
Technical Report – Computational Probabilistic Non-Interference (Long
Version)⋆

Michael Backes1 and Birgit Pfitzmann2

1 IBM Zurich Research Laboratory, Rüschlikon, Switzerland
mbc@zurich.ibm.com

2 IBM Zurich Research Laboratory, Rüschlikon, Switzerland
bpf@zurich.ibm.com

November 28, 2005

Abstract. Information flow and non-interference are popular conceptsfor expressing confidential-
ity and integrity properties. We present the first general definition of probabilistic non-interference
in reactive systems that includes a computational case. This case is essential to cope with real
cryptography, since non-interference properties can usually only be guaranteed if the underlying
cryptographic primitives have not been broken. This might happen, but only with negligible prob-
ability. We show that our non-interference definition is maintained under simulatability, the notion
of secure implementation of modern cryptography. This allows secure composition of systems and
yields a general strategy for including cryptographic primitives in information-flow proofs. As an
example we study a cryptographic firewall guarding two honest users from their environment.

1 Introduction

Information flow and non-interference are powerful concepts for expressing the confidentiality and integrity re-
quirements that a program or a cryptographic protocol should fulfill. The term “absence of information flow”
illustrates the confidentiality view: One requires that no information flows from a secret system part or data item
into a less secure system part or data item, or from users withhigh confidentiality needs to less trusted users. The
term “non-interference” illustrates the integrity view: One requires that no untrusted information should interfere
with data items with higher correctness needs, or that highly trusted users are not misinformed or bothered by
such information.

The concept of information flow was first investigated for secure operating systems by Bell and LaPadula [26]
and by Denning [35]. Subsequently, various definitions havebeen proposed that rigorously specify when infor-
mation flow is considered to occur. The first, namednon-interference, was introduced by Goguen and Meseguer
[40, 41] to analyze the security of computer systems. Their work was limited to deterministic systems; never-
theless, subsequent work is still based on their ideas. Afterwards, research focused on non-deterministic sys-
tems. The main distinction is between probabilistic and possibilistic behaviors. Beginning with Sutherland [83],
the possibilistic case was treated in [63, 88, 67, 90, 58], while definitions handling probabilistic and information-
theoretic behaviors were proposed by Gray [47, 48] and McLean [65]. Clark et. al. showed in [32] that possibilistic
information-flow analysis can be used to check for probabilistic interference in certain cases.

For reasoning about real cryptographic systems, we need probabilistic behaviors. On this probabilistic side,
Gray’s definition of “Probabilistic Non-Interference” of reactive systems stands out. It is closely related to the
perfect case of our definition, but it does not cover computational aspects, which are essential for reasoning
about systems using real cryptographic primitives. As an example, consider an arbitrary public-key encryption
scheme. Obviously, an adversary with unlimited computing power can break the scheme by computing all possible
encryptions of every plaintext and comparing the results with a given ciphertext. Moreover, even polynomially
bounded adversaries may have a very small, so-callednegligibleprobability of success, e.g., by trying just a few
encryptions of a few plaintexts. Thus, cryptographic definitions usually state that every polynomially bounded
adversary can only achieve its goal with a negligible probability. We present the first general definition of non-
interference for thiscomputationalcase. Thus, non-interference properties can be expressed for reactive systems

⋆ A more compact version of this paper appeared at ESORICS 2002[10] and IJIS 2004 [13].

containing arbitrary cryptographic primitives, which is of great importance for extensible systems like applets,
kernel extensions, mobile agents, virtual private networks, etc.

In contrast to other definitions, we do not abstract from cryptographic details and probabilism a priori, e.g., by
using the common Dolev-Yao abstraction [37] or special typesystems, but include the computational variant in
our definition. This enables sound reduction proofs with respect to the security definitions of the included cryp-
tographic primitives, such as an underlying public-key encryption scheme. This means that every possibility to
break the non-interference properties of the system can be used to break the underlying cryptography. Moreover,
we show that our definition behaves well under simulatability, which is the common concept in modern cryp-
tography for defining a notion of secure implementation. We show that non-interference properties proved for an
abstract specification automatically carry over to a concrete implementation if that implementation is correct in
the sense of simulatability. This theorem is essential since it enables modular proofs of large systems, i.e., proofs
done for ideal systems not containing any probabilism simply carry over to their real cryptographic counterparts.
Moreover, properties of these ideal systems could quite easily be proved with machine assistance, so our theorem
provides a link between cryptography and formal proof toolsfor non-interference.

As an example, we present a cryptographic firewall which enables two honest users to communicate with each
other, but guards them from their environment, and prove itsdesired non-interference property.

Further related literature.An important application of information flow is the static analysis of program code
with respect to certain privacy requirements. This problemwas first treated by Denning [36] using flow graphs
on I/O variables. Recently, type-based systems have been proposed [85, 82, 86, 81] for detecting and eliminating
information flow in different kinds of languages. Some of these type systems were proven correct by Sabelfeld
and Sands [78, 79], who presented a semantic characterization of probabilistic bisimulation and used it to express
non-interference for multi-threaded and sequential programs. Formal soundness proofs of security type systems
in general have been pioneered by Volpano et al. [87]. Manteland Sabelfeld [62] investigated the integration
of security properties of programming languages and abstract-level properties of information flow, providing an
interesting overview of how models of different security properties can be combined to increase the relative power
of their analysis. Moreover, a tool for automatically checking the information flow in concurrent languages has
been developed by Focardi and Gorrieri [38] for a variety of information-flow models.

Today, there is no general definition of the absence of information flow, but several of them coexist. Every
definition has advantages and disadvantages, and which one to take depends on the application area. Many of
these definitions have the shortcoming that they are not preserved under refinement, cf. [65, 51, 60]; moreover,
special care must be taken concerning the composition of secure system when reasoning about comprehensive
security properties such as non-interference, see [63, 52,64, 66, 68, 61, 34, 23, 5, 20, 7, 21, 14]. Furthermore, many
definitions of non-interference were overly restrictive, so that many useful systems did not fulfill them. This
problem is often tackled by downgrading certain information, so that it may then leak from the system, see
[72, 91]. In some cases, the amount of leaked information canbe rigorously defined using information-theoretic
techniques [71, 53].

Some recent research also investigated non-interference properties involving real cryptographic primitives.
Laud [54] presented a sequential language for which he expressed real computational secrecy. Besides our work,
this paper contains the only definition of non-interferenceincluding a computational case. However, the definition
is non-reactive, i.e., it does not comprise continuous interaction between users, an adversary, and the system. This
is a severe restriction on the set of security systems that can be handled. Further, encryption is the only primitive
covered there so far, i.e., other important primitives likeauthentication, pseudo-number generators, etc. are not
considered. Our definition is reactive and comprises arbitrary cryptographic primitives. Volpano [84] investigated
conditions for safely using one-way functions in a programming language, but his underlying definition does not
express non-interference, but the secrecy of a specific secret. Abadi and Blanchet [1] introduced type systems
where asymmetric communication primitives, especially public-key encryption, can be handled, but these primi-
tives are only relative to a Dolev-Yao abstraction [37], i.e., the primitives are idealized so that no computational
non-interference definition is needed. The computational soundness of Dolev-Yao abstraction is currently still
subject to intenstive research, see, e.g., [73, 2, 19, 8, 11,24, 21, 3, 14, 70, 16, 15, 6].

Outline of the paper.In Section 2 we briefly review the underlying model of asynchronous reactive system. The
original contributions are presented in Sections 3 to 5. In Section 3 we present our definition of non-interference.
This includes extending the underlying model to multiple users. In Section 4 we show that our definition behaves
well under simulatability, i.e., secure implementation does not change the non-interference properties. In Section 5

we present an abstract specification and an implementation of a cryptographic firewall guarding two honest users
from their environment, and we prove that they fulfill our definition of non-interference. We conclude with a
summary of our results and open issues for future research.

2 General System Model for Reactive Systems

In this section we recapitulate the model for probabilisticreactive systems introduced by Pfitzmann and Waidner
in [74, 22]. Several definitions will only be sketched, whereas those that are important for understanding our new
definitions and proofs are given in full detail. All other details can be looked up in the original paper.

In particular, we repeat the scheduling model in full detailbecause scheduling is important for achieving non-
interference: We cannot let the adversary schedule everything and hence need special schedulers below. Crypto-
graphic asynchronous systems need two specific scheduling aspects compared with other asynchronous system
models: Schedulers are “normal” system machines, so that they schedule with realistic knowledge, and different
channels may be scheduled by different machines, e.g., so that local submachines can be represented.

2.1 General System Model

Systems mainly consist of several interacting machines. Usually we consider real systems containing a setM̂ of
machines{M1, . . . ,Mn}, one for each useru from a setM = {1, . . . , n}, and ideal systems containing only one
machine{TH}.

Communication between different machines is done via ports. Inspired by the CSP-notation [50], we write
input and output ports asp? andp!, respectively. The input and output ports in a port setP are writtenin(P) and
out(P), respectively. Connections are defined by naming convention: portp! sends messages top?. To achieve
asynchronous timing, a message is not immediately delivered to its recipient, but first stored in a special machine
p̃ called a buffer, where it waits to be scheduled. This can be done by the machine with the unique clock-out port
p⊳!. To schedule thei-th message of buffer̃p, it outputsi at p⊳!, see Figure 1. The buffer then delivers thei-th
message and removes it from its internal list. Most buffers are scheduled either by a specific master scheduler or
by the adversary, i.e., one of those has the clock-out port. Portsp! andp?, in contrast to the other four port types
occurring at the buffers, are calledsimple, and asimple machinehas only simple ports and clock-out ports.

Receiving
machine

Sending
machine

Scheduler for
buffer q~

q!

q !

q?

Buffer q
~

q ?

q↔!

q↔?

1

Fig. 1. Naming of ports around a buffer. Later one can often abstractfrom the buffer and simply regardq! andq? as asyn-
chronously connected.

The precise definition of machines is a variant of probabilistic state-transition machines, similar to probabilis-
tic I/O automata as sketched by Lynch [57]. If a machine is switched, it reads an input tuple at its input ports and
performs its transition function. This yields a new state and an output tuple. A probabilistic transition function
actually describes a finite distribution over the pairs of a new state and an output tuple. Furthermore, each machine
has bounds on the length of considered inputs. This allows time bounds independent of the environment.

Definition 1. (Machines)A machine(for an alphabetΣ) is a tuple

M = (nameM,PortsM, StatesM, δM, lM, IniM,FinM)

of a machine namenameM ∈ Σ+, a finite sequencePortsM of ports, a setStatesM ⊆ Σ∗ of states, a probabilistic
state-transition functionδM, a length functionlM : StatesM → (N ∪ {∞})|in(PortsM)|, and setsIniM,FinM ⊆

StatesM of initial and final states. Its input set isIM := (Σ∗)|in(PortsM)|; the i-th element of an input tuple
denotes the input at thei-th in-port. Its output set isOM := (Σ∗)|out(PortsM)|. The empty word,ǫ, denotes no in-
or output at a port.δM maps each pair(s, I) ∈ StatesM × IM to a finite distribution overStatesM ×OM.

If s ∈ FinM or I = (ǫ, . . . , ǫ), thenδM(s, I) = (s, (ǫ, . . . , ǫ)) deterministically. Inputs are ignored beyond the
length bounds, i.e.,δM(s, I) = δM(s, I⌈lM(s)) for all I ∈ IM, where(I⌈lM(s))i := Ii⌈lM(s)i for all i.

In the text, we often write “M” also fornameM. In the following, the initial states of all machines are a security
parameterk ∈ N in unary representation.

We only briefly state here that these machines have a natural realization as probabilistic Turing machines,
which is used to define runtimes [22].

A collectionĈ of machines is a finite set of machines with pairwise different machine names and disjoint sets
of ports. All machines start with the same security parameter k. Let furtherports(Ĉ) denote the set of all ports of
all machines in̂C . Thecompletion[Ĉ] of a collectionĈ consists of all machines of̂C and the buffers needed for
all the ports inĈ . Thefreeportsfree(Ĉ) in a collection are those to which no other port in the collection connects.
A collection Ĉ is closedif its completion[Ĉ] has no free ports except a special master clock-in portclk⊳?. The
machine with this port is themaster scheduler, to which control returns as a default.

