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Abstract. Location privacy has mostly focused on scenarios where users
remain static. However, investigating scenarios where the victims present
a particular mobility pattern is more realistic. In this paper, we consider
abstract attacks on services that provide location information on other
users in the proximity. In that setting, we quantify the required effort
of the attacker to localize a particular mobile victim. We prove upper
and lower bounds for the effort of an optimal attacker. We experimen-
tally show that a Linear Jump Strategy (LJS) practically achieves the
upper bounds for almost uniform initial distributions of victims. To im-
prove performance for less uniform distributions known to the attacker,
we propose a Greedy Updating Attack Strategy (GUAS). Finally, we de-
rive a realistic mobility model from a real-world dataset and discuss the
performance of our strategies in that setting.

1 Introduction

Proximity services are a special type of location-based service (LBS) where the
user is informed about nearby people of interest and their distance rather than
their exact location in an attempt to protect location privacy. To that end,
queries are sent to the proximity service including the location of the user, the
search radius and possibly some information about the target. Unfortunately,
when the exact distance to a user is revealed by the proximity service it is



possible to retrieve the exact location of the user. Examples include claims that
Egyptian authorities leveraged dating apps to track down gay users [6], and
others attempted to find locations of Tinder users [19]. Consequently, the need
to provide rigorous privacy guarantees in proximity services is evident.

In view of these threats, some effort has been devoted to the development
of privacy-preserving proximity testing protocols [12,15,8]. These solutions allow
two users to learn whether they are within a certain distance of each other but no
further information about their location or distance is revealed to the other user.
Some of these protocols rely on a trusted third party to handle users’ locations
while others get rid of this third party and operate in a decentralized way.

In general, these solutions focus on partially static models, where attackers
can change their location freely but victims do not. Capturing the behavior of
an optimal attacker in this setting when the victim is static is already hard
although some progress has been made in recent years [13,9]. However, this
situation is quite unrealistic and motivated us to investigate the expected effort
for adversaries to localize users that move in a particular mobility pattern.

Although there has been extensive study in mobility models [2], attack strate-
gies [11,19,13], location privacy protection mechanisms [18,8,9] and location pri-
vacy quantification metrics [17,16], there is very limited research on location pre-
diction based on sequential spatio-temporal data using a probabilistic approach.
Given that location data acquired from an LBS platform are sequential spatio-
temporal data, one can obtain information on the moving patterns/behaviors of
the user by analyzing the trajectory dataset. Hence, we are interested in quan-
tifying the effort of an arbitrary attacker issuing proximity queries in finding a
user under certain models. In other words: how quickly can an attacker locate a
user based on queries to the LBS?

Our main contributions are as follows:

1. Given any attacker strategy, assuming the victim follows a random walk, we
establish a formula for calculating the probability of the attacker finding the
location of the victim after any number of queries.

2. We give upper and lower bounds on the minimum number of queries an at-
tacker needs to issue to locate the victim with probability 1

2 (generalizable
to other probabilities). In particular, for a search space of size M and as-
sumptions on victim’s initial location and mobility, we show that an optimal
attacker needs at most M

2 queries to locate a victim with probability 1
2 .

3. We implement the linear jump strategy from the proof, and show empir-
ically that its effort falls within the theoretical bounds. We find that for
non-uniform initial distributions of victims, the strategy performs worse. To
address this, we propose a greedy updating attacker strategy.

4. We then use the strategies to estimate attacker effort for more general set-
tings (e.g., limited knowledge known by the attacker, other mobility models).

5. We derive a transition matrix representing real-world mobility patterns from
a large dataset [21,22], and show how that mobility pattern influences at-
tacker effort compared to previous results.
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The rest of this work is organized as follows. In Section 2, we present our
mathematical modeling of search spaces and mobility patterns. Section 3 sum-
marizes the problem statement. We present the mathematical analysis for calcu-
lating the probability of an attacker locating a victim using location proximity
queries in Section 4. In Section 5, we present our applied linear jumping and
greedy attacker strategies, and evaluate them empirically in Section 6. Related
work and conclusions are discussed in Sections 7 and 8, respectively.

2 Preliminaries

2.1 Search Domain

In our model, users are able to move in a finite space that can be divided into
discrete locations. The granularity of the locations is limited by the maximum
precision of the positioning device or privacy considerations [5].

Space. We consider two cases. In the one-dimensional case, the search space is
divided into n locations, each of which has two adjacent locations, left and right,
except for the corners. We call this space Sn. For the two-dimensional case, the
search space can be divided into m× n locations. Each point typically has four
adjacent locations, except for the corners. We call this space SM , with M = mn.

Time. We assume discrete time steps k ∈ {0, 1, 2, . . . }. In each time step, the
user X can move once. The movement of users is represented as a transition in
our model. Let Xk denote the position of user X at time k.

Location. A user X located in the space SM at time k is denoted Xk, with
k ∈ Z≥0 and Xk ∈ {0, 1, . . . ,M − 1}. The location of X at time 0 is called the
initial location of X . The set of possible values for Xk+1 will be determined by
the particular mobility pattern of the user.

2.2 Mobility Models

We now describe some common mobility patterns (see Fig. 1) to give a better
intuition of our modeling of search spaces and descriptions of entities moving in
the search space. We assume an honest user like Bob follows a realistic mobility
pattern where subsequent locations are contiguous to each other. We will use
mobility patterns and mobility models interchangeably throughout this paper.
Two-dimensional search spaces can be projected to a one-dimensional space.

