(2019) Knockoff Nets: Stealing Functionality of Black-Box Models.
Abstract
Machine Learning (ML) models are increasingly deployed in the wild to perform a wide range of tasks. In this work, we ask to what extent can an adversary steal functionality of such "victim" models based solely on blackbox interactions: image in, predictions out. In contrast to prior work, we present an adversary lacking knowledge of train/test data used by the model, its internals, and semantics over model outputs. We formulate model functionality stealing as a two-step approach: (i) querying a set of input images to the blackbox model to obtain predictions; and (ii) training a "knockoff" with queried image-prediction pairs. We make multiple remarkable observations: (a) querying random images from a different distribution than that of the blackbox training data results in a well-performing knockoff; (b) this is possible even when the knockoff is represented using a different architecture; and (c) our reinforcement learning approach additionally improves query sample efficiency in certain settings and provides performance gains. We validate model functionality stealing on a range of datasets and tasks, as well as on a popular image analysis API where we create a reasonable knockoff for as little as $30.
Item Type: | Conference or Workshop Item (A Paper) (Paper) |
---|---|
Divisions: | Mario Fritz (MF) |
Conference: | CVPR IEEE Conference on Computer Vision and Pattern Recognition |
Depositing User: | Mario Fritz |
Date Deposited: | 13 Mar 2019 13:08 |
Last Modified: | 12 May 2021 09:30 |
Primary Research Area: | NRA1: Trustworthy Information Processing |
URI: | https://publications.cispa.saarland/id/eprint/2812 |
Actions
Actions (login required)
View Item |