guessing probability over one
half. Hence we define corresponding function classes.

Definition 12. (Small functions)

a) The classVEGL of negligible functionsontains all functions : N — R that decrease faster than the
inverse of every polynomial, i.e., for all positive polyn@is) Ing ¥n > ng : s(n) < ﬁ.

b) A setSMALL of functionsN — R is aclass of small functions it is closed under addition, and with a
function g also contains every functiogi < g¢. Typical classes of small functions afEX PSMALL, which
contains all functions bounded I6y(k) - 2—* for a polynomialkQ, and the larger clasS EGL.

Now we are ready to give the non-interference definition, itee definition of the semantics of a flow policy for
a reactive system.

Definition 13. (Non-Interference) et a systemSys, a structure(M, S) € Sys, and a flow policyF = (A,~)
with index setZ for (M, S) be given. For two elementd, L € 73% with Sy 4 Sz, we say that M, S) fulfills
the non-interference requiremel{Req r 5 1,

a) perfectly, written (M ;S) Fpert NIReqr y 1, iff for every non-interference configurationonf &
Conf's (M, S) we have

1
Pguess,conf < 5

b) statistically for a classSMALL of small functions, writterf M, S) |=saarz NIReqr y.p,, iff for every non-
interference configuratiotwnf € Coan‘f}}ﬁL(M, S) there exists a function € SMALL such that

1
Pguess,conf < 5 + S(k)

c) computationally, written (M, S) =poly NIReqx y p, iff for every polynomial-time non-interference config-
urationconf € Confﬁfﬁ,L,pow(M’ S) there exists a function € NEGL such that

1
Pguess,conf < 5 + S(k)

We write “=" if we want to treat all cases together. If a structure fudfillll non-interference requirements
NIReqx p ;, With Sy -4 Sy, for a flow policy 7, we say it fulfills the requiremen¥iReq z, written (M, S)

E NIReq~. A systemSys fulfills a flow policy F for this system if every structur@?\;[, S) € Sys fulfills the
requiremenW]Reqf(M o We then writeSys = F.

4 Preservation of Non-Interference under Simulatability

The cryptographic variety of the notion that one system sggimplements another one is based on the concept
of reactive simulatabilityf74]. Reactive simulatability essentially means that wekat might happen to an honest
user of a concrete systefys,., can also happen to this user with a given ideal sys$er),. More precisely,

for every configuratiortonf,; € Conf(Sys,.,), there exists a configuratianf, € Conf(Sys,,) that yields an
indistinguishable view for the same user. We abbreviatelfiiSys,.,; >sec Sysiq and say thabys,.,, is at least

as secure as the systefns,q. A typical situation is shown in Figure 5.

The notion of reactive simulatability serves as the culrdmeof a long line of research done on (non-reactive)
simulatability: Simulatability was first sketched for seewmulti-party function evaluation, i.e., for the computa-
tion of one output tuple from one tuple of secret inputs fraateparticipant in [89] and defined (with different
degrees of generality and rigorosity) in [44,45, 25, 69, 29k idea of simulatability was subsequently also used
for specific reactive problems, e.g., [39, 27,55, 56, 31{hwit a detailed or general definition. In a similar way
it was used for the construction of generic solutions fogéaclasses of reactive problems [44,42, 49] (usually
yielding inefficient solutions and assuming that all partigke part in all subprotocols). The first fully reactive
definition of simulatability was presented in [73] for a siinanous version of a general reactive model, and has
been extended to an asynchronous setting in [74] and laténdependently in [30].

S mmmmmdms O
H N
Mo TH ‘— A,
N
O f(M1, S)
Real configuration Ideal configuration

Fig. 5. Example of simulatability. For every uskrof the real structure and every adversary there must exist an adversary
A; on a corresponding ideal structure such that the vieW &f indistinguishable.

We do not want to compare a structyd,, S;) € Sys,., With arbitrary structures ofys,y, but only with
certain “suitable” ones. This is specified by a mappfniyjom Sys,.,, t0 the powerset 0fys,q. The mappingf
is calledvalid if (M, 51) is non-empty and only contains structufdg,, S,) with S, = 5, i.e., with the same
user interface, for allMy, 51) € Sys,...

The simulatability definition is based on the indistingaibhity of views. Indistinguishability is a notion
defined for arbitrary random variables.

Definition 14. (Indistinguishability)Two families (vary)ren and(var},)ren of random variables (or probability
distributions) on common domairis;, are

a) perfectly indistinguishablé&=") if for each k, the two distributionsar;, andvar’,, are identical.
b) statistically indistinguishabl€“~¢);4.1") for a classSMALL of small functions if the distributions are
discrete and their statistical distances

Asiar(varg, vary,) : Z |P(vary = d) — P(var;, = d)| € SMALL
dEDk

(as a function of).
c) computationally indistinguishablg~,.,") if for every algorithmDis (the distinguisher) that is probabilistic
polynomial-time in its first input,

|P(Dis(1%, vary,) = 1) — P(Dis(1¥,var}) = 1)| € NEGL.

Intuitively, given the security parameter and an elemeoteh according to eithear;, or var}, Dis tries to
guess which distribution the element came from.

We write= if we want to treat all three cases together.

We are now ready to present the reactive simulatability difin i.e., a notion of cryptographically secure
implementation.

Definition 15. (Reactive Simulatability) et systemsSys, andSys, with a valid mappingf be given.

a) We saySys, >LpPef Sys, (perfectly at least as secure)ai for every configurationconf, = (Ml, S,

H,A1) € Conf(Sys,), there exists a configuratiomnf, = (M, S,H,Az) € Conf(Sys,) with (Mz, S) €
f(My, S) (and the samél) such that

VIeW cont, (H) = view cong, (H).

b) We saySys, >LSMALL Gys, (statistically at least as secure Jafor a classSMALL of small functions if
the same as in a) holds withiew cony, 1(H) ~smarLr viewcong,, (H) for all polynomials, i.e., statistical
indistinguishability of all families of-step prefixes of the views.

c) We saySys; >LPoY Sys, (computationally at least as secure) dthe same as in a) holds with configurations

—sec

from Confy, (Sys;) andConf,ay (Sys,) and computational indistinguishability of the familiesviéws.

In all cases, we caltonf, anindistinguishable configuratiofor conf,. Where the difference between the types
of security is irrelevant, we simply write/._, and we omit the indice$ andsec if they are clear from the context.

=sec’

Below we want to prove that non-interference propertiegaeserved under reactive simulatability. As flow
policies are defined per system, we first have to define how giftdiay from one system, typically a specification,
is applied to another system, typically an implementati®de. do this based on a valid mapping between the
system, i.e., based on the information which real strustimplement which ideal structures. As valid mappings
retain the specified ports (the user interfaces) and our flaeips for systems depend only on these specified
ports, this is a canonical transformation.

Definition 16. (Corresponding Flow Policies).et systemsSys, and Sys, with a valid mappingf be given,
and a flow policyF(? for Sys,. The corresponding flow policyr(!) for Sys, is defined as follows: For every

v (1) — (2 i y v
(M, S) € Sysq, Iet]—"(MhS) =]-'(M%S) for an arbitrary structuréMs, S) € f(M, S).

This is well-defined becaus;é(]\?fl, S) is non-empty and only contains structures with the sames'sand
]:((12\;2,5) is equal for all these structures. Further, ewf%ha is a valid flow policy forS by definition. We often
call such corresponding flow policiés on both systems.

Our following preservation theorem states that non-ieteriice properties are preserved under the reactive
simulatability relatior>..., as the name “at least as secure as” suggests.

Theorem 1. (Preservation of Non-Interferencept a systemSys, be as secure a8s,, i.e., Sys; >/ Sys, for

a valid mappingf. Let Sys, fulfill a flow policy 7, i.e., Sys, = F, and letF also denote the corresponding
flow policy for Sys, according to Definition 16. Then alsfys, = F. This holds for the perfect, statistical, and
computational case.