Static mobility model An entity X that follows a static mobility model starts at a
random initial position r in the search space SM and does not move afterwards.
For example, a person who stays at home or in the office. With a fixed r ∈ SM :

Xk+1 = Xk, X0 = r, k ∈ Z≥0
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Fig. 1. Mobility Models

Linear mobility model An entity X that follows a linear mobility model starts
at an arbitrary initial position X0 within the search space SM (M = mn for
dimension two and M = n for dimension one) and keeps moving such that the
following conditions are satisfied:

1. {XiM ,XiM+1, . . . ,XiM+M−1} = {0, 1, . . . ,M − 1} for all i ∈ Z≥0;
2. Xk+1 ∈ {Xk + 1,Xk − 1} for a one dimensional search space of size n (k ∈

Z≥0).

This model may apply when a person is driving a car on the road.

Random walk mobility model An entity X that follows a random walk mobil-
ity model starts at a random position and decides its next move uniformly at
random from all the positions in its vicinity. Hence the following mathematical
expressions hold for a one-dimensional search space of size n (similar expressions
can be derived for the two-dimensional case).

Pr (Xk+1 = Xk + 1) = Pr (Xk+1 = Xk − 1) =
1

2
, if 1 ≤ Xk ≤ n− 2;

Pr (Xk+1 = 1) = 1, if Xk = 0;

Pr (Xk+1 = n− 2) = 1, if Xk = n− 1,

where Pr (·) denotes probability hereinafter. Later, our theoretical probabilistic
derivation will start with a random walk mobility model. A person sightseeing
or shopping could fit this model.

Random jump An entity X that follows this strategy can arbitrarily move to
any other position. In other words, the next position is sampled freshly from a
uniform distribution. An attacker, for example, who can fake his/her location as
a means to perform attacks, such as trilateration, could be described using the
random jump model.

3 Location Proximity Attacks

Based on the modeling of search spaces and possible mobility patterns from
Section 2, we proceed to give a formal mathematical description of the problem
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statement for this paper. Afterwards, we will derive general analytical bounds
on the expected location effort in dimension one.

3.1 System and Attacker Model

Let Alice (A) be the attacker and Bob (B) be a user whose location is of interest
to Alice. Bob uses aLBS that will disclose Bob’s presence at location Bk to other
users that claim to be at the same location. Bob (and Alice) can only make one
location claim per discrete time step k. Each time k, Bob will move once (and
update its location on the LBS), and Alice will thus be able to perform one
query to the LBS to verify if Bob is at Alice’s claimed location Ak. Alice sends
the first query at time k = 0, and thus k is the time of the (k + 1)-th query.

The goal of Alice is to minimize the number of queries that she needs to
send to LBS to be able to verify Bob’s location. Conversely, Bob does not have
a particular goal except to use the service privately. He is not even aware of
being tracked. Alice on the other hand is assumed to have a priori information
about Bob’s probability distribution obtained from past observations, external
sources, geographic features of the terrain or a combination thereof. Later in
Section 6.2, we will discuss a real data example, where the attacker can obtain
some information from historical trajectory data of a victim.

While we use a third party LBS in this system model for simplicity, similar
scenarios could be constructed if Alice and Bob engage in a privacy-preserving
proximity protocol that is initiated by Alice and where the inputs of both of
them remain private (e.g., the protocol discussed in [8]).

3.2 Problem Statement and Formalization

We now present our problem statement and the underlying formalization.

Problem Statement. We are interested in finding kO,p: the number of queries
required by an optimal attacker strategy to locate Bob with probability of at
least p. Formally, we define kO,p as follows:

kO,p := min
A

kA,p, (1)

with kA,p being the number of steps required by a specific attacker strategy A
to locate Bob with probability 0 ≤ p ≤ 1. We can find that number as follows:

kA,p := min{k : Pr (Ek) ≥ p},
with Pr (Ek) being the cumulative probability that Bob was located within k
steps, that is, k + 1 queries.

Attacker Strategies. For a fixed attacker strategy A = A0,A1, . . . , we are
interested in the probability of two events: Ek, and Fj . The event Ek is the
event that Alice locates Bob within k steps:

Ek := {∃i ≤ k s.t. Ai = Bi}
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Fj is the event that Alice locates Bob exactly at step j:

Fj := {Aj = Bj}.

Before we can derive the probabilities of those events (Pr (Ek) and Pr (Fj)), we
now show how to compute the probabilistic locations of Bob.

Probabilistic Locations. Consider a search space SM . We assume the mobility
model of Bob can be described by a transition matrix P where each entry of P
is a transition probability pij representing the probability of Bob moving from
location i to location j in one step. Furthermore, we assume the probability of
Bob moving from location i to location j is the same at any step. More precisely:

Pr (Bk = j|Bk−1 = i) = pij , ∀k ∈ Z≥1 and i, j ∈ SM .

Thus, it is straightforward to calculate the probability of Bob being at a par-
ticular location after k steps by simply taking the kth power of the transition
matrix.

Let B(k) (k ∈ Z≥0) be a vector representing the probability of Bob being

at each location j (j ∈ {0, 1, . . . ,M − 1}) after k steps, i.e. B
(k)
j = Pr (Bk = j).

