Technical Report: Unifying Formally Verified and
Cryptographically Sound Proofs of Security Protocols

Michael Backek, Christian JacoBj and Birgit Pfitzmanh
1IBM Zurich Research Lab, Riischlikon, Switzerland,
21BM Deutschland Entwicklung GmbH, Processor Developmeidblingen, Germany

September 29, 2006

Abstract

We investigate how formal methods can be used for the vetiditaf cryptographic protocols
such that the verified properties are valid for the concrefgémentation of the protocol using actual
cryptography. We give an abstract deterministic speciindbr secure message transmission with
ordered channels along with a possible implementationweaprove to be secure in the sense of
simulatability, which is the cryptographic notion of a sexuefinement. The correctness of this
proof relies on a composition theorem and a determinissrhilation, which we formally verify
using the theorem prover PVS. We further use PVS to formadlyfy that message reordering is
in fact prevented in the specification. We finally show thaggmity properties are preserved under
simulatability, which allows for carrying over the proveroperty to the concrete implementation.
This yields the first example ever of a formally verified buvertheless cryptographically sound
proof of a security protocol.

Keywords: Security, cryptographic protocols, verification, intégrsimulatability

1 Introduction

Many practically relevant cryptographic protocols likeL$8.S, S/IMIME, IPSec, or SET use crypto-
graphic primitives like signature schemes or encryptiom inlack-box way, while adding many non-
cryptographic features. Vulnerabilities have accompitie design of such protocols ever since early
authentication protocols like Needham-Schroeder [61, @@&r carefully designed de-facto standards
like SSL and PKCS [70, 31], up to current widely deployed jpiid like Microsoft Passport [40].
However, proving the security of such protocols has beemawssatisfactory task for a long time.

One possibility was to take the cryptographic approachs Tiéans reduction proofs between the
security of the overall system and the security of the cryyatphic primitives, i.e., one shows that if
an overall system could be broken, one of the underlyingtographic primitives could also be bro-
ken with respect to their cryptographic definitions, e.dative chosen-message security for signature
schemes. For authentication protocols, this approach wetsued in [30]. In principle, proofs in
this approach are as rigorous as typical proofs in mathematn practice, however, human beings are
extremely fallible with this type of proofs. This is not duethe cryptography, but to the distributed-
systems aspects of the protocols. It is well-known from oyptographic distributed systems that many

*Parts of this work were published in [11] and [10]. Thesegarére done while two of the authors were affiliated with
Saarland University.

wrong protocols have been published even for very smalllpnod. Hand-made proofs are highly error-
prone because following all the different cases how actidtkfferent machines interleave is extremely
tedious. Humans tend to take wrong shortcuts and do not wambbf-read such details in proofs by

others. If the protocol contains cryptography, this oldstas even much worse: Already a rigorous
definition of the goals gets more complicated, and often nbt wace properties (integrity) have to be

proven but also secrecy. Further, in principle the completkieoretic reduction has to be carried out
across all these cases, and it is not at all trivial to do tigisrously. In consequence, there is almost
no real cryptographic proof of a larger protocol, and sdviraes supposedly proven, relatively small

systems were later broken, e.g., [66, 37].

The other possibility was to use formal methods. There oaeeke the tedious parts of proofs to
machines, i.e., model checkers or automatic theorem @ovEnis means to code the cryptographic
protocols into the language of such tools, which may needersoress start-up work depending on
whether the tool already supports distributed systems ethn interaction models have to be encoded
first. None of these tools, however, is currently able to detll reduction proofs. Nobody even thought
about this for a long time, because one felt that protocobfisraould be based on simpler, idealized
abstractions from cryptographic primitives. Almost alkk$e abstractions are variants of the Dolev-Yao
model [38], which represents all cryptographic primitiasoperators of a term algebra with cancel-
lation rules. For instance, public-key encryption is reprded by operatorks for encryption andD
for decryption with one cancellation rul®(E(m)) = m for all m. Encrypting a message twice in
this model does not yield another message from the basicagespace but the ter&(E(m)). Fur-
ther, the model assumes that two terms whose equality cdrenderived with the cancellation rules
are not equal, and every term that cannot be derived is coehplgecret. However, originally there
was no foundation at all for such assumptions about reatagypphic primitives, and thus no guaran-
tee that protocols proved with these tools were still seedren implemented with real cryptography.
Although no previously proved protocol has been broken wirgriemented with standard provably
secure cryptosystems, this was clearly an unsatisfacitgtion, and artificial counterexamples can be
constructed.

Three years ago, efforts started to get the best of both sioBEdsentially, [65, 67] started to define
general cryptographic models that support idealizatiahigsecure in arbitrary environments and under
arbitrary active attacks, while [2] started to justify the@lBv-Yao model as far as one could without
such a model. Both directions were significantly extendesuinsequent papers, see the related work
section below. At the time of the research of this reportmfairproof tools have not been used for the
verification of a concrete cryptographic protocol. We clthgge gap by presenting the first tool-supported
security proof of a cryptographic protocol such that theopie valid with respect to the cryptographic
semantics. Our paper is based on a model of reactive systeasymchronous networks [68, 24, 22],
and it essentially consists of two parts:

In the first part, we define integrity properties in the ungiad model, and we prove that they are
preserved under simulatability, which captures the cry@tphic notion of a secure refinement. This
means that integrity properties automatically carry ovemf an abstract specification to a concrete
implementation if the implementation is proved to be sec¢uaréne sense of simulatability, Moreover,
we show that logic derivations among integrity properties\alid for the concrete implementation in
the cryptographic sense, which is essential to make theepiiep accessible to theorem provers.

The second part of this paper is dedicated to the actual aatiin of a cryptographic protocol:
secure message transmission with ordered channels. Wanpeedetailed deterministic specification of
secure message transmission with ordered channels andsegsiently derive a secure implementation
by refining the specification with respect to simulatahilififhe correctness proof of this refinement
mainly relies on a composition theorem of the underlying el@hd of a deterministic bisimulation
which we formally verify in a theorem proving system. We flgalerify the desired integrity property

2

— preventing message reordering — for the specificationwandse the integrity preservation theorem
established in the first part of this work to carry over thiggarty to the concrete secure implementation.

This yields the first example of a machine-aided proof of @tgraphic protocol that is neverthe-
less sound with respect to the cryptographic definitions.

Related Literature Both the cryptographic and the idealizing approach at pigperyptographic sys-
tems started in the early 80s. Early examples of cryptogcagéfinitions and reduction proofs are
[42, 43]. Applied to protocols, these techniques are at thest for relatively small protocols where
there is still a certain interaction between cryptogragtmicnitives, e.g., [29, 69]. The early meth-
ods of automating proofs based on the Dolev-Yao model arersuired in [48]. More recently, such
work concentrated on using existing general-purpose nuusgkers [51, 60, 34] and theorem provers
[39, 64], and on treating larger protocols, e.g., [28].

Work intended to bridge the gap between the cryptographprageh and the use of automated
tools started independently with [65, 67] and [2]. In [2],IB@Yao terms, i.e., with nested operations,
are considered specifically for symmetric encryption. Hesvethe adversary is restricted to passive
eavesdropping. Consequently, it was not necessary to defieactive model of a system, its honest
users, and an adversary, and the security goals were allifared as indistinguishability of terms. This
was extended in [1] from terms to more general programs, Hmitréstriction to passive adversaries
remains, which is not realistic in most practical applica. Further, there are no theorems about
composition or property preservation from the abstrachéoreal system. Several papers extended this
work for specific models or specific properties. For instafi¢é] specifically considers strand spaces
and information-theoretically secure authenticationyonh [49] a deduction system for information
flow is based on the same operations as in [2], still undeny=aasiacks only.

The approach in [65, 67] was from the other end: It starts witjeneral reactive system model,
a general definition of cryptographically secure impleragah by simulatability, and a composition
theorem for this notion of secure implementation. This wisrkased on definitions of secui@nction
evaluation, i.e., the computation of one set of outputs fooma set of inputs [41, 58, 27, 32]; earlier
extensions towards reactive systems were either withaliatestraction [50] or for quite special cases
[45]. The approach was extended from synchronous to asgnobs systems in [68, 33, 24]. All the
reactive works come with more or less worked-out examplexbsfractions of cryptographic systems,
however they have not investigated the use of formal metfadhke verification of a concrete example.
As of now (3,5 years after the original publication of the @a[11] and [10] that underlie this report),
computational soundness has become a highly active linesefrch, see e.g., [3, 21, 15, 20, 26, 23, 4,
16,59, 18, 17,7, 13, 8, 12].

The relationship between integrity properties and sinabdity was investigated in [67], where it
was shown that integrity properties are preserved undarlatability for a synchronous timing model.
However, a synchronous definition of time is difficult to j@stin the real world since no notion of
rounds is naturally given there and it seems to be very difficuestablish them for the Internet for
example. In contrast to that, asynchronous scenarios teetate, because no assumptions are made
about network delays and the relative execution speed gbdhtes. Technically, the first part of our
work can be seen as an extension of the results of [67] to hsynous scenarios. This extension
is not trivial since synchronous time is much easier to hgndioreover, both models do not only
differ in the definition of time but also in subtle, but impamnt details. Similar preservation results
under simulatability have recently been shown for nonrfetence [14, 5] and liveness properties [19].
In general, results of these forms are particularly intémgssince they offer security under system
composition, which is known to be very difficult to achievegieneral, see e.g., [54, 47, 55, 56, 57, 53,
35, 25, 6, 22, 9, 23, 16]).

Organization of the Paper We start with a brief review of the model for reactive systamasyn-
chronous networks from [68] in Section 2. In Section 3 we @efimat it means for a system to provide
integrity properties in a cryptographic sense. We then@that (1) proofs of such properties made for
an abstract specification also hold for the concrete impfeatien and (2) that logic derivations among
integrity properties are valid for the concrete implemaatawith respect to cryptographic definitions.
Section 4 contains our specification of secure messagentissisn with ordered channels. We give a
possible implementation in Section 5, which is shown to sggumplement the specification in Sec-
tion 6, 7, and 8. More precisely, Section 6 establishes aisgquoof by defining a so-called simulator,
and by applying a deterministic bisimulation for proving tborrectness of the refinement. Section 7
deals with the actual verification of the bisimulation withhe theorem proving system PVS [63]. In
Section 8 we finally verify that message reordering is in faevented for the deterministic specifica-
tion, again using PVS, and we use our preservation theoreshdw that the verified property carries
over to the concrete implementation. Section 9 summarizes.

2 The Model for Reactive Systems

In this section, we recapitulate the model for asynchromobabilistic reactive systems as introduced
by Pfitzmann and Waidner in [68].

Several definitions will only be sketched, whereas thosedhaimportant for understanding our
upcoming definitions and proofs are given in full detail. Ather details can be looked up in the
original paper.

2.1 General System Model

Systems mainly are compositions of several machines. lyswalconsider real systems that are built
by a setM of machines{M,,...,M,}, one for each usex from a setM = {1,...,n}, and ideal
systems built by one machiq@H}.

Communication between different machines is done via pgsisg messages composed from an
alphabet:. Inspired by the CSP-Notation [46], we write output and irgrts asy! andq? respectively.
The ports of a machink! are denoted byports(M). The subset of input and output ports are denoted by
in(ports(M)) andout(ports(M)), respectively. Channels are defined implicitly by namingvemtion,
that is portq! sends messages 3. To achieve asynchronous timing, a message is not direstiyte
its recipient, but it is first stored in a special machinealled a buffer and waits to be scheduled. If a
machine wants to schedule thwth message of buffef (this machine must have the unique clock-out
portq?!) it simply sends atq“!, see Figure 1. The buffer then schedules:ttie message and removes
it from its internal list. In our case, most buffers are eitseheduled by a master scheduler or the
adversary, i.e., one of those has the clock-out port. In {e8ladversary and the master scheduler are
the same entity. This gives the adversary complete contelthe overall scheduling of network traffic
and models the worst-case behavior we usually have to eipact asynchronous system. We define
the complemenp® of a portp to be the port which it connects to according to Figure 1,¢€.= q**?,

q ¢ = g7, 9“1 = g7, and vice versa. We use the same notation for sets of ports.

After introducing ports, we now focus on the definition of imes. Our machine model is prob-
abilistic state-transition machines, similar to probigbit I/O automata as sketched by Lynch [52]. If
a machine is switched, it receives an input tuple at its imumuits and performs its transition function
yielding a new state and an output tuple in the determintsige, or a finite distribution over the set of
states and possible outputs in the probabilistic case. &t switching step of one particular machine,
at most one value can arrive at every input port and the maatan produce at most one output per

Scheduler for

g~ | buffer q
. - q=?
Sendin [CRi— ~
machin?e q!——)ﬂ]]]]]]]]]]] Buffer
gt 1
~ Receiving
197 |machine

Figure 1: Ports and buffers.

port. Furthermore, each machine has a bound on the lengtte afoinsidered inputs which allows time
bounds independent of the environment.

Definition 2.1 (Machines) Amachineis a tuple
M = (namepw, Portsw, Statesm, dm, Im, Inim, Finm)

of anamenamey € X7, afinite sequenc®ortsy of ports (i.e.,Portsy = ports(M)), a setStatesy C

>* of states, a computable probabilistic state-transitiondiion dy;, a length functiony, : Statesy —

(N U {oo})lin(Pertsm)l and setslniy, Finy C Statesy of initial and final states. Its input set &y :=
(x*)lin(Portsm)l: the j-th element of an input tuple denotes the input atitiein-port. Its output set is
Onm = (X%)lout(Portsm)l - The empty word, denotes no in- or output at a porty, probabilistically
maps each paifs, I) € Statesy x I of state and inputs to a pais’, O) € Statesy x Oy of successor
states and outputs. Following two restrictions applyitp (1) The induced output distribution has to be
finite, and (2) ifs € Finym or I = (e, ..., ¢€), thendy (s, I) maps always to the same state and no output,
i.e, (s, (€,...,¢€)). Inputs are ignored beyond the length bounds, é@s, I) = dm(s, I];,(s)) for all

I € Iy, whereR|[;:= (r];)rer for R € (¥*)* andr[; denotes thé-bit prefix of a sequence € ¥*. &

In the text, we often writeM” also for namey. We only briefly state here that these machines have a
natural realization as a probabilistic Turing machine.

A collection C' of machines is a finite set of machines with pairwise differaachine names and
disjoint sets of ports. Theompletion[é] of a collectionC' is the union of all machines af' and the
buffers needed for every channel. A port of a collection ieddreeif its connecting port is not in the
collection. These port will be connected to the users anédversary. The free ports of a completion
[C] are denoted afee([C]). A collection C is calledclosedif its completion[C] has no free ports
except a special master clock-in polt®?, i.e.,free(|C]) = {clk??}. The master clock-in porlk?? is
used to give control to the master scheduler as shown belpwoBvention, we assume that the master
scheduler expectsiaas input on this port.