Proof. We have to show that every structL(rM?h S) € Sys, fulfills its flow policy ‘7:(1\?[1.5)' We fix such a

structure(M;, S) € Sys, and its flow policyFs = (A,-4) with index setZ. For allH, L € 724 with Sy 4 Sz,
we have to show thdt;, S) fulfills the non-interference requiremeNt Req x, 4 .-

Let a non-interference configuratiannf, = (M, S, U™ A;) € Con g—fgL(Ml, S) be given. Because of
Sys, > Sys, there exists a configuratiamnf, = (My, S, U™, Ay) € Conf(Sys,) with (M, S) € (M, S)
andview congs, (U"") & view cons,, , ,(U""). As the user seU"-" is equal in both configurationsonf, is
also a non-interference configurationGanf’s’s; (Mo, S). By precondition(Mz, S) fulfills NIReqr, 1 -

Now we distinguish the perfect, statistical, and the corapaonal case (for the reactive simulatability type and
the non-interference type together). In the computatioasé, both configurations are polynomial-time.

In the perfect case, we havéew cong, (U™") = view cons, (U""). Bothb := r[p,1 andd* := r[,. » are
part of the view ofU"-", s0 we 0btainPuess, conf, = Peuess,conf, < 5. With our arbitrary choice ofonf this
implies that(1;, S) also fulfills NIReqr, f; .-

In the statistical and the computational case we have a giless SMALL of small functions, where
SMALL = NEGL in the computational case. We assume for contradiction®gats cons, = 3 + ns(k) for
a functionns ¢ SMALL, whereas we know tha(k) := Pyuess, conf, — 5 € SMALL.

We then define a distinguishBras follows. Given the view ot/™-*"* in one of the configurationf knows
both the bith and the guesk*. It outputsl if b = b* and0 otherwise. Its advantage in distinguishing the configu-
rations by this is

60 := | P(D(1*, view cony, 1, (U™")) = 1)
—P(D(lk, Uiewconf2,k(Un_in)) = 1)|
= I+ ns(k) — (5 + s(k))] = ns(k) — s(k)
¢ SMALL.

The last line holds becaus8/A LL is closed under addition. For the polynomial case, this ihiately contra-
dicts the indistinguishability of the viewsjew cons, (U™") Rpoly view cons, (U™™).

For the statistical case, the results of the distinguiEhare a function on the random variables of the views.
As the results are Boolean, their statistical distancesg8ye@omputed as

5stat,D = Astat(D(lka Uiewconfl,k(Un_in)); D(lka Uiewconf2,k:(Un_in)))
1
= —(20p) = dp.
2(p) = dp

By a well-known lemma, the statistical distance betweemation of two random variables is at most the statis-
tical distance of the original random variables; a proofsariound in [43]. This implies

5view = Asm(view Confl,k:(U"‘i"), Uiewconf27k:(Un_vn))
> 55tat,D = 5D
¢ SMALL.

The last line holds becaus&V/ALL is closed under making functions smaller. This contradicésstatistical
indistinguishability of the viewsyiew cons, (U™") ~syaLL view cons, (U™").

With our arbitrary choice ofonf, this implies that(A1, S) also fulfills NIReqr, g 1 In the computational
and statistical case. This finishes the proof.

5 A Cryptographic Firewall

We now present a cryptographic firewall as an example of @sy#tat must fulfill a non-interference property and
uses cryptographic primitives. The goal is to allow commsation between certain participants, while ensuring
that these participants cannot be affected by their enmiet. This goal corresponds to a flow policy. Most
firewalls distinguish users mainly by IP addresses. For Bigturity, however, different external users should
rather be distinguished by cryptographic authentication.

5.1 Introduction to the Cryptographic Firewall

We build the firewall systems in two layers. The lower layenides secure message transmission, the higher layer
the filtering function. In particular, the secure messagegmission layer provides cryptographic authentication
so that the filtering layer can filter by name.

For the lower layer, we would like to reuse the secure messagsmission system with ordered channels
from [9]. Ordered channels are one step beyond a relateensygith unordered channels from [74] towards non-
interference. However, we have to go slightly further, isegan adversary could also interfere with the protected
users by scheduling all their messages either immediatehgwer, which gives different views. Recall that the
explicit master scheduler only ensures that each user cahrsessages from time to time, while the adversary
still schedules the network. Hence we need a new type obileliaon-authenticated channels.

For simplicity, we only define and prove one particular imfation flow policy and corresponding filtering
rule set. The policy is sketched in Figure 6: Two useendb should be able to communicate, but should not be

disturbed by the other users and the adversary. As this istagrity view of information flow, it makes andb
the low users, and all others the high users. As usual, thrs ase represented in the flow policies by the skts
of specified ports they connect to.

Sadv

XX

S, «— S,

™ SH><'

Fig. 6. Sketch of the flow policy for the firewall. The port sets of thetpcted usera andb, an outsiderd, and the adversary
are shown. Missing edges in the graph are of the forai."

We start the detailed description with a review of how systame commonly derived from an intended struc-
ture with a trust model, and of the composition theorem néd¢derove a two-layer system in a modular way
(Section 5.2). In Section 5.3 we present the specificatigth@iower layer, i.e., an ideal system for secure and
reliable message transmission. In Section 5.4, we defineigier layer, the filtering system. As it is built on the
ideal lower layer and uses no additional cryptography, wesimeot distinguish a real and ideal version here.

In Section 5.5, we sketch the real lower-layer system andedfie new reliable channel type. We also sketch
why the security proof from [9] still applies to the modifiedcsire message-transmission system. Finally, in
Section 5.6 we prove that the two-layer firewall fulfills isminterference requirement. We mainly do this for the
combination — a well-defined notion introduced in [74] — of ttleal lower layer and the filtering system, and use
our theorems to show that the result also applies to the fa#yfirewall system.

5.2 Preliminaries

The lower layer of the firewall system is of a class caltmhdard cryptographic systenrs[74]. In the intended
structure of such a system, users are numbgred , n. Every usew has one machinil,,, which is correct if and
only if the user is honest. The machilk, has portsn,, 7 andout,,! for connecting to its user. A real Syste¥)s, .
is derived from such an intended structure byust modelconsisting of an access structud€C and a channel
modely. An access structurelCC is a set of subsetd of {1,...,n}. Intuitively, it denotes the possible sets of
honest users, and thus of correct machines.chamnel modetlassifies every connection as secure (private and
authentic), authenticated or insecure. For achievinginterference with the firewall, we need a fourth channel
type calledreliable non-authenticated

The resulting system contains one structure for everyHset ACC, consisting of the remaining correct
machines from the intended structure with modified chanaetording to the channel model. For the three
predefined channel types, this modification is a well-defiped renaming scheme [74]. The corresponding
scheme for the new channel type is given in Definition 17. Weotke such a set of remaining modified ma-
chines byMH = {My, | u € H}, and the remaining set of specified ports $iy. Thus the resulting sys-
tem is of the formSys,.,, = {(My, Sx) | H € ACC}. A correspondingtandard ideal systeris of the form
Sysiq = {({THxn}, Sn) | H € ACC} with the same setSy. The machine3 Hy, are calledrusted hosts

As we construct the firewall system as a composition of twelaywe briefly review the composition theorem
of [74]. It states that the relation “at least as secure agbissistent with such compositions. Assume we have
already proven that a systesigs, is at least as secure as a specificafigsf,, and we build a systerfiys, on top of
the specificatiorsys;,. Then we want to replacgys;, by the real systemiys,. We call the former, partially abstract
compositionSys* and the latter, real compositicfys . The composition theorem states that this replacement is
secure, i.e.9ys™ is at least as secure &gs*; see [74] for the precise theorem and its proof. This isiithted in
Figure 7.

5.3 Lower Layer: Ideal System for Secure and Reliable MessagTransmission

In this section, we present the specification of the loweetayf the firewall, secure and reliable message trans-
mission. We first sketch the original ideal system from [9frenprecisely its perfectly ordered variant where

v

—
v
~—

Fig. 7. Composition of Systems

no gaps in the message sequence are accepted. Then we eld¢iseribodifications needed to include reliable
communication between the protected users. The resuttery system is defined in detail in Appendix A.

Sketch of the original system. The secure message-transmission system with ordered elsdnom [9] is a
standard cryptographic system as described in Sectioandifs access structwACC contains all subsets of the
user indiceg1, ..., n}. Thus the ideal system is of the forfiys o, = {({TH#}, Sx)[H C {1,...,n}}.