Assume that Bob is at location i after k steps, then B(k+1) (k ∈ Z≥0) can be
calculated as follows:

B(k+1) = B(k) · P =
( i

0 . . . 1 . . . 0
)

p1,1 p1,2 · · · p1,M
p2,1 p2,2 · · · p2,M

...
...

. . .
...

pM,1 pM,2 · · · pM,M


Upper Bound for Pr (Ek). By definition,

Pr (Ek) = Pr (F0 ∪ F1 · · · ∪ Fk),

which gives the following upper bound for Pr (Ek) since the probability of finding
Bob at step i is at most equal to the probability of Bob’s most likely location at
that step:

Pr (Ek) ≤ Pr (F0) + Pr (F1) + · · ·+ Pr (Fk) ≤
k∑

i=0

max
j
B

(i)
j . (2)

Note that the above upper bound on Pr (Ek) holds for any attacker strategy A.

Lower Bound on k. We define

klower,p := min

{
k :

k∑
i=0

max
j
B

(i)
j ≥ p

}
. (3)

In view of Equation 2, klower,p ≤ kO,p is a lower bound of kO,p.
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4 Quantifying Attacker Effort

Next we present the theoretical analysis on the minimal number of steps required
by an optimal attack strategy to locate a particular victim. First, we derive
the formula for calculating Pr (Ek) and then we consider the case of a victim
following a random walk mobility model. We choose a random walk model to give
a rigorous mathematical analysis. In more complex moving patterns, the problem
may not have analytical or closed solutions because the transition matrix is
indefinable or needs to be recursively updated. Our mathematical derivation
will be presented for the one-dimensional case only as we can always project
two-dimensions to a one-dimensional space.

4.1 Attacker’s Effort Computation

Given the transition matrix P and the vector B(0) of initial position probabilities,
B(k) = B(0)P k gives the probabilities of Bob being at each different position after

k steps. More precisely, B
(k)
j = Pr (Bk = j) is the probability of Bob at position

j after k steps.
Let P i

j1j2
denote the (j1, j2)−entry of the matrix P i. It gives the probability

of Bob going from position j1 to position j2 in i steps, i.e. for any k ∈ Z≥0,

Pr (Bi+k = j2|Bk = j1) = P i
j1j2 .

Fixing an attacker strategy A, let Ai denote the position of Alice at step i. For
any positive integers i1 < i2, the probability of Alice locating Bob at both steps
i1 and i2 is equal to the probability of Bob being at position Ai1 at step i1
multiplied by the probability of Bob reaching position Ai2 in i2 − i1 steps, i.e.

Pr (Fi1 ∩ Fi2) = Pr (Bi1 = Ai1 ∩ Bi2 = Ai2) (4)

= Pr (Bi1 = Ai1)Pr (Bi2 = Ai2 |Bi1 = Ai1) = B
(i1)
Ai1

P i2−i1
Ai1
Ai2

. (5)

To get a general formula for Pr (Ek), we first note

Pr (Ek) = Pr (F0 ∪ F1 ∪ · · · ∪ Fk) = Pr ((F0 ∪ F1 ∪ · · · ∪ Fk−1)c ∩ Fk)

= Pr (F0) + Pr (F c
0 ∩ F1) + Pr ((F0 ∪ F1)c ∩ F2) + · · ·

+ Pr ((F0 ∪ F1 ∪ · · · ∪ Fk−1)c ∩ Fk)

=
∑

0≤i≤k

Pr ((F0 ∪ F1 ∪ · · · ∪ Fi−1)c ∩ Fi), (6)

where F c is the complement of F , i.e., F c
j means Alice does not successfully

locates Bob at step j. Our GUAS attacker strategy uses this result for aggregate
success computation (see Section 5.2). From probability theory we can also write

Pr (Ek) = Pr (F0 ∪ F1 ∪ · · · ∪ Fk)

=
k∑

m=0

(−1)m+1

 ∑
0≤i1<···<im≤k

Pr (Fi1 ∩ · · · ∩ Fim)

. (7)
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By combining Equation 4 with Equation 7, we have the following general formula
for Pr (Ek):

k∑
m=0

B
(m)
Am

1 +

k−m∑
`=1

(−1)`
∑

m<i1<i2<···<i`≤k

P i1−m
AmAi1

. . . P
i`−i`−1

Ai`−1
Ai`


= B

(0)
A0

1−
k∑

i=1

P i
A0Ai

+
∑

1≤i1<i2≤k

P i1
A0Ai1

P i2−i1
Ai1
Ai2
− . . .


+B

(1)
A1

1−
k∑

i=2

P i−1
A1Ai

+
∑

2≤i1<i2≤k

P i1−1
A1Ai1

P i2−i1
Ai1
Ai2
− . . .

 + · · ·+B
(k)
Ak
. (8)

If the attacker strategy is not deterministic, then for one fixed sequence of
positions a0, a1, a2, . . . , ak, Pr (Ek|A0 = a0 ∩ A1 = a1 ∩ · · · ∩ Ak = ak) is given
by

k∑
m=0

B(m)
am

1 +

k−m∑
`=1

(−1)`
∑

m<i1<i2<···<i`≤k

P i1−m
amai1

P i2−i1
ai1

ai2
. . . P i`−i`−1

ai`−1
ai`

 ,

and we have the following formula for Pr (Ek)

∑
1≤a0,a1,...,ak≤n

Pr (A0 = a0 ∩ · · · ∩ Ak = ak)·Pr (Ek|A0 = a0 ∩ · · · ∩ Ak = ak)

(9)

Note that when the attacker strategy is deterministic, for one sequence of po-
sitions a0, a1, a2, . . . , ak we have Pr (A0 = a0, . . . ,Ak = ak) = 1 and we get the
formula in (8).