A closed collection represents a “runnable” system. Fansudosed collection, a probability space
of runs (sometimes calladacesor executionkis defined. Scheduling of machines is done sequentially,
so we have exactly one active machMeat any time. If this machine has clock-out ports, it is allowe
to select the next message to be scheduled as explained dbtihat message exists, it is delivered by
the buffer and the unique receiving machine is the next @ctiachine. IV tries to schedule multiple
messages, only one is taken, and if it schedules none or thsage does not exist, the special master
scheduler is scheduled. Formally, runs are defined as fellow

Definition 2.2 (Runs) Given a closed collectiafi with master scheduleX and a tupleini € Inig =

Xueednim of initial states, the probability space ofinsis defined inductively by the following al-
gorithm. It has a variabler for the resulting run, an initially empty list, a variabl®lcs (“current

5

scheduler”) over machine names, initialMcs := X, and treats each port as a variable ovEf, ini-
tialized withe except forclk“? := 1. Probabilistic choices only occur in Step (1).

1. Switch current scheduleBwitch machindlcs, i.e., for a given current stateand in-port values
I, set the new state and outpist, O) to the output obm (s, I). Then assigr to all in-ports of

2. Termination:If X is in a final state, the run stops.

3. Buffer messageskor each simple out-porg! of Mcs, in their given order, switch buffeq with
inputq®? := q!, cf. Figure 1. Then assigato all these portg)! andq*’?.

4. Clean up schedulindf at least one clock out-port d¥lcs has a value# ¢, letq°! denote the first
such port and assiga to the others. Otherwise letk®? := 1 and Mcs := X and go back to
Step (1).

5. Scheduled messag8witchq with inputq?? := q! (cf. Figure 1), set? := q**! and then assign
e to all ports ofq and tog”!. LetMcs := M’ for the unique machin®!’ with q? € ports(M’). Go
back to Step (1).

Whenever a machine (this may be a buffer) with namec), is switched fron{s, I) to (s, O), we add
astep(namew, s, I',s',O) to the runr for I' := IT;,), except ifs is final or I’ = (e, ..., ¢). This
gives a family of random variables indexed by the possibitmirstates

TUN ¢ = (Tun@,im)mielmé'

For a numberl € N, [-step prefixesun » , ., of runs are defined in the obvious way. For a function
I(-) - Ini e, — N, this gives a familyun ¢ ;) = (run ¢ i, 1(ini))inicni, - &

Definition 2.3 (Views and Restrictions to Ports) Thiew of a subsetl/ of a closed collectiorC' in a
run r is the restriction of- to M, i.e., the subsequence of all stépsamen, s, I, s’, O) wherenamey is
the name of a machind < /. Similarly, for a setS of ports, we define the restrictiotf g of a runr to
the setS, i.e., for every step of the run, we leave out the nameec), and the states, s’, and restrict
the setd and O to the ports inS. This gives two families of random variables

A

view 5(M) = (view » W(M))Wejmc and
Tun A [S: (TU’/L G ini [S)iniE[niC,
and similarly forl-step prefixes. For a singletald = {H} we writeview (H) instead ofview 5 ({H}).
&

2.2 Security-specific System Model

For security purposes, special collections are neededubecan adversary may have taken over parts
of the initially intended system. Therefore, a system «insf several possible remaining structures.
First, the system part is defined and then the environmensisting of users and adversaries.

Definition 2.4 (Structures and Systems)

a) Astructureis a pair struc = (M, S) where}M is a collection of simple machines (i.e., with only
normal in- and output ports and clock-out ports) calledrrect machingsand S C free([M])
is called specified ports If M is clear from the context, lef := free([M]) \ S. We call
forb(M, S) := ports(M) U S¢ theforbidden portsi.e., those ports that an honest user should be
forbidden to have. (The ports bbrts(M) belong to the structure and must hence not be used by
the user because of name clashes; the ports‘ishould belong to the adversary.)

b) AsystemSys is a set of structures. It is polynomial-time iff all machsria all its collectionsM
are polynomial-time.

<&

The separation of the free ports into specified ports and®ikexn important feature of the upcoming
security definitions. The specified ports are those wheretaioebstract service is guaranteed. Typical
examples of inputs at specified ports are “send messatgeid” for a message transmission system or
“pay amountz to id” for a payment system. The ports h are additionally available for the adversary.
The ports inforb(M, S) will therefore be forbidden for an honest user to have.

A structure can be completed tocanfigurationby adding machinesl and A, modeling the joint
honest users and the adversary, respectively. The mathiagestricted to the specified porfs A
connects to the remaining free ports of the structure and bmatchines can interact, e.g., in order to
model active attacks.

Definition 2.5 (Configurations)

a) A configurationof a systenbys is a tupleconf = (M, S, H, A) where(M, S) € Sys is a struc-
ture, H is a machine without forbidden ports, i.earts(H) Nforb(M,) = (), and the completion
C :=[M U{H, A}] is a closed collection. The set of configurations is writf@nf(Sys).

b) The initial states of all machines in a configuration arecargnon security parametérin unary
representation. This means that we consider the familiesraf and views of the collectiofi re-
stricted to the subsel’m'/é = {(1’“)M60|k: € N} of Ini 5. We writerun ¢,y andview cons (M) for

~

the familieSruné and m’ewé(M) restricted tolm"é, and similar forl-step prefixes. Furthermore,
we identifylm'/é with N and thus writerun .., 1, €tc. for the individual random variables.

c) The set of configurations dfys with polynomial-time useH and adversaryA is called
Confpely (Sys). The index,qy is omitted if it is clear from the context.

<&

We only briefly state here that several machines can be calito one single machine (which has the
original machines as submachines), cf. [68] for more detdiloreover, the view of every submachine
remains unchanged by this combination.

2.3 Defining Security with Simulatability

As we will see below, the system model provides a powerfutimsent to compare two systems and to
assess whether one system securely implements anotheBagsed on this, our approach in defining
security is as follows: (1) We define the abstract specificatif a secure service as an ideal systs),
consisting of a single machirfieH. Given the simplicity of the idealized machine, the comess of the
specification is often intuitively clear. Furthermore, vem@ain additional confidence by analyzingl

S mmmms=d== 0
ﬁ N
Mo TH b— Ay
AN
0f(Myg, S)
Real configuration Ideal configuration

Figure 2: Example of simulatability. The view Bif is compared.

using formal methods and automated tools. (2) Given anyretmceal systendys,., implementing
the desired service, we then prove its security by showiagitisecurely implementSys;,.

The definition of one system securely implementing anotimerie based on the common concept
of simulatability The notion of simulatability was introduced in [71] and lesserted its position as
a fundamental concept of modern cryptography. Simulataliksentially means that whatever might
happen to an honest user in a concrete sysigsy.,; can also happen in an ideal systélys,,. As by
definition only good things can happen in the ideal systemukitability guarantees that no bad things
can happen in the real system. More precisely, for every gorgtion conf,; € Conf(Sys,..), there
exists a configuratioronf, € Conf(Sys;q) yielding indistinguishable views of the same user in both
configurations. We abbreviate this Bys,.., >s.c Sysiqy and we say thabys,.,, is “at least as secure”
as the systendys;4. A typical situation is illustrated in Figure 2.

However, we do not want to compare a struct(é;, S;) € Sys,., with arbitrary structures of
Sysiq, but only with certain “suitable” ones. What suitable adjummeans can be defined by a mapping
f from Sys,., to the powerset obys,y. The mappingf is calledvalid if it maps structures with the
same set of specified ports.

The upcoming simulatability definition is based on indigtirshability of views.

Definition 2.6 (Indistinguishability) Two familiegvary),eny and (var))zen of random variables (or
probability distributions) on common domainy, are

a) perfectly indistinguishablé'=") if for each £, the two distributions/ar;, andvar’y, are identical.
b) statistically indistinguishablé€’ ~g¢y;41.") for a suitable classSMALL of functions fromN to
R if the distributions are discrete and their statistical @isces
/ 1 /
A(varg,vary,) := 5 Z |P(vary = d) — P(var, =d)| € SMALL
de Dy,

(as a function of). SMALL must be closed under addition, and with a functipalso contain
every functiory’ < g.

c¢) computationally indistinguishabl¢ ~,,") if for every algorithm Dis (the distinguisher) that is
probabilistic polynomial-time in its first input,

|P(Dis(1%,var;,) = 1) — P(Dis(1%,var},) = 1)| € NEGL.

Intuitively, given the security parameter and an elemewtsen according to eitherar;, or var},
Dis tries to guess which distribution the element came from.cldss NEG L denotes the set of all
negligible functions, i.eg: N — R> € NEGL if for all positive polynomials), 3koVk > ko :
g9(k) <1/Q(k).

We write= if we want to treat all three cases simultaneously. O

We now present the simulatability definition.

Definition 2.7 (Simulatability) Let systemSys; and Sys, with a valid mappingf be given.

a) We saySys, zsféﬁe“f Sysq (perfectly at least as secure) asfor every configyrationconf 1 =
(M, S,H,A1) € Conf(Sys;), there exists a configurationonf, = (M, S, H,A2) €
Conf(Sysq) with (Ma, S) € f(M;, S) (and the samél) such that

m’ewconfl (H) = 'Uiewconf? (H)

b) We saySys, >[SMALL Sys, (statistically at least as secure) &sr a classSMALL if the same
as in a) holds withview cons,,1(H) ~smarL viewcong,(H) for all polynomials, i.e., statistical
indistinguishability of all families of-step prefixes of the views.

c) We saySys; >Jypoly Syso (computationally at least as securg éshe same as in a) holds with
configurations fromConf,q, (Sys;) and Conf,qy (Sys,) and computational indistinguishability
of the families of views.

In all cases, we caltonf, anindistinguishable configuratiofor conf,. Where the difference between
the types of security is irrelevant, we simply writd.., and we omit the inde if it is clear from the
context. &

Clearly, perfect simulatability implies statistical sitatability for every non-empty classMALL. Sim-
ilarly, statistical simulatability for a clasSMA LL implies computational simulatability iSMALL C
NEGL.

An important feature of the system model is transitivity>af., i.e., the precondition$ys; >ec
Syse andSysy >sec Syss together implySys,; >sec Syss, which has been proved in [68].

2.4 Composition

We conclude this section with a brief review of what has alyebeen proven about composition of
reactive systems. Assume that we have already proven thgdtensSys, is at least as secure as
another systen$ys;. Typically Sys, is a concrete system whereégs, is an ideal specification of
the concrete system. If we now consider larger protocolsus@sSys(, as an ideal primitive we would
like to securely replace it witlhys,. In practice this means that we replace the specificatiorsgsgem
with its implementation yielding a concrete system.

Usually, replacing means that we have another system using Sys(,; we call this composition
Sys*, cf. Figure 3. We now want to replacys with Sys, inside of Sys* which gives a composition
Sys* . Typically Sys* is a completely real system where®g* is at least partly ideal. This is illustrated
in the left and middle part of Figure 3. The composition tlemoernow states that this replacement
maintains security, i.eSys™ is at least as secure dgs* (see [68] for details).

However, typically a specification of the overall systemwdtianot prescribe that the implementation
must have two subsystems; e.g., in specifying a paymenersyst should be irrelevant whether the
implementation uses secure message transmission as ateubsyHence, the overall specification is
typically monolithic, cf. SysP*¢ in Figure 3. Moreover, such specifications are well-suitadférmal
verification, because they typically are deterministic aimdjle machines are furthermore much easier
to validate. Our specification in Section 4 is of this kind.

. spec
>sec SyS

Figure 3: Composition of Systems.

3 Integrity Properties

In this section, we show how the relation “at least as secsiteedates to integrity properties a system
should fulfill, e.g., safety properties expressed in teraplogic.

3.1 Definition of Integrity Properties

As a rather general version of integrity properties, ingelemit of the concrete formal language, we
consider those that have a linear-time semantics, i.é.ctineespond to a set of allowed traces of in- and
outputs. We allow different properties for different setspecified ports, since different requirements
of various parties in cryptography are often made for déffertrust assumptions. We will show later on
that integrity properties are preserved under simulatghithich allows sound refinement of abstract
systems. Clearly this can only hold for properties formediain terms of inputs and outputs at the
specified ports of a given structure, since only these pogts@nsidered by simulatability.

Definition 3.1 (Integrity Properties) An integrity propertyReg for a systemSys is a function that
assigns to each sétwith (M, S) € Sys a set of traces at the ports i1 Informally speaking,Req
states which are the “good” traces for the given structur@rdvprecisely such a trace is a sequence

(vt)eer Of values over port names adtf with 7 = {1,...,[} forl € NorI =N, i.e., sets of port-value
pairs so thaty is of the formv; := (J,cs{p : vy} for a subsets’ C S andv,, € X*. Intuitively, S’
contains those ports where “something happens”. O

After introducing what integrity properties are, we haved@dine what it means that a system fulfills
them. We will see that there are different grades of fulfilmeNe distinguish betweeperfect statis-
tical, andcomputationafulfillment, depending on whether the integrity propertways holds, or only
with overwhelming probability, i.e., the probability ofiliare should be statistically small or negligible
in polynomial-time configurations, respectively.

Definition 3.2 (Fulfillment of Integrity Properties) Let an arbitrary systerfiys and an integrity prop-
erty Req for Sys be given. Therbys fulfills Req

a) perfectly (written Sys =P Req) if for any configurationconf = (M,S, H,A) € Conf(Sys),
the restrictions-[s of all runs of this configuration to the specified pofidie in Req(S). In
formulas, [(runcons k[s)] S Req(S) for all k, where[-] denotes the carrier set of a probability
distribution.

b) statistically for a classSMALL (Sys [=MALL Req) if for any configurationconf = (M, S,
H, A) € Conf(Sys), the probability thatReq(S) is not fulfilled is small, i.e., for all polynomials
(and as a function of),

P(Tunconf,k,l(k) [S ¢ RQQ(S)) € SMALL.

10

vl .

S ---o-z-=--= o S ———qd-——--- FF-—

Y
Y

Figure 4: Sketch of the proof of Lemma 3.1

The classSMA LL must be closed under addition and making functions smaller.

c) computationally(Sys =P°Y Req) if for any polynomial configurationonf = (M, S,H,A) €
Confpoy (Sys), the probability thatReq(S) is not fulfilled is negligible, i.e.,

P(runcons ks € Req(S)) € NEGL.