The ideal machind’ Hy models initialization and sending and receiving of messagetialization corre-
sponds to key generation and authenticated key exchangalisystem. Besides the specified poftdy has
portsto_adv,! andfrom_adv,, ? where it informs the adversary, and accepts adversarysnmgarding the service
to useru. This is necessary because in efficient implementatioesatlversary gets certain information and has
certain influence, in particular by network scheduling.

A useru initializes communication with other users by inputtingarenand(snd_init) at the portin,,? of
TH4. To reflect the asynchronous timing modeH4; waits for a commandrec_init, u) from the adversary at a
portfrom_adv, ? before regarding communication betwaeandv as initialized.

A useru sends a message to useby inputting (send, m, v). If v is dishonestTH, immediately outputs
(send, m, v) to the adversary. I is honest,THy, stores the message in an arrdgliversPs- together with a
counter that indicates the number of messages sentdrmm, and outputgsend_blindly, 4, [, i;) to the adversary,
wherel and: denote the length of: and its position in the array, respectively. This models tha adversary
learns that a message of a certain length is being sent.

For delivering this message tg the machineTHy waits for a commandreceive_blindly, u, i) from the
adversary at a poftom_adv,,?. ThenTH3, reads(m, j) := deliver;;;7[i] and checks whethensg_outiP" = j
holds for the numbenmsg_out3P5" of the next expected message. ’

If yes, it outputs(receive, u, m) to v and sets the expected numberjte- 1. This last condition ensures that
messages can only be delivered in the order as they weretmpiity, .

The adversary can send a messag® a user by inputting(receive, v, m) at the porfrom_adv, ? of THy
for a corrupted user; this message is output toimmediately.

The adversary can also stop the service for udgy inputting(stop) at portfrom_adv,,?. This models that an
adversary may achieve that the runtime bound’'sfmachine is exceeded in the real system.

Note that this ideal system is completely deterministic aitbout cryptography.

Adding reliable message transmissionWe want to build a firewall by adding a filtering policy on toptbfs
ideal message-transmission system, and the firewall stialfilithe flow policy shown in Figure 6. However, as
long as the adversary can schedule the messages betweeottwtqul userg andb (recall thatTH4 waits for a
commandreceive_blindly, b, ¢) for that, where without loss of generality we always considas the sender), it
can achieve two distinguishable behaviors by either imatedi scheduling each such message, or never schedul-
ing them. This problem cannot be solved by the filtering systa top® This corresponds to a small covert chan-
nel. To close it, we need to specify reliable communicatarttie two protected useasandb in this section, and
later define suitable implementations of reliable chanimetlse real system.

The modified trusted host for the modified systépay, still calledTH3,, behaves identically for inputs from
and outputs to users ¢ {a, b}. For communication from to b, it is modified as follows (and vice versa):

— If a inputs an initialization comman@nd_init) atin,?, THy, immediately initializes communication with
In particular, it outputgrec_init, a) to H, and schedules this output.

5 The filter at useb can only delete messages from other senders, but has todeages from user pass, while it cannot
let them pass if they do not arrive.

— If a sends a message tpi.e., inputs(send, m, b) atin,? thenTHy immediately outputgreceive, m, a) at
portout,! and schedules it.

In both casesTHy informs the adversary of the event as above. The completédtiresdefinition of the ideal
systemSys;, is given in Appendix A.

5.4 The Filtering System

We now present the filtering system, the upper layer of thevéille It is called Sys, as in Figure 7. We only
need filters for the protected usersandb, and filtering only works if the machines of these users areect
i.e.,a,b € H. Hence the system has only one structure, which contairystenl machinesdvfiter andmfiter, The
composition of these filtering machines with the secure agssransmission system is shown in Figure 8 with
individual user machinel,,, but without the special machines of the non-interfererm#igurations and that
X" takes over the clock-in ports.

H1 Ha o Hb Hn
. A .
inz'I outafII
U I . B e L_|_
} Sys E } filter ; filter i
I 1 i Ma Mb | A
Sys*! ! Pwma |
‘ e] N R - — =1
| in out,
‘ Y A, A, Y
1 Sys’, TH,,

Fig. 8. Firewall system consisting of filtering machines and thegjmation of secure reliable message transmission. Ctotk-
ports are omitted; every machine has the corresponding-dotport for each of its output ports.

The inputs and outputs to the filters from above and belowsie the message transmission system, because
the goal is to filter such messages. Recall that even the sdeake message-transmission system with reliable
channels allows the adversary to stop the service to a userydime, modeling that an adversary overpowers
a correct machine in the real system. If an adversary eitiogisghe service to user at the start of the run,
or never stops it, we obtain different views for the useffo avoid this problem, we provide additional reliable
channelpy, andpwm, to close a covert channel based on stopping a service. Tiableethannelgy, andpw,
are only used if the underlying service for secure messagesitnission has been stopped, and they should hence
only be regarded as a remedy against denial-of-servicekattin the real world, this means that if the commonly
used communication method falls prey to a denial-of-seraitack, the users will look for an alternative way to
communicate.

Scheme 1 (Filtering System)Letn € N, a,b € M := {1,...,n} with a # b, and polynomiald,, s, s’ € N[z]

be given. Herex denotes the number of intended users arehdb the users to be protected from the others.
L(k) bounds the message length aifé), (k) bound the number of messages each user can send and receive
respectively for a security parametef Then

Sys L {(Mﬁlter Sfilter)}

1 - ’

with pffitter — {Mg'te", Mfiltert and Sﬁ"te'c .= {outf? infll infl"1 in,?, out,!, out,® | u € {a,b}}. We only
define the machin®filter; we obtainMf**" by exchanging the variablesandb.

Ports of a filter. The ports of machineMfe are {inf? outf! outf™1} U {out,? in,!,in,“!} U
{pr?v pMu!a pMuq!}'

® These bounds ensure théys, is polynomial-time. This is essential for applying the camsition theorem to replacgys,,
with Sys, in the overall system.

States of a filter. M{}**" maintains a countes, € {0,...,s(k)} and an array(s,, , Juesm over{0,...,s'(k)}
counting the messages thasends and receives from respectively. Further, it contains a variablepped, €
{0, 1} denoting whether the lower-layer serviceitbas stopped. All variables are initialized wiitteverywhere.

Filter transitions. The state-transition function dffi'te" is defined by the following rules:

— Send initialization: On input(snd_init) atinfl?: If s, < s(k), sets, := s, + 1, else stop.

If stopped, = 0, output(snd_init) atin,! and1 atin,“!. Else outpufrec_init, a) atpy,! and1 atpm, !, i.e.,
use the special reliable channel.

— Receive initialization: On input(rec_init, u) atout,? with u € M: If s,
else stop. Ifstopped, = 0 andu = b (this is the filtering), outputrec_init, b) atoutf!! and1 atoutf™!.

- Rec%ive initialization, extra channel:On input (rec_init, b) at pm,?, output(rec_init, b) at outf!! and1 at
outfil™1.

— Send:On input(send, m, v) atinfl? with m € X+ andlen(m) < L(k), wherelen(m) denotes the message
length: If s, < s(k), sets, := s, + 1, else stop. Ifstopped, = 0, output(send, m,v) atin,! andl atin,“!.

If stopped, = 0 andv = b, output(receive, a, m) atpm,! andl atpm, “!.

— Receive:On input(receive, u, m) atout,? with u € M: If s, < s'(k), sets;, , := s;,, + 1, else stop. If
u = b, output(receive, b, m) atoutf!l and1 atoutfi™!.

— Receive, extra channelOn input(receive, b, m) atpu, ?, output(receive, b, m) atoutf!! and1 atoutf!™!.

— Stop: On input(stop) atout,?: If s, < s(k), sets, := s, + 1, else stop. Iktopped, = 0, setstopped, := 1
and outputstop) atpm,! and1 atpy, <!. (This ensures that machi!*" also uses the special channel from
now on.)

— Stop, extra channel:On input(stop) atpm,?: Setstopped, = 1. O

< §'(k), sets, , == sy, + 1,

a,u

Remark 1.The filtering systemSys; can easily be modified to an arbitrary set of protected usetead of
L = {a,b}. Moreover we can treat multiple disjoint sets of users wheareh user can communicate with other
users of its own set without outside interference.