For a closed collection, a probability space ofruns (sometimes called traces or executions) is defined. The
machines switch sequentially, i.e., there is exactly one active machineM at any time, called thecurrent scheduler.
If this machine has clock-out ports, it can select the next message to be scheduled as explained above. If that
message exists, it is delivered by the buffer and the recipient is the next active machine. IfM tries to schedule
multiple messages, only one is taken. If it schedules none orthe message does not exist, the master scheduler is
activated.

Formally, runs are sequences ofstepsdefined as follows (where the state-transition function of buffers is as
explained above).

Definition 2. (Runs)Given a closed collection̂C with master schedulerX and a security parameterk, the proba-
bility space ofrunsis defined inductively by the following algorithm. It has variablesr for the run under construc-
tion andMCS for the current scheduler, and treats each port as a variableoverΣ∗. Herer is an initially empty list,
MCS a machine name initialized withX, and all port variables are initiallyǫ except forclk⊳? := 1. Probabilistic
choices only occur in Phase 1.

1. Switch current scheduler:Switch machineMCS, i.e., set(s′, O)← δMCS
(s, I) for its current states and in-port

valuesI. Then assignǫ to all in-ports ofMCS.
2. Termination:If X is in a final state, the run stops.
3. Buffer new messages:For each simple out-portq! of MCS, switch buffer̃q with inputq↔? := q!, cf. Figure 1.

Then assignǫ to all these portsq! andq↔?.
4. Clean up scheduling:If at least one clock out-port ofMCS has a value6= ǫ, let q⊳! denote the first such port

and assignǫ to the others. Otherwise letclk⊳? := 1 andMCS := X and go back to Phase 1.
5. Deliver scheduled message:Switch bufferq̃ with input q⊳? := q⊳! (see Figure 1), setq? := q↔! and then

assignǫ to all ports of̃q and toq⊳!. LetMCS := M′ for the unique machineM′ with q? ∈ ports(M′). Go back
to Phase 1.

Whenever a machine (this may be a buffer) with namenameM is switched from(s, I) to (s′, O), we append a
step(nameM, s, I

′, s′, O) to the runr for I ′ := I⌈lM(s), except ifs is final orI ′ = (ǫ, . . . , ǫ). This gives a family
of random variables

runĈ = (runĈ ,k
)k∈N.

For a numberl ∈ N, thel-stepprefixof a runr is the list of the firstl steps.

Next we define what a machine (e.g., an untrusted user in a non-interference definition) sees in a run and what
events happen at a set of ports, and the probabilities of suchviews and events.

Definition 3. (Views and Restrictions to Ports)Theviewof a set of machineŝM in a runr is the subsequence of
all steps(nameM, s, I, s

′, O) wherenameM is the name of a machineM ∈ M̂ . Therestrictionr⌈S of a run to a
setS of ports is a sequence derived as follows: First only retain the inputs and outputs,(I, O), from each step,
and further restrictI andO to the ports inS . Then delete pairs where bothI andO have become empty.

The corresponding families of random variables (in the probability space over the runs) are denoted by

view Ĉ (M̂) = (view Ĉ ,k(M̂))k∈N and

runĈ ⌈S= (runĈ ,k⌈S)k∈N.

With an additional indexl, we denote thel(k)-step prefixes of the views and restrictions.

For a one-element set̂M = {H} we writeview Ĉ (H) for view Ĉ ({H}).

2.2 Security-specific System Model

For security purposes, we have to define how adversaries and honest users connect to specified machines of a
collection. First, an adversary may take over parts of the initially intended machines. These machines are then
absorbed into the adversary, and the remaining machines form a structure. Formally, a structure is a collection
of machines in which one additionally distinguishes at which free ports honest users can connect and expect
some reasonable service (e.g., message transport in a cryptographic firewall), and which ports are only used by
adversaries. The former are thespecified portsin the following definition. A valid honest user should neither try
to connect to the remaining free ports of a structure, nor, for unique naming, have ports that already occur inside
the structure. This is expressed byforbidden ports.

Depending on which machines the adversary has taken controlof, we obtain different structures, and we call
the set of all structures asystem. Typically, a system is defined by means of a so-called intended structure and a
trust model. The intended structure represents a benign world where each machine behaves as specified, and the
trust model is then used to designate the potential sets of machines which are considered to be under control of the
adversary. An example of the typical derivation of these structures from an intended structure and a trust model
occurs in Section 5.

The ports connecting to a given port setP are expressed by the complement notationPc, e.g.,q!c = q↔?,
q⊳!c = q⊳?, q↔!c = q? in Figure 1, and vice versa.

Definition 4. (Structures and Systems)

a) A structureis a pair(M̂ , S) whereM̂ is a collection of simple machines calledcorrect machines, andS ⊆
free([M̂]) is calledspecified ports.

b) If M̂ is clear from the context, let̄S := free([M̂]) \ S . We callforb(M̂ , S) := ports(M̂) ∪ S̄ c the forbidden
ports.

c) A systemSys is a set of structures. It is polynomial-time iff all machines in all its collectionsM̂ are
polynomial-time.

A structure is completed to aconfigurationby adding machinesH andA, modeling the joint honest users and
the adversary. As explained above,H does not have certain ports.A connects to the remaining free ports of the
structure. Both machines can interact, e.g., in order to model chosen-message attacks.

Definition 5. (Configurations)

a) A configurationof a systemSys is a tupleconf = (M̂ , S ,H,A) where(M̂ , S) ∈ Sys is a structure,H is a
simple machine without forbidden ports, i.e.,ports(H) ∩ forb(M̂ , S) = ∅, andĈ := M̂ ∪ {H,A} is a closed
collection.
For simplicity, we often writerunconf andview conf (M̂) instead ofrunĈ andview Ĉ (M̂)

b) The set of configurations is writtenConf(Sys). The subset of configurations with polynomial-time userH and
adversaryA is calledConfpoly(Sys). The indexpoly is omitted if it is clear from the context.

3 Expressing Non-Interference

In this section we define non-interference for reactive systems as introduced in Section 2. Information flow proper-
ties consist of two components: aflow policyand adefinition of information flow. Flow policies specify restrictions
on the information flow within a system. They presuppose the existence of security domainsS, between which
information flow is either permitted or forbidden. Roughly,our flow policies are graphs with the users as nodes.
In the definition of information flow, we want to express that there is no information flow from a userHH to a
userHL iff the view ofHL does not allow to distinguish (perfectly or computationally) any behaviors ofHH .

L H

Fig. 2.A Typical Flow-Policy Graph Consisting of High and Low Users.

3.1 Multi-Party Configurations

In Definition 5, all honest users were modeled by a single machineH. For expressing non-interference between
two users based on their individual views, we must model different users as different user machines. Hence we
first define multi-party configurations. The only differenceto normal configurations is that we have a setU of
user machines instead of the joint machineH.

Definition 6. (Multi-Party Configurations)A multi-party configurationof a systemSys is a tuple(M̂ , S ,U ,A)
where(M̂ , S) ∈ Sys is a structure,U is a set of machines calleduserswithout forbidden ports, i.e.,ports(U) ∩
forb(M̂ , S) = ∅, and the completion̂C := [M̂ ∪U ∪{A}] is a closed collection. The set of these configurations is
denoted byConfmp(Sys), those with polynomial-time users and a polynomial-time adversary byConfmp

poly(Sys).
We omit the indicesmp andpoly if they are clear from the context.

Runs and views are automatically defined for multi-party configurations because they are defined for all closed
collections, herêC .

3.2 Flow Policies

We start by defining flow policy graphs independent of our model.

Definition 7. (General Flow Policy)A general flow policyis a graphF = (S,❀) with a non-empty setS and
❀ ⊆ S × S. We use infix notation, i.e., we writes1 ❀ s2 for (s1, s2) ∈ ❀, ands1 6❀ s2 for the negation. We
demands ❀ s for all s ∈ S.

A general flow policy istransitiveif the relation❀ is transitive.

Intuitively, s1 ❀ s2 means that information may flow froms1 to s2, ands1 6❀ s2 means that it must not.
Transitivity means that whenever indirect flow is possible froms1 to s2 via some other elements, direct flow from
s1 to s2 is also permitted. In this paper, we only consider transitive flow policies.

Example 1.The setS often has only two elementsS = {L,H}, called low and high users. The typical flow
policy for this case is that information flow from high to low users is forbidden, i.e.,H 6❀ L, while L ❀ L,
L ❀ H , andH ❀ H ; see Figure 2.

This definition is quite general since it uses an arbitrary set S. We now refine it to our model of reactive systems.
The intuition is to define a graph on the users and the adversary. However, a definition over the machine set
U ∪ {A} would depend on internal details of the user and adversary machines. Instead, we designate each user
by the set of specified ports it connects to, and the adversary, who connects to the remaining free ports of each
structure, by a symboladv.

Thus our flow policies only depend on the specified ports of thestructures of a systemSys .

Definition 8. (Flow Policy)A flow policy for a port setS is a general flow policy(∆,❀) where∆ = Γ ∪ {adv}
andΓ = {Si | i ∈ I} is a partition ofS for a finite index setI.

A flow policy for a systemSys is a mappingF that assigns each structure(M̂ , S) ∈ Sys a flow policyF(M̂ ,S)

for the setS of specified ports. We require thatF(M̂ ,S) only depends onS , and also writeFS .

Note that the adversary is explicitly included in the flow policy. This will be essential to capture that, e.g., the
adversary does not learn any information from an honest user.

Some abbreviations will be useful.

Definition 9. (Additional Flow-Policy Notation)Given a flow policyF for a systemSys , we write ∆(M̂ ,S),
❀(M̂ ,S),Γ(M̂ ,S), andI(M̂ ,S) for the components of the flow policiesF(M̂ ,S), and similarly∆S etc. If the structure
or at leastS is clear from the context, we even just write∆ etc.

We assume without loss of generality thatadv 6∈ I for every occurring index setI and always defineIadv :=
I ∪ {adv}. Given a structure(M̂ , S), we further writeSadv := S̄ and sometimes identifyadv with Sadv. Then the
node set∆ of a flow policyF(M̂ ,S) is identified with a partition offree([M̂]) with index setIadv.

BIT
H

OUT
L

H
L

H
H

M
S
H

S
L^

p
bit p*

bit

Fig. 3.Sketch of our Non-Interference Definition:HL tries to guess a bit thatHH tries to transfer.

Given a structure(M̂ , S) and a flow policy(∆,❀) for S , the relationSH 6❀ SL for two port setsSH , SL ∈ ∆

intuitively means that no information must flow from the usermachines connected toSH to the user machines
connected toSL in any configuration of this structure. With the identification we made, this also holds for the
adversary, who is connected to the port setSadv = S̄ .

3.3 Definition of Non-Interference

We now define the semantics of the non-interference relation6❀. Usually, expressing this semantics is the most
difficult part of an information-flow definition. Given our underlying model, it is a bit easier because we already
have definitions of runs, views, and indistinguishability.We first present the intuitive idea of the semantics and
give the formal definition afterwards.

Figure 3 contains a sketch of our definition of non-interference between two usersHH andHL; one of them
may be the adversary. Intuitively,HH should not be able to transfer a bit, or even part of one, to theuserHL.
This is modeled as follows. At the start of the run, a bitb ∈ {0, 1} is chosen at random and input toHH . Perfect
non-interference means thatHH should not be able to change the view ofHL at all, soHL should be unable to
output the bitb with a probability better than12 . For statistical non-interference, we allowHL a small advantage in
guessing the bitb, modeled by a classSMALL of small functions in the security parameterk. For computational
non-interference, we only consider polynomial-time configurations, and the advantage should be negligible; this
is a special class of small functions. The approach of guessing a bit is essential to extend the notion of non-
interference to the computational case. It is a fundamentalconcept in cryptography, so our definition serves as a
link between prior work in non-interference and security definitions of real cryptographic primitives.