For the computational and statistical case, the trace hls fmite. Note that a) is normal fulfillment.
We write “=" if we want to treat all three cases together. &

Obviously, perfect fulfillment implies statistical fulfiient for every non-empty classMALL and
statistical fulfillment for a clas§ MALL implies fulfillment in the computational case $MMALL C
NEGL.

3.2 Preservation of Integrity Properties Under Refinement

In this section, we show that our definitions of integrity pedies and their fulfilment behaves well
under simulatability. Usually, defining a cryptographist®m starts with an abstract specification stat-
ing what the system should do. After that, this specificatian be refined stepwise with respect to
simulatability, which finally yields a secure implementati At this time, we may wonder whether the
verification of these properties made for the ideal spetifinacarries over to the concrete implementa-
tion. This is essential for modular proofs. We can answex dgjiestion in the affirmative yielding the
preservation theorem presented below.

The actual proof will be done by contradiction, i.e., we whbw that if the concrete implementation
did not fulfill its goals, the two systems could be distindneid. However, in order to exploit simulatabil-
ity, we have to consider an honest user that connea$ specified ports. Otherwise, the contradiction
might stem from those specified ports which are connectetidatlversary, but those ports are not
considered by simulatability. The following lemma circuems this problem:

Lemma 3.1 Let a systenfys be given. For every configuratioconf = (M, S,H,A) € Conf(Sys),
there is a configurationconf, = (M,S,Hs,As) € Conf(Sys) with S C ports(Hs), such that
TUNconf [5= TUNcont | s, 1-€., the probability of the runs restricted to the setof specified ports is
identical in both configurations. Honf is polynomial-time, theronf; is also polynomial-time. a

Proof (sketch) Since the proof is quite technical, we only give a brief sket€or a complete proof we
refer the reader to Appendix A. We define a new maclipevhich is inserted between the system and
the adversary, so th&t; now exactly uses the specified ports formerly connected fof. Figure 4).
This machine mainly forwards messages, so it does not cltaageobability of the runs at the specified

11

ports. Combination oH; and the originaH yields the intended uset;. The adversary is mainly
derived by port renaming ok with the only difference that clock-out ports Afhave to be simulated
by A, in a different way, mainly by additional output ports. Thiglwive us a configuratiorconfs €
Conf(Sys) as shown in the right side of Figure 4, where the honestliseonnects to all specified ports.
The main difficulty of the proof is that we have to ensure tlnat mew honest uséts is polynomial-
time in case of a polynomial-time configuration. This aspequires a thorough look at the details and
significantly lengthens the proof, cf. Appendix A. [

Before we now turn our attention to the actual preservati@otem, we state the following well-known
lemma which we will need in the theorem’s proof.

Lemma 3.2 The statistical distancé (¢(vary), ¢(var})) between a functionp of two random variables
is at mostA (vary, var}). O

Theorem 3.1 (Preservation of Integrity Properties) Let a systemSys, be given that fulfills an in-
tegrity propertyReq, i.e., Sys, = Req, and letSys; >l Sys, for a valid mappingf. Then also
Sys, | Req. This holds in the perfect and statistical sense, and indhgpatational sense if member-
ship in the sefkeq(.S) is decidable in polynomial time for aH. 0

Proof. Req is well-defined onSys,, since simulatability implies that for eadti/;, ;) € Sys, there
exists(Ma, Sp) € f(M;, S1) with $; = S,. We will now prove that ifSys, did not fulfill the property,
the two systems could be distinguished yielding a conttiaic

Assume that a configuratioronf, = (M, S;,H,A;) € Conf(Sys,) contradicts the theorem. As
already described above, we need an honest user that ceoedt specified ports. This is precisely
what Lemma 3.1 does, i.e., there is a configurationf ; in which the user connects to all specified
ports, Withrun cons_ , [5,= Tuncons, [s5,, SO conf; also contradicts the theorem. Note that all specified
ports are now connected to the honest user; thus, we canitesiphulatability. In the proof for the
synchronous timing model, this problem was avoided by caimgithe honest user and the adversary
to the new honest user. However, in the asynchronous madetdmbination contradicts the definition
of configurations, since this user would not be valid any moieDefinition 2.5.

Because of our preconditiofys, >L Syss, there exists an indistinguishable configuration
confso = (M, S,Hs,Ay) € Conf(Sys,), i.e., view conf, , (Hs) & vieweons, ,(Hs). By assumption,
the property is fulfilled for this configuratioronf , (perfectly, statistically, or computationally). Fur-
thermore, the view offlg in both configurations contains the traceSat= 57 = 5.

In the perfect case, the distributions of the views are idaht This immediately contradicts the
assumption tha(run conf, , k[s)] £ Req(S) while [(runcons, , k[s)] C Req(S5).

In the statistical case, let any polynomidle given. The statistical distanee(viewwnfsﬁl7,671(,6)(Hs),
m’ewwnfs’g,k’l(k)(Hs)) is a functiong(k) € SMALL. We apply Lemma 3.2 to the characteristic function
Ly ¢Req(s) ON SUch views. This gives

|P(runconf5,1,k,l(k) [S ¢ ReQ(S)) - P(Tunconfs’z,k’,l(k’) [S ¢ ReQ(S))| < g(k)

As SMALL is closed under addition and under making functions smaler gives the desired contra-
diction.

In the computational case, we define a distinguidbier Given the view of machinéls, it extracts
the run restricted t&' and verifies whether the result liesReq(5). If yes, it outputs), otherwisel. This
distinguisher is polynomial-time (in the security paraenéf) because the view dils is of polynomial
length, and membership iReq(S) was required to be polynomial-time decidable. Its advantag

12

distinguishing is
| P(Dis(1", view con, , 1) = 1) — P(Dis(1", view con, ,) = 1)]
= |P(runconfs’1,k [s & Req(S)) — P(runconfﬂ,k [s & Req(S))|.

If the difference were negligible, then the first term woudd/é to be negligible because the second term
isand NEGL is closed under addition. Again this yields the desired reatittion. [

3.3 Logic Derivations

In order to apply this theorem to integrity properties foftated in a logic, e.g., temporal logic, we have
to show that abstract derivations in the logic are valid wé$pect to the cryptographic sense. This can
be proven similar to the version with synchronous time, wlg orclude it for reasons of completeness.

Theorem 3.2 Let Sys be a system, anfeq,, Req, be integrity properties fosys. Then the following
holds:

a) If Sys = Req; andReq, C Req,, then alsaSys |= Reqs.

b) If Sys = Req, andSys = Req,, then alsaSys = Req; N Reqs.

Here “C” and “N” are interpreted pointwise, i.e., for eaéh This holds in the perfect and statistical
sense, and in the computational sense if for a) memberstRipgs(S) is decidable in polynomial time
forall S . 0

Proof. Part a) is trivially fylfilled in all three cases. Part b) izvial in the perfect case. For the statistical
case and everyonf = (M, S,H,A) € Conf(Sys),

P(runcons k k) [s & (Reqi(S) N Reqs(5))
< P(runconf,k,l(k) |VS ¢ R691(5)) + P(runconf,k,l(k) |VS ¢ REQQ(S)) € SMALL

because both summands areSit¥ A LL which is closed under addition. The computational caseshold
analogously becaus€EGL is closed under addition. [

The first part of Theorem 3.2 resembles the Boolean “impliggrator, whereas the second part resem-
bles the Boolean “and”. We now have to show that the commownatesh rules hold. For example,
we consider modus ponens, i.e., if one has deriveddlatda — b are valid in a given model, then

b is also valid in this model. IReg, etc. denote the semantics of the formulas, i.e., the trasetlsey
represent, we have to show that

(Sys = Req, andSys = Req,—,1) implies Sys = Reqy.

From Theorem 3.2b we concludgs = Reg, N Req, . Obviously,Req, N Req,—sp = Reqany C Regy
holds, so the claim follows from Theorem 3.2a.

4 A Specification for Secure Message Transmission in Corre@rder

In this section an abstract specification émdered secure message transmissgpresented, so neither
reordering the messages in transit nor replay attacks aslpe for the adversary. In the subsequent
sections, a secure implementation for this specificatiafers/ed following the composition approach
from Section 2.4. We include all definition details like goand structures as needed for the notion of
simulatability because the abstract specification is ttstratt cryptographic module based on which
protocols should be proved in future work. Hence it has todfendd precisely, and encoded faithfully
into proof tools. We start with a brief review on standardptographic systems.

13

4.1 A Brief Review of Standard Cryptographic Systems

In real life, every user usually has exactly one machiné,, which is correct if and only if its user
is honest. The machingl,, has special ports,? andout,! for connecting to the user. A standard
cryptographic systenyys can now be derived by a trust model, which consists of an acstescture
ACC and a channel model. If n denotes the number of participants, thé@C is a set of subsetq of

M :={1,...,n} and denotes the possible sets of correct machines. Fore&ktisere will be exactly
one structure consisting of the machines belonging to th&/ sthe remaining machines are considered
part of the adversary. The channel model classifies evenyemtion as secure (private and authentic),
authenticated or insecure and derives the correspondembrkeconnectivity. These changes can easily
be done via port renaming and duplication (cf. [68]). For adisetH and a fixed channel model, we
obtain a modified machinkl,, 5, for every machineM,, with v € 7. We denote the set of them By,
(i.e., My := {M, 3 | u € H}), so real systems are given BYys,.,, = {(My, Sx) | H € ACC}. Ideal
systems are typically of the forslys;y = {({THx}, Si) | H € ACC} with the same setSy, as in the
corresponding real systeRsys i.e., each structure consists of omgemachineTHy that we refer

to astrusted host

reals

4.2 The Abstract Specification

Given a number of participants and a tuplé of parameters (about lengths and bounds) discussed in
Section 4.2.1, our specification is a typical ideal system

SysOTM P = [(THYM, S9M) | € {1,...,n}}

as described in Section 4.1, whé#edenotes the set of honest users (i.e., the access struciles mo
restriction on the possible corruptions). WH&ns clear from the context, letl := M \ H denote the
indices of corrupted machines. The ideal machi&>™ models initialization, sending and receiving
of messages. The ports 35H%5'\" intended for the users are

userportsS°™ := {in,?, out, !, out, ! | u € H}.
Intuitively eachu represents one user. The ports of the users which connédeige ports are
SSSMC = {iny!,out,?,in, ! | u € H}.

For the adversary, the machifi¢l9>M offers ports

advportsS°™ := {from_adv,?, to_adv,,!, to_adv, ! | u € H}.

Altogether, this yields

ports(THO) := userportsS™ U aduportsS>™.

4.2.1 Lengths and Bounds

To allow a polynomial-time implementation to be as securthesabstract specification, we use func-
tionsmax_len, max_in_user, andmax_in_adv bounding the length of each message that should be trans-
mitted, the number of inputs thdiHy accepts from each user, and the number of inputs TG}
accepts from the adversary for each user, respectively.tufie of these three functions is the system
parametet.. Each function must be bounded by a polynomial and effigtezdmputable.

The reason for including these functions is to ensure thigt @polynomial number of inputs will
be processed by the machifféi%s'\" independent of the environment. This is essential for apgly
existing results of the underlying model, in particularttoe composition theorem. For real applications,
one would choose these functions so large that they willmegeeached.

14

4.2.2 States

The state ofTH>M consists of seven arrays:

o (5c_inOM), 4 over{0, ..., max_in_user(k)} for counting the number of inputs thaH$>M has
received atn,?,
o (sc_out9M), .4, over {0,...,max_in_adv(k)} for counting the number of inputs thaHo>M

has received drom_adv,,?,

(initQ3M)u,ver over {0, 1} for modeling initialization of users, wheriitQ3™ = 1 means that
u has generated its encryption and signature key pair,z‘ﬂn@i'\" = 1 thatv has received the
public keys ofu,

. (msg_mgf)'\")ueﬂ,veM over{0,...,max_in_user(k)} for counting the number of messages sent
from u to v,
o (msg-outQM), wen over {0, ..., max.in_adv(k)} for storing the number of the next expected

message. This array is used to achieve the desired ordefirnté description below),

(stoppedgs'\")ue% over{0, 1} for storing whether the machine of usehas already been stopped,
i.e., whether it has reached its runtime bounds (again efb#iow description),

o (deliverQ3™), ven Of lists for storing the actual messages.

The first six arrays are initialized with everywhere, except thachsg_outgj’\" is initialized with 1
everywhere. The last array is initialized with empty listeywhere. Roughly, the five arraysitOSM

u,v 1
OSM msg_inQSM, stopped ™M, and deliver Q3™ ensure functional correctness, whereas the

arrayssc_in25M andsc_out9SM are included to allow a polynomial-time system to be as seaarthis

specification, cf. Section 4.2.1.

msg_out

4.2.3 Inputs and their Evaluation

We now define the precise inputs and how$>™ evaluates them based on its abstract state. First, the
machine model contains length functions which allow to litbbow many bits of input are accepted at
each port, depending on the current state. The length fimectire determined by the domain specified
for each input in the part “for ...” after the parameter lisg., the overall length function for each
port in each state is the maximum of the possible lengths séipte inputs in that state; it can easily
be computed. In the following, we introduce commands fotidghzation, for sending or receiving
messages and for stopping a particular machine. If thesenemmis are entered with correct parameters
at a permitted port according to the below description, veakmfwell-formedinputs. If an input is not
well-formed, we call itrash

Initialization. Assume that the usear wants to generate its encryption and signature keys and dis-
tribute the corresponding public keys over authenticatethnels. He can do so by sending a command
(snd_init) to TH%SM. For the sake of readability, we exemplarily annotate tlaisdition in detail.

Upon receiving on inputsnd_init) the system checks that the user has not already reached his
input bound (which is improbable in this case unless he tigesend trash all the time), and that no
key generation of this user already occurred in the past.s@tbecks correspond te_in9M <
max_in_user(k), andinitO3M = 0, respectively. If at least the first check holds, the cousteinQM

u,v

is increased. If both checks hold, the keys are distributext authenticated channels, modeled by an

15

output(snd_init) to the adversary which either can schedule them immedjadady or even leave them
on the channels forever. Because of the asynchronous timodgl, THY™ has to wait for a term
(rec_init,u) input by the adversary d&tom_adv,? signaling that a connection betweerandv should
be established.

e Send initialization:(snd_init) atin,?:

If sc_inO5M < max_in_user(k), setsc_inQM := sc_inQM 4 1, otherwise do nothing. If the test
holds checkinitQ3™ = 0. In this case setnitQ3™ := 1 and output(snd_init) at to_adv,,!, 1 at
to_adv, !

e Receive initialization:(rec_init, u) atfrom_adv,? for u € M:
If stopped M = 0, initS’%M =0, and[u € H = initgzM = 1], SetinitggM := 1, other-
wise do nothing. Ifsc_out9SM < max_in_adv(k) setsc_outO>M := sc_out9M + 1 and output
(rec_init,u) atout,!, 1 atout,“!.