Lemma 1. The systenfys, is polynomial-time.

Proof. The machineM/**r has counters, ands , for eachu € {1,...,n}. At least one counter is increased
wheneveMfiter receives an input at poitf'? or out,?, and once a counter reaches a polynomial bo (i

or s'(k), the machine stops. Every outputmy,! is a direct consequence of an inputigf? or out,? by con-
struction ofMf*er, Hence the number of messages sent gygr is at mosts(k) + n - s’(k). This holds anal-
ogously for the machin&/fer. Thus the steps of the whole systefps; (not counting buffers) are bounded
by 4n max{s(k), s’(k)}. Since each transition can clearly be realized in polynbtimee, we conclude that the
collection{Mfilter Mfilter} js polynomial-time.

5.5 The Real Lower Layer: Secure and Reliable Message Trandssion

In the real firewall system, the ideal system for securelldinessage transmission is replaced with its concrete
implementationSys,. We only need a brief description of the original concretplementationSys, ;. here to
show how we modify it to include reliable channels, and toictke proof why this modified real systefiys,,

is as secure as the modified ideal systéys, from Section 5.3. Otherwise, the benefit of the modular amgino
enabled by the composition theorem is exactly that the litgyer systems work with all correctimplementations
of lower-layer systems.

The original systemSys .., described in detail in [9], is a standard cryptographicteysSys, =
{(My, S) | H C {1,...,n}} with the same access structure, specified ports, and in- aipdittypes at the
specified ports as in the ideal systeéiys,,.

It uses asymmetric encryption and digital signatures, twvhiaist fulfill the accepted cryptographic definition,
i.e., security against adaptive chosen-ciphertext af@madncryption and security against existential forgergiem
adaptive chosen-message attacks for digital signatuBsg§2. Efficient cryptographic primitives exist for both
cases under reasonable assumptions, e.g., [33, 46].

” This means that this machine stops forever. It has nothinlp twith the variablestopped, .

On input of the commangsnd_init), a machineM,, creates signature and encryption keys and sends it to
the other machine®!, over authenticated channels. On infsind, m, v), machineM,, signs and encrypts the
messagen with certain additional parameters and sends Wtpover an insecure channel, representing a real
network. If M,, obtains such a message with correct syntax and the nexttexpeessage number, it outputs
(receive, u, m) to userv. The adversary schedules the communication between tonazhines; otherwise its
capabilities arise from what machines and channels it haaced in the actual structures according to the trust
model.

We now describe the modification to this system by reliabknciels. Formally, reliable channels are a new
type in the channel model of standard cryptographic system Section 5.2.

Definition 17. (Reliable, Non-authenticated Channels}t an intended structurel/, S) with M := {M,, | u €
‘H} be given, and a channel defined by pgrte?! € ports(M,,) andp? € ports(M,). If the channel mode}
classifies this channel asliable non-authenticatedhen in the derivation of the actual strucu@déﬂ, Sy) for
an index se#{, the channel is modified as follows: If only onewfv lies inH, it is treated like an authenticated
channel. Ifu, v € H, then a specific, buffer-style machine is inserted as shaviigure 9.

- M, gets a new port!, where it duplicates outputs madepat(As p?! is free, the adversary can connect to
it.)

— The input portp? of M,, 4, is renamed int@y,,,?.

— A machingp is defined as follows: Its ports af@?, p!. 7, pL..!, pLu: 1} Given an input ap? or pf, 7, it forwards

this input top’ ,,! and schedules it by outputtirigatp’, . “!.

out

in*1

Fig. 9. Modeling Reliable, Non-Authenticated Channels

We assume without loss of generality that there is a systemaming scheme for such new ports (e.g., appending
d 1+) that does not clash with prior names. Relialalethenticatecthannels are defined similarly, simply by
omitting the portp, 7 of p.

Now the modified systerfiys, is derived from the original on8ys, ., by classifying the initialization chan-
nels between the machingg, andM, of Sys, .., as reliable and authenticated, whereas the network channel
between these machines are classified as reliable, bututberdicated.

In the following, we only briefly sketch that the relation ‘last as secure as” still holds for the modified
systemSys, andSys,, because we would have to redo the whole original proof of fiith only small changes.

Theorem 2. Let Sys, and Sys, be the modified real and ideal systems for reliable secursagestransmission
as introduced in the previous sections. Tisgm, zgoly Sysy, with the mappingf defined as in [74].

Proof (sketch)Both the ideal and the real systefns, andSys(, have been changed for initialization and sending
of messages. We now briefly sketch that these changes aristeom$or both systems.

In case of initialization, the only difference between thigimal and the modified ideal system is that initializa-
tion betweerw andb is done immediately by H4,, so the adversary is not able to initialize a connection betw
these two honest users by himself because initializationngands are filtered out by constructionfl3. In
the real systendys,, this implicit initialization of TH4, exactly corresponds to a reliable authenticated channel
betweeru andb. In both systems, an initialization message is output taifee and immediately scheduled, along
with the usual output to the adversary. This gives consisteanges from?ysgprig andSys oig tO Sysg andSys,,

respectively, which yields indistinguishable behavioisSgs, and Sys,, SiNCeSys oig > S¥sy orig has already
been shown in [74, 9].

In case of sending of messages, the difference to the ofigiaal scheme only affects sending messages
between the two distinguished low users. In this cBdg, immediately schedules the message to the correspond-
ing user and outputs a message of the fgsamd_blindly, ,[,v) to the adversary. In the real system, reliable
non-authenticated channels do exactly the same: they glehttte message to the corresponding user and send
a blinded copy to the adversary. Hence we have consistengeBaand, usingysg iz > Syso orig: We Obtain
indistinguishable behaviors.

5.6 Non-Interference Proof

We now show that the overall firewall system fulfills the flowipp sketched in Figure 6. First we formally define
the ideal and real composed firewall systems. Next we fommalie flow policy. We then prove that the ideal
firewall (consisting of the filtering system and the ideallsecmessage-transmission system) fulfills the flow
policy. With the composition theorem and the non-intenfieepreservation theorem, we finally obtain the result
for the real firewall.

The ports of the lower- and higher-layer systems were naméuss a composition ofys, andSys, connects
the structures in the desired way according to Figure 8. Thuget a natural composition by composing every
structure ofSys(, with the only structure ofys,. We only restrictSys, to the structures where the two protected
usersa andb are honest.

Definition 18. (Ideal Firewall System).et Sys; ., :== {({TH«}, Sx) € Sysg | {a,b} C H }. Then the ideal
firewall system is defined as

Sys* = {(W5, 55,) | {a.b) S H C {1,....n}}

with M, = {THy, Mfiter Miiltert and 3¢ .= {outfl?,infill infi™l | w e {a,b}} U {out,?,in,!,in, % | u €

{1,...,n}\ {a,b}}.
The definition for the real firewall system is analogous:

Definition 19. (Real Firewall System)et Sys , , := {(My, Sx) € Sysy | {a,b} C H }. Then the real firewall
system is defined as i
Sys™ = {(Mf}. S5,) | {a.b} CH C {1....,n}}

with 83, as in the ideal firewall system and;; := M, U {Mfilter Mfilter)

These compositions fulfill the preconditions of the compositheorem from [74].
Given the composition, we can formally present the flow pofar the ideal firewall systen$ys™; recall
Figure 6.

Definition 20. (Flow Policy of the Firewall\We define a flow policy7* for Sys* as follows: For aII(M;;, Sy) €
Sys™, let Fay = (As;,,~sz) with the index sefs; := H be defined as follows: Far € {a, b}, let S; :=

i1y, and foru ¢ {a, b}, let S¢ := {out,?,in,!,in,“!}. We defines, sz, Sy iff v € {a,b} and

filo : fily
{out},?,in}} !, in},

u ¢ {a,b}.

We can now prove that the ideal firewall system fulfills its flpalicy.

Theorem 3. (Non-Interference Property of the Ideal Firewallpt 7* be the flow policy of Definition 20. Then
the systentys™ fulfills 7* perfectly.

In the proof of Theorem 3, we use the following lemma.