For the next subsection, we assume Bob follows a random walk strategy
that can be represented as a Markovian process with transition probabilities pij ,
consistent with the provisions of the random walk mobility model in Section 2.2.
We give our evaluations for the case p = 0.5. To simplify the notations, we define

kA := kA,0.5 = min{k : Pr (Ek) ≥ 0.5},
kO := kO,0.5 = min

A
kA,

klower := klower,0.5.

Thus if Alice follows strategy A, kA (resp. kA + 1) is the number of steps (resp.
number of queries) needed for Alice to locate Bob with a probability of at least
0.5. kO (resp. kO + 1) is the minimum number of steps (resp. minimum number
of queries) needed for Alice to locate Bob with a probability of at least 0.5
independently of strategy used. In addition, klower ≤ kO is a lower bound of kO.
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4.2 Random Walk Example

In this section, we derive upper and lower bounds on kO by analyzing the ma-
trices B(k). We show that “for a search space of size n, bn3 c − 1 ≤ kO ≤ bn2 c”
(see Corollary 1). To achieve this goal, we first estimate the values of B

(k)
j . For

a one-dimensional search space of size n, Bob follows a transition matrix P with
initial position vector B(0):

B(0) =

[
1

n
,

1

n
, . . . ,

1

n

]
, P =



0 1 0 . . . 0 0
1
2 0 1

2 . . . 0 0
0 1

2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

2
0 0 0 . . . 1 0


Then the probabilities of Bob in each position at step i is given by B(i) = B(0)P i:

B(1) =

[
1

2n
,

3

2n
,

1

n
, . . . ,

1

n
,

3

2n
,

1

2n

]
,

B(2) =

[
3

4n
,

1

n
,

5

4n
,

1

n
, . . . ,

1

n
,

5

4n
,

1

n
,

3

4n

]
,

B(3) =

[
1

2n
,

11

8n
,

1

n
,

9

8n
,

1

n
, . . . ,

1

n
,

9

8n
,

1

n
,

11

8n
,

1

2n

]
,

B(4) =

[
11

16n
,

1

n
,

5

4n
,

1

n
,

17

16n
,

1

n
, . . . ,

1

n
,

17

16n
,

1

n
,

5

4n
,

1

n
,

11

16n

]
, (10)

We have the following observation:

Lemma 1 For k ∈ Z≥0,{
1
n ≤ B

(k)
j ≤ 3

2n 1 ≤ j ≤ n− 2
1
2n ≤ B

(k)
j ≤ 3

4n j = 0, n− 1
.

Proof. We prove the above claims by mathematical induction. For B(0), the
claim is true. We assume it is true for B(k), then for B(k+1)

1. 2 ≤ j ≤ n− 3, B
(k+1)
j = 1

2

(
B

(k)
j−1 +B

(k)
j+1

)
, by induction hypothesis

1

n
=

1

2

(
1

n
+

1

n

)
≤ B(k+1)

j ≤ 1

2

(
3

2n
+

3

2n

)
=

3

2n
.

2. j = 1, n− 2, B
(k+1)
1 = B

(k)
0 + 1

2B
(k)
2 , by induction hypothesis

1

n
=

1

2n
+

1

2
· 1

n
≤ B(k+1)

2 ≤ 3

4n
+

1

2
· 3

2n
=

3

2n
;

1

n
≤ B(k+1)

n−2 ≤ 3

2n
.

9



3. j = 0, n− 1, B
(k+1)
0 = B

(k)
1

1
2 , by induction hypothesis

1

2n
=

1

2
· 1

n
≤ B(k+1)

1 ≤ 1

2
· 3

2n
=

3

4n
;

1

2n
≤ B(k+1)

n−1 ≤ 3

4n
.

The above bounds on B
(k)
j helps us to get upper and lower bounds on kO. Next

we show a lower bound of klower, which gives a lower bound for kO.

Proposition 1

kO ≥ klower ≥ b
n

3
c − 1.

Proof. By Lemma 1, for any k,

k∑
i=0

max
j
B

(i)
j ≤

3

2n
· (k + 1) =

3k + 3

2n
.

If k < bn3 c − 1,
∑k

i=0 maxj B
(i)
j < 1

2 . Thus by definition, we must have klower ≥
bn3 c − 1.

By the definition of kO, for any given attacker strategy A, kO ≤ kA. Next, we
construct a specific attacker strategy Ajp and prove an upper bound for kAjp

,
to obtain an upper bound for kO.

Lemma 2 For any n ≥ 4, there exists a strategy Ajp such that kAjp
≤ bn2 c.

Proof. First we notice that P `
ij = 0 if j − i > ` due to our construction of the

random walk P .

1. Let n ≥ 4 be even, consider the attacker strategy Ajp with the first n
2

positions given by A0 = 0,A1 = 2,A2 = 4, . . . ,Am = 2m, . . . ,An
2−1 = n−2.

For all 0 ≤ i < j ≤ n
2 − 1,

Aj −Ai = 2(j − i) > j − i.