Sending and receiving messages.Sending a message to a userv is triggered by a command
(send,m,v). If v is honest, the message is stored in the adakverSy” of THYM together
with the countermsg_ mos'\" indicating the number of the message. After that, the infdiom
(send_blindly, i,1,v) is output to the adversary, wheteand : denote the length of the message
and its position in the array, respectively. This modeld #naeal-world adversary may see that a
message is sent and it may even see its length. We speak @fhielemperfections that are explic-
itly given to the adversary. Because of the asynchronoumgimodel, THS>M again has to wait for
a term (receive_blindly, v,) input by the adversary dtom_adv,?, signaling that theth message in
deliverQ3M should be delivered to. Now TH>M reads(m, j) := deliverS%"[i] and checks whether
j > msg_ outOSM holds. This test prevents replay and message reorderirtlge test is successful the
message is dellvered, yielding an outprgteive, u, m) to userv, and the countemsg_outgj'\" is setto
Jj+ 1L

If v is dishonestT simply outputs(send, m, v) to the adversary. The adversary can also send
a messagen to a usen by inputting a commangreceive, v, m) to the portfrom_adv,,? of TH,O{S'\’I for
a corrupted user.

HOSI\/I

e Send:(send, m,v) atin,? forv € M\ {u}, m € ¥*, 1 := len(m) < max_len(k):
If sc_in9M < max_in_user(k), setsc_in9M := sc_in9>M 11 andmsg_ mOSM = msg- mOSM—I-
1, otherwise do nothing. nitO3M = 1 andzmtOSM = 1 holds:

If v € A then { output (send, (m, msg_inQ3™),v) at to_adv,!, 1 at to_adv,! } else {set

i:= sue(delwerOSM) +1, delwerOSM[] := (m, msg- mOSM) and outputsend_blindy, i, [, v) at
to_adv,!, 1 atto_advuql I3

e Receive from honest party (receive_blindly, u,) atfrom_adv,? foru € H,i € N:
If stopped M = 0, im'tOSM =1, initof)'v' = 1, sc_out®M < max_in_adv(k) and (m, j) :=
deliverQ3M i) # 1, checkj > msg_ outOSM (j = msg_outO3M in the perfect ordered system). If

this holds setc_out9M := sc_outOM + 1, msg_ outOSM := 7 + 1 and output(receive, u, m) at
out,!, 1 atout,!.

¢ Receive from dishonest party (receive,u,m) atfrom_adv,? for u € A, m € £*, len(m) <
max_len(k):

16

If stopped>>M = 0, z‘m‘tf,{%,“" = 1, mitgf,'v' = 1 and sc_out®>M < max_in_adv(k), set
sc_outSSM = sc_out?SM + 1 and outputreceive, u, m) atout,!, 1 atout,!.

Stop commands. The adversary is further to cause the machine of anyws®estop processing inputs
received from the network by entering a commasidp) at from_adv,,?. This roughly corresponds to
exceeding the machine’s runtime bounds in the real world.

e Stop: (stop) atfrom_adv,,?:

If stoppedSSM = 0 andsc_out9>M < max_in_adv, setstoppedgs'v' := 1 and output(stop) at

out,!, 1 atout, .

Trash inputs. Finally, if TH9°M receives an input at a pdrt, ? which is not comprised by the above
transitions (i.e., the user sends some kind of trash), resmes the counterc_inSSM. Similarly, if

TH,O{S'\’I receives such an input at a péiém_adv,? it increases the counter_out95M.

SysgSLM’Spec is as abstract as we hoped for. It is deterministic without&aing any cryptographic

objects. Furthermore it is simple, so that its state-ttamsifunction can easily by expressed in formal

languages, e.g., in PVS. In the following we writgs®>M-sPe¢ instead ofSysSSL'\"’s"ec if the parameters

n and L are not necessary for understanding.

4.3 The Security Property

Our goal is to prove that message reorderinggjlagsL'\"’5"ec is not possible for the adversary. Formally,

this means that fon, v € H, the messages thatreceived fromu via TH%‘:'\’I always have to be a

sublist of those messages thasent tov. The former list is called thesceive-list the latter thesend-
list. More formally, this means that fer, v € H, a tracetr, and a point in time, we define the send-list
send_listl; ,(t) at timet as follows:

1. The tracéer is first restricted to inputs ai,,?.

2. The resulting sub-trace is further restricted to inpdtshe form (send, m,v) with len(m) <
max_len(k).

3. Finally, every elemer(send, m, v) is replaced byn.
Similarly, the receive—lisrecv_listﬁv(t) at timet is defined as follows:
1. The tracer is first restricted to outputs atit,,!.

2. The resulting sub-trace is further restricted to outpdithe form (receive, v, m) with len(m) <
max_len(k).

3. Finally, every elemerttreceive, u, m) is replaced byn.

We are now ready to introduce the desired integrity propew§>™, which we callordering property
Definition 4.1 (Ordering Property) LetS9°M be the specified ports csfysgi“”vspec as defined in Sec-
tion 4.2. Then a tracer is contained inReq®M (SQ5M) if for all u,v € H and any time:

recv_listly ,(t) C send_listl; ,(t),

where “C” is the sublist relation. &

17

The following theorem finally captures the security of theteynkS‘ysSVSL'V'’Spec with respect to the order-

ing property.

Theorem 4.1 (Ordering Property of the Ideal System for Ordeeed Secure Message Transmission)
Let SysSVS'LM’S"eC be the ideal system for ordered secure message transmidsfored in Section 4.2

for arbitrary parametersn, L, and let Req®°M be the integrity property of Definition 4.1. Then

SysS’SLM,SpeC ':perf RerSM . O

We will prove this theorem in Section 8 by means of the thegpeowing system PVS.

5 The Cryptographic Implementation

In this section, we derive a possible implementation of tteppsed specification, and we will prove this
implementation to be secure in the subsequent sectionstaifensth the definition of an intermediate,
calledhybrid system in Sections 5.1-5.3. If we take a look at Figure 3, yiseesnSysO>M:sPe< plays the
role of the monolithic specificatioys*®*. We now split our specification into a systefipsOSM-hybr
(corresponding taSys* in Figure 3) such thaBysOSMhbr > - §ysOSMspec holds, SysOSMhybr g
the combination of two systenslysf"* and SysS™Pec. The systemSys>M=P< is the ideal system for
secure unordered message transmission presented in f@Biha systemSys't will filter messages
that are out of order. Finally, replacing the subsystéym>™-sP*< with the concrete system for secure
message transmissidtys>™-"2' from [68] and using the composition theorem yields a corcsgstem
SysOSMrreal that is as secure afysOSM-spec,

We start with the definition of the filtering system.

5.1 The Filtering System
Given a number of participants and the tuple of functions as introduced in Section 4.2.1, the filtering
system is given by
Sysfrizl,tL = {(M;-jflt7 S;-Illt) ‘ HC {17 s 7”}}7
WhereM;_iLIt = {Mfilt | 4 € H} andports(Mfilt) := {in,?, out,!, out, !} U {infit?, outfilt! outfit™1},
All free ports of[]\?[ﬂ't] are specified, i.e $fi't consists of all ports corresponding ;iOrts(Mﬂ't).
5.1.1 States

Each machinéft maintains two arrays and three variables, whose meanitigsfolosely from the

description of the state afH>M introduced in Section 4.2.2:

o (msg-inf),crs over{0,... max.in_user(k)},
o (msg_outht),erq over{0, ..., max_in_adv(k)},
e sc_infi't over{0,..., max_in_user(k)},
e sc_outfi® over{0,..., max_in_adv(k)},

stopped it over{0,1}.

Both arrays should be initialized witheverywhere, and the three counters should be initially

18

5.1.2 Inputs and their Evaluation

The length functions for each port of each machi@t are defined similarly to Section 4.2.3, i.e.,
they are determined by the domain specified for each inpubenpart “for ...” after the parameter
list. However, if the countesc_infi'* reaches the bounehax_in_user(k), sc_outf* reaches the bound
max_in_adv(k), or Stoppedglt = 1 holds, we use different bounds to ensure polynomial runtifrthe
system. These bounds are introduced in Section 5.1.3.

We further assume that encoding of tuples has the followingightforward length property:
len((m, num)) = len(m) + c(k) for every num € {0,..., max{max_in_user(k), max_in_adv(k)}}
and an arbitrary polynomially bounded functien i.e., len(num) is constant for each fixed secu-
rity parameterk. This condition can easily be achieved by padding all values: to a fixed size
> len(max{max_in_user(k), max_in_adv(k)}). Now the behavior oMt is defined as follows.

Initialization.

e Send initialization:(snd_init) atin,?:

If sc_infl® < max_in_user(k), setsc_infl* .= sc_inf* 41 and output(snd_init) at outft!, 1 at
filt <)
out!lt™),

¢ Receive initialization:(rec_init, v) atinfi*? for v € M:

If stopped™® = 0 and sc_out!™ < max_in_adv(k), setsc_outf™ = sc_outf + 1 and output
(rec_init,v) atout,!, 1 atout,“!.

Sending and receiving messages.

e Send:(send, m,v) atin,? forv e M\ {u}, m € ¥*, len(m) < max_len(k):

If sc_infit < max_in_user(k), setsc_inft := sc_infit + 1, msg_infilt := msg_infi + 1 and
u U u g u,v g u,v
output(send, (m, msg_infi%), v) atoutf!, 1 atoutfit™,

o Receivereceive, v, m’) atinf*? for v € M, m’ € £*, len(m’) < max_len(k) + c(k):

If stopped™ = 0 and sc_outf < max_in_adv(k), decompose the messagé into (m, num).
If num > msg_outi}'z (or num = msg_out;'!t in the perfect ordered system), setout! :=

u
sc_outft 41, msg_out‘;'!L := num + 1 and outpuf(receive, v, m) atout,!, 1 atout,!.

Stop commands.

e Stop: (stop) atinfit?:

fil i : fil
If stopped™ = 0 andsc_outfi® < max_in_adv(k), setstopped™® := 1 and outpufstop) atout,!,
1 atout,“!.

Trash inputs. Finally, if Mf* receives an input at a poiri, ? which is not comprised by the above
transitions, it increases the counter in!'. Similarly, if Mf'* receives such an input at porf't? it
increases the countge_out!'".

19

5.1.3 On Polynomial Runtime

In order to apply existing results of the underlying modelparticular the composition theorem, the
systemSysﬂL'fL must be polynomial-time, i.e., every machiké't must be polynomial-time. Note that
each input at porin,, ? checks ifsc_infi"* < max_in_user(k) holds, doing nothing at failure. In case of a
successful chechvifi't increasesc_infi't. Similar reasoning holds for the panfi't? with sc_out!!"* and
max_in_adv(k), where additionallystopped it = 0 is checked and maybeopped i = 1 is set. This
means that only a polynomial number of inputs lead to a staege or a non-empty output. However,
since the machine still has to read its input to perform thatiored checks, this is not yet sufficient
for polynomial runtime. We therefore use the length funwiof the underlying model to “cut off” an
input port as soon as a corresponding counter has reacHedlifts

More formally, the value) for the length function for a pomp? means that no input is accepted
(without a Turing step) ap?. This means that whenever the counterinf® reaches the bound
max_in_user(k) or sc_outfl'* reaches the bounehax_in_adv(k), the length function for the poit,,?
respectivelyinfit? is always zero. Similarly, iftopped!' = 1 then the length function fanfi*? is zero.
Note that this does not affect the functional behavior ofrtreehineMfi't since the porin,,? is only cut
off if no further input atin, ? can causé/’'" to change its state or produce a non-empty output, similarly
for the portinfi't?.

Lemma 5.1 The systen$ys’"; is polynomial-time for all parameters, L. m

Proof. Each transition of eachfi't can surely be realized in polynomial time, since the lengthriols
only read a polynomially bounded number of bits in each itemms Moreover, non-empty inputs at
in,? can only occur ifsc_inf"* < max_in_user(k); if this condition does not hold, the length function
for in,? is explicitly defined to be zero. If the check succeeds, eeatsition increases the counter
sc_in!", hence there can at most b@x_in_user (k) inputs atin,?. Similarly, non-empty inputs anf'*?
can only occur ifstopped!' = 0 andsc_outf® < max_in_adv(k), and each transition in this case either
increases the countee_outfi" or setsstopped® = 1. Hence there are at mastax{max_in_adv(k), 1}
inputs atinf'?, i.e., a polynomial number of inputs total, which finishes goof. (]

5.2 The Ideal System for Unordered Secure Message Transmisa

As described above, the systefns®™sP< s the ideal system for secure unordered message transmis-
sion of [68]. We now describe it in full because we need it for gecurity proof in Sections 6 and 7. We
made a few adaptations (in particular renaming the porgsnded for the users), which do not invalidate
the proof.

Let n denote the number of participants. Similar to the systenofdered secure message trans-
mission, the system for secure unordered message traimmies a parametenax_len bounding the
permitted message length. Then the ideal system for seoordered message transmission is given by

Sysyimerse, = {(TH3M, S§M) [C {1, n}},

n,max_len

with ports(THZM) := {outf?,infitl infilt™1 from_adv,?, to_adv, !, to_adv, ! | u € H}. If H is clear
from the context, let agaidl := M \ H. The ports of the users which connect to those ports are

. . : -
SSME = {infit? outfitl outfit™r | u € H}.

20

5.2.1 States

The machind’ H%’V' maintains three arrays, whose meanings should alreadgaefodbm the description
of the state off H)>M.

o (inity™)uver over{0,1} initialized with 0 everywhere.
o (stopped>™),c+ over{0,1} initialized with 0 everywhere,

. (delz‘veri,'\"v)we% of lists, all initially empty.