Formally, to close the configurations, we add machinesBITH andOUTL that produce and consume the bit,
respectively. They do this at portspbit! andp∗bit? connected to special ports ofHH andHL.

The configurations with these bit machines will be callednon-interference configurations. Another charac-
teristic of non-interference configurations is that the different user machines and the adversary have no direct
connections, because otherwise they could trivially transmit the bit. Moreover, these configurations contain a
master schedulerXn in. It mainly schedules the users. Where correct machines schedule each other is fixed in
the structures, and which inputs to correct machines are scheduled by the adversary must be taken as given after
the trust model. However, some way is needed to transfer control between different user (and adversary) groups
even if they cannot interfere with each other. Here the master scheduler is needed. Our specific master scheduler
essentially performs round-robin scheduling of users, when users get the control in the configuration at all, but
lets the users choose certain subsequent system inputs.1

The ports where the users get these master scheduling signals are calledmasteri?. For the master scheduler to
get control once a user was scheduled (to prevent loops amonga small user group and some correct machines), the
users have no clock-out ports. Each portp⊳! that a userHi would have according to its setSi of specified ports is
taken over by the master scheduler. Instead,Hi gets an outputps! to the master scheduler. When it isHi’s turn, the
master scheduler reads there whetherHi wants to schedulẽp next. This is shown in Figure 4 for a portp⊳! ∈ S c

H .

1 Instead of considering round-robin scheduling only, it is probably also sufficient for most applications to consider schedulers
with the following two properties: They are polynomially fair [17], i.e., they ensure that each user is always scheduledafter
a fixed polynomial number of steps, and their scheduling cannot be affected by previous inputs from the users and the
adversary so that it is not possible to transmit informationby interfering with the scheduler.

BIT
H

OUT
L

H
L

H
H

M
S
H

S
L^

p
bit p*

bit

p!

p?

Xn_in

master
H

master
BIT
H

ps!

ps?

clk ?

Fig. 4. Main Parts of a Non-Interference Configuration. The ports ofthe master schedulerXn in and the two emphasized users
HH andHL are sketched.

Definition 10. (Non-Interference Configuration)Let a systemSys be given and a structure(M̂ , S) ∈ Sys. Let∆
be a permitted node set for a flow policy forS with index setI, and letH,L ∈ Iadv with H 6= L. Let conf =
(M̂ , S ,U n in,A) be a multi-party configuration withU n in = U ∪{BITH ,OUTL,X

n in} andU = {Hi | i ∈ I},
and letHadv := A. We call it anon-interference configurationfor ∆, H , andL if the following holds.

a) Ports of Special Machines:The ports ofBITH are{masterBITH
?, pbit!, pbit

⊳!}. The machineOUTL has only
one portp∗bit?. The master schedulerXn in has the following ports:

– {clk⊳?}: The master clock-in port.
– {masteri !,masteri

⊳! | i ∈ Iadv ∪ {BITH}}: The ports for fair scheduling of the users, the adversary and
BITH .

– {p⊳! | p⊳! ∈ S c} ∪ {p∗bit
⊳!}: The clock-out ports that the honest users would have had.

– {ps?, ps⊳! | p⊳! ∈ S c} ∪ {ps∗bit?, p
s∗
bit

⊳
!}: The ports for receiving scheduling proposals from the users for

the previous set of ports.2

b) Ports of Normal Users:The ports ofHi with i ∈ I \ {H,L} are{masteri?} ∪ (S c
i \ {p

⊳! | p⊳! ∈ S c
i }) ∪

{ps! | p⊳! ∈ S c
i }, as explained above. Additionally,HH has a portpbit?, andHL has portsp∗bit! andps∗bit!.

3

c) Behavior of BITH and OUTL: If BITH receives an input atmasterBITH
?, it chooses a bitb ∈ {0, 1} at

random, outputsb at pbit!, and schedules it by outputting1 at pbit⊳!. The machineOUTL does nothing on
inputs atp∗bit?. (It just “catches” the inputs to close the collection.)

d) Behavior of Xn in: The machineXn in maintains two flagsstart andsched demand over{0, 1}, initialized
with 0, and a countercnt over the index setIadv, initialized with adv. Without loss of generality we as-
sumeI := {1, . . . , n} andadv := 0, so the counter is defined over{0, . . . , n}. Additionally, to allow for
polynomial-time versions ofXn in, it has a countersteps and a boundP . (Formally this gives a family of
master schedulersXn in

P , one for each polynomialP and forP = ∞.) If Xn in is scheduled, it behaves as
follows:
Case 1: Start of the run.If start = 0: Setstart := 1 and output1 atmasterBITH

! and atmasterBITH

⊳!.
Case 2: Schedule users.If start = 1 andsched demand = 0, incrementsteps if cnt = n and stop forever
if steps ≥ P (k). Setcnt := cnt + 1 mod (n + 1) and output1 atmastercnt ! andmastercnt

⊳!. If cnt 6= 0,
i.e., the clocked machine is an honest user, additionally set sched demand := 1 to handle the scheduling
demands of this user next.
Case 3: Handle scheduling demands.If start = 1 andsched demand = 1, output1 at every portps⊳! with
p⊳! ∈ S c

cnt , and forcnt = L also atps∗L bit
⊳
!. Then test whether there was a non-empty inputi at exactly one

portps?.4 If yes, outputi atp⊳!, i.e., follow the user’s proposal. In both cases setsched demand := 0.

2 We assume without loss of generality that there is a systematic naming scheme for such new ports that does not clash with
prior names.

3 The adversary always closes the collection; hence ifH = adv or L = adv this also holds forHadv = A. The adversary
always has the ports{masteri?} ∪ S̄ c.

4 More formally,Xn in first sends1 at the first of these ports. The buffer either delivers a message toXn in or does nothing. In
both casesXn in is scheduled again, so it can send1 at the second clock-out port, etc. It stores all received messages in an
internal array.

We denote the set of non-interference configurations of a structure (M̂ , S) for given ∆, H , and L by
Confn in

∆,H,L(M̂ , S) and the subset of polynomial-time ones byConfn in
∆,H,L,poly(M̂ , S). All non-interference con-

figurations of a systemSys are writtenConfn in(Sys) andConfn in
poly (Sys), respectively.

Now we can define the probability that the low user correctly guesses the bit that the high user tries to transmit.

Definition 11. (Guessing Probability)For a non-interference configurationconf ∈ Confn in
∆,H,L(M̂ , S) of a struc-

ture(M̂ , S), theguessing probabilityPguess,conf is defined as

Pguess,conf := P (b = b∗ | r ← runconf ,k; b := r⌈pbit!; b
∗ := r⌈p∗

bit
?).

This is a function of the security parameterk.

Several times we need notions that functions are small, e.g., the advantage of the guessing probability over one
half. Hence we define corresponding function classes.

Definition 12. (Small functions)

a) The classNEGL of negligible functionscontains all functionss : N → R≥0 that decrease faster than the
inverse of every polynomial, i.e., for all positive polynomialsQ ∃n0 ∀n > n0 : s(n) < 1

Q(n) .
b) A setSMALL of functionsN → R≥0 is aclass of small functionsif it is closed under addition, and with a

functiong also contains every functiong′ ≤ g. Typical classes of small functions areEXPSMALL, which
contains all functions bounded byQ(k) · 2−k for a polynomialQ, and the larger classNEGL.

Now we are ready to give the non-interference definition, i.e., the definition of the semantics of a flow policy for
a reactive system.

Definition 13. (Non-Interference)Let a systemSys , a structure(M̂ , S) ∈ Sys , and a flow policyF = (∆,❀)
with index setI for (M̂ , S) be given. For two elementsH,L ∈ Iadv with SH 6❀ SL, we say that(M̂ , S) fulfills
the non-interference requirementNIReqF ,H,L

a) perfectly, written (M̂ , S) |=perf NIReqF ,H,L, iff for every non-interference configurationconf ∈

Confn in
∆,H,L(M̂ , S) we have

Pguess,conf ≤
1

2
.

b) statistically for a classSMALL of small functions, written(M̂ , S) |=SMALL NIReqF ,H,L, iff for every non-

interference configurationconf ∈ Confn in
∆,H,L(M̂ , S) there exists a functions ∈ SMALL such that

Pguess,conf ≤
1

2
+ s(k).

c) computationally, written(M̂ , S) |=poly NIReqF ,H,L, iff for every polynomial-time non-interference config-

urationconf ∈ Confn in
∆,H,L,poly(M̂ , S) there exists a functions ∈ NEGL such that

Pguess,conf ≤
1

2
+ s(k).

We write “|=” if we want to treat all cases together. If a structure fulfills all non-interference requirements
NIReqF ,H,L with SH 6❀ SL for a flow policyF , we say it fulfills the requirementNIReqF , written (M̂ , S)

|= NIReqF . A systemSys fulfills a flow policy F for this system if every structure(M̂ , S) ∈ Sys fulfills the
requirementNIReqF(M̂ ,S)

. We then writeSys |= F .

4 Preservation of Non-Interference under Simulatability

The cryptographic variety of the notion that one system securely implements another one is based on the concept
of reactive simulatability[74]. Reactive simulatability essentially means that whatever might happen to an honest
user of a concrete systemSys real can also happen to this user with a given ideal systemSys id. More precisely,
for every configurationconf 1 ∈ Conf(Sys real), there exists a configurationconf 2 ∈ Conf(Sys id) that yields an
indistinguishable view for the same user. We abbreviate this bySys real ≥sec Sys id and say thatSys real is at least
as secure as the systemSys id. A typical situation is shown in Figure 5.

The notion of reactive simulatability serves as the culmination of a long line of research done on (non-reactive)
simulatability: Simulatability was first sketched for secure multi-party function evaluation, i.e., for the computa-
tion of one output tuple from one tuple of secret inputs from each participant in [89] and defined (with different
degrees of generality and rigorosity) in [44, 45, 25, 69, 29]. The idea of simulatability was subsequently also used
for specific reactive problems, e.g., [39, 27, 55, 56, 31], without a detailed or general definition. In a similar way
it was used for the construction of generic solutions for large classes of reactive problems [44, 42, 49] (usually
yielding inefficient solutions and assuming that all parties take part in all subprotocols). The first fully reactive
definition of simulatability was presented in [73] for a synchronous version of a general reactive model, and has
been extended to an asynchronous setting in [74] and later but independently in [30].

HH

A2

A1

S S

Mu Mv THM3

∀ ∀
∃

Real configuration Ideal configuration

M1
^

∈ f(M1, S)
^

M2
^

Fig. 5. Example of simulatability. For every userH of the real structure and every adversaryA1, there must exist an adversary
A1 on a corresponding ideal structure such that the view ofH is indistinguishable.

We do not want to compare a structure(M̂1, S1) ∈ Sys real with arbitrary structures ofSys id, but only with
certain “suitable” ones. This is specified by a mappingf from Sys real to the powerset ofSys id. The mappingf
is calledvalid if f(M̂1, S1) is non-empty and only contains structures(M̂2, S2) with S2 = S1, i.e., with the same
user interface, for all(M̂1, S1) ∈ Sys real.

The simulatability definition is based on the indistinguishability of views. Indistinguishability is a notion
defined for arbitrary random variables.

Definition 14. (Indistinguishability)Two families(vark)k∈N and(var′k)k∈N of random variables (or probability
distributions) on common domainsDk are

a) perfectly indistinguishable(“=”) if for each k, the two distributionsvark andvar′k are identical.
b) statistically indistinguishable(“≈SMALL”) for a classSMALL of small functions if the distributions are

discrete and their statistical distances

∆stat(vark, var
′
k) :=

1

2

∑

d∈Dk

|P (vark = d)− P (var′k = d)| ∈ SMALL

(as a function ofk).
c) computationally indistinguishable(“≈poly”) if for every algorithmDis (the distinguisher) that is probabilistic

polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)| ∈ NEGL.

Intuitively, given the security parameter and an element chosen according to eithervark or var′k, Dis tries to
guess which distribution the element came from.

We write≈ if we want to treat all three cases together.

We are now ready to present the reactive simulatability definition, i.e., a notion of cryptographically secure
implementation.