Then for 0 ≤ i < j ≤ n
2 − 1,

Pr (Fi ∩ Fj) = Pr (Bi = Ai and Bj = Aj) = Pr (Bi = Ai)Pr (Bj = Aj |Bi = Ai)

= Bi
Ai
P j−i
AiAj

= 0.

Together with Lemma 1 we have

Pr
(
En

2−1
)

=

n
2−1∑
i=0

Pr (Fi) = B
(0)
0 +B

(1)
2 + · · ·+B

(n
2−1)

n−2 ≥
n
2−1∑
i=0

1

n
=

1

n

n

2
=

1

2
.

Hence kAjp
≤ n

2 − 1.
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2. Let n ≥ 5 be odd, consider the attacker strategy Ajp with the first bn2 c+ 1
positions given by A0 = 0,A1 = 2,A2 = 4, . . . ,Am = 2m, . . . ,Abn2 c = n− 1.
Similarly we can prove Pr (Fi ∩ Fj) = 0 for 0 ≤ i < j ≤ bn2 c. Together with
Lemma 1 we have

Pr
(
Ebn2 c

)
=

bn2 c∑
i=0

Pr (Fi) = B
(0)
0 +B

(1)
2 + · · ·+B

(bn2 c)
n−1

≥ 1

2n
+

bn2 c−1∑
i=0

1

n
=

1

n

(⌊n
2

⌋
+

1

2

)
=

1

2
,

and hence kAjp
≤ bn2 c.

Recall the notation:

kA = min{k : Pr (Ek) ≥ 1

2
}, kO = min

A
kA

Corollary 1 For a one-dimensional search space of size n, bn3 c−1 ≤ kO ≤ bn2 c.

We used the bounds in Lemma 1 to approximate
∑k

i=0 max0≤j≤n−1B
(i)
j in

Proposition 1. We also derived the lower bound of klower, which then gave lower

bounds on kO. From Equation (10), we can see max0≤j≤n−1B
(k)
j decreases when

k increases, which means the upper bounds on B
(k)
j derived in Lemma 1 can be

tightened for larger values of k. Thus we expect the lower bound for kO in
Corollary 1 to be higher than bn3 c − 1.

Similarly, the upper bound bn2 c for kO was derived through a lower bound on

B
(k)
j . However, from Equation (10) we see that B

(k)
j can achieve higher values

than the lower bounds, which suggests that the specific attacker strategy Ajp

described in Lemma 2, kAjp
is strictly smaller than bn2 c. These observations

motivate the calculations of exact values of
∑k

i=0 max0≤j≤n−1B
(i)
j and kAjp

,
which yield tighter bounds on kO.

5 Attacker Strategies

In the previous section we derived theoretical bounds for the optimal attacker
strategy. Unfortunately, the lower bound estimate does not help to find the
optimal strategy. Conversely, the upper bound provides us with a constructive
strategy, which we briefly discuss in this section and name it the Linear Jumping
Strategy (LJS). We also propose a greedy strategy, which we call the Greedy
Updating Attack Strategy (GUAS), which leverages estimations of Bob’s positions
to determine next queries.
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5.1 Linear Jumping Strategy

The linear jumping strategy sequentially selects every second location in B.
Given uniform initial distributions and a random walk mobility model of the
victim, it is expected to meet the upper bound cost as discussed in the previous
section. The strategy was implemented by us for evaluation on different cases.
Algorithm 1 in Appendix A summarizes the implementation in pseudocode. The
runtime of LJS is linear in n.

5.2 Greedy Updating Attack Strategy

While we could implement an exhaustive search to find optimal strategies for
any given setting, that approach is impractical and computationally expensive.
In particular, for n locations, we need to evaluate the kA,p for nd

n
2 e different

strategies (n potential choices per step, we expect to be done within dn2 e steps).
This is infeasible even for moderate values of n. Instead, we introduce a (locally)
greedy strategy which is computationally cheaper and allows us to perform sim-
ulations on a larger range of settings. We call it the Greedy Updating Attack
Strategy (GUAS).

Suppose Alice has some assumed initial location of Bob B̃(0) (for example,
Bob’s actual initial location distribution B(0)), and transition matrix P . At
each time step i, Alice keeps her current estimate of Bob’s location as B̃(i). In
particular, Alice can use B̃(i) to keep track of locations she checked previously,
and found to be empty. That means that B̃(i) depends on the actual choices of
the attacker, while B(i) just depends on B(0) and P .

In query (i + 1), Alice checks location max
j
B̃

(i)
j , that is, the most likely

location of Bob at that time7. If Alice succeeds, then we are done; if Alice does
not find Bob, she updates B̃(i) by setting the probability of the location checked
in the current query to be 0 and re-normalizing B̃(i) to ensure that

∑
B̃i = 1.

Thus, the following values of B̃(i+1) will be computed under the condition that
the victim was not at the location tested in query i and earlier. The algorithm
is described as pseudocode in Algorithm 2 in Appendix A. The runtime of the
GUAS is quadratic in n: for each of the up to dn2 e queries, we need to find the

minimal value of B̃(i−1) (which is of size n). Thus, we were able to run this
strategy for a search space size n = 2000 without issues.

In Section 6, we evaluate both LJS and GUAS for a random walk transition
pattern and a sparse high-dimensional transition matrix derived from a real
dataset. For the real dataset, we also investigate the attacker’s performance if
B̃(0) 6= B(0), i.e., attacker has no information about victim’s initial location
distribution.