5.2.2 Inputs and their Evaluation

The length functions of the machi%%'\" are defined similarly to Section 4.2.3, i.e., they are deter-
mined by the respective domains. The state-transitiontiomaf THy, is defined by the following
rules:

Initialization.

e Send initialization:(snd_init) atoutfi't?:

If init3 = 0, setinity := 1 and outputsnd_init) atto_adv,!, 1 atto_adv, .

e Receive initialization:(rec_init, u) atfrom_adv,? for u € M:

If stoppediy™ = 0 andinit3¥ = 0 andfu € H = inito¥ = 1], setinit3" := 1 and output
(rec_init, u) atinfi't!, 1 atinfj”tq!_

Sending and receiving messages.

e Send:(send, m,v) atoutf’? forv € M\ {u}, m € £*,1 := len(m) < max_len(k) + c(k):
If init3h = 1, andinitoh = 1:
If v € Athen{ output(send, m,v) atto_adv,!, 1 atto_adv,! }, else{i := size(deliveri,MU) +1;

SMj] .= m; output(send_blindly, ,,v) atto_adv,!, 1 atto_adv,! }.

deliwvery s,

e Receive from honest party (receive_blindly, u,) atfrom_adv,? for u € H,i € N:
If stoppedS™ = 0, im‘t%%‘ = 1, miti,MU = 1, andm = deliveri!\ﬂ[i] # |, then output
(receive, u, m) atinfit!, 1 atinfit™1,

e Receive from dishonest party (receive,u,m) atfrom_adv,? for u € A, m € ¥*, len(m) <
max_len(k):

If stopped>M = 0, z‘nit%%‘ =1 andmitzz\ﬂ = 1, then outpul(receive, u, m) atinfitl, 1 atinfit™,

Stop commands.

e Stop: (stop) atfrom_adv,,?:

dSM

If stoppe =0, SetstoppedzM = 1 and output(stop) atinft!, 1 atinﬁ'tql.

Trash inputs. TH%’V| simply ignores trash inputs at every port.

21

3
OSM,hyb i i . i
Sys ybr filt Outufllt InﬁIt outvfllt

to_adv,

>
P
<

<
from_adv,

to_adv,

Y

from_adv,

Figure 5: The Hybrid System.

5.3 The Hybrid System

H Sl\/l,spec “ ”
We now combine the two systentgs, . and Sys,; in the “canonical” way, i.e., we combine

those structures with the same indRx We further restrlct ourselves to the case, where the parame
ter max_len of Sys>™P= is equal to the respective message length function of thenpeterL (cf.

n,max_len

Section 4.2.1). This yields a systesps_ "™, which we callhybrid system for ordered secure mes-
sage transmissionlt is depicted in Flgure 5. The specified ports of the hybyistem for? are then
given by{out,?,in,!,in, ! | u € H}¢, i.e., they are equal to the specified po?@'\" of the specifica-
tion. Finally, we define all connectiofeutfit!, outi?} and{infl*!, infi*?} of Sys >3 to be secure,
because they correspond to local subroutine calls.

filt

5.4 The Real System

The concrete systetfiys 05 ¢'<" is derived by replacingys>"-% with Sys>"re which is the

n,max_len n,max_en,&,S?
concrete implementation cfys>":sPec

n,max_len
SM,real

a brief review OfS?JSn,max_len,g, s+ Itis a standard cryptographic system of the fa$ps

{(M,S{'\", SsMY | H € {1,...,n}}, cf. Section 4.1, where denotes the number of participants, i.e., any
subset of participants may be dishonestix_len is the usual bound on the message length, which we
defined to be equal to the message length functioh.inhe system uses an asymmetric encryption
schemef and a digital signature schenSeas cryptographic primitives, which are additional paraerset

of the system. A usew can let his machine create signature and encryption keysthaent to other
users over authenticated channels. Messages sent from tigarserv are signed and encrypted by
M., and sent taV,, over an insecure channel, representing a real network. dversary can schedule
the communication between correct machines and sendaabitressages: to arbitrary users. He can
also replay messages and also change their order, whickvsmied in our scheme by the additional
filtering system.

We now build the combination ofys

yields a new systerﬂysSSLMér?' that we refer to as theeal system for ordered secure message trans-

mission It is depicted in Figure 6.

as introduced in [68]. For understanding it is sufficient iiceg

SM, real
n,max_len,&, s =

SM, real
n,max_len,E,S

filt

and Sys,, ;, again in the canonical way, which

22

A A
in, out, in, out,
| I Y v
| I
filt - -

filt filt
: Sysn,L: M Mf
| I TR A
| , inufllt outufllt in\fllt outvfllt

Sysg,sl_’\,/lér,?l| | v
| | M D \\1
| SM,real u vy — |
S | =

| Yy n,max_len,g,s / \l
| : A M 7
| .

\A4

Figure 6: Sketch of the Real System for Ordered Secure MesEagsmission.

6 Proving Security of the Real Ordered System

In this section, we start to prove that the real ordered ayﬁgSSSLMgga' is at least as secure as the

specificationS’ysSSL'\"’Spec provided that the encryption and signature system useckatees We further

show thatSys 7 ¢'s' computationally fulfills the integrity property of Definth 4.1.

6.1 The Simulatability Property
We start with the simulatability property, which is capuia the following theorem.

Theorem 6.1 (Security of Real Ordered Secure Message TransmithmhaveSysgsLMér?' >Poy

SysS,SLM for all parameters:, L, £, S (and for the canonical mapping), provided the signatureeand
cryption schemes used are secure. This holds with blackibuxatability! O

The proof is split into four steps, which can be illustratadrigure 3:

1. First, [68] contains the resuftys>™"" POl Gy SMsspec

n,max_len,£,S —Sec n,max_len”

2. Secondly, the composition theorem (cf. Section 2.4)dgiehe relationsys 5\ e >B2Y

SysSﬁSLM’hyb“. The only remaining task is to check that its preconditiores falfilled, which is

straightforward since we showed that the sys&;rﬂ'fL is polynomial-time in Lemma 5.1.

3. Thirdly, we provesys 5V >pely gy OSM.spec
4. Finally, sysgsLMg;a' >Ppoly SysSSLM’SpeC follows from the transitivity lemma, cf. Section 2.1.
Thus, we only have to provéysO5"™er >pely g, 0SMsseec \ve will even prove the perfect case

sysfstM’hyb' > perf SysSSLM’S"ec, which is separately captured in the following lemma:

'See [68] for further details on canonical mappings and difiekinds of simulatability.

23

Lemma 6.1 For all parametersn, L, we haveSysOSM ohybr perf SysgSLM’Spec (for the canonical map-

ping), and with blackbox simulatability. O

In order to prove this, we assume a configurationfi,, := ({THSM}UM;{'“, Su, H, A) of Sysos'v' hybr
with Mt = {Mf* | 4 € H} to be given, which we call hybrid configuration We then have to show
that there exists a configurationnfipec := ({THEM}, S, H, A) of SysOSM sPec called aspecifica-
tion configuration yielding indistinguishable views for the honest ubler

The adversarp’ consists of two machines: a so-called simul&ion,,, which we define in the fol-
lowing, and the original adversa#y. This is exactly the notion of blackbox simulatability. Heecon-
figurations are shown in Figure 7. We will now first give somelipninaries of the proof of Lemma 6.1,
and give a rigorous definition of the simulator afterwards.

6.1.1 Preliminaries for Proving Lemma 6.1

Given a hybrid configuration and a specification configuratis defined above, the ultimate goal is to
show that the collectiondf,yp, := {TH3M} U {Mfit | 4 € H} and Mypec := {THSM Simy, } have the
same input-output behavior, i.e., if they obtain the samaeatmthey produce the same outputs. We do so
by proving a deterministic bisimulation, i.e., we define k&tien ¢ on the states of the two collections
and show that is maintained in every step of every trace and that the ositpfuioth systems are always
equal. This is exactly the procedure we will perform in thgtreection using the theorem prover PVS.

Definition 6.1 (Deterministic Bisimulation) Let two arbitrary collectis M1 and M, of deterministic
machines with identical sets of free ports be given, firee([M;]) = fl’ee([MQ]) A deterministic bisim-
ulation between these two collections is a binary relatipan the states ob; and M, such that the
following holds.

e The initial states ofi/; and M, satisfy the relationp.

e The transition function$; andd, of M; and M, preserve the relatior® and produce identical
outputs. l.e., lef; andS, be two states aff; and Mo, respectively, WithS1, .S2) € ¢, letZ be an
arbitrary overall input of M; and Mo, and let(S}, O1) := 6,(S1,Z) and (Sh, O3) = 85(Ss, T).
Then we havés], S}) € ¢ andO; = O,.

We call two collections\f; and M, bisimilar if there exists a deterministic bisimulation Wween them.
&

We will apply this definition to composed transition functsoof each of the two coIIection@hybr and
Mspec, i.e., the overall transition from an external input (fréfror A) to an external output (tbl or A).

It is quite easy to see that a deterministic bisimulatiorhia sense implies perfect indistinguishability
of the view ofH, cf. Figure 7, and even of the joint view éf and the original adversar. Assume
for contradiction that these views are not identical. Thbere exists a first time where they can be
distinguished. This difference has to be produced by tHedodns. Since we defined this to be the first
different step, the prior input of both collections is ideat. But thus, both collections also produce
identical outputs because they are bisimilar. This yieh#sdesired contradiction.

The next section describes how the machines are expresseel fiormal syntax of PVS and partly
explains the bisimulation proof, which then finishes theopif Lemma 6.1, and hence also the simu-
latability proof of Theorem 6.1.

It is worth mentioning that we used standard paper-andippnmofs before we decided to use a
formal proof system to validate the desired bisimulatiormwdver, these proofs have turned out to be
prone to error since they are straightforward on the one Hautdong and tedious on the other, so they

24

ity
. L, |
H p H | \
A A A ‘ ‘
| |
| |
Y A ‘ ‘
filt filt OsM | |
M M; Al s TH; oA
: : | |
* | |
A A i_ - V_ | A 1 A, }
> I >
|
SM <€ .

TH, | Sim, |
- =] |

Figure 7: Proof Overview oSysgf'LM’hybr >perf SysS,SLM’SpeC

are mainly vulnerable to slow-down of concentration. Dgraur formal verification, we in fact found
several errors in both our machines and our proofs, whiclewaite obvious afterwards, but had not
been found before. We decided to put the whole paper-andipemof in the wel}, so readers can
make up their own minds.

6.1.2 Definition of the SimulatorSimy

The SimulatorSimy is placed between the trusted ho'EH%SM and the adversarA, see Fig-
ure 7. Its ports are given bfto_adv,,?, from_adv,!, from_adv,“! | v € H} U {from_adVv/,?, to_adVv, !,
to_adv/,“l | u € H}. The first set contains the ports connectedl'té9°™, the ports of the second
set are for communication with the adversary. This meartswhahave to rename the pottis_adv,,?,
from_adv,,!, andfrom_adv, ! of the adversary intao_adv/,?, from_adv/,!, andfrom_adv/ !, respec-

u u

tively. (Port renaming is permitted in simulatability pfepsince the view is defined independently
from the port names.)

States.
Internally, Simy, maintains four arrays:
o (init57)uvert Over{0,1},
o (stoppeds™),c over{0,1},
. (msg_outfjm)ueAmeH over{0, ..., max.in_user(k)}.

All three arrays are initialized with everywhere.

Inputs and their Evaluation.

We now define the behavior of the simulator. The length fumstiare again determined by the respective
domains. In most casé8my simply forwards inputs to their corresponding outputs, ifyatg some
internal values.

2http://www.zurich.ibm.comtmbc/PVS/OrdSecMess.tgz

25

e Send initialization:(snd_init) atto_adv,,:
Setinit3T = 1 and output(snd_init) atto_adv, !, 1 atto_adv/,“!.

u

e Receive initialization:(rec_init, u) atfrom_adv/,? for u € M:
If stoppedi™ = 0 andinits = 0 and[u € H = nitiT = 1] setiniti™ := 1 and output
(rec_init, u) atfrom_adv,!, 1 atfrom_adv,“!.

e Send:(send_blindy, 7,!’,v) atto_adv,? for v € H, 1" < max_len(k), i < n - max_in_user(k):
Setl := I' + ¢(k) and outputsend_blindy, i, l,v) atto_adv’,!, 1 atto_adv’ “!.

u

e Send 2:(send, m,v) atto_adv,? forv € M, m € ¥*, len(m) < max_len(k) + c(k):
Output(send, m,v) atto_adv/,! and1 atto_adv’,“!.

e Receive from honest party (receive_blindly, u,) atfrom_adv)? for u € H:
If stoppedS™ = 0 then output(receive_blindly, u, i) atfrom_adv,! and1 atfrom_adv,,“!.

e Receive from dishonest party. (receive,u,m’) at from_adv,? with v € A, len(m/) <
max_len(k) + c(k):

Decomposen’ := (m, num): If stoppeds™ = 0, initf,iy’{}‘ =1, init™ = 1, num > msg_outs™

u,v u,v

(num = msg_outs™ in the perfect ordered system), sebg_outs™ := num + 1, and output

u,v u,v
(receive, u, m) atfrom_adv,!, 1 atfrom_adv,“!.

e Stop: (stop) atfrom_adv/,?:
If stoppedS™ = 0, setstoppeds™ := 1 and output(stop) atfrom_adv,,!, 1 atfrom_adv,, .

If a trash input occurs ab_adv,,?, Simy, forwards this input tao_adv/,!; trash inputs afrom_adv/),? are
ignored.

The simulator essentially recalculates the length of nggssainto len((m, num)) to achieve indis-
tinguishability. Furthermore it decomposes messageshgethie adversary, maybe sorting them out, in
order to achieve identical outputs in both systems. Now tleeadl adversary\’ is defined by combining
A andSimy.

It is easy to see that this combination is polynomial-timease of a polynomial-time adversary:
Each transition o6imy, is surely polynomial-time anflimy only accepts inputs of polynomial length
at the portzo_adv,,?. By construction, every such input (either “send initiation”, “send”, or “trash”)
will cause the simulator to schedule the adversary subs#igu&ince the remaining ports of the simu-
lator are connected to the adversary, there has to at leastep of the adversary after a polynomially
bounded number of steps of the simulator. However, sincadwversary is polynomial-time, it will
enter a final state after a polynomial number of steps, whighlies that the steps of the combined ma-
chine are also polynomially bounded at the time the advetsats. Since the definition of combination
(cf. [68] ensures that a combined machine enters final seagoan as a contained master scheduler
enters final state, we conclude that the combination of anpotyal-time adversary (which is a master
scheduler) and the simulatbimy, is polynomial-time.

6.1.3 The Ordering Property of the Real Ordered System

We finally address the ordering property of the real ordeystes. If the ordering propertieq®>M for

the specification (Theorem 4.1) and the simulatability propbetween the specification and the real
ordered system (Theorem 6.1) has been proved, it followlyehat the real ordered system also fulfills
the propertyReq®>M, which is captured in the following theorem.