Lemma 2. Let (M, S3,) € Sys™ arbitrary, and letFs. := (As;,,~s;) be the flow policy of Definition 20
for this structure. Then the following invariants hold ok possible runs of all non-interference configurations
conf € Conf5'" (M3, 55) for H € H\ {a,b} andL € {a,b}.

sz, H

1. If H, receives an input atutf!?, it is of the form(rec_init, b) or (receive, b, m) with m € X+. If H, receives
an input atmaster, ?, it is sent by the master scheduler and equals

2. No output ofX™" at master,! depends on inputs from other machines. Each machine is exoegually
often byX"™" using a rotating clocking scheme. Furthermore, each oatpaifportp<! for p<! € S¢ and the
scheduled message only depends on prior outputs @ft portps! andp!.

3. If H, receives a term of the fornfrec_init,b) at outf!?, it is a direct consequence of the input
(snd_init) sent byH, (i.e., the scheduling sequence must have biggrX"-", Mfilter TH,, Mfitter H, or
Hba Xn_in7 M;}ilter’ Mglter7 Ha)-

4. If H, receives a term of the forifreceive, b, m) atoutfl?, it is a direct consequence (in the sense of Part 3) of
the messagésend, a, m) sent byH,, so the scheduling sequence has bidgrX"™", Mf'", TH;,, Mt H,
or Hba Xn_in7 Mglter’ nglterj H,.

The invariants also hold if we exchange the variablesdb.

Part 3 means that the adversary cannot initialize the conation betweerH, andH,. Part 4 ensures that
the adversary cannot pretend to be utdgrand that the number of received messages tigraquals the number
of messages sent by,.

Proof. Part 1 follows by construction ofMfi'*r andX"-", In the initialization transition the only possible output
atoutfi'l is of the form(rec_init, v). The testy = b of Mfil**" ensures that it igrec_init, b). The only remaining step

in which Mfir may output something tH,, is the receive-message step. Outputs are of the festaive, u, m).
Again, Mfier checksu = b first so we can only have outputs of the fotrceive, b, m). Thus, every output at
portoutfi! has the desired form. The partster, ? is connected to the master scheduler, and outputs theréd are o
the form1 by definition of the master schedub?-".

Part 2 is proved by inspection of the definition ¥f-". At the start of the runX"" schedule8IT ; and switches
between “Case 2: Schedule users” and “Caseandle scheduling demands”, cf. Definition 10, afterwatds
case2, only the internal counter is checked and maybe the coumtpr of Definition 10 is increased, so no
outputs from outside are taken into account. Now assumetiatoutputs anything ai! for p<! € S¢. This can
only happen in casg if X" receives exactly one input at one of the p@fts for p*! € ports(H,). In this case
it schedules the unique output ppft. Because op! € ports(H,) only messages sent b, are scheduled. This
finishes this sub-part of the proof.

Furthermore, note that no honest user can perform a cloeetbsp by definition. Moreover, the control will
automatically come back t§"-" after an arbitrary user is clocked by the system because aserforbidden to
have any clock-out ports by definition. If the adversary Isestuled it either has to do nothing or it has to schedule
a machine of the system. In the first case the control immelgligbes to the master scheduler, in the second one
the machine of the system will either output nothing if ondtsefinternal tests fails, or it finally schedules one
of the honest users. In both cas€s™ is clocked again. This ensures that the master schedulealwiys be
scheduled after a constant number of steps. Hence it caedmurform its round-robin clocking scheme, which
clocks every machine equally often.

Part 3 holds by construction dfAfi'" andTH;, and the previous part. First note th#t can only receive a term
(rec_init, b) if it has been output by Hy at out,! or by Mflter at py,,! in the previous step. The second case
fulfills our requirements by construction bfi'e", because a messag@ed_init) must have been output I, and
scheduled byX™-", so we can turn our attention to the first case. There are malgaises in whicir H;, may have
output this term. The first case is initialization of uskyr;, the second case is “Receive initialization”. In the first
caseH,, outputs(snd_init), the master schedulXf-" schedules it (iH, tells him what port to schedule, otherwise
nothing is scheduled), aritH, directly outputs this term ttfi'**" and schedules it immediately. This fulfills our
requirements. We will now show th@tH, does not output anything in the other case.

On input(rec_init, b) at portfrom_adv,?, THy first checksstopped:P*® = 0, doing nothing at failure. After

a successful test it checksit;”.© = 0. By our modification ofTHy this can only hold ifH, has not initialized
spec

itself, soinit;’,~ = 0 must hold. Because ofe #, THy will not outputs anything. This finishes the proof of this
part.

Part 4 is proved similar to the previous part. First note tHatcan only receive a terifreceive, b, m) if it has been
output by THy atout,! or by Mfi*e" at py;, ! in the previous step. An input biyifite" fulfills our requirements by
construction oM Note that there are only two cases in whitH,, may have output this term. The first case
is sending messages of usérto userH,, the second case is “Receive messages fromiliskrthe first caseH,
sends(send, m, a), which is again scheduled B¢"-". TH4, directly outputs this term tdfi'te and schedules it

spec

immediately. This fulfills our requirements. Furthermaté@creases the internal countesg_out;”,". We finally
show thatTHy, does not output anything in the second case. On ifyauative_blindly, b, 7) at portfrom adv,?,
THy first does its usual initialization checks. We assume thebetsuccessful, otherwise it outputs nothing any-
way. It then checksnsg_outy’s® = 3, if (m, j) := deliver;’;[i] # |. However, the message countesg_out;’s"

is settomsg-in;’," + 1 after every sent message fréro « andj < msg_ iny’, always holds by construction of
THy for every(m,j) = delivery;°[i] # |. Hence, we havg < msg- OutSpec andTHH will not output anything.
This finishes the proof of this part

Proof (Theorem 3)We have to show thatys™ fulfills the flow policy 7*. Let a structure(M;fL, S;,) € Sys™ be
given, and]-'jgﬁ := (Asy ,~s3) the flow policy for this structure. Let two port sefs - S, be given. Because

of the symmetry of the flow policy, we can assume- a, while u ¢ {a, b}. We have to showMz, Sx) Eper
NIReq;:* ww
CH

Let a non-interference configuratiennf = (MH, S, Um-in Ag) for this structure and high and low user
u andv be given. We denote the two families of viewslef for the initial bit b by view cons »(Ho), and as-
sume a fixed security parameter Assume for contradiction thaByess,cons iS greater thang. This implies
view conf,0({Ha, Ho}) # view cons1({Ha, Hp}). This means that there has to be a first inpufltt, H, } with
different probability in both cases. We use Lemma 2 to shattthis cannot happen.

By Part 1 of Lemma 2, this input can only be of the fofrac_init, c) or (receive, c,m) atoutf'?, or 1 at
master.? for ¢ € {a,b}. We write¢ for the other protected user, i.dq, ¢} = {a,b}. If the input is(rec_init, ¢)

Part 3 implies that this input is a direct consequence of pati(snd_init) by userH;. Hence, there had to be an
input toH: with different probability in both cases. This contradiots assumption of thérst different input.

Now assume this first different input is of the forfreceive, c,m). By Part 4 the corresponding input
(send, ¢, m) must have been sent directly bl. with the same message. Furthermore, the underlying trusted
host THy, for secure reliable message transmission ensures thatdbsage has been sent exactly as often as
H: receives this input, so there cannot be any influence fromideifor the same reason as in the first case.
This implies that there already had to be an inputitawvith different probability in both cases, contradicting ou
assumption of the first different input again.

Finally, assume this input is at pontaster.?. By Part 2 this input does not depend on any behaviors of other
machines. Analogous to the previous cases, we obtain aacheiion again.

Therefore, we obtaiyyess, cons = 3. This finishes the proof fatonf, and thus the overall proof.

Given that the ideal firewall fulfills its flow policy it follow easily that the real firewall fulfills the corresponding
flow policy. However, this only holds computationally besauhe real firewall is only computationally as secure
as the ideal one.

Theorem 4. (Non-Interference Property of the Real Firewalhe real systensys™ for the cryptographic firewall
fulfills the flow policy F# computationally, whereF# is the corresponding flow policy faF* according to
Definition 16. In formulasSys¥ |=poly F#.