7 Bob’s location vector is Bi in Alice’s (i+1)-th query, where i starts from 0.
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6 Evaluation

Based on the assumption that the attacker is aware of the victims probability
distribution for initial location and the transition matrix, we simulated LJS and
GUAS for different values of the initial location of Bob and the transition matrix.
In addition, we tested our strategy on a transition matrix derived from a real
dataset. All experiments were performed on a Core i3-4005U CPU@1.70GHz
with 8GB RAM.

6.1 Random Walk Transition Matrix

In this experiment, we used the transition matrix that represents a random walk
(i.e., same P as in Section 4.2) and performed simulations with various initial
distributions for Bob, B(0), and for different search spaces with sizes varying
from 100 to 2000. We assume the attacker knows the initial distribution of the
victim.

Specifically, we consider space sizes of 100, 500 and 2000. We run 100 sim-
ulations for each of these sizes and represent the initial location probability
distribution for B(0) by a Dirichlet distribution with concentration parameter
α. With increasing α values, B(0) is closer to being uniformly distributed, so a
positive α value of almost zero indicates an initial distribution with very high
likelihood in one location, and almost zero in all others. The results represent
the effort of the attacker to successfully locate Bob with a probability of 0.5 for
GUAS and LJS strategies under various initial distributions for B(0) regardless
of the search space size. In Fig. 2 we provide a box-plot representation of some
representative results (see Table 3 in Appendix B for full results). The upper and
lower borders of the box represent the upper and lower quartiles, and the bar in
the box is the median. The upper and lower whiskers represent the maximum
and minimum number of queries in all simulations, excluding outliers, which are
more than 1.5 times beyond the upper and lower quartiles.
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(c) Search space size = 2000

Fig. 2. GUAS and LJS results for random walk mobility for different search space sizes
with success probability of 0.5.
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We observed that with a large concentration parameter α, which leads to an
almost uniform distribution of the initial position, LJS achieves the optimal lower
bound, while GUAS is unable to do so. With decreasing concentration parame-
ter value, the initial distribution becomes less uniformly distributed. Assuming
that the attacker is aware of the exact initial distribution, GUAS becomes more
effective for such non-uniform initial distribution. This is true regardless of the
size of the search space, as shown in Fig. 2.

6.2 Real-World Mobility Pattern

We also performed simulations with a transition matrix we derived from the
T-Drive dataset [21,22] released by Microsoft. The dataset comprises GPS tra-
jectories of 10357 taxis between Feb. 2 and Feb. 8 2008 within the city of Beijing,
around 15 million points and a total trajectories distance of sums up to 9 million
kilometers. The average sampling interval is around 177 seconds with a distance
of 623 meters.

In our simulation, we take a subset of data within the third ring of Beijing. We
discretize that area in grid cells of 500 meters × 500 meters, which corresponds
to a lat-long unit of around 0.005. This results in 884 different locations. The
area is mapped into a one-dimensional space using the following projection:

proj(i, j) = j × n+ i,

where (i, j) represents the coordinate of a grid cell in lat-long plane, and n
is the total number of partitions in longitude. Based on the aforementioned dis-
cretization and projection method, we compute the probability of transitioning
from one grid cell to another and build up the aggregated transition matrix,
Ptaxi, in the following way. For each taxi, we check which grid cell the taxi is
moving to by reading the data in chronological order on a daily basis. Whenever
there is a transit from, say location (or grid cell) x to y, we record this transit.
After processing and recording all the transits for the first taxi, we can normalize
the resulting matrix and build up a transition matrix only for this taxi. We do
this for all the taxis, aggregate all the transition matrices and then normalize
them to arrive at Ptaxi.

Results. We simulated different “true” initial distributions for the victim, and
checked on both the cases where the attacker does not know and knows about
Bob’s initial distribution. If the attacker is unaware of the initial distributions
for the victim, she assumes a uniform initial distribution. See Fig. 3a and 3b for
results calculated over 100 simulations. In these cases, the success is determined
by how close the victim’s distribution is to uniform. While for larger values of α,
the attacker’s guess is close enough to not decrease performance significantly. If
the victim’s initial distribution is less random (α ≤ 0.01), the attacker without
knowledge on the initial distribution will perform worse, while the attacker with
knowledge on initial B can leverage this in the GUAS strategy to decrease the
required number of guesses.

14



1e+13 10 1 0.1 0.01 0.001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

#
q
u
e
ri
e
s
 /
 s

iz
e GUAS B known

GUAS B unknown
LJS

(a) Performance with p=0.5

1e+13 10 1 0.1 0.01 0.001
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

#
q
u
e
ri
e
s
 /
 s

iz
e

GUAS B known
GUAS B unknown
LJS

(b) Performance with p=0.8

Fig. 3. Attack strategies performance on T-Drive dataset for unknown and known
initial distributions with success probabilities of 0.5 and 0.8.

Comparing performance of GUAS and LJS in Fig. 3a and Fig. 3b, we observe
that for a less structured/dynamic mobility pattern, which for example could be
modeled by some highly sparse transition matrix, GUAS performs better than
LJS. Our interpretation of this result is that a realistic transition matrix leads
to a set of locations that are significantly more likely than others. For LJS, it
does not matter if the attacker knows the initial distribution since LJS does not
utilize knowledge on the victim. See Table 1 and 2 in Appendix B for detailed
results.