26

Theorem 6.2 (Ordering Property of the Real System for Orderel Secure Message Transmission)
Let SysSSLM;;a' be the real system for ordered secure message transmissiimed in Section 5.4

for arbitrary parametersn, L, £, S, and let Req®°M be the integrity property of Definition 4.1. Then

Sys SSLM yreal [=poly Req®M provided that the encryption and signature schemes usesieaare. O

OSM,real >poly OSM;,spec

Proof. Theorem 6.1 yields the relatiofys, LES Zsec OYS, T, , and Theorem 4.1 gives
SysS,SL'\"’S"ec =Perf ReqOSM, which impIiesSysgVSL'\’| SPec |_poly Reqos'\". Now Theorem 3.1 implies

Sys OVl j=poly ReqOSM, since membership iReq©M(S95M) is decidable in polynomial time for
all S95M, since the send-list and the receive-list are of polynoteiagth in a polynomial-time config-

uration. n

7 Formal Verification of the Bisimulation

In this section, we describe how Theorem 6.1 is formally figdi in the theorem proving system
PVS [63]. As we already showed in the previous section, itif§@ent to prove that the two collections
Mhybr and Mspec are contained in a deterministic bisimulation.

7.1 Defining the Machines in PVS

In order to do so, we first describe how the machines are fazathin PVS. We subsequently made
minor adaptations in the definition of the machines to de#h\wblynomial runtime more concisely,
which do not invalidate the prodf.

Since the formal machine descriptions are too large to endiere completely, we use the machine
TH,O{S'VI as an example. The complete machine descriptions and tbégmavailable onliné.

We denote the number of participating machinesNbyand for a given subsé{ € {1,..., N},
we denote the number of honest usersMy:= #7. As defined in Section 4.2, the machiﬂiéi%s’\"
has2M input ports{in,?,from_adv,? | v € H}. In PVS, we number these input potts...,2M,
where we identifyl, . .., M with the user ports andl/ +1, ..., 2M with the adversary ports. Similarly,
THYM has output portgout,, !, to_adv,! | u € H}, which also are numbered. .., 2M. In PVS, we
define the following types to denote machines, honest uaedsports:

MACH: TYPE = subrange(1, N) %% nmachi nes
USERS: TYPE = subrange(1, M %% honest users
PORTS: TYPE = subrange(1, 2xM %% port numnbers

Thesubr ange(i,j) typeis a PVS built-in type denoting the integérs. . , . We further define a
type STRI NGto represent messages.

In Section 4.2.3, the different possible mputs to machr‘réH are listed, e.g.,(snd_init),
(rec_init,u), ... In PVS, the type of input ports is defined using a PVS abstratdtgpe [62]. The
prefix mLi in the following stands for “inputs of machine 17, WhIChTS'IOSM and is used to distin-
guish between inputs and outputs of the different machines.

nml_i n_port: DATATYPE
BEG N
mli _snd_init: mli _snd_init?

Unfortunately, we are currently not able to incorporatesthehanges in the PVS proof, since PVS is not freely accessibl
for commercial use, which prohibits us from using it as wecaneently affiliated with IBM. The existing proof was devpkd
when the authors were affiliated with Saarland University.

“http://www.zurich.ibm.comimbc/PVS/OrdSecMess.tgz

27

mli _rec_init(u: MACH): nmli _rec_init?

mli _send(m STRING, v: MACH): mli _send?

mli _receive_blindly(u: USERS, i: posnat): nili_receive_blindly?
nmli _receive(u: MACH m STRING: nmli _recei ve?

nli _st op: nli _st op?

END ml_in_port

This defines an abstract datatype wabnstructorsnili _.snd_i ni t, mli rec.init etc. For ex-
ample, for givenu, i, mLi recei ve bl i ndl y(u, i) constructs an instance of the above datatype,
which we identify with (receive_blindly, u,7). Given an instance of this datatype, we can use the
recognizerson the right side of the definition to distinguish between diféerent forms. For exam-
ple, mLi _recei ve bl i ndl y?(p) checks whether the instangeof the mlLi _i n_port datatype
was constructed from thedli r ecei ve_bl i ndl y constructor. If it was, the componentsand ¢
can be restored using tlaecessor functions(-) andi(-); for exampleu(p) returns theu component
of p. The accessor functions may be overloaded for differenstcoctors (e.g.u is overloaded in
mli rec.init, mll _r ecei ve_bl i ndl y andmlLi r ecei ve).

The machlneT HH performs a step iff exactly one of the input ports is activethis case, we call
the inputok, otherwisegarbage The type of the complete inputs Wj—los'\" comprising all2M input
ports is therefore either garbage, or the numbef the active port together with the inppion portw.
This is formalized in the following PVS datatype:

ML_I NP: DATATYPE

BEG N
nmili _gar bage: nmli _gar bage?
nmli _ok(u: PORTS, p: ml_in_port): mli _ok?

END ML_I NP

Similar datatypesrnl_out _port andML_OUT are defined to denote the type of individual outputs, and
the type of the complete output @HSM, respectively.

Next we define the state type 3HY°™. As defined in Section 4.2.2, this state consists of seven
one- or two-dimensional arrays. In PVS, arrays are modedefdirzctions mapping the indices to the
contents of the array. For examl&/ACH, USERS - > nat] defines a two-dimensional array of
natural numbers, where the first index ranges dverand the second ranges ovr The state type of
THP>M is defined as a record of such arrays. There is only one snzdpéion: the arrayleliver "
stores lists of tuplegm,) (e.g., see the “Send” transition), whete is a string andi € N. It is
convenient in PVS to decompose this array of lists of tuplés two arrays of lists, where the first array
deliver 3™ stores lists of messages, and the second arrageliv_iJ3™ stores lists of naturals Lists
are deflned as a recursive algebraic abstract datatype Iﬁ\}tBellbrary [62]. Altogether, this yields a
state type of eight arrays:

ML_STATE: TYPE = [# init_spec: [MACH MACH -> bool],
sc_in_spec: [USERS -> nat],
nmsg_i n_spec: [USERS, MACH -> nat],
nmeg_out _spec: [USERS, USERS -> posnat],
sc_out _spec: [USERS -> nat],
deliver_spec: [USERS, USERS -> list[STRING],
deliv_i _spec: [USERS, USERS -> |ist[posnat]],
st opped_spec: [USERS -> bool] #]

The initial stataml_i ni t is defined as a constant of typ _STATE:

ML_init: ML_STATE = (#
init_spec := LAVBDA (wl, w2: MACH): FALSE,

28

deliv_i_spec :
st opped_spec :

LAMBDA (ul,u2: USERS): null,
LAVMBDA (ul: USERS): FALSE #)

The constructonul | denotes the empty list. The machfﬁbl%s'\" is now formalized in PVS as a next-

state/output function mapping current state and inputsdmext state and outputs. We exemplarily give
the first few lines of the PVS code:

ML_ns(S: ML_STATE, |: ML_INP): [# ns: ML_STATE, O ML_QUT #] =
| F mli _garbage?(1) THEN
(# ns: =S, O =nillo_garbage #)
%0 do not change the state, output nothing
ELSE
LET ual=ua(l), p=p(l) IN
%o ual is the active port number,
%op is the input on this port
| F ual<=M AND mli _snd_i nit?(p) THEN
%o we have a send-init on a user port (<=M;
| F S'sc_in_spec(ual)<slk AND NOT S' stopped_spec(ual) THEN
IF S'init_spec(ual,ual) THEN
(# ns:=SWTH [‘sc_in_spec(ual) := sc_in_spec(ual)+1,
O =nmlo_gar bage #)
%0 increment sc_in_spec, but do not send any out put
ELSE
(# ns:=SWTH [‘sc_in_spec(ual) := sc_in_spec(ual)+1,
“init_spec(ual,ual) := TRUE],
O : = nlo_ok(Mtual, nlo_snd_init) #)
%% i ncrenent sc_in_spec, set init_spec(ual,ual):=true
%% send mlo_snd_init to adversary port Mrual
ENDI F
ELSE %% ot herwi se do not hi ng
(# ns: =S, Qut:=nlo_garbage #)
ENDI F
ELSI F ual>M AND nii _rec_init?(p) THEN

In a similar way we have formalized the machirgd3}, {Mfit | 4 ¢ #}, andSimy. The M ma-
chinesMfi't in the left part of Figure 7 have been combined into a singlehime in PVS; however,
this is only syntactic and does not change the semantics.cdimbination of the machine'léH;"";['\’I and
{Mfit | 4 € H} respectivelyTHS®™ and Simy, is straightforward by composition of the correspond-
ing state transition functions: An input frohh is always first handled by a machif't and THS>,
and then byTH%L'VI andSimy,, respectively, and vice versa. This saves us from impleimgtie full
asynchronous scheduling algorithm in PVS for this example.

The only non-trivial choice we have made in the transliierabf the machines to PVS is the type
of the input- and output-ports. In a previous attempt, werditiuse the abstract datatype definition of
ML_I NP, but definedVIL_| NP as an array o2M individual input ports; in order to model non-active
ports, we added amiLi _i nact i ve form to the input port typeti _i n_port . Aninput fromML_I NP
was defined to bekiff exactly one of the ports is different fromli _i nact i ve. This obviously mod-
els the same valid inputs as the definitiorMif | NP above. The problem with the array definition is that
extracting the active port numberinvolves an application of the choice-functierin order to choose
the indexu of the array for which the port is active. The applicationha thoice-function considerably
complicates the proofs in PVS, since the definitiore @ not constructive in PVS. In contrast, in the
definition using the abstract datatype, the active port rermlzan be constructively extracted from the
input by applying the accessor function of the abstracttglaga Due to constructiveness, the proofs in

29

PVS become much simpler. This problem in the port definitizio applies to the output ports of the
machines.

The rest of the transliteration of the machine definitionB%S is straightforward. In the following,
we revert to standard mathematical notation for the sakeavity and readability.

7.2 Proving the Bisimulation

In order to prove Lemma 6.1, we consider the following pratiis on the states of the coIIectidﬁfgybr
and Mspec and show them to be invariant.

e Stop Flags:This invariants consists of two subparts:

- VueH: stoppedgs'v' = stopped‘:i't A stoppediM = stoppedS™,
—VYueH: stoppediM =0= stoppedSSM =0,

OSM

u)

e Inputs Countersyu € H: sc_inflt = sc_in

e Output Counters¥u € H: sc_out! = sc_outOM,

tOSM

w2

e Initialization Arrays: Vu € H,w € M: initgh, = init3™, = ini

e User Messagesvu € H,w € M: msg_mﬁ'fw = mSg—inSz)M’

e Network Messagesthis invariant consists of two subparts:

OSM

— Vu,w € H: msg_outl)t, = msg_outo",

— Vu € H with sc_out®M < max_in_adv(k), w € M\ H: msg_outﬁu':‘u = msg_outs™m

w,u?

OSM

u,v

OSM

u,v !

e Message Array Contentfu,v € H: deliveri,MU = deliver A deliv_ii,MU = deliv_i

e Message Array Lengthvu,v € H: length(deliveri'}ﬂ) = length(deliv_ii%), wherelength is
the PVS function delivering the length of lists,

e Message Array Length 2/u,v € H: length(deliverOSM) = length(deliv_ 'OSM).

U,V Lup

Each of the 9 invariants is formalized as a predieat€Shybr, Sspec) ON the current states of the two
coIIections]\?[hybr and]\?[spec. The conjunction of all the); yields the bisimulation relation. Let 6pyp,
anddspec denote the overall transition function of the machine ct:rbidrrls]\?[hybr and]\?[spec, respectively.
The following theorem asserts that the invariants indeedrasariants of these collections:

Theorem 7.1 Let Spy,r and Sspec be states of the two coIIection]\%s’hybr and Mspec such that all invari-
ants ¢;(Shybr, Sspec), 1 < i < 9 hold. The transition functiongy, dspec Preserve the invariants, i.e.,
for an arbitrary overall inputZ of Miyp, and Mypec We have

i (Shybrs Sepec) Vi, 1 <1< 9

with (S}ber,Ohybr) := Ohybr(Shybr, Z) and (S;pec,(’)spec) := Ospec (Sspec; Z). Furthermore, the initial
statesinitialpy, andinitialspyec Satisfy all9 invariants. O

In PVS, this theorem is split into 9 lemmas, one for each iaver Using the invariants,;, we prove
the following theorem:

30

Theorem 7.2 Let Shybe and Sspec be states satisfying all invariants; (Shybr, Sspec), 1 < @ < 9, and let
7 be an overall input of the collection®}, ,, and Mpec. Then both collections make the same outputs
on all ports to the users and the adversary. a

Together, Theorems 7.1 and 7.2 prove that the two systemsisingilar, which finishes the proof of
Lemma 6.1, and hence also the proof of Theorem 6.1.

7.3 Verification Effort

The manual proof effort in PVS is rather small. The proofs enagkavy use of the built-in PVS strategy
(gri nd),which expands definitions and performs automatic castisgl The main effort was to fig-
ure out the correct parameters for {hgr i nd) command. The proof goals not resolved(lyr i nd)
were proved with little manual assistance. However, loghor errors and thinking about the necessary
modifications of the machines was a time-consuming taskinQuur proof attempts, we simultane-
ously debugged the machines until we finally found the corspecifications of all machines. After
that, the proof itself turned out to be quite easy. Altogettiee formalization of the machines in PVS
took 2 weeks, and the development of the proofs took anotkekwgiven prior familiarity with PVS).

A complete checking of the proof takes about one hour on a 66@ Rthlon processor.

8 \Verification of the Ordered Channel Specification

In this section, we formally verify Theorem 4.1, i.e., thaéssage reordering in our specification of
Section 4 is in fact prevented. the property seems to holdogteuction, but experience shows that
such proofs made by ‘simply looking’ are often flawed. Eveprifofs of this kind are made by hand
in a rigorous way, they often turn out to be apparently shtfggward and dull which yields proofs
with faults and imperfections. Following our approach of girevious section, we formally verify the
integrity property in PVS. This will be described in the tmling. For reasons of readability and brevity,
we again use standard mathematical notation instead of FmMax The PVS sources are available
online?

According to Definition 2.1, we assume that the machim>™ operates on an input SB{osm
(shortZ), a state SeStatesTHOSM (shortS), and an output sep THOSM (short©). For convenlence the
(deterministic) transition functlommow IxS — SxOissplit iNtos: TxS — Sandw: TxS — O,
which denote the next-state and output pard-Qfosw, respectively.

In order to formulate the property, we need a PVS-suitedn&motation of (infinite) runs of a
machine, of lists, of what it means that a lisis a sublist of a list;, and we need formalizations of the
receive-listandsend-list

Definition 8.1 (Input sequence, state trace, output sequeag Let M be a machine with input s&y,
state setStatesy, output setOy, state transition functiord, and output transition functiow. Call
sinit € Statesy the initial state. Aninput sequenceé: N — 7y, for machineM is a function mapping
the time (modeled as the 98} to inputsi(t) € Zy. A given input sequencedefines a sequence of
statess’: N — Statesy of the machinevl by the following recursive construction:

| si(O) = Sinit,
s'(t+1) = 4(i(t),s'(t)).