Proof. According to Theorem 2, the real secure reliable messagesitnission systerfiys, is computationally

at least as secure as its specificati®ys;,. By Part 1 of Lemma 2 the systesys, is polynomial-time. The
other, more technical preconditions for the compositi@otem can easily be seen to be fulfilled. Hence we have
Sys™ >poly Sys™. Since perfect fulfillment of non-interference requirettseimplies computational fulfillment,
we obtainSys* ., F# using Theorem 1.

6 Conclusion

We have presented the first general definition of probaigilistn-interference in reactive systems that includes

a computational case (Section 3). We have established arpagi®n theorem stating that our definition behaves

well under simulatability (Section 4); this enables modplaofs of cryptographic systems and step-wise refine-

ment without destroying the non-interference properfidss is particularly important because non-interference

properties of abstract specifications of cryptographitesyis can often be validated by formal proof tools, whereas
real cryptographic systems are much more difficult to vadidAs an example, we have presented a cryptographic
firewall system and proved a non-interference propertyhagoreservation theorem (Section 5).

Actually using formal proof tools for similar proofs is onegsibility for future research. Furthermore, we only
considered transitive flow policies so far. However, theeessveral interesting examples of intransitive flow poli-
cies, and several definitions were made for deterministiceom-deterministic system models [77, 75, 76, 80, 59].
We extended these notions to probabilistic and computalttimodels in [12], and obtained first quantative com-
putational results in [4]. Another possible direction itmnsider different master schedulers in non-interference
configurations and to study to what extent the resulting sgicexdepends on the scheduling strategy. Finally, the
preservation theorem paves the way towards treating agygpdiic primitives similar to the Dolev-Yao abstrac-
tion again, as in some articles mentioned in the introduact#dfirst suitable, composable library of cryptographic
primitives with a simulatability proof between the ideabiahe real version was presented in [19, 18, 14, 24]. This
may eventually lead again to a type-based analysis of laagstems that only use well-defined cryptographic
primitives as black boxes. Note, however, that the compmutat non-interference definition and the preservation
theorem were necessary to put such an approach on a sousd basi

Acknowledgments

We thankHeiko Mante] Matthias SchuntermndMichael Waidneffor interesting discussions.

References

1. M. Abadi and B. Blanchet. Secrecy types for asymmetric roomication. InProc. 4th International Conference on
Foundations of Software Science and Computation StruEt{Ff®@SSACS)Nolume 2030 of_ecture Notes in Computer
Sciencepages 25-41. Springer, 2001.

2. M. Abadi and P. Rogaway. Reconciling two views of crypagty (the computational soundness of formal encryption).
Journal of Cryptology15(2):103—-127, 2002.

3. M. Backes. A cryptographically sound dolev-yao styleusitg proof of the otway-rees protocol. Broceedings of 9th
European Symposium on Research in Computer Security (Ef)Rblume 3193 of ecture Notes in Computer Science
pages 89-108. Springer, 2004.

4. M. Backes. Quantifying probabilistic information flow @aomputational reactive systems. Pmoceedings of 10th Eu-
ropean Symposium on Research in Computer Security (ESQRA@@me 3679 ol ecture Notes in Computer Science
pages 336—354. Springer, 2005.

5. M. Backes. Unifying simulatability definitions in crymgimphic systems under different timing assumptiakaurnal of
Logic and Algebraic Programming (JLAPJ:157-188, 2005.

6. M. Backes and M. Duermuth. A cryptographically sound dglao style security proof of an electronic payment system.
In Proceedings of 18th IEEE Computer Security Foundationskgfmp (CSFW)pages 78-93, 2005.

7. M. Backes and D. Hofheinz. How to break and repair a unalgrsomposable signature functionality. Pmoceedings of
7th Information Security Conference (IS@plume 3225 ot ecture Notes in Computer Sciengages 61-72. Springer,
2004. Preprint on IACR ePrint 2003/240.

8. M. Backes and C. Jacobi. Cryptographically sound and maessisted verification of security protocolsPimceedings
of 20th International Symposium on Theoretical Aspectsashfuter Science (STACSplume 2607 of_ecture Notes in
Computer Sciencgages 675-686. Springer, 2003.

9. M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptpgieally sound implementations using composition and
formally verified bisimulation. InProc. 11th Symposium on Formal Methods Europe (FME 200@ume 2391 of
Lecture Notes in Computer Scienpages 310-329. Springer, 2002.

10. M. Backes and B. Pfitzmann. Computational probabilistic-interference. IProceedings of 7th European Symposium
on Research in Computer Security (ESORI®@8lume 2502 of ecture Notes in Computer Scienpages 1-23. Springer,
2002.

11. M. Backes and B. Pfitzmann. A cryptographically soundiggcproof of the needham-schroeder-lowe public-key pro-
tocol. InProceedings of 23rd Conference on Foundations of Softwaohriology and Theoretical Computer Science
(FSTTCS)volume 2914 ofLecture Notes in Computer Sciengages 1-12. Springer, 2003. Preprint on IACR ePrint
2003/121.

12. M. Backes and B. Pfitzmann. Intransitive non-interfeeefor cryptographic purposes. Rroc. 24th IEEE Symposium
on Security & Privacypages 140-152, 2003.

13. M. Backes and B. Pfitzmann. Computational probabilistic-interferencelnternational Journal of Information Security
(131S), 3(1):42-60, 2004.

14. M. Backes and B. Pfitzmann. Symmetric encryption in a Etable dolev-yao style cryptographic library. Proceed-
ings of 17th IEEE Computer Security Foundations WorkshdpH@®) pages 204-218, 2004. Preprint on IACR ePrint
2004/059.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

M. Backes and B. Pfitzmann. Limits of the cryptographialization of dolev-yao-style xor. IRroceedings of 10th
European Symposium on Research in Computer Security (ESE)Rblume 3679 of ecture Notes in Computer Science
pages 178-196. Springer, 2005.

M. Backes and B. Pfitzmann. Relating cryptographic umdimfic secrecy. IEEE Transactions on Dependable and
Secure Computing (TDS((2):109-123, 2005.

M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Patyial livenessJournal of Computer Securityt2(3-4):589—
617, 2004.

M. Backes, B. Pfitzmann, and M. Waidner. A composabletographic library with nested operations (extended abgtra
In Proc. 10th ACM Conference on Computer and Communicatioogrig pages 220-230, 2003.

M. Backes, B. Pfitzmann, and M. Waidner. A universally posable cryptographic libraryACR Cryptology ePrint
Archive 2003:15, 2003.

M. Backes, B. Pfitzmann, and M. Waidner. A general contjpostheorem for secure reactive system.Pioceedings
of 1st Theory of Cryptography Conference (TC@)lume 2951 ol ecture Notes in Computer Sciengages 336—354.
Springer, 2004.

M. Backes, B. Pfitzmann, and M. Waidner. Low-level idéghatures and general integrity idealization.Aroceedings
of 7th Information Security Conference (IS@)lume 3225 of_ecture Notes in Computer Scienpages 39-51. Springer,
2004.

M. Backes, B. Pfitzmann, and M. Waidner. Secure asynoluomneactive systems. IACR Cryptology ePrint Archive
2004/082, Mar. 2004.

M. Backes, B. Pfitzmann, and M. Waidner. Reactively sesignature schemesnternational Journal of Information
Security (1J1S)4(4):242-252, 2005.

M. Backes, B. Pfitzmann, and M. Waidner. Symmetric autbation within a simulatable cryptographic librapterna-
tional Journal of Information Security (1J1S4(3):135-154, 2005.

D. Beaver. Secure multiparty protocols and zero knogdegroof systems tolerating a faulty minoritylournal of
Cryptology 4(2):75-122, 1991.

D. Bell and L. LaPadula. Secure computer systems: Unéigubsition and multics interpretation. Computer Science
Technical Report ESD-TR-75-306, The Mitre Corporation/@.9

M. Bellare, R. Canetti, and H. Krawczyk. A modular apptodo the design and analysis of authentication and key
exchange protocols. IRroc. 30th Annual ACM Symposium on Theory of Computing (ST@Qes 419-428, 1998.