Definition 15. (Reactive Simulatability)Let systemsSys1 andSys2 with a valid mappingf be given.

a) We saySys1 ≥
f,perf
sec Sys2 (perfectly at least as secure as) if for every configurationconf 1 = (M̂1, S ,

H,A1) ∈ Conf(Sys1), there exists a configurationconf 2 = (M̂2, S ,H,A2) ∈ Conf(Sys2) with (M̂2, S) ∈
f(M̂1, S) (and the sameH) such that

view conf 1
(H) = view conf 2

(H).

b) We saySys1 ≥
f,SMALL
sec Sys2 (statistically at least as secure as) for a classSMALL of small functions if

the same as in a) holds withview conf 1,l
(H) ≈SMALL view conf 2,l

(H) for all polynomialsl, i.e., statistical
indistinguishability of all families ofl-step prefixes of the views.

c) We saySys1 ≥
f,poly
sec Sys2 (computationally at least as secure as) if the same as in a) holds with configurations

fromConfpoly(Sys1) andConfpoly(Sys2) and computational indistinguishability of the families ofviews.

In all cases, we callconf 2 an indistinguishable configurationfor conf 1. Where the difference between the types
of security is irrelevant, we simply write≥f

sec, and we omit the indicesf andsec if they are clear from the context.

Below we want to prove that non-interference properties arepreserved under reactive simulatability. As flow
policies are defined per system, we first have to define how a flowpolicy from one system, typically a specification,
is applied to another system, typically an implementation.We do this based on a valid mapping between the
system, i.e., based on the information which real structures implement which ideal structures. As valid mappings
retain the specified ports (the user interfaces) and our flow policies for systems depend only on these specified
ports, this is a canonical transformation.

Definition 16. (Corresponding Flow Policies)Let systemsSys1 andSys2 with a valid mappingf be given,
and a flow policyF (2) for Sys2. Thecorresponding flow policyF (1) for Sys1 is defined as follows: For every
(M̂1, S) ∈ Sys1, letF (1)

(M̂1,S)
:= F

(2)

(M̂2,S)
for an arbitrary structure(M̂2, S) ∈ f(M̂1, S).

This is well-defined becausef(M̂1, S) is non-empty and only contains structures with the same setS , and

F
(2)

(M̂2,S)
is equal for all these structures. Further, everyF (1)

(M̂1,S)
is a valid flow policy forS by definition. We often

call such corresponding flow policiesF on both systems.
Our following preservation theorem states that non-interference properties are preserved under the reactive

simulatability relation≥sec, as the name “at least as secure as” suggests.

Theorem 1. (Preservation of Non-Interference)Let a systemSys1 be as secure asSys2, i.e.,Sys1 ≥
f Sys2 for

a valid mappingf . Let Sys2 fulfill a flow policy F , i.e.,Sys2 |= F , and letF also denote the corresponding
flow policy for Sys1 according to Definition 16. Then alsoSys1 |= F . This holds for the perfect, statistical, and
computational case.

Proof. We have to show that every structure(M̂1, S) ∈ Sys1 fulfills its flow policy F(M̂1,S). We fix such a

structure(M̂1, S) ∈ Sys1 and its flow policyFS = (∆, 6❀) with index setI. For allH,L ∈ Iadv with SH 6❀ SL

we have to show that(M̂1, S) fulfills the non-interference requirementNIReqFS ,H,L.

Let a non-interference configurationconf 1 = (M̂1, S ,U
n in,A1) ∈ Confn in

∆,H,L(M̂1, S) be given. Because of

Sys1 ≥
f Sys2 there exists a configurationconf 2 = (M̂2, S ,U

n in,A2) ∈ Conf(Sys2) with (M̂2, S) ∈ f(M̂1, S)
andview conf 1

(U n in) ≈ view conf H,L,2
(U n in). As the user setU n in is equal in both configurations,conf 2 is

also a non-interference configuration inConfn in
∆,H,L(M̂2, S). By precondition,(M̂2, S) fulfills NIReqFS ,H,L.

Now we distinguish the perfect, statistical, and the computational case (for the reactive simulatability type and
the non-interference type together). In the computationalcase, both configurations are polynomial-time.

In the perfect case, we haveviewconf 1
(U n in) = view conf 2

(U n in). Both b := r⌈pbit! andb∗ := r⌈p∗
bit
? are

part of the view ofU n in, so we obtainPguess,conf 1
= Pguess,conf 2

≤ 1
2 . With our arbitrary choice ofconf 1 this

implies that(M̂1, S) also fulfillsNIReqFS ,H,L.

In the statistical and the computational case we have a givenclassSMALL of small functions, where
SMALL = NEGL in the computational case. We assume for contradiction thatPguess,conf 1

= 1
2 + ns(k) for

a functionns 6∈ SMALL, whereas we know thats(k) := Pguess,conf 2
− 1

2 ∈ SMALL.
We then define a distinguisherD as follows. Given the view ofU n in in one of the configurations,D knows

both the bitb and the guessb∗. It outputs1 if b = b∗ and0 otherwise. Its advantage in distinguishing the configu-
rations by this is

δD := |P (D(1k, view conf 1,k
(U n in)) = 1)

−P (D(1k, view conf 2,k
(U n in)) = 1)|

= |
1

2
+ ns(k)− (

1

2
+ s(k))| = ns(k)− s(k)

6∈ SMALL.

The last line holds becauseSMALL is closed under addition. For the polynomial case, this immediately contra-
dicts the indistinguishability of the views,view conf 1

(U n in) ≈poly view conf 2
(U n in).

For the statistical case, the results of the distinguisherD are a function on the random variables of the views.
As the results are Boolean, their statistical distance is easily computed as

δstat,D := ∆stat(D(1
k, view conf 1,k

(U n in)),D(1k, view conf 2,k
(U n in)))

=
1

2
(2δD) = δD.

By a well-known lemma, the statistical distance between a function of two random variables is at most the statis-
tical distance of the original random variables; a proof canbe found in [43]. This implies

δview := ∆stat(view conf 1,k
(U n in), view conf 2,k

(U n in))

≥ δstat,D = δD

6∈ SMALL.

The last line holds becauseSMALL is closed under making functions smaller. This contradictsthe statistical
indistinguishability of the views,view conf 1

(U n in) ≈SMALL view conf 2
(U n in).

With our arbitrary choice ofconf 1 this implies that(M̂1, S) also fulfillsNIReqFS ,H,L in the computational
and statistical case. This finishes the proof.

5 A Cryptographic Firewall

We now present a cryptographic firewall as an example of a system that must fulfill a non-interference property and
uses cryptographic primitives. The goal is to allow communication between certain participants, while ensuring
that these participants cannot be affected by their environment. This goal corresponds to a flow policy. Most
firewalls distinguish users mainly by IP addresses. For highsecurity, however, different external users should
rather be distinguished by cryptographic authentication.

5.1 Introduction to the Cryptographic Firewall

We build the firewall systems in two layers. The lower layer provides secure message transmission, the higher layer
the filtering function. In particular, the secure message-transmission layer provides cryptographic authentication,
so that the filtering layer can filter by name.

For the lower layer, we would like to reuse the secure message-transmission system with ordered channels
from [9]. Ordered channels are one step beyond a related system with unordered channels from [74] towards non-
interference. However, we have to go slightly further, because an adversary could also interfere with the protected
users by scheduling all their messages either immediately or never, which gives different views. Recall that the
explicit master scheduler only ensures that each user can send messages from time to time, while the adversary
still schedules the network. Hence we need a new type of reliable, non-authenticated channels.

For simplicity, we only define and prove one particular information flow policy and corresponding filtering
rule set. The policy is sketched in Figure 6: Two usersa andb should be able to communicate, but should not be

disturbed by the other users and the adversary. As this is an integrity view of information flow, it makesa andb
the low users, and all others the high users. As usual, the users are represented in the flow policies by the setsSi

of specified ports they connect to.

S
a

S
b

S
H

S
adv

Fig. 6.Sketch of the flow policy for the firewall. The port sets of the protected usersa andb, an outsiderH , and the adversary
are shown. Missing edges in the graph are of the form “❀”.

We start the detailed description with a review of how systems are commonly derived from an intended struc-
ture with a trust model, and of the composition theorem needed to prove a two-layer system in a modular way
(Section 5.2). In Section 5.3 we present the specification ofthe lower layer, i.e., an ideal system for secure and
reliable message transmission. In Section 5.4, we define thehigher layer, the filtering system. As it is built on the
ideal lower layer and uses no additional cryptography, we need not distinguish a real and ideal version here.

In Section 5.5, we sketch the real lower-layer system and define the new reliable channel type. We also sketch
why the security proof from [9] still applies to the modified secure message-transmission system. Finally, in
Section 5.6 we prove that the two-layer firewall fulfills its non-interference requirement. We mainly do this for the
combination – a well-defined notion introduced in [74] – of the ideal lower layer and the filtering system, and use
our theorems to show that the result also applies to the fullyreal firewall system.

5.2 Preliminaries

The lower layer of the firewall system is of a class calledstandard cryptographic systemsin [74]. In the intended
structure of such a system, users are numbered1, . . . , n. Every useru has one machineMu, which is correct if and
only if the user is honest. The machineMu has portsinu? andoutu ! for connecting to its user. A real systemSysreal
is derived from such an intended structure by atrust modelconsisting of an access structureACC and a channel
modelχ. An access structureACC is a set of subsetsH of {1, . . . , n}. Intuitively, it denotes the possible sets of
honest users, and thus of correct machines. Thechannel modelclassifies every connection as secure (private and
authentic), authenticated or insecure. For achieving non-interference with the firewall, we need a fourth channel
type calledreliable non-authenticated.

The resulting system contains one structure for every setH ∈ ACC, consisting of the remaining correct
machines from the intended structure with modified channelsaccording to the channel model. For the three
predefined channel types, this modification is a well-definedport renaming scheme [74]. The corresponding
scheme for the new channel type is given in Definition 17. We denote such a set of remaining modified ma-
chines byM̂H := {Mu,H | u ∈ H}, and the remaining set of specified ports bySH. Thus the resulting sys-
tem is of the formSys real = {(M̂H, SH) | H ∈ ACC}. A correspondingstandard ideal systemis of the form
Sys id = {({THH}, SH) | H ∈ ACC} with the same setsSH. The machinesTHH are calledtrusted hosts.

As we construct the firewall system as a composition of two layers, we briefly review the composition theorem
of [74]. It states that the relation “at least as secure as” isconsistent with such compositions. Assume we have
already proven that a systemSys0 is at least as secure as a specificationSys ′0, and we build a systemSys1 on top of
the specificationSys ′0. Then we want to replaceSys ′0 by the real systemSys0. We call the former, partially abstract
compositionSys∗ and the latter, real compositionSys#. The composition theorem states that this replacement is
secure, i.e.,Sys# is at least as secure asSys∗; see [74] for the precise theorem and its proof. This is illustrated in
Figure 7.

5.3 Lower Layer: Ideal System for Secure and Reliable Message Transmission

In this section, we present the specification of the lower layer of the firewall, secure and reliable message trans-
mission. We first sketch the original ideal system from [9], more precisely its perfectly ordered variant where

Sys*Sys
1 Sys

1

Sys’
0

Sys
0

Sys#

} {>

>

Fig. 7.Composition of Systems

no gaps in the message sequence are accepted. Then we describe the modifications needed to include reliable
communication between the protected users. The resulting ideal system is defined in detail in Appendix A.

Sketch of the original system. The secure message-transmission system with ordered channels from [9] is a
standard cryptographic system as described in Section 5.2,and its access structureACC contains all subsets of the
user indices{1, . . . , n}. Thus the ideal system is of the formSys ′0,orig = {({THH}, SH)|H ⊆ {1, . . . , n}}.

The ideal machineTHH models initialization and sending and receiving of messages. Initialization corre-
sponds to key generation and authenticated key exchange in real system. Besides the specified ports,THH has
portsto advu ! andfrom advu? where it informs the adversary, and accepts adversary inputs, regarding the service
to useru. This is necessary because in efficient implementations, the adversary gets certain information and has
certain influence, in particular by network scheduling.