7 Related Work

An extensive body of research has been devoted to describing and understanding
mobility models for mobile ad hoc and other types of networks, such as vehicular
networks [3,10]. Typically, these papers describe mobility models where mobile
nodes are independent of or dependent on each other, namely entity mobility
models or group mobility models. The goal is usually to study the behavior
of individual entity mobility models and help researchers decide which model is
most suitable. Random mobility models are the models of choice of most authors.

Similarly, other authors have studied the Rendezvous Problem [20], which
consists of finding an optimal strategy for two or more mobile entities who are
unaware of each others’ location, to meet. This problem and some slight varia-
tions of it has attracted much attention from the research community because of
its potential application to many engineering problems like the one we are con-
sidering in this paper. However, as far as we are concerned, this problem remains
open [1,4]. The main difference between rendezvous search problems and the one
we are tackling in this paper is that rather than having two entities trying to
find each other, here one of the entities is a victim that might not even aware of
the existence of the attacker trying to find him/her.

Another line of work studies the probability for n independent entities to meet
while they all follow random walk trajectories in dimension two [7,14]. For n = 2,

15



this is related to the special case when Alice chooses a random walk strategy.
The difference is that we assume the entities take a step after every fixed length
of time interval, while in the aforementioned papers they consider an entity takes
a step after a time interval whose length follows a Poisson distribution.

In the realm of location privacy, the effort an attacker needs to locate a
victim has been studied in different settings [13,9,16,17]. In [13,9], the focus was
on static victim. A particular attacker model was used against moving target
in [9]. Although this attacker model was shown to be optimal for a static victim,
its efficiency as an attacker model for moving victim was not discussed. This is
precisely the focus of our paper.

In [16,17], the focus is on the quantification of users’ location privacy by an-
alyzing location-based applications and location-privacy preserving mechanism
(LPPM). They assume an obfuscated trace (obtained by an LPPM) of the victim
is available to the attacker and the goal of the attacker is to find out the real
trace [17] or the real location [16] of the victim. In contrast, in this paper the at-
tacker is only aware of the mobility model of the victim, without any knowledge
of the victim’s trajectory.

8 Conclusions

In this paper, we have presented a framework to reason about the expected
effort of attackers attempting to locate moving targets using proximity testing.
We first provide mathematical analysis for asymptotic bounds (on the search
space) on the best attacker strategies under a random walk mobility model for
the moving victim. We then derive two concrete strategies, and evaluate their
performance over a range of parameters. The LJS strategy is found to work well
for random walk mobility and close to uniform initial distribution of Bob, while
the GUAS strategy requires less queries for less uniform initial distributions of
Bob (which are known to the attacker). We then derive a realistic mobility model
from a real dataset consisting of spatio-temporal trajectory data, and analyze the
performance of our strategies. In that setting, we find that the GUAS strategy
consistently requires less than N

6 queries (p = 0.5), while LJS requires more
than 0.75N , where N is the search space size. Summarizing, we have shown
theoretically and practically that (using a strategy suitable to the setting), an
attacker is able to locate a victim with 50% probability with at most N

2 steps.
For example, using GUAS in our Beijing dataset the attacker could localize a
victim with 50% probability in 134 steps (6.6 hours), within an area of 0.25km2.

Proposed countermeasures. To prevent the demonstrated attack, we propose
the following countermeasures: a) The LBS could probabilistically return a wrong
result (e.g., with 20% chance), b) the LBS could verify that the sequence of
attacker’s location claims confirms to some assumed transition matrix P (i.e.,
the likelihood of a claimed trajectory is above some threshold τ), and c) the
LBS could impose limitations on the number of queries or the speed/frequency
of queries by the requester. We leave the evaluation of these countermeasures
for future work.
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A Pseudocodes of Algorithms

The Linear Jump Strategy (LJS) is given as pseudocode in Algorithm 1, and the
Greedy Updating Attacker Strategy (GUAS) is provided in Algorithm 2.

B Simulation Results

In Table 1, 2, and 3 we provide the exact simulation results used for plotting
Fig. 2 and 3. In these tables, α is the Dirichlet concentration parameter, size
represents the number of locations in the search space and “#Q” stands for
number of queries. The mean (“#Q.mean”), standard deviation (“#Q.std”),
min (“#Q.min”) and max (“#Q.max”) are calculated over 100 simulations.
The value “#Q.mean

Size ” represents how the strategy performs under different initial
position distributions regardless of the search space size.
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Algorithm 1: Linear Jumping Strategy (LJS)

Result: Number of queries that Alice needs to perform to locate Bob with
probability of at least 0.5.

Set success = 0;

while i < MAX QUERIES do
Ai = 2 ∗ i; // linear jumps through B

success = success+ (1− success) ∗B(i−1)
Ai

;

if success ≥ 0.5 then
return i; // Minimal number of steps found

end

B
(i−1)
Ai

= 0; // Set this position empty for following calculations

B(i−1) = normalize(B(i−1));

Bi = B(i−1) · P ; // Bob’s location probability in next query

i = i+ 1;

end
return ERROR; // Attacker was unable to locate Bob within

MAX QUERIES

Algorithm 2: Greedy Updating Attack Strategy (GUAS)

Result: Number of queries that Alice needs to perform to locate Bob with
probability of at least 0.5.