M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. aik@hs among notions of security for public-key encryption
schemes. IMdvances in Cryptology: CRYPTO '9&lume 1462 ol_ecture Notes in Computer Sciengages 26—45.
Springer, 1998.

R. Canetti. Security and composition of multiparty ¢ogwaphic protocolsJournal of Cryptology3(1):143—-202, 2000.
R. Canetti. Universally composable security: A new giya for cryptographic protocols. Proc. 42nd IEEE Symposium
on Foundations of Computer Science (FOQ®)ges 136-145, 2001. Extended version in Cryptology eRrithive,
Report 2000/67http://eprint.iacr.org/

R. Canetti and S. Goldwasser. An efficient thresholdlpuiazly cryptosystem secure against adaptive chosen cgttert
attack. InAdvances in Cryptology: EUROCRYPT ;9®lume 1592 of_ecture Notes in Computer Scienpages 90-106.
Springer, 1999.

D. Clark, C. Hankin, S. Hunt, and R. Nagarajan. Possiiglinformation flow is safe for probabilistic non-interéace.
In Proc. WITS 2000. www.doc.ic.ac.uk/ ~ clh/Papers/witscnh.ps.gz

R. Cramer and V. Shoup. Practical public key cryptosggieovably secure agalnst adaptive chosen ciphertextkattac
Advances in Cryptology: CRYPTO '9&lume 1462 of.ecture Notes in Computer Scienpages 13—-25. Springer, 1998.
A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Sexprotocol composition (extended abstract)Phoc. 1st ACM
Workshop on Formal Methods in Security Engineering (FM$Byes 11-23, 2003.

D. E. Denning. A lattice model of secure information fl@ommunications of the ACM9(5):236—243, 1976.

D. E. Denning and P. J. Denning. Certification of progréonsecure information flowCommunications of the ACM
20(7):504-513, 1977.

D. Dolev and A. C. Yao. On the security of public key pratisc IEEE Transactions on Information Theo139(2):198—
208, 1983.

R. Focardi and R. Gorrieri. The compositional securitgaker: A tool for the verification of information flow sedyri
properties.|EEE Transactions on Software Engineeri2$(9):550-571, 1997.

R. Gennaro and S. Micali. Verifiable secret sharing asreecomputation. IrAdvances in Cryptology: EUROCRYPT
'95, volume 921 of_ecture Notes in Computer Scienpages 168-182. Springer, 1995.

J. A. Goguen and J. Meseguer. Security policies and isecoodels. InProc. 3rd IEEE Symposium on Security &
Privacy, pages 11-20, 1982.

J. A. Goguen and J. Meseguer. Unwinding and inferencegatonn Proc. 5th IEEE Symposium on Security & Privacy
pages 75-86, 1984.

O. Goldreich. Secure multi-party computation. Departtof Computer Science and Applied Mathematics, The Weiz-
mann Institute of Science, June 1998, revised Version 1tdl@c 2002, 1998http://www.wisdom.weizmann.
ac.il/lusers/oded/pp.htm

43
44

45.

46.

47.
48.

49.

50.

51.
52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.

70.

71.
72.

73.

O. GoldreichFoundations of Cryptography: Basic ToolGambridge University Press, 2001.

O. Goldreich, S. Micali, and A. Wigderson. How to play angntal game — or — a completeness theorem for protocols
with honest majority. IrProc. 19th Annual ACM Symposium on Theory of Computing (§.Ti@2Qes 218-229, 1987.

S. Goldwasser and L. Levin. Fair computation of generattions in presence of immoral majority. Advances in
Cryptology: CRYPTO '90volume 537 of_ecture Notes in Computer Scienpages 77-93. Springer, 1990.

S. Goldwasser, S. Micali, and R. L. Rivest. A digital sigire scheme secure against adaptive chosen-messags.attac
SIAM Journal on Computindl7(2):281-308, 1988.

J. W. Gray lll. Probabilistic interference. Rroc. 11th IEEE Symposium on Security & Privapgges 170-179, 1990.

J. W. Gray Ill. Toward a mathematical foundation for immf@tion flow securityJournal of Computer Securiti(3):255—
295, 1992.

M. Hirt and U. Maurer. Player simulation and general aslwgy structures in perfect multiparty computatidournal of
Cryptology 13(1):31-60, 2000.

C. A. R. Hoare.Communicating Sequential Processésternational Series in Computer Science, Prentice Higimel
Hempstead, 1985.

J. Jacob. Basic theorems about secudityirnal of Computer Securityt (4):385-411, 1992.

D. M. Johnson and F. Javier Thayer. Security and the csitiqpo of machines. IriProc. 1st IEEE Computer Security
Foundations Workshop (CSFWages 72—-89, 1988.

M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network versiaf the pump. IrProc. 16th IEEE Symposium on Security
& Privacy, pages 144-154, 1995.

P. Laud. Semantics and program analysis of computditiseeure information flow. IfProc. 10th European Symposium
on Programming (ESORpages 77-91, 2001.

P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Agivabilistic poly-time framework for protocol analysis. Pmoc.
5th ACM Conference on Computer and Communications Secp&ges 112—-121, 1998.

P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Pabilistic polynomial-time equivalence and security gge. In
Proc. 8th Symposium on Formal Methods Europe (FME 1988ume 1708 of_ecture Notes in Computer Scienpages
776-793. Springer, 1999.

N. Lynch.Distributed Algorithms Morgan Kaufmann Publishers, San Francisco, 1996.

H. Mantel. Unwinding possibilistic security propestieln Proc. 6th European Symposium on Research in Computer
Security (ESORICSYolume 1895 ot.ecture Notes in Computer Scienpages 238-254. Springer, 2000.

H. Mantel. Information flow control and applications +dging a gap. InProc. 10th Symposium on Formal Methods
Europe (FME 2001)volume 2021 of.ecture Notes in Computer Scienpages 153-172. Springer, 2001.

H. Mantel. Preserving information flow properties undsinement. InProc. 22nd IEEE Symposium on Security &
Privacy, pages 78-91, 2001.

H. Mantel. On the composition of secure systemd2rbt. 23rd IEEE Symposium on Security & Privapages 88-101,
2002.

H. Mantel and A. Sabelfeld. A generic approach to thersgaof multi-threaded programs. IAroc. 14th IEEE Computer
Security Foundations Workshop (CSE\pages 200-214, 2001.

D. McCullough. Specifications for multi-level securétyd a hook-up property. IRroc. 8th IEEE Symposium on Security
& Privacy, pages 161-166, 1987.

D. McCullough. A hookup theorem for multilevel securififEE Transactions on Software Engineeriig(6):563-568,
1990.

J. McLean. Security models and information flowPhoc. 11th IEEE Symposium on Security & Privapgges 180-187,
1990.

J. McLean. A general theory of composition for trace s&ised under selective interleaving functions. Piroc. 15th
IEEE Symposium on Security & Privagages 79-93, 1994.

J. McLean. Security models. ChapteEincyclopedia of Software Engineerirnt94.

J. McLean. A general theory of composition for a classpafssibilistic” security propertiesIEEE Transactions on
Software Engineering?2(1):53—-67, 1996.

S. Micali and P. Rogaway. Secure computationAdiwvances in Cryptology: CRYPTO '9dolume 576 of_ecture Notes
in Computer Scien¢gages 392—-404. Springer, 1991.

D. Micciancio and B. Warinschi. Soundness of formal gption in the presence of active adversarie?ioc. 1st Theory
of Cryptography Conference (TCGplume 2951 of_ecture Notes in Computer Scienpages 133-151. Springer, 2004.
J. K. Millen. Covert channel capacity. Rroc. 8th IEEE Symposium on Security & Privapgges 60—66, 1987.

A. Myers and B. Liskov. Protecting privacy using the décaized label model ACM Transactions on Software Engi-
neering and Methodologyages 410-442, 2000.

B. Pfitzmann and M. Waidner. Composition and integritgservation of secure reactive systems. Pioc. 7th
ACM Conference on Computer and Communications Secydtyes 245-254, 2000. Extended version (with Matthias
Schunter) IBM Research Report RZ 3206, May 200&p://www.semper.org/sirene/publ/PfSW1_
OOReactSimullBM.ps.gz

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.
84.

85.

86.

87.

88.

89.

90.

91.

A

B. Pfitzmann and M. Waidner. A model for asynchronoustieasystems and its application to secure message trans-
mission. InProc. 22nd IEEE Symposium on Security & Privaggges 184-200, 2001.

S. Pinsky. Absorbing covers and intransitive non-fetence. InProc. 16th IEEE Symposium on Security & Privacy
pages 102-113, 1995.

A. Roscoe and M. Goldsmith. What is intransitive noriieence? IrProc. 12th IEEE Computer Security Foundations
Workshop (CSFWpages 226-238, 1999.

J. Rushby. Noninterference, transitivity, and chamoeitrol security. Technical report, Computer Sciencedtatory,
SRI International, 1992.

A. Sabelfeld and D. Sands. A per model of secure infoondtow in sequential programs. Rroc. European Symposium
on Programming (ESORPpages 40-58. Springer, 1999.

A. Sabelfeld and D. Sands. Probabilistic noninterfegefor multi-threaded programs. Froc. 13th IEEE Computer
Security Foundations Workshop (CSE\pages 200-214, 2000.

G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austeld D. Toll. Verification of a formal security model for mialp-
plicative smart cards. IRroc. 6th European Symposium on Research in Computer 8e(E8ORICS)volume 1895 of
Lecture Notes in Computer Scienpages 17-36. Springer, 2000.

G. Smith. A new type system for secure information flowPtac. 14th IEEE Computer Security Foundations Workshop
(CSFW) pages 115-125, 2001.

G. Smith and D. Wolpano. Secure information flow in a mitkiteaded imperative language. Pnoc. 25th ACM Sympo-
sium on Principles of Programming Languages (PORidges 355—-364, 1998.

D. Sutherland. A model of information. Rroc. 9th National Computer Security Conferengages 175-183, 1986.

D. Wlpano. Secure introduction of one-way functions.Proc. 13th IEEE Computer Security Foundations Workshop
(CSFW) pages 246-254, 2000.

D. Volpano and G. Smith. Eliminating covert flows with mium typings. InProc. 10th IEEE Computer Security
Foundations Workshop (CSFY\ages 156-168, 1997.

D. Volpano and G. Smith. Probabilistic noninterfereimca concurrent language. Froc. 11th IEEE Computer Security
Foundations Workshop (CSFWages 34-43, 1998.

D. Wolpano, G. Smith, and C. Irvine. A sound type systemskcure flow analysisJournal of Computer Security
4(3):167-187, 1996.

J. T. Wittbold and D. M. Johnson. Information flow in noteteninistic systems. IfProc. 11th IEEE Symposium on
Security & Privacy pages 144-161, 1990.

A. C. Yao. Protocols for secure computations. Phec. 23rd IEEE Symposium on Foundations of Computer Seienc
(FOCS) pages 160-164, 1982.

A. Zakinthinos and E. S. Lee. A general theory of secyityperties. InProc. 18th IEEE Symposium on Security &
Privacy, pages 94-102, 1997.

S. Zdancewic and A. C. Myers. Robust declassificatiorProt. 14th IEEE Computer Security Foundations Workshop
(CSFW) pages 15-23, 2001.

Ideal Secure Message Transmission with Reliable Channels

This appendix contains the full definition of the ideal lowayer of the firewall system, the secure message-
transmission system with reliable channels, as sketch8ddtion 5.3.

Scheme 2 (Secure, Reliable Message Transmission with OréerChannels)Let n € N and polynomials
L,s1,s2 € N[z] be given that bound the length of each message and the nurhbrerssages a user can send
and receive, respectively, from another user.Mét= {1,...,n}, and fix two elements, b € M.

The system is a standard ideal system (see Section 5.3)heithccess structutdCC := {H C M | a,b €

H}. Thusitis of the form

Sys, = {({THy}, Sxn) | H € ACC}.

Specified portsWe define the specified ports by their complements, i.e., ¢ints phe honest users should have:
Sg = {iny!, outy?,in, ! | u € H}.

Ports of the trusted hosts.The ports of THy are {in,?,out,!,out,*! | v € H} U {from_adv,?,
to_adv,!, to_adv, ! | u € H}.

State of the trusted host#ternally, THy maintains seven arrays:

= (init3P5)u,ver Over{0, 1} models the initialization state of the users,

(stOppedup “)uen over{0, 1} denotes whether the service to usdras stopped,

— (8¢l) e ,verm over{0,. .., s1(k)} counts the inputs of userintended for usen,
(sc;’;‘},sf’ec)ueM veH over{O s2(k)} counts the outputs for useroriginating from uset,

— (msg_in®P o JueH veM over{O ., s1(k)} counts the valid sent messages from us&y userv,

— (msg- outf{"jc)u,vey over{0,...,s2(k)} denotes the next message number expected fratw, and
— (deliversy)u ven over lists hoIds the messages in transit frono v.

The first five arrays are initialized witheverywhere, the sixth one witheverywhere, and the lists in the seventh
are initially empty.

Transition function. The state-transition function dfH4 is defined by the following rules for the individual
inputs.X’ denotes the message alphabet;m) the length of a message aside(() the length of a list. The value
J denotes an error. “Abort” means finishing a state transition

We give explanations in the first transition; the other tit@mss should then be understood similarly.

— Send initialization: On input énd_init) atin, ?: If sci]5P*¢ < s1 (k) forall v € M, setscllsPec := scil:Pe+-1
for all v € M, otherwise abort. This ensures that the number of inputsairesmpolynomial. Verify
stoppedy = = 0 andiniti’s; = 0, i.e., the service for user is still alive andu has not initialized before. If
not, abort. Setnit;’s := 1 and outpu(snd_init) atto_adv,!, i.e., the adversary learns of the initialization.
If u = a, immediately setnit;;,” = 1 because for this user pair we model reliable communicaiod output
(rec_init, a) atout,! and1 atout, <!, and similarly witha andb exchanged. Otherwise outpugtto_adv,,“!.

— Receive initialization: On input (rec_init,u) at from_adv,? with u € M,v € H: If stoppedP*c = 0,
inits s = 0, andlu € H = it = 1], setinity " := 1, else abort. e 5P < sy(k) setsc P =
sCOY spec 1 1 and outpu(rec_init u) atout,! and1 atout, !.

_ Send:On input(send, m, v) atin, ?: If sci:P < s1(k), setscisPe := scisP*° + 1, otherwise abort. Verify
that stopped=P* = 0, m € X*,1:=len(m) < L(k),v € M\ {u} initye, = 1andinit;’; = 1, else abort.
Setmsg-iny s := msg-iniy + 1.

o Ifv¢g 7—[output(send, (m msg-iny),v) atto_adv,! and1 atto_adv, .
o lf v € H, seti = sae(delwers"ec) + 1 and delivers7[i] := (m,msg-in35). Further, output
(send_blindly, 7,1, v) atto_adv,!.
x If {u,v} # {a,b}, outputl atto_adv,“!.
If {u,v} = {a,b} setmsg_out;Ps" := msg_inily” + 1 and outpuf(receive, u, m) atout,! and1 at
out, 1.8

— Receive from honest partyu: On input(receive_blindly, u,) at from_adv,? with u,v € H: Verify that
stopped P = 0, indt3 s = 1, initsr = 1, sc§'y*Pe < so(k) and(m, j) = deliverffff[] # 1. else abort.
Further verifymsg_ outSF’ec =j.If this holds setsc°“t SPEC 1= sty 4 1 andmsg_outiPs := j + 1 and
output(receive, u, m) atoutv' and1 atout, !.

— Receive from dishonest partyu: On input (receive, u,m) at from_adv,? with v« € M\ H,m €
Y*,len(m) < L(k) andv € H: If stoppedy’ ™ = 0, initsS = 1, inityry” = 1 andsc'y*P < sy(k),
Setscz“f) sPec .— geoutspec 4 1 and outpuireceive, u, m) atout,! and1 atout,,!.

— Stop: on Input(stop) atfrom_adv,? with u € H: If stopped:P*® = 0, setstopped:P* := 1 and outpu{stop)
atout,! andl atout,,“!.

8 Increasing the out-message counter is essential for axpidplay attacks because the message directly delivered ta
using a reliable channel.