The sequence is calledstate-trace of1 underi. Theoutput sequence’ : N — O of the run is defined
as

We omit the index if the input sequence is clear from the context. For comptnenf the state type,
we writex(t) for the content of: in s(¢). For example, we Writelelivergj’\" (t) to denote the content at
timet of the listdeliver9>M, which is part of the state GFHEM. o

u,v !

In the context oﬂ'H%SM, the input sequenceconsists of the messages that the honest users and the
adversary send t@HS>M.

As our upcoming definitions uses the PVS-intern terminologyists, we restate the definition
from [62], and further give the definition of sublists.

Definition 8.2 (Lists) A list over type Tis the closure of applications of the constructe!! yielding
an empty list, and the constructesns(car: T, cdr: list[T]) yielding a list with head:ar and tail cdr.
It holds car(cons(t,l)) = t andedr(cons(t,l)) = I. The predicatesull?(l) and cons?(l) are used to
test whethet is empty or non-empty, respectively. PVS provides furtionyth(l), append(t, 1), and
nth(l,) to measure the length of a listto append an elementat the end of the list, and to access
theit" element ot (counted from 0). &

Definition 8.3 (Sublists) A list[; is called sublist of a list, (writtenl; C [5) iff the following recursive
predicate is satisfied:

1 Cly: <= null7(l1)v
cons?(li)A (car(ly) = car(ly) A cdr(ly) C edr(ly)
Vi C Cd?”(lg)).

Letk € Ny. The listl; is called sublist of thé-prefix ofl, (written; C* 1) iff the following recursive
predicate is satisfied:

l1 Qk ly : <— null?(ll)\/
cons?(ly) ANk > 1A (car(ly) = car(lo) Aedr(ly) CF1 edr(ly)
V Iy gkil Cd?”(lg)).

The following lemma summarizes some facts on lists and sigbli

Lemma 8.1 Letly, l», I3 be lists over some tygE, lett € T, andk, k' € Ny. It holds:

1. k <length(ly) = nth(append(t,l1),k) = {Zth(h’k) ;::e;vfzzgth(ll)
2. 11 Cly = 11 Cappend(t,ls)

3. 11 Cly = append(t,l1) C append(t,ls)

4.1y CFly = 1y CF append(t, i)
5

.k <length(ly) NIy CF ly = append(nth(la, k),11) CF1 1y,
that is, one may append thé" element (counted from 0) &f to /; while preserving the prefix-
sublist property.

6. K > kAl CFly = 1} C¥ Iy

7. llgklg — llglg

32

8.1 CIhANICl3 = ;1 Clj

All claims are proved by induction on the recursive struetof the lists.

Definition 8.4 (Receive- and send-list)Let: be an input sequence for machiﬁéi%s'\", and lets and
o be the corresponding state-trace'blf-l%s'\" and the output sequence, respectively. et € H. The
receive-list is obtained by appending a new elememheneven receives a messadeesceive, m, u)
from TH%SM. The send-list is obtained by appendingwhenevern: sends a messageend, m, v) to
THSM. Formally, this is captured in the following recursive défons:

null ift =—1,
recvlist, (1) = append(m, recvlisﬁt,y(t —1)) ift>0A0i(t) = (receive,m,u)
’ atout,!.
 recvlist, ,(t — 1) otherwise
(il ift =—1,
" d(m,sendlisf, , (t — 1 if t >0Ai(t) = (send, m,
endlist () - | @Ppendm.sendiisi, (¢ — 1)) if¢> 0 it) = (send, m.v)
’ atin,?.
sendlist, , (t — 1) otherwise

<&

We now are ready to give a precise, PVS-suited formulatiofihaforem 4.1, i.e., the integrity property
we are aiming to prove:

Theorem 8.1 For any THSM input sequence, for anyu, v € H, u # v, and any point in time € N,
it holds

recviist, ,,(t) C sendlis}, , (t).)

In the following, we omit the index O

Proof (sketch). The proof is split into two parts: we provecvlist, ,(t — 1) C deliver$3" (t) and

deliverg3™ (t) C sendlist, , (¢ — 1). The claim of the theorem then follows from Lemma 8.1.8.

The second clairrdelz'vergj'\" (t) € sendlist, ,(t — 1) is proved by induction on. Both induction
base and step are proved in PVS by the built-in strafegyi nd) , which performs automatic definition
expanding and rewriting with Lemma 8.1.

The first claimrecvlist, , (t — 1) C deliverSZM (t) is more complicated. The claim is also proved by
induction ont. However, it is easy to see that the claim is not inductivesaise of greceive_blindly, u, 1)
atfrom_adv,?, THE>™ outputs(receive, m, u) to out,!, where(m, j) := deliver$3"[i], i.e.,m is the
ith message of thdeliveri?f,'\" list. By the definition of the receive-list, the messages appended
to recvlist, ,. In order to prove thatecvlist, , C delz‘verﬁi’v' is preserved during this transition, it is
necessary to know that the receive list was a sublist of teéxpof the delivergf,'\" list that does not
reach tom. It would suffice to know that

recvlist, ,(t — 1) c! delivergiM (t).

Then the claim follows from Lemma 8.1.5.

33

We therefore strengthen the invariant to comprise the peefbtist property. However, thein the
above prefix-sublist relation stems from the inputceive_blindly, u, 7), and hence is not suited to state
the invariant. To circumvent this problem, we recursivebnstruct a sequendastrcv_blindly,, ,(t)
which holds the parametérof the last valid(receive_blindly, u, i) received byTH%S'VI atfrom_adv,?;
then

recvlist,,, (t — 1) C' deliverQ3M (t) with I = lastrev_blindly, ,,(t)

is an invariant of the system. We further strengthen thiariant by asserting théast rcv_blindly,, ()
and thej’s stored in theleliverO>M list grow monotonically. Together this yields the induetinvariant.

u,v

We omit the details and again refer the to the PVS files availabline. [

8.1 \Verification Effort

Together, the development of the inductive invariant aagibof took 2 weeks, which included some
failed approaches in strengthening the invariant to becamahgctive. The proof of the invariant takes
500 proof commands. A further week and 350 proof commands weeded for the development of
the sublist theory, which can be reused in future verificapoojects. The main difficulty during the
verification of the invariant was finding the stronger indeeinvariant. Once the correct invariant was
found, its proof was quite easy. Before we started the formafication, we had a hand-written proof
of Theorem 8.1. However, the proof was incomplete in the es¢ingt we did not prove some needed
invariants; in fact, we did not even notice that we used tiasgiants in our hand-made proofs, because
of our intuitive understanding of the system.

9 Conclusion and Outlook

In this paper, we have addressed the problem how cryptogrgobtocols in asynchronous networks
can be verified both machine-aided and sound with respedietal¢finitions of cryptography. We
have established a preservation theorem for integritygatgs stating that the verification of integrity
properties of abstract specifications automatically eardver to the concrete implementations if the
implementation is secure in the sense of simulatability. rédger, we have shown that logic deriva-
tions among integrity properties are valid for the concststems in the cryptographic sense, which
makes them accessible to theorem provers. As an examplegweephesented a specification of secure
message transmission with ordered channels, which we fiyrwadidated using the theorem proving
system PVS. Furthermore, we used formally verified bisithuta to derive a secure implementation.
Together with the preservation theorem these results ithplythe correctness of the verified property is
equivalent to the security of the underlying cryptograggrimitives, i.e., if the primitives for encryption
and digital signatures are secure with respect to theiemse security definitions, the integrity prop-
erty holds for the concrete implementation. This yieldsftret formal verification of a cryptographic
protocol that is sound with respect to the cryptographicnitedns. We hope that our work paves the
way for the actual use of automatic proof tools for many simdryptographically faithful proofs of
security protocols.

Acknowledgments

We thankMichael SteineandMichael Waidnerfor interesting discussions.

34

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

M. Abadi and J. Jurjens. Formal eavesdropping and itemdational interpretation. IRroc.
4th International Symposium on Theoretical Aspects of GoenBoftware (TACSpages 82—-94,
2001.

M. Abadi and P. Rogaway. Reconciling two views of crypimghy: The computational soundness
of formal encryption. IrProc. 1st IFIP International Conference on Theoretical Guuter Science
volume 1872 ol ecture Notes in Computer Scienpages 3—22. Springer, 2000.

M. Abadi and P. Rogaway. Reconciling two views of cryptaghy (the computational soundness
of formal encryption).Journal of Cryptology15(2):103-127, 2002.

M. Backes. A cryptographically sound dolev-yao stylew#ty proof of the Otway-Rees proto-
col. InProceedings of 9th European Symposium on Research in Centpecturity (ESORICS)
volume 3193 ol ecture Notes in Computer Scienpages 89-108. Springer, 2004.

M. Backes. Quantifying probabilistic information flom icomputational reactive systems. In
Proceedings of 10th European Symposium on Research in Gengrcurity (ESORICSyolume
3679 ofLecture Notes in Computer Scienpages 336—354. Springer, 2005.

M. Backes. Unifying simulatability definitions in crypgraphic systems under different timing
assumptionsJournal of Logic and Algebraic Programming (JLAR)157-188, 2005.

M. Backes and M. Duermuth. A cryptographically sound &elvao style security proof of an
electronic payment system. Rroceedings of 18th IEEE Computer Security Foundationskwor
shop (CSFW)pages 78-93, 2005.

M. Backes, M. Duermuth, D. Hofheinz, and R. Kuesters. dibanal reactive simulatability. In
Proceedings of 11th European Symposium on Research in Gengrcurity (ESORICSyolume
4189 ofLecture Notes in Computer Sciengages 424-443. Springer, 2006. Preprint on IACR
ePrint 2006/132.

M. Backes and D. Hofheinz. How to break and repair a ursigly composable sighature func-
tionality. In Proceedings of 7th Information Security Conference (J$6ume 3225 ol_ecture
Notes in Computer Sciengeages 61—-72. Springer, 2004. Preprint on IACR ePrint Z31B/

M. Backes and C. Jacobi. Cryptographically sound andhime-assisted verification of security
protocols. InProc. 20th Annual Symposium on Theoretical Aspects of Cmnaience (STACS)
volume 2607 oL ecture Notes in Computer Scienpages 675-686. Springer, 2003.

M. Backes, C. Jacobi, and B. Pfitzmann. Deriving crypapdically sound implementations using
composition and formally verified bisimulation. Rroc. 11th Symposium on Formal Methods Eu-
rope (FME 2002) volume 2391 ot ecture Notes in Computer Scieng@ages 310-329. Springer,

2002.

M. Backes and P. Laud. Computationally sound secreogfprby mechanized flow analysis. In
Proceedings of 13th ACM Conference on Computer and Comatioris Security (CCSpages
370-379, 2006.

M. Backes, S. Moedersheim, B. Pfitzmann, and L. Vigangmi8olic and cryptographic analysis
of the secure WS-ReliableMessaging Scenari®rbteedings of Foundations of Software Science

35

and Computational Structures (FOSSAC®)Jume 3921 olecture Notes in Computer Science
pages 428-445. Springer, 2006.

[14] M. Backes and B. Pfitzmann. Computational probabdistn-interferencelnternational Journal
of Information Security (I1JIS)3(1):42-60, 2004.

[15] M. Backes and B. Pfitzmann. A cryptographically sounclsigy proof of the Needham-Schroeder-
Lowe public-key protocol.lEEE Journal on Selected Areas of Computing (JSA2J10):2075—
2086, 2004.

[16] M. Backes and B. Pfitzmann. Symmetric encryption in autatable Dolev-Yao style crypto-
graphic library. InProceedings of 17th IEEE Computer Security Foundationskgfmp (CSFW)
pages 204-218, 2004.

[17] M. Backes and B. Pfitzmann. Limits of the cryptograptealization of Dolev-Yao-style XOR. In
Proceedings of 10th European Symposium on Research in Gengrcurity (ESORICSyolume
3679 ofLecture Notes in Computer Scienpages 178-196. Springer, 2005.

[18] M. Backes and B. Pfitzmann. Relating cryptographic uymilsolic secrecy.lEEE Transactions
on Dependable and Secure Computing (TD2(J):109-123, 2005.

[19] M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Rolyial livenessJournal of Computer
Security 12(3-4):589-617, 2004.

[20] M. Backes, B. Pfitzmann, and M. Waidner. A composablgtgraphic library with nested op-
erations (extended abstract). Pnoc. 10th ACM Conference on Computer and Communications
Security pages 220-230, 2003.

[21] M. Backes, B. Pfitzmann, and M. Waidner. A universallynmsable cryptographic librandACR
Cryptology ePrint Archive2003:15, 2003.

[22] M. Backes, B. Pfitzmann, and M. Waidner. A general contjmstheorem for secure reactive
system. InProceedings of 1st Theory of Cryptography Conference (T@)me 2951 of ecture
Notes in Computer Sciengeages 336—354. Springer, 2004.

[23] M. Backes, B. Pfitzmann, and M. Waidner. Low-level ide@natures and general integrity ide-
alization. InProceedings of 7th Information Security Conference (|$6ume 3225 ol ecture
Notes in Computer Scienggages 39-51. Springer, 2004.

[24] M. Backes, B. Pfitzmann, and M. Waidner. Secure asymuuse reactive systemsACR Cryptol-
ogy ePrint Archive2004:82, 2004.

[25] M. Backes, B. Pfitzmann, and M. Waidner. Reactively secignature schemesnternational
Journal of Information Security (1J1S%(4):242—-252, 2005.

[26] M. Backes, B. Pfitzmann, and M. Waidner. Symmetric antication within a simulatable crypto-
graphic library.International Journal of Information Security (1J1S$)(3):135-154, 2005.

[27] D. Beaver. Secure multiparty protocols and zero kndgée proof systems tolerating a faulty
minority. Journal of Cryptology4(2):75-122, 1991.

[28] G. Bella, F. Massacci, and L. C. Paulson. The verificattban industrial payment protocol: The
set purchase phase. Rroc. 9th ACM Conference on Computer and CommunicationarBgc
pages 12-20, 2002.

36

[29] M. Bellare, T. Kohno, and C. Namprempre. Authenticagryption in ssh: Provably fixing
the ssh binary packet protocol. Rroc. 9th ACM Conference on Computer and Communications
Security pages 1-11, 2002.