A useru initializes communication with other users by inputting a command(snd init) at the portinu? of
THH. To reflect the asynchronous timing model,THH waits for a command(rec init, u) from the adversary at a
port from advv? before regarding communication betweenu andv as initialized.

A useru sends a message to userv by inputting(send,m, v). If v is dishonest,THH immediately outputs
(send,m, v) to the adversary. Ifv is honest,THH stores the message in an arraydeliver specu,v together with a
counter that indicates the number of messages sent fromu to v, and outputs(send blindly, i, l, v) to the adversary,
wherel andi denote the length ofm and its position in the array, respectively. This models that the adversary
learns that a message of a certain length is being sent.

For delivering this message tov, the machineTHH waits for a command(receive blindly, u, i) from the
adversary at a portfrom advv?. ThenTHH reads(m, j) := deliver specu,v [i] and checks whethermsg out specu,v = j

holds for the numbermsg out specu,v of the next expected message.
If yes, it outputs(receive, u,m) to v and sets the expected number toj + 1. This last condition ensures that

messages can only be delivered in the order as they were inputtoTHH.
The adversary can send a messagem to a useru by inputting(receive, v,m) at the portfrom advu? of THH

for a corrupted userv; this message is output tou immediately.
The adversary can also stop the service for useru by inputting(stop) at portfrom advu?. This models that an

adversary may achieve that the runtime bound ofu’s machine is exceeded in the real system.
Note that this ideal system is completely deterministic andwithout cryptography.

Adding reliable message transmission.We want to build a firewall by adding a filtering policy on top ofthis
ideal message-transmission system, and the firewall shouldfulfill the flow policy shown in Figure 6. However, as
long as the adversary can schedule the messages between the protected usersa andb (recall thatTHH waits for a
command(receive blindly, b, i) for that, where without loss of generality we always consider a as the sender), it
can achieve two distinguishable behaviors by either immediately scheduling each such message, or never schedul-
ing them. This problem cannot be solved by the filtering system on top.5 This corresponds to a small covert chan-
nel. To close it, we need to specify reliable communication for the two protected usersa andb in this section, and
later define suitable implementations of reliable channelsin the real system.

The modified trusted host for the modified systemSys ′0, still calledTHH, behaves identically for inputs from
and outputs to usersu 6∈ {a, b}. For communication froma to b, it is modified as follows (and vice versa):

– If a inputs an initialization command(snd init) at ina?, THH immediately initializes communication withb.
In particular, it outputs(rec init, a) to Hb and schedules this output.

5 The filter at userb can only delete messages from other senders, but has to let messages from usera pass, while it cannot
let them pass if they do not arrive.

– If a sends a message tob, i.e., inputs(send,m, b) at ina? thenTHH immediately outputs(receive,m, a) at
portoutb ! and schedules it.

In both cases,THH informs the adversary of the event as above. The complete resulting definition of the ideal
systemSys ′0 is given in Appendix A.

5.4 The Filtering System

We now present the filtering system, the upper layer of the firewall. It is calledSys1 as in Figure 7. We only
need filters for the protected usersa andb, and filtering only works if the machines of these users are correct,
i.e.,a, b ∈ H. Hence the system has only one structure, which contains only two machinesMfilter

a andMfilter
b . The

composition of these filtering machines with the secure message-transmission system is shown in Figure 8 with
individual user machinesHu, but without the special machines of the non-interference configurations and that
Xn in takes over the clock-in ports.

M
a

H
1

TH

H
n

H
b

H
a

M
b

...

A
Sys

1

in
a

fil out
a

fil

p
Ma

in
a

out
a

Sys’
0

Sys*

filter filter

Fig. 8.Firewall system consisting of filtering machines and the specification of secure reliable message transmission. Clock-out
ports are omitted; every machine has the corresponding clock-out port for each of its output ports.

The inputs and outputs to the filters from above and below are as in the message transmission system, because
the goal is to filter such messages. Recall that even the idealsecure message-transmission system with reliable
channels allows the adversary to stop the service to a user atany time, modeling that an adversary overpowers
a correct machine in the real system. If an adversary either stops the service to usera at the start of the run,
or never stops it, we obtain different views for the usera. To avoid this problem, we provide additional reliable
channelspMa

andpMb
to close a covert channel based on stopping a service. The reliable channelspMa

andpMb

are only used if the underlying service for secure message transmission has been stopped, and they should hence
only be regarded as a remedy against denial-of-service attacks. In the real world, this means that if the commonly
used communication method falls prey to a denial-of-service attack, the users will look for an alternative way to
communicate.

Scheme 1 (Filtering System)Let n ∈ N, a, b ∈ M := {1, . . . , n} with a 6= b, and polynomialsL, s, s′ ∈ N[x]
be given. Heren denotes the number of intended users anda andb the users to be protected from the others.
L(k) bounds the message length ands(k), s′(k) bound the number of messages each user can send and receive
respectively for a security parameterk.6 Then

Sys1 := {(M̂ filter, S filter)}

with M̂ filter = {Mfilter
a ,Mfilter

b } andS filterc := {outfilu ?, in
fil
u !, in

fil
u

⊳
!, inu?, outu !, outu

⊳! | u ∈ {a, b}}. We only
define the machineMfilter

a ; we obtainMfilter
b by exchanging the variablesa andb.

Ports of a filter. The ports of machineMfilter
a are {infila ?, out

fil
a !, out

fil
a

⊳
!} ∪ {outa?, ina !, ina

⊳!} ∪
{pMb

?, pMa
!, pMa

⊳!}.

6 These bounds ensure thatSys
1

is polynomial-time. This is essential for applying the composition theorem to replaceSys ′
0

with Sys
0

in the overall system.

States of a filter.Mfilter
a maintains a countersa ∈ {0, . . . , s(k)} and an array(s′a,u)u∈M over {0, . . . , s′(k)}

counting the messages thata sends and receives fromu, respectively. Further, it contains a variablestoppeda ∈
{0, 1} denoting whether the lower-layer service toa has stopped. All variables are initialized with0 everywhere.

Filter transitions. The state-transition function ofMfilter
a is defined by the following rules:

– Send initialization: On input(snd init) at infila ?: If sa < s(k), setsa := sa + 1, else stop.7

If stoppeda = 0, output(snd init) at ina ! and1 at ina
⊳!. Else output(rec init, a) atpMa

! and1 atpMa

⊳!, i.e.,
use the special reliable channel.

– Receive initialization: On input(rec init, u) at outa? with u ∈ M: If s′a,u < s′(k), sets′a,u := s′a,u + 1,

else stop. Ifstoppeda = 0 andu = b (this is the filtering), output(rec init, b) atoutfila ! and1 atoutfila
⊳
!.

– Receive initialization, extra channel:On input(rec init, b) at pMb
?, output(rec init, b) at outfila ! and1 at

outfila
⊳
!.

– Send:On input(send,m, v) at infila ? with m ∈ Σ+ andlen(m) ≤ L(k), wherelen(m) denotes the message
length: If sa < s(k), setsa := sa + 1, else stop. Ifstoppeda = 0, output(send,m, v) at ina ! and1 at ina

⊳!.
If stoppeda = 0 andv = b, output(receive, a,m) atpMa

! and1 atpMa

⊳!.
– Receive:On input(receive, u,m) at outa? with u ∈ M: If s′a,u < s′(k), sets′a,u := s′a,u + 1, else stop. If

u = b, output(receive, b,m) atoutfila ! and1 atoutfila
⊳
!.

– Receive, extra channel:On input(receive, b,m) atpMb
?, output(receive, b,m) atoutfila ! and1 atoutfila

⊳
!.

– Stop:On input(stop) atouta?: If sa < s(k), setsa := sa + 1, else stop. Ifstoppeda = 0, setstoppeda := 1
and output(stop) atpMa

! and1 atpMa

⊳!. (This ensures that machineMfilter
b also uses the special channel from

now on.)
– Stop, extra channel:On input(stop) atpMb

?: Setstoppeda := 1. ⊓⊔

Remark 1.The filtering systemSys1 can easily be modified to an arbitrary set of protected users instead of
L = {a, b}. Moreover we can treat multiple disjoint sets of users whereeach user can communicate with other
users of its own set without outside interference.

Lemma 1. The systemSys1 is polynomial-time.

Proof. The machineMfilter
a has counterssa ands′a,u for eachu ∈ {1, . . . , n}. At least one counter is increased

wheneverMfilter
a receives an input at portinfila ? or outa?, and once a counter reaches a polynomial bounds(k)

or s′(k), the machine stops. Every output atpMa
! is a direct consequence of an input atinfila ? or outa? by con-

struction ofMfilter
a . Hence the number of messages sent overpMa

! is at mosts(k) + n · s′(k). This holds anal-
ogously for the machineMfilter

b . Thus the steps of the whole systemSys1 (not counting buffers) are bounded
by 4nmax{s(k), s′(k)}. Since each transition can clearly be realized in polynomial time, we conclude that the
collection{Mfilter

a ,Mfilter
b } is polynomial-time.

5.5 The Real Lower Layer: Secure and Reliable Message Transmission

In the real firewall system, the ideal system for secure reliable message transmission is replaced with its concrete
implementationSys0. We only need a brief description of the original concrete implementationSys0,orig here to
show how we modify it to include reliable channels, and to sketch a proof why this modified real systemSys0
is as secure as the modified ideal systemSys ′0 from Section 5.3. Otherwise, the benefit of the modular approach
enabled by the composition theorem is exactly that the higher-layer systems work with all correct implementations
of lower-layer systems.

The original systemSys0,orig, described in detail in [9], is a standard cryptographic system Sys0 =

{(M̂H, SH) | H ⊆ {1, . . . , n}} with the same access structure, specified ports, and in- and output types at the
specified ports as in the ideal systemSys ′0.

It uses asymmetric encryption and digital signatures, which must fulfill the accepted cryptographic definition,
i.e., security against adaptive chosen-ciphertext attackfor encryption and security against existential forgery under
adaptive chosen-message attacks for digital signatures [28, 46]. Efficient cryptographic primitives exist for both
cases under reasonable assumptions, e.g., [33, 46].

7 This means that this machine stops forever. It has nothing todo with the variablestoppeda .

On input of the command(snd init), a machineMu creates signature and encryption keys and sends it to
the other machinesMv over authenticated channels. On input(send,m, v), machineMu signs and encrypts the
messagem with certain additional parameters and sends it toMv over an insecure channel, representing a real
network. If Mv obtains such a message with correct syntax and the next expected message number, it outputs
(receive, u,m) to userv. The adversary schedules the communication between correct machines; otherwise its
capabilities arise from what machines and channels it has replaced in the actual structures according to the trust
model.

We now describe the modification to this system by reliable channels. Formally, reliable channels are a new
type in the channel model of standard cryptographic system,see Section 5.2.

Definition 17. (Reliable, Non-authenticated Channels)Let an intended structure(M̂ , S) with M̂ := {Mu | u ∈
H} be given, and a channel defined by portsp!, p⊳! ∈ ports(Mu) andp? ∈ ports(Mv). If the channel modelχ
classifies this channel asreliable non-authenticated, then in the derivation of the actual structure(M̂H, SH) for
an index setH, the channel is modified as follows: If only one ofu, v lies inH, it is treated like an authenticated
channel. Ifu, v ∈ H, then a specific, buffer-style machine is inserted as shown in Figure 9.

– Mu,H gets a new portpd!, where it duplicates outputs made atp!. (Aspd! is free, the adversary can connect to
it.)

– The input portp? of Mv,H is renamed intoprout?.
– A machiněp is defined as follows: Its ports are{p?, prin?, p

r
out!, p

r
out

⊳!}. Given an input atp? orprin?, it forwards
this input toprout! and schedules it by outputting1 atprout

⊳!.

M
u,H

M
v,H

p A

pd

prout

p

prin

M
v

M
u

p

Fig. 9. Modeling Reliable, Non-Authenticated Channels

We assume without loss of generality that there is a systematic naming scheme for such new ports (e.g., appending
d, r

out,
r
in) that does not clash with prior names. Reliable,authenticatedchannels are defined similarly, simply by

omitting the portprin? of p̌.
Now the modified systemSys0 is derived from the original oneSys0,orig by classifying the initialization chan-

nels between the machinesMa andMb of Sys0,orig as reliable and authenticated, whereas the network channels
between these machines are classified as reliable, but non-authenticated.

In the following, we only briefly sketch that the relation “atleast as secure as” still holds for the modified
systemSys0 andSys ′0, because we would have to redo the whole original proof of [74] with only small changes.

Theorem 2. Let Sys0 andSys ′0 be the modified real and ideal systems for reliable secure message transmission
as introduced in the previous sections. ThenSys0 ≥

f
poly Sys

′
0 with the mappingf defined as in [74].

Proof (sketch).Both the ideal and the real systemSys0 andSys ′0 have been changed for initialization and sending
of messages. We now briefly sketch that these changes are consistent for both systems.

In case of initialization, the only difference between the original and the modified ideal system is that initializa-
tion betweena andb is done immediately byTHH, so the adversary is not able to initialize a connection between
these two honest users by himself because initialization commands are filtered out by construction ofTHH. In
the real systemSys0, this implicit initialization ofTHH exactly corresponds to a reliable authenticated channel
betweena andb. In both systems, an initialization message is output to theuser and immediately scheduled, along
with the usual output to the adversary. This gives consistent changes fromSys ′0,orig andSys0,orig toSys ′0 andSys0,

respectively, which yields indistinguishable behaviors of Sys ′0 andSys0 sinceSys ′0,orig ≥ Sys0,orig has already
been shown in [74, 9].

In case of sending of messages, the difference to the original ideal scheme only affects sending messages
between the two distinguished low users. In this caseTHH immediately schedules the message to the correspond-
ing user and outputs a message of the form(send blindly, i, l, v) to the adversary. In the real system, reliable
non-authenticated channels do exactly the same: they schedule the message to the corresponding user and send
a blinded copy to the adversary. Hence we have consistent changes and, usingSys ′0,orig ≥ Sys0,orig, we obtain
indistinguishable behaviors.

5.6 Non-Interference Proof

We now show that the overall firewall system fulfills the flow policy sketched in Figure 6. First we formally define
the ideal and real composed firewall systems. Next we formalize the flow policy. We then prove that the ideal
firewall (consisting of the filtering system and the ideal secure message-transmission system) fulfills the flow
policy. With the composition theorem and the non-interference preservation theorem, we finally obtain the result
for the real firewall.

The ports of the lower- and higher-layer systems were named so that a composition ofSys ′0 andSys1 connects
the structures in the desired way according to Figure 8. Thuswe get a natural composition by composing every
structure ofSys ′0 with the only structure ofSys1. We only restrictSys ′0 to the structures where the two protected
usersa andb are honest.

Definition 18. (Ideal Firewall System)Let Sys ′0,a,b := {({THH}, SH) ∈ Sys ′0 | {a, b} ⊆ H }. Then the ideal
firewall system is defined as

Sys∗ = {(M̂ ∗
H, S ∗

H) | {a, b} ⊆ H ⊆ {1, . . . , n}}

with M̂ ∗
H := {THH,Mfilter

a ,Mfilter
b } andS ∗

H
c := {outfilu ?, in

fil
u !, in

fil
u

⊳
! | u ∈ {a, b}} ∪ {outu?, inu !, inu

⊳! | u ∈
{1, . . . , n} \ {a, b}}.

The definition for the real firewall system is analogous:

Definition 19. (Real Firewall System)Let Sys0,a,b := {(M̂H, SH) ∈ Sys0 | {a, b} ⊆ H }. Then the real firewall
system is defined as

Sys# = {(M̂#
H , S ∗

H) | {a, b} ⊆ H ⊆ {1, . . . , n}}

with S ∗
H as in the ideal firewall system and̂M#

H := M̂H ∪ {Mfilter
a ,Mfilter

b }.

These compositions fulfill the preconditions of the composition theorem from [74].
Given the composition, we can formally present the flow policy for the ideal firewall systemSys∗; recall

Figure 6.

Definition 20. (Flow Policy of the Firewall)We define a flow policyF∗ for Sys∗ as follows: For all(M̂ ∗
H, S ∗

H) ∈
Sys∗, let F∗

S∗

H

:= (∆S∗

H
,❀S∗

H
) with the index setIS∗

H
:= H be defined as follows: Foru ∈ {a, b}, let S c

u :=

{outfilu ?, in
fil
u !, in

fil
u

⊳
!}, and foru 6∈ {a, b}, letS c

u := {outu?, inu !, inu
⊳!}. We defineSu 6❀S∗

H
Sv iff v ∈ {a, b} and

u 6∈ {a, b}.

We can now prove that the ideal firewall system fulfills its flowpolicy.

Theorem 3. (Non-Interference Property of the Ideal Firewall)Let F∗ be the flow policy of Definition 20. Then
the systemSys∗ fulfills F∗ perfectly.

In the proof of Theorem 3, we use the following lemma.

Lemma 2. Let (M̂ ∗
H, S ∗

H) ∈ Sys∗ arbitrary, and letF∗
S∗

H

:= (∆S∗

H
,❀S∗

H
) be the flow policy of Definition 20

for this structure. Then the following invariants hold for all possible runs of all non-interference configurations
conf ∈ Confn in

∆S∗
H

,H,L(M̂
∗
H, S ∗

H) for H ∈ H \ {a, b} andL ∈ {a, b}.

1. If Ha receives an input atoutfila ?, it is of the form(rec init, b) or (receive, b,m) with m ∈ Σ+. If Ha receives
an input atmastera?, it is sent by the master scheduler and equals1.

2. No output ofXn in at mastera ! depends on inputs from other machines. Each machine is clocked equally
often byXn in using a rotating clocking scheme. Furthermore, each outputat a portp⊳! for p⊳! ∈ S c

a and the
scheduled message only depends on prior outputs ofHa at portps! andp!.

3. If Ha receives a term of the form(rec init, b) at outfila ?, it is a direct consequence of the input
(snd init) sent byHb (i.e., the scheduling sequence must have beenHb,X

n in,Mfilter
b ,THH,Mfilter

a ,Ha or
Hb,X

n in,Mfilter
b ,Mfilter

a ,Ha).
4. If Ha receives a term of the form(receive, b,m) atoutfila ?, it is a direct consequence (in the sense of Part 3) of

the message(send, a,m) sent byHb, so the scheduling sequence has beenHb,X
n in,Mfilter

b ,THH,Mfilter
a ,Ha

orHb,X
n in,Mfilter

b ,Mfilter
a ,Ha.

The invariants also hold if we exchange the variablesa andb.

Part 3 means that the adversary cannot initialize the communication betweenHa andHb. Part 4 ensures that
the adversary cannot pretend to be userHb, and that the number of received messages fromHb equals the number
of messages sent byHb.

Proof. Part 1 follows by construction ofMfilter
a andXn in. In the initialization transition the only possible output

atoutfila ! is of the form(rec init, v). The testv = b of Mfilter
a ensures that it is(rec init, b). The only remaining step

in whichMfilter
a may output something toHa is the receive-message step. Outputs are of the form(receive, u,m).

Again,Mfilter
a checksu = b first so we can only have outputs of the form(receive, b,m). Thus, every output at

portoutfila ! has the desired form. The portmastera? is connected to the master scheduler, and outputs there are of
the form1 by definition of the master schedulerXn in.

Part 2 is proved by inspection of the definition ofXn in. At the start of the run,Xn in schedulesBITH and switches
between “Case 2: Schedule users” and “Case3: Handle scheduling demands”, cf. Definition 10, afterwards. In
case2, only the internal counter is checked and maybe the countersteps of Definition 10 is increased, so no
outputs from outside are taken into account. Now assume thatXn in outputs anything atp⊳! for p⊳! ∈ S c

a . This can
only happen in case3 if Xn in receives exactly one input at one of the portsps? for ps! ∈ ports(Ha). In this case
it schedules the unique output portp⊳!. Because ofp! ∈ ports(Ha) only messages sent byHa are scheduled. This
finishes this sub-part of the proof.

Furthermore, note that no honest user can perform a clocked self-loop by definition. Moreover, the control will
automatically come back toXn in after an arbitrary user is clocked by the system because users are forbidden to
have any clock-out ports by definition. If the adversary is scheduled it either has to do nothing or it has to schedule
a machine of the system. In the first case the control immediately goes to the master scheduler, in the second one
the machine of the system will either output nothing if one ofits internal tests fails, or it finally schedules one
of the honest users. In both casesXn in is clocked again. This ensures that the master scheduler will always be
scheduled after a constant number of steps. Hence it can indeed perform its round-robin clocking scheme, which
clocks every machine equally often.

Part 3 holds by construction ofMfilter
a andTHH and the previous part. First note thatHa can only receive a term

(rec init, b) if it has been output byTHH at outa ! or by Mfilter
b at pMb

! in the previous step. The second case
fulfills our requirements by construction ofMfilter

b , because a message(snd init) must have been output byHb and
scheduled byXn in, so we can turn our attention to the first case. There are only two cases in whichTHH may have
output this term. The first case is initialization of userHb, the second case is “Receive initialization”. In the first
caseHb outputs(snd init), the master schedulerXn in schedules it (ifHb tells him what port to schedule, otherwise
nothing is scheduled), andTHH directly outputs this term toMfilter

a and schedules it immediately. This fulfills our
requirements. We will now show thatTHH does not output anything in the other case.

On input(rec init, b) at portfrom adva?, THH first checksstopped spec
a = 0, doing nothing at failure. After

a successful test it checksinit specb,a = 0. By our modification ofTHH this can only hold ifHb has not initialized
itself, soinit specb,b = 0 must hold. Because ofb ∈ H, THH will not outputs anything. This finishes the proof of this
part.

Part 4 is proved similar to the previous part. First note thatHa can only receive a term(receive, b,m) if it has been
output byTHH at outa ! or byMfilter

b at pMb
! in the previous step. An input byMfilter

b fulfills our requirements by
construction ofMfilter

b . Note that there are only two cases in whichTHH may have output this term. The first case
is sending messages of userHb to userHa, the second case is “Receive messages from userb”. In the first case,Hb

sends(send,m, a), which is again scheduled byXn in. THH directly outputs this term toMfilter
a and schedules it

immediately. This fulfills our requirements. Furthermore,it increases the internal countermsg out
spec
b,a . We finally

show thatTHH does not output anything in the second case. On input(receive blindly, b, i) at portfrom adva?,
THH first does its usual initialization checks. We assume them tobe successful, otherwise it outputs nothing any-
way. It then checksmsg out

spec
b,a = j, if (m, j) := deliver

spec
b,a [i] 6= ↓. However, the message countermsg out

spec
b,a

is set tomsg in
spec
b,a + 1 after every sent message fromb to a andj ≤ msg in

spec
b,a always holds by construction of

THH for every(m, j) := deliver
spec
b,a [i] 6= ↓. Hence, we havej < msg out

spec
b,a andTHH will not output anything.

This finishes the proof of this part.

Proof (Theorem 3).We have to show thatSys∗ fulfills the flow policyF∗. Let a structure(M̂ ∗
H, S ∗

H) ∈ Sys∗ be
given, andF∗

S∗

H

:= (∆S∗

H
,❀S∗

H
) the flow policy for this structure. Let two port setsSu 6❀ Sv be given. Because

of the symmetry of the flow policy, we can assumev = a, while u 6∈ {a, b}. We have to show(M̂H, SH) |=perf

NIReqF∗

S∗
H

,u,v.

Let a non-interference configurationconf = (M̂H, S ,U n in,AH) for this structure and high and low user
u andv be given. We denote the two families of views ofHa for the initial bit b by view conf ,b(Ha), and as-
sume a fixed security parameterk. Assume for contradiction thatPguess,conf is greater than12 . This implies
view conf ,0({Ha,Hb}) 6= view conf ,1({Ha,Hb}). This means that there has to be a first input to{Ha,Hb} with
different probability in both cases. We use Lemma 2 to show that this cannot happen.

By Part 1 of Lemma 2, this input can only be of the form(rec init, c) or (receive, c,m) at outfilc ?, or 1 at
masterc? for c ∈ {a, b}. We write c̄ for the other protected user, i.e.,{c, c̄} = {a, b}. If the input is(rec init, c)
Part 3 implies that this input is a direct consequence of an input (snd init) by userHc̄. Hence, there had to be an
input toHc̄ with different probability in both cases. This contradictsour assumption of thefirst different input.

Now assume this first different input is of the form(receive, c,m). By Part 4 the corresponding input
(send, c̄,m) must have been sent directly byHc with the same messagem. Furthermore, the underlying trusted
hostTHH for secure reliable message transmission ensures that the message has been sent exactly as often as
Hc̄ receives this input, so there cannot be any influence from outside for the same reason as in the first case.
This implies that there already had to be an input toHc with different probability in both cases, contradicting our
assumption of the first different input again.

Finally, assume this input is at portmasterc?. By Part 2 this input does not depend on any behaviors of other
machines. Analogous to the previous cases, we obtain a contradiction again.

Therefore, we obtainPguess,conf = 1
2 . This finishes the proof forconf , and thus the overall proof.

Given that the ideal firewall fulfills its flow policy it follows easily that the real firewall fulfills the corresponding
flow policy. However, this only holds computationally because the real firewall is only computationally as secure
as the ideal one.

Theorem 4. (Non-Interference Property of the Real Firewall)The real systemSys# for the cryptographic firewall
fulfills the flow policy F# computationally, whereF# is the corresponding flow policy forF∗ according to
Definition 16. In formulas,Sys# |=poly F

#.

Proof. According to Theorem 2, the real secure reliable message-transmission systemSys0 is computationally
at least as secure as its specificationSys ′0. By Part 1 of Lemma 2 the systemSys1 is polynomial-time. The
other, more technical preconditions for the composition theorem can easily be seen to be fulfilled. Hence we have
Sys# ≥poly Sys∗. Since perfect fulfillment of non-interference requirements implies computational fulfillment,
we obtainSys# |=poly F# using Theorem 1.

6 Conclusion

We have presented the first general definition of probabilistic non-interference in reactive systems that includes
a computational case (Section 3). We have established a preservation theorem stating that our definition behaves
well under simulatability (Section 4); this enables modular proofs of cryptographic systems and step-wise refine-
ment without destroying the non-interference properties.This is particularly important because non-interference
properties of abstract specifications of cryptographic systems can often be validated by formal proof tools, whereas
real cryptographic systems are much more difficult to validate. As an example, we have presented a cryptographic
firewall system and proved a non-interference property via the preservation theorem (Section 5).

Actually using formal proof tools for similar proofs is one possibility for future research. Furthermore, we only
considered transitive flow policies so far. However, there are several interesting examples of intransitive flow poli-
cies, and several definitions were made for deterministic and non-deterministic system models [77, 75, 76, 80, 59].
We extended these notions to probabilistic and computational models in [12], and obtained first quantative com-
putational results in [4]. Another possible direction is toconsider different master schedulers in non-interference
configurations and to study to what extent the resulting semantics depends on the scheduling strategy. Finally, the
preservation theorem paves the way towards treating cryptographic primitives similar to the Dolev-Yao abstrac-
tion again, as in some articles mentioned in the introduction. A first suitable, composable library of cryptographic
primitives with a simulatability proof between the ideal and the real version was presented in [19, 18, 14, 24]. This
may eventually lead again to a type-based analysis of largersystems that only use well-defined cryptographic
primitives as black boxes. Note, however, that the computational non-interference definition and the preservation
theorem were necessary to put such an approach on a sound basis.

Acknowledgments

We thankHeiko Mantel, Matthias Schunter, andMichael Waidnerfor interesting discussions.

References

1. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. InProc. 4th International Conference on
Foundations of Software Science and Computation Structures (FOSSACS), volume 2030 ofLecture Notes in Computer
Science, pages 25–41. Springer, 2001.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal encryption).
Journal of Cryptology, 15(2):103–127, 2002.

3. M. Backes. A cryptographically sound dolev-yao style security proof of the otway-rees protocol. InProceedings of 9th
European Symposium on Research in Computer Security (ESORICS), volume 3193 ofLecture Notes in Computer Science,
pages 89–108. Springer, 2004.

4. M. Backes. Quantifying probabilistic information flow incomputational reactive systems. InProceedings of 10th Eu-
ropean Symposium on Research in Computer Security (ESORICS), volume 3679 ofLecture Notes in Computer Science,
pages 336–354. Springer, 2005.

5. M. Backes. Unifying simulatability definitions in cryptographic systems under different timing assumptions.Journal of
Logic and Algebraic Programming (JLAP), 2:157–188, 2005.

6. M. Backes and M. Duermuth. A cryptographically sound dolev-yao style security proof of an electronic payment system.
In Proceedings of 18th IEEE Computer Security Foundations Workshop (CSFW), pages 78–93, 2005.

7. M. Backes and D. Hofheinz. How to break and repair a universally composable signature functionality. InProceedings of
7th Information Security Conference (ISC), volume 3225 ofLecture Notes in Computer Science, pages 61–72. Springer,
2004. Preprint on IACR ePrint 2003/240.

8. M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of security protocols. InProceedings
of 20th International Symposium on Theoretical Aspects of Computer Science (STACS), volume 2607 ofLecture Notes in
Computer Science, pages 675–686. Springer, 2003.

9. M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound implementations using composition and
formally verified bisimulation. InProc. 11th Symposium on Formal Methods Europe (FME 2002), volume 2391 of
Lecture Notes in Computer Science, pages 310–329. Springer, 2002.

10. M. Backes and B. Pfitzmann. Computational probabilisticnon-interference. InProceedings of 7th European Symposium
on Research in Computer Security (ESORICS), volume 2502 ofLecture Notes in Computer Science, pages 1–23. Springer,
2002.

11. M. Backes and B. Pfitzmann. A cryptographically sound security proof of the needham-schroeder-lowe public-key pro-
tocol. In Proceedings of 23rd Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 2914 ofLecture Notes in Computer Science, pages 1–12. Springer, 2003. Preprint on IACR ePrint
2003/121.

12. M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic purposes. InProc. 24th IEEE Symposium
on Security & Privacy, pages 140–152, 2003.

13. M. Backes and B. Pfitzmann. Computational probabilisticnon-interference.International Journal of Information Security
(IJIS), 3(1):42–60, 2004.

14. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable dolev-yao style cryptographic library. InProceed-
ings of 17th IEEE Computer Security Foundations Workshop (CSFW), pages 204–218, 2004. Preprint on IACR ePrint
2004/059.

15. M. Backes and B. Pfitzmann. Limits of the cryptographic realization of dolev-yao-style xor. InProceedings of 10th
European Symposium on Research in Computer Security (ESORICS), volume 3679 ofLecture Notes in Computer Science,
pages 178–196. Springer, 2005.

16. M. Backes and B. Pfitzmann. Relating cryptographic und symbolic secrecy. IEEE Transactions on Dependable and
Secure Computing (TDSC), 2(2):109–123, 2005.

17. M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial liveness.Journal of Computer Security, 12(3-4):589–
617, 2004.

18. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations (extended abstract).
In Proc. 10th ACM Conference on Computer and Communications Security, pages 220–230, 2003.

19. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library.IACR Cryptology ePrint
Archive, 2003:15, 2003.

20. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive system. InProceedings
of 1st Theory of Cryptography Conference (TCC), volume 2951 ofLecture Notes in Computer Science, pages 336–354.
Springer, 2004.

21. M. Backes, B. Pfitzmann, and M. Waidner. Low-level ideal signatures and general integrity idealization. InProceedings
of 7th Information Security Conference (ISC), volume 3225 ofLecture Notes in Computer Science, pages 39–51. Springer,
2004.

22. M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems. IACR Cryptology ePrint Archive
2004/082, Mar. 2004.

23. M. Backes, B. Pfitzmann, and M. Waidner. Reactively secure signature schemes.International Journal of Information
Security (IJIS), 4(4):242–252, 2005.

24. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable cryptographic library.Interna-
tional Journal of Information Security (IJIS), 4(3):135–154, 2005.

25. D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty minority.Journal of
Cryptology, 4(2):75–122, 1991.

26. D. Bell and L. LaPadula. Secure computer systems: Unifiedexposition and multics interpretation. Computer Science
Technical Report ESD-TR-75-306, The Mitre Corporation, 1976.

27. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of authentication and key
exchange protocols. InProc. 30th Annual ACM Symposium on Theory of Computing (STOC), pages 419–428, 1998.

28. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key encryption
schemes. InAdvances in Cryptology: CRYPTO ’98, volume 1462 ofLecture Notes in Computer Science, pages 26–45.
Springer, 1998.

29. R. Canetti. Security and composition of multiparty cryptographic protocols.Journal of Cryptology, 3(1):143–202, 2000.
30. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. InProc. 42nd IEEE Symposium

on Foundations of Computer Science (FOCS), pages 136–145, 2001. Extended version in Cryptology ePrint Archive,
Report 2000/67,http://eprint.iacr.org/ .

31. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext
attack. InAdvances in Cryptology: EUROCRYPT ’99, volume 1592 ofLecture Notes in Computer Science, pages 90–106.
Springer, 1999.

32. D. Clark, C. Hankin, S. Hunt, and R. Nagarajan. Possibilistic information flow is safe for probabilistic non-interference.
In Proc. WITS, 2000.www.doc.ic.ac.uk/ ˜ clh/Papers/witscnh.ps.gz .

33. R. Cramer and V. Shoup. Practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In
Advances in Cryptology: CRYPTO ’98, volume 1462 ofLecture Notes in Computer Science, pages 13–25. Springer, 1998.

34. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition (extended abstract). InProc. 1st ACM
Workshop on Formal Methods in Security Engineering (FMSE), pages 11–23, 2003.

35. D. E. Denning. A lattice model of secure information flow.Communications of the ACM, 19(5):236–243, 1976.
36. D. E. Denning and P. J. Denning. Certification of programsfor secure information flow.Communications of the ACM,

20(7):504–513, 1977.
37. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information Theory, 29(2):198–

208, 1983.
38. R. Focardi and R. Gorrieri. The compositional security checker: A tool for the verification of information flow security

properties.IEEE Transactions on Software Engineering, 23(9):550–571, 1997.
39. R. Gennaro and S. Micali. Verifiable secret sharing as secure computation. InAdvances in Cryptology: EUROCRYPT

’95, volume 921 ofLecture Notes in Computer Science, pages 168–182. Springer, 1995.
40. J. A. Goguen and J. Meseguer. Security policies and security models. InProc. 3rd IEEE Symposium on Security &

Privacy, pages 11–20, 1982.
41. J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. 5th IEEE Symposium on Security & Privacy,

pages 75–86, 1984.
42. O. Goldreich. Secure multi-party computation. Department of Computer Science and Applied Mathematics, The Weiz-

mann Institute of Science, June 1998, revised Version 1.4 October 2002, 1998.http://www.wisdom.weizmann.
ac.il/users/oded/pp.htm .

43. O. Goldreich.Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
44. O. Goldreich, S. Micali, and A. Wigderson. How to play anymental game – or – a completeness theorem for protocols

with honest majority. InProc. 19th Annual ACM Symposium on Theory of Computing (STOC), pages 218–229, 1987.
45. S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority. InAdvances in

Cryptology: CRYPTO ’90, volume 537 ofLecture Notes in Computer Science, pages 77–93. Springer, 1990.
46. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-message attacks.

SIAM Journal on Computing, 17(2):281–308, 1988.
47. J. W. Gray III. Probabilistic interference. InProc. 11th IEEE Symposium on Security & Privacy, pages 170–179, 1990.
48. J. W. Gray III. Toward a mathematical foundation for information flow security.Journal of Computer Security, 1(3):255–

295, 1992.
49. M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multiparty computation.Journal of

Cryptology, 13(1):31–60, 2000.
50. C. A. R. Hoare.Communicating Sequential Processes. International Series in Computer Science, Prentice Hall,Hemel

Hempstead, 1985.
51. J. Jacob. Basic theorems about security.Journal of Computer Security, 1(4):385–411, 1992.
52. D. M. Johnson and F. Javier Thayer. Security and the composition of machines. InProc. 1st IEEE Computer Security

Foundations Workshop (CSFW), pages 72–89, 1988.
53. M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network version of the pump. InProc. 16th IEEE Symposium on Security

& Privacy, pages 144–154, 1995.
54. P. Laud. Semantics and program analysis of computationally secure information flow. InProc. 10th European Symposium

on Programming (ESOP), pages 77–91, 2001.
55. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol analysis. InProc.

5th ACM Conference on Computer and Communications Security, pages 112–121, 1998.
56. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time equivalence and security analysis. In

Proc. 8th Symposium on Formal Methods Europe (FME 1999), volume 1708 ofLecture Notes in Computer Science, pages
776–793. Springer, 1999.

57. N. Lynch.Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco, 1996.
58. H. Mantel. Unwinding possibilistic security properties. In Proc. 6th European Symposium on Research in Computer

Security (ESORICS), volume 1895 ofLecture Notes in Computer Science, pages 238–254. Springer, 2000.
59. H. Mantel. Information flow control and applications – bridging a gap. InProc. 10th Symposium on Formal Methods

Europe (FME 2001), volume 2021 ofLecture Notes in Computer Science, pages 153–172. Springer, 2001.
60. H. Mantel. Preserving information flow properties underrefinement. InProc. 22nd IEEE Symposium on Security &

Privacy, pages 78–91, 2001.
61. H. Mantel. On the composition of secure systems. InProc. 23rd IEEE Symposium on Security & Privacy, pages 88–101,

2002.
62. H. Mantel and A. Sabelfeld. A generic approach to the security of multi-threaded programs. InProc. 14th IEEE Computer

Security Foundations Workshop (CSFW), pages 200–214, 2001.
63. D. McCullough. Specifications for multi-level securityand a hook-up property. InProc. 8th IEEE Symposium on Security

& Privacy, pages 161–166, 1987.
64. D. McCullough. A hookup theorem for multilevel security. IEEE Transactions on Software Engineering, 16(6):563–568,

1990.
65. J. McLean. Security models and information flow. InProc. 11th IEEE Symposium on Security & Privacy, pages 180–187,

1990.
66. J. McLean. A general theory of composition for trace setsclosed under selective interleaving functions. InProc. 15th

IEEE Symposium on Security & Privacy, pages 79–93, 1994.
67. J. McLean. Security models. Chapter inEncyclopedia of Software Engineering, 1994.
68. J. McLean. A general theory of composition for a class of ”possibilistic” security properties.IEEE Transactions on

Software Engineering, 22(1):53–67, 1996.
69. S. Micali and P. Rogaway. Secure computation. InAdvances in Cryptology: CRYPTO ’91, volume 576 ofLecture Notes

in Computer Science, pages 392–404. Springer, 1991.
70. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries. InProc. 1st Theory

of Cryptography Conference (TCC), volume 2951 ofLecture Notes in Computer Science, pages 133–151. Springer, 2004.
71. J. K. Millen. Covert channel capacity. InProc. 8th IEEE Symposium on Security & Privacy, pages 60–66, 1987.
72. A. Myers and B. Liskov. Protecting privacy using the decentralized label model.ACM Transactions on Software Engi-

neering and Methodology, pages 410–442, 2000.
73. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. InProc. 7th

ACM Conference on Computer and Communications Security, pages 245–254, 2000. Extended version (with Matthias
Schunter) IBM Research Report RZ 3206, May 2000,http://www.semper.org/sirene/publ/PfSW1_
00ReactSimulIBM.ps.gz .

74. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure message trans-
mission. InProc. 22nd IEEE Symposium on Security & Privacy, pages 184–200, 2001.

75. S. Pinsky. Absorbing covers and intransitive non-interference. InProc. 16th IEEE Symposium on Security & Privacy,
pages 102–113, 1995.

76. A. Roscoe and M. Goldsmith. What is intransitive noninterference? InProc. 12th IEEE Computer Security Foundations
Workshop (CSFW), pages 226–238, 1999.

77. J. Rushby. Noninterference, transitivity, and channel-control security. Technical report, Computer Science Laboratory,
SRI International, 1992.

78. A. Sabelfeld and D. Sands. A per model of secure information flow in sequential programs. InProc. European Symposium
on Programming (ESOP), pages 40–58. Springer, 1999.

79. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. InProc. 13th IEEE Computer
Security Foundations Workshop (CSFW), pages 200–214, 2000.

80. G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll. Verification of a formal security model for multiap-
plicative smart cards. InProc. 6th European Symposium on Research in Computer Security (ESORICS), volume 1895 of
Lecture Notes in Computer Science, pages 17–36. Springer, 2000.

81. G. Smith. A new type system for secure information flow. InProc. 14th IEEE Computer Security Foundations Workshop
(CSFW), pages 115–125, 2001.

82. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language. InProc. 25th ACM Sympo-
sium on Principles of Programming Languages (POPL), pages 355–364, 1998.

83. D. Sutherland. A model of information. InProc. 9th National Computer Security Conference, pages 175–183, 1986.
84. D. Volpano. Secure introduction of one-way functions. In Proc. 13th IEEE Computer Security Foundations Workshop

(CSFW), pages 246–254, 2000.
85. D. Volpano and G. Smith. Eliminating covert flows with minimum typings. InProc. 10th IEEE Computer Security

Foundations Workshop (CSFW), pages 156–168, 1997.
86. D. Volpano and G. Smith. Probabilistic noninterferencein a concurrent language. InProc. 11th IEEE Computer Security

Foundations Workshop (CSFW), pages 34–43, 1998.
87. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.Journal of Computer Security,

4(3):167–187, 1996.
88. J. T. Wittbold and D. M. Johnson. Information flow in nondeterministic systems. InProc. 11th IEEE Symposium on

Security & Privacy, pages 144–161, 1990.
89. A. C. Yao. Protocols for secure computations. InProc. 23rd IEEE Symposium on Foundations of Computer Science

(FOCS), pages 160–164, 1982.
90. A. Zakinthinos and E. S. Lee. A general theory of securityproperties. InProc. 18th IEEE Symposium on Security &

Privacy, pages 94–102, 1997.
91. S. Zdancewic and A. C. Myers. Robust declassification. InProc. 14th IEEE Computer Security Foundations Workshop

(CSFW), pages 15–23, 2001.

A Ideal Secure Message Transmission with Reliable Channels

This appendix contains the full definition of the ideal lowerlayer of the firewall system, the secure message-
transmission system with reliable channels, as sketched inSection 5.3.

Scheme 2 (Secure, Reliable Message Transmission with Ordered Channels) Let n ∈ N and polynomials
L, s1, s2 ∈ N[x] be given that bound the length of each message and the number of messages a user can send
and receive, respectively, from another user. LetM := {1, . . . , n}, and fix two elementsa, b ∈M.

The system is a standard ideal system (see Section 5.3) with the access structureACC := {H ⊆ M | a, b ∈
H}. Thus it is of the form

Sys ′0 = {({THH}, SH) | H ∈ ACC}.

Specified ports.We define the specified ports by their complements, i.e., the ports the honest users should have:
S c
H := {inu !, outu?, inu

⊳! | u ∈ H}.

Ports of the trusted hosts.The ports of THH are {inu?, outu !, outu⊳! | u ∈ H} ∪ {from advu?,
to advu !, to advu

⊳! | u ∈ H}.

State of the trusted hosts.Internally,THH maintains seven arrays:

– (init specu,v)u,v∈M over{0, 1}models the initialization state of the users,
– (stopped spec

u)u∈H over{0, 1} denotes whether the service to useru has stopped,
– (sc in,specu,v)u∈H,v∈M over{0, . . . , s1(k)} counts the inputs of useru intended for userv,
– (scout,specu,v)u∈M,v∈H over{0, . . . , s2(k)} counts the outputs for userv originating from useru,
– (msg in spec

u,v)u∈H,v∈M over{0, . . . , s1(k)} counts the valid sent messages from useru to userv,
– (msg out specu,v)u,v∈H over{0, . . . , s2(k)} denotes the next message number expected fromu atv, and
– (deliver specu,v)u,v∈H over lists holds the messages in transit fromu to v.

The first five arrays are initialized with0 everywhere, the sixth one with1 everywhere, and the lists in the seventh
are initially empty.

Transition function. The state-transition function ofTHH is defined by the following rules for the individual
inputs.Σ denotes the message alphabet,len(m) the length of a message andsize(l) the length of a list. The value
↓ denotes an error. “Abort” means finishing a state transition.

We give explanations in the first transition; the other transitions should then be understood similarly.

– Send initialization: On input (snd init) at inu?: If sc in,specu,v < s1(k) for all v ∈ M, setsc in,specu,v := sc in,specu,v +1
for all v ∈ M, otherwise abort. This ensures that the number of inputs remains polynomial. Verify
stopped spec

u = 0 andinit specu,u = 0, i.e., the service for useru is still alive andu has not initialized before. If
not, abort. Setinit specu,u := 1 and output(snd init) at to advu !, i.e., the adversary learns of the initialization.
If u = a, immediately setinit speca,b = 1 because for this user pair we model reliable communication,and output
(rec init, a) atoutb ! and1 atoutb⊳!, and similarly witha andb exchanged. Otherwise output1 at to advu

⊳!.
– Receive initialization: On input (rec init, u) at from advv? with u ∈ M, v ∈ H: If stopped spec

v = 0,
init specu,v = 0, and[u ∈ H ⇒ init specu,u = 1], setinit specu,v := 1, else abort. Ifscout,specu,v < s2(k) setscout,specu,v :=
scout,specu,v + 1 and output(rec init, u) atoutv ! and1 atoutv⊳!.

– Send:On input(send,m, v) at inu?: If sc in,specu,v < s1(k), setsc in,specu,v := sc in,specu,v +1, otherwise abort. Verify
thatstopped spec

u = 0, m ∈ Σ+, l := len(m) ≤ L(k), v ∈M\{u}, init specu,u = 1 andinit specv,u = 1, else abort.
Setmsg in spec

u,v := msg inspec
u,v + 1.

• If v 6∈ H, output(send, (m,msg in spec
u,v), v) at to advu ! and1 at to advu

⊳!.
• If v ∈ H, set i := size(deliver specu,v) + 1 and deliver specu,v [i] := (m,msg in spec

u,v). Further, output
(send blindly, i, l, v) at to advu !.
∗ If {u, v} 6= {a, b}, output1 at to advu

⊳!.
∗ If {u, v} = {a, b} setmsg out specu,v := msg inspec

u,v + 1 and output(receive, u,m) at outv ! and1 at
outv

⊳!.8

– Receive from honest partyu: On input (receive blindly, u, i) at from advv? with u, v ∈ H: Verify that
stopped spec

v = 0, init specv,v = 1, init specu,v = 1, scout,specu,v < s2(k) and(m, j) := deliver specu,v [i] 6= ↓, else abort.
Further verifymsg out specu,v = j. If this holds setscout,specu,v := scout,specu,v + 1 andmsg out specu,v := j + 1 and
output(receive, u,m) atoutv ! and1 atoutv⊳!.

– Receive from dishonest partyu: On input (receive, u,m) at from advv? with u ∈ M \ H,m ∈
Σ+, len(m) ≤ L(k) andv ∈ H: If stopped spec

v = 0, init specv,v = 1, init specu,v = 1 andscout,specu,v < s2(k),
setscout,specu,v := scout,specu,v + 1 and output(receive, u,m) atoutv ! and1 atoutv⊳!.

– Stop:On input(stop) at from advu? with u ∈ H: If stopped spec
u = 0, setstopped spec

u := 1 and output(stop)
atoutu ! and1 atoutu⊳!.

8 Increasing the out-message counter is essential for avoiding replay attacks because the messagem is directly delivered tov
using a reliable channel.