Initialize B̃, set success = 0;

while i < MAX QUERIES do

Ai = max
j
B̃

(i−1)
j ; // select maximum likelihood estimate of B

success = success+ (1− success) ∗B(i−1)
Ai

;

if success ≥ 0.5 then
return i; // Minimal number of steps found

end

B
(i−1)
Ai

= 0; // Set this position empty for following calculations

B̃
(i−1)
Ai

= 0; // Attacker estimates this position empty

B(i−1) = normalize(B(i−1));

B̃(i−1) = normalize(B̃(i−1));

Bi = B(i−1) · P ; // Bob’s actual location probability in next query

B̃i = B̃(i−1) · P ; // Bob’s estimated location probability in next

query

i = i+ 1;

end
return ERROR; // Attacker was unable to locate Bob within

MAX QUERIES
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Table 1. GUAS performance on T-Drive dataset with known and unknown initial
distribution for probability of 0.5 and 0.8.

Unknown Known

α Size #Q.mean #Q.mean
Size

#Q.std #Q.min #Q.max #Q.mean #Q.mean
Size

#Q.std #Q.min #Q.max

p
=

0
.5

1e+13 884 135 0.1527 0 135 135 135 0.1527 0 135 135
10 884 134.93 0.1526 0.2564 134 135 134.54 0.1522 0.5009 134 135
1 884 134.83 0.1525 0.5515 134 136 133.24 0.1507 0.6215 132 134

0.1 884 134.9 0.1526 1.2432 132 138 124.9 0.1413 2.6874 118 129
0.01 884 135.33 0.1531 3.7526 123 141 78.39 0.0887 21.7004 2 111
0.001 884 135.25 0.1530 9.028 81 146 3.3 0.0037 7.0245 1 48

p
=

0
.8

1e+13 884 310 0.3507 0 310 310 310 0.3507 0 310 310
10 884 310.02 0.3507 0.1407 310 311 310 0.3507 0 310 310
1 884 310.15 0.3508 0.5573 309 311 308.65 0.3492 0.5573 307 310

0.1 884 310.32 0.3510 1.2624 307 313 300.34 0.3400 2.6370 293 304
0.01 884 310.75 0.3515 3.7400 298 317 253.65 0.2869 22.1630 167 287
0.001 884 310.7 0.3515 9.0403 256 322 76.01 0.0860 70.8871 1 223

Table 2. LJS performance on T-Drive dataset for probability of 0.5 and 0.8

p = 0.5 p = 0.8

α Size #Q.mean #Q.mean
Size

#Q.std #Q.min #Q.max #Q.mean #Q.mean
Size

#Q.std #Q.min #Q.max

1e+13 884 680 0.7692 0 680 680 1561 1.7658 0 1561 1561
10 884 679.98 0.7692 0.1407 679 680 1560.96 1.7658 0.1969 1560 1561
1 884 679.85 0.7691 0.4794 678 682 1560.81 1.7656 0.4191 1559 1561

0.1 884 680.19 0.7694 1.0982 677 682 1560.83 1.7656 0.6522 1558 1562
0.01 884 680.48 0.7698 5.2445 641 687 1560.14 1.7649 5.1247 1517 1564
0.001 884 681.43 0.7708 5.0317 666 689 1560.44 1.7652 4.0310 1544 1566

Table 3. GUAS and LJS results for different search space sizes and Bob’s initial
distributions with success probability of 0.5

GUAS LJS

α Size #Q.mean #Q.mean
Size

#Q.std #Q.min #Q.max #Q.mean #Q.mean
Size

#Q.std #Q.min #Q.max

1e+13 100 56.13 0.5613 0.7740 54 58 50 0.5 0 50 50
10 100 53.79 0.5379 0.6860 52 56 50.04 0.5004 0.1969 50 51
1 100 44 0.44 2.5898 33 50 50.43 0.5043 1.1304 47 53

0.1 100 11.5 0.115 4.5115 3 23 50.49 0.5049 3.2114 32 58
0.01 100 1.42 0.0142 0.7272 1 4 50.96 0.5096 10.5523 5 87
0.001 100 1.00 0.01 0 1 1 49.54 0.4954 20.0668 1 95

1e+13 500 302.68 0.6054 2.0345 298 306 250 0.5 0 250 250
10 500 295.32 0.5906 1.7401 290 299 250.1 0.5002 0.3015 250 251
1 500 269.83 0.5397 3.3183 262 277 250.28 0.5006 0.8538 248 252

0.1 500 136.36 0.2727 22.1622 79 186 250.7 0.5014 2.8727 240 260
0.01 500 6.54 0.0131 5.2655 1 25 249.87 0.4997 16.3130 138 290
0.001 500 1.1 0.0022 0.3015 1 2 261.05 0.5221 43.3281 105 456

1e+13 2000 1263.5 0.6318 2.9763 1255 1270 1000 0.5 0 1000 1000
10 2000 1246.38 0.6232 2.9432 1238 1253 1000.1 0.5001 0.3015 1000 1001
1 2000 1186.99 0.5935 5.5405 1173 1202 1000.39 0.5002 0.8978 999 1004

0.1 2000 846.92 0.4235 36.9484 703 952 1000.4 0.5002 3.0218 981 1007
0.01 2000 86.84 0.0434 34.3602 26 245 1001.38 0.5007 6.9787 977 1028
0.001 2000 2.42 0.0012 1.5646 1 10 1010.6 0.5053 59.4701 731 1275
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