[30] M. Bellare and P. Rogaway. Entity authentication angdistribution. InAdvances in Cryptology:
CRYPTO '93volume 773 ofLecture Notes in Computer Scienpages 232—249. Springer, 1994.

[31] D. Bleichenbacher. Chosen ciphertext attacks agairsiocols based on the RSA encryption
standard PKCS. Imidvances in Cryptology: CRYPTO '98olume 1462 ofLecture Notes in
Computer Scienggpages 1-12. Springer, 1998.

[32] R.Canetti. Security and composition of multipartygiggraphic protocolslournal of Cryptology
3(1):143-202, 2000.

[33] R. Canetti. Universally composable security: A newagabgm for cryptographic protocols. In
Proc. 42nd IEEE Symposium on Foundations of Computer Szi@r@CS) pages 136—-145, 2001.
Extended version in Cryptology ePrint Archive, Report 2800 http: //eprint.iacr.
org/.

[34] Z. Dang and R. Kemmerer. Using the ASTRAL model checkerctyptographic protocol analy-
sis. InProc. DIMACS Workshop on Design and Formal Verification afusiéy Protocols 1997.
http://di macs. rutgers. edu/ Wor kshops/ Security/.

[35] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Seeyrotocol composition (extended ab-
stract). InProc. 1st ACM Workshop on Formal Methods in Security Enginggd FMSE) pages
11-23, 20083.

[36] D. E. Denning and G. M. Sacco. Timestamps in key distiiluprotocols. Communications of
the ACM 24(8):533-536, 1981.

[37] Y. Desmedt and K. Kurosawa. How to break a practical nmig design a new one. Kdvances
in Cryptology: EUROCRYPT 200@olume 1807 ofLecture Notes in Computer Sciengages
557-572. Springer, 2000.

[38] D.Dolevand A. C. Yao. On the security of public key praits. IEEE Transactions on Information
Theory 29(2):198-208, 1983.

[39] B. Dutertre and S. Schneider. Using a PVS embedding & ©Sverify authentication protocols.
In Proc. International Conference on Theorem Proving in HigBeder Logics (TPHOL)volume
1275 ofLecture Notes in Computer Scienpages 121-136. Springer, 1997.

[40] D. Fisher. Millions of .Net Passport accounts put ak.rieWeekMay 2003. (Flaw detected by
Muhammad Faisal Rauf Danka).

[41] S. Goldwasser and L. Levin. Fair computation of gen&irattions in presence of immoral major-
ity. In Advances in Cryptology: CRYPTO '9@blume 537 of_ecture Notes in Computer Science
pages 77-93. Springer, 1990.

[42] S. Goldwasser and S. Micali. Probabilistic encryptidaurnal of Computer and System Sciences
28:270-299, 1984.

[43] S. Goldwasser, S. Micali, and R. L. Rivest. A digital s&gure scheme secure against adaptive
chosen-message attacl&AM Journal on Computindl.7(2):281-308, 1988.

37

[44] J. D. Guttman, F. J. Thayer Fabrega, and L. Zuck. Théffaitess of abstract protocol analy-
sis: Message authentication. Rroc. 8th ACM Conference on Computer and Communications
Security pages 186-195, 2001.

[45] M. Hirt and U. Maurer. Player simulation and general eary structures in perfect multiparty
computation.Journal of Cryptology13(1):31-60, 2000.

[46] C. A. R. Hoare.Communicating Sequential Processegernational Series in Computer Science,
Prentice Hall, Hemel Hempstead, 1985.

[47] D. M. Johnson and F. Javier Thayer. Security and the amitipn of machines. IiProc. 1st IEEE
Computer Security Foundations Workshop (CSHv&yes 72—89, 1988.

[48] R. Kemmerer, C. Meadows, and J. Millen. Three systemsciigptographic protocol analysis.
Journal of Cryptology7(2):79-130, 1994.

[49] P. Laud. Semantics and program analysis of computatipsecure information flow. IfProc.
10th European Symposium on Programming (ESQ@Ryes 77-91, 2001.

[50] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. Argbabilistic poly-time framework for
protocol analysis. IrProc. 5th ACM Conference on Computer and CommunicationsriBgc
pages 112-121, 1998.

[51] G. Lowe. Breaking and fixing the Needham-Schroeder iptkdy protocol using FDR. IfProc.
2nd International Conference on Tools and Algorithms fa @onstruction and Analysis of Sys-
tems (TACAS)volume 1055 ofLecture Notes in Computer Sciengeages 147-166. Springer,
1996.

[52] N. Lynch. Distributed Algorithms Morgan Kaufmann Publishers, San Francisco, 1996.

[53] H. Mantel. On the composition of secure systemsPioc. 23rd IEEE Symposium on Security &
Privacy, pages 88-101, 2002.

[54] D. McCullough. Specifications for multi-level secyriéind a hook-up property. IRroc. 8th IEEE
Symposium on Security & Privagyages 161-166, 1987.

[55] D. McCullough. A hookup theorem for multilevel secyrilEEE Transactions on Software Engi-
neering 16(6):563-568, 1990.

[56] J. McLean. A general theory of composition for tracessebsed under selective interleaving
functions. InProc. 15th IEEE Symposium on Security & Privapgges 79-93, 1994.

[57] J. McLean. A general theory of composition for a clas®pafssibilistic” security propertiedEEE
Transactions on Software Engineerjrit(1):53—-67, 1996.

[58] S. Micali and P. Rogaway. Secure computationAttvances in Cryptology: CRYPTO 'Qfolume
576 ofLecture Notes in Computer Sciengages 392—-404. Springer, 1991.

[59] D. Micciancio and B. Warinschi. Soundness of formalrmgption in the presence of active adver-
saries. InProc. 1st Theory of Cryptography Conference (TQ@Jume 2951 ol ecture Notes in
Computer Scienggages 133—-151. Springer, 2004.

[60] J. Mitchell, M. Mitchell, and U. Stern. Automated ansily of cryptographic protocols using ngur
In Proc. 18th IEEE Symposium on Security & Privapgiges 141-151, 1997.

38

[61] R. Needham and M. Schroeder. Using encryption for autbation in large networks of comput-
ers. Communications of the ACM2(21):993-999, 1978.

[62] S.Owre and N. Shankar. Abstract datatypes in PVS. Tieahreport, Computer Science Labora-
tory, SRI International, 1993.

[63] S.Owre, N. Shankar, and J. M. Rushby. PVS: A prototypdigation system. IrProc. 11th Inter-
national Conference on Automated Deduction (CARB)Jume 607 olecture Notes in Computer
Sciencepages 748-752. Springer, 1992.

[64] L. Paulson. The inductive approach to verifying crygrtaphic protocols.Journal of Cryptology
6(1):85-128, 1998.

[65] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptograg@curity of reactive systems. Presented
at theDERA/RHUL Workshop on Secure Architectures and Informafiilow, 1999, Electronic
Notes in Theoretical Computer Science (ENTCS), March 2000t p: / / ww. el sevi er.
nl/cas/tree/ store/tcs/freel/ noncas/pc/ nenu. ht m

[66] B. Pfitzmann and M. Waidner. How to break and repair avpldy secure” untraceable payment
system. InAdvances in Cryptology: CRYPTO '9%olume 576 ofLecture Notes in Computer
Sciencepages 338-350. Springer, 1992.

[67] B. Pfitzmann and M. Waidner. Composition and integritggervation of secure reactive systems.
In Proc. 7th ACM Conference on Computer and Communicationgriggages 245-254, 2000.
Extended version (with Matthias Schunter) IBM ResearchdReRZ 3206, May 2000ht t p:

/I www. senper . or g/ sirene/ publ / Pf SWL_0OReact Si mul | BM ps. gz.

[68] B. Pfitzmann and M. Waidner. A model for asynchronoustiga systems and its application
to secure message transmission.Phoc. 22nd IEEE Symposium on Security & Privapgges
184-200, 2001.

[69] P. Rogaway. Authenticated-encryption with assodiatata. InProc. 9th ACM Conference on
Computer and Communications Secyritpges 98-107, 2002.

[70] D.Wagner and B. Schneier. Analysis of the SSL 3.0 prattolm Proc. 2nd USENIX Workshop on
Electronic Commercepages 29-40, 1996.

[71] A. C. Yao. Theory and applications of trapdoor functonin Proc. 23rd IEEE Symposium on
Foundations of Computer Science (FOQ®)ges 80-91, 1982.

A Postponed Proofs

Proof. (Lemma 3.1) LetSa denote the set of specified ports the adversary connectg to, i

Sa:={p|pe S\ ports(H)“}.

Roughly speaking, we will define a new machiHe which is inserted between the system and the
adversary such th&t; uses all ports ob,. Combination oH; andH will yield the new honest usetl,.
However, we will at first concentrate on the machie

If the configurationconf is polynomial-time, let the adversa#y be bounded by. (k) for a poly-
nomial L and the security parametgr We now define the new adversahy of conf; starting with its
ports.

39

e First of all, every porp € ports(A) that does not connect to a specified port, peg¢ Sa, is also
a port ofA,.

e For every simple porp € ports(A) with p® € Sa, As has a porp’ of the same kind.

e For every clock-out porp! € ports(A) that connects to the specified ports, ipg!¢ € Sa, As
has a clock-out por., <! and an additional output popt,!.>

o A, has additional portga_?, py,!, pH, ! which will be needed for synchronizing the communica-
tion with H; and portspmask_back?, Pmask!, Pmask "l Needed to make the machifk polynomial-
time in case of a polynomial-time configuratioonf .

We assume without loss of generality that all these primedtiadditional ports are new ports of the
configuration. InternallyAs maintains an arra@)’_save = (O'_savep)paicports(As) overXt initialized
with e everywhere and two array®ut_buff ,)pics; and(maskedy?)presg over{0, 1} initialized with

0 everywhere.

The arrayout_buff will be used to indicate the buffers betwearand the corresponding specified
ports of the system which have nonempty contents. The amay.ed will be used to explicitly tellH,
which input ports it has to “cut off”, i.e., which ports it hesmask with a length boune

The behavior of\s is now defined as follows. On an arbitrary given out@ut= (O,) peports(a) and
the given state’ of the blackboxA, the corresponding outp@' = (O},)peports(a,) Of As is derived by
the following algorithm. Initially, all components @ are set ta. They are automatically reset ¢at
every call ofda.

e Preliminary Step:First of all, A checks whetheA masked one of its own input ports connected
to the specified ports using a zero length bound, which it esilyedo, because it knows the
current states’ of the blackbox. For every masked input pptt ¢ S5, i.e., a port connected to
an unspecified port of the system, it masks this input tooe¥ery non-masked input port of this
kind, it sets the length bound to the runtimeAfin the polynomial case and to infinity in the
remaining cases. For every masked input pore S, it setsmaskedy; := 1. Afterwards, it sets
O_save := O (i.e., it saves the whole output tuple, since it will need tingle after it has been
scheduled byH; again) and encodes the whole arraysked into ¢ € ¥*. Finally, it outputsc at
Pmask!s 1 @tpmask !, Informally speakingAs has to tellH; which ports it should mask, so it stores
them in the arraynasked and sends the whole arrayi.

e Step 1:p! ¢ SK: Atfirst, As simply goes through the tuple and set§ = Oy, for every portp!
with p! € Si. This case ensures that outputs to itself, to the systemtaatite original honest
userH will simply be forwarded.

e Step 2:p! € S5: Then, A goes through the tuple and s@%, = Oy for every portp! with
p! € S5. If O, # €, As additionally setut_buffy := 1, i.e., it stores which buffers betwedn
andH; have nonempty content.

So far we have considered outputs at the simple ports dfow A goes through the tuple and searches
for the first nonempty output at a clock-out ppft.

e Step 3:p“! € Si: If A outputsc at a clock-out porp! € Sg, A’ encodes: and the whole array
out buff, into ¢ € ¥F. Itthen set)] | = ¢, O) . = 1, andout_buff, = 0 for all elements of

>The index., serves as an abbreviation for “clocking request”. Thesespwitl later be used to tel; which buffer it has
to schedule.

40

the array and output®’. Informally speakingAs tells H; what buffer have nonempty contents at
the moment, and that it should schedule ¢kth message of buffgr afterwards.

Step 4:p“! ¢ Si or no non-empty clock output at alllf A outputsc at p°! with p9!® & S,
A encodes the whole arrayut_buff, into ¢ € X+t as in the previous step but containing the
number(instead of the number. It then set@;H =, O;H o =1, O'_savepa == ¢, and

1° 1°

out_buff, = 0 for all elements of the array and outpu®s.

We again briefly sketch the intuition behind this case. Mgssantended for the system are
directly output, but no message is immediately schedulegai A tells H; all necessary in-
formation for delivering messages to the specified portsatiditionally, it stores which buffer it
has to schedule afterwards. Anticipatirty, will give back control toAg by construction after he
delivered the messages to the specified porté\sseill be able to schedule the desired buffer

If there is no nonempty clock outpud acts identically but set®’_save,« := € instead. This
ensures that no buffer will be scheduled after the controle®back fronH; to A, so the master
scheduler will be scheduled just as in the original confiionaconf .

The behavior oA on external inputs can be described quite simply.

If As receives an input atpa,? (i.e., the machinéd; gives back the control), it simply outputs
O’ _save and setd)’_savepy = € afterwards for all elements of the array. This case can only
occur as a direct consequence of Staqf the above algorithm. Inputs at other ports are simply
forwarded to their corresponding portsAf

If A receives an input at pmask back? it sets all components afiasked back to0 and O :=
O_save and proceeds with Step

If A enters final state, we define thag finishes the delivering of messages and enters final state
too. More precisely, it outputs its tuple derived by the abalgorithm and stops. If Stejapplies,

it additionally waits for a nonempty input aj_ 7, outputs the tupl€’ _save, i.e., the scheduling

of the desired buffer, and enters final state after that.

Note, thatA; obviously can only do a polynomial number of steps betweaensuccessive calls @i
by construction which yields a polynomial-time adversActyagain ifA is polynomial.
We can now turn our attention to the machkgwhich is defined as follows. Its ports are given by

{p | p¢ € Sa}: Ports for connecting to the specified pafis
{p’?,p" 1 | p?¢ € Sa}: Input ports for connecting tA.
{p’!,p’ 1| p!¢ € Sa}: Output ports for connecting t.
{per? | pI° € Sa}: Input ports for clocking requests &f.
{pH,7, pa.!, pa,!}: Ports for synchronization witAs.

{Pmask s Pmask_back!s Pmask_back *!}: Ports for making explicit changes of length bounds. As al-
ready described above, these ports will be used for maslkirigio inputs.

Internally,H; maintains an arragbuff _coll ,,)7¢ s, overxt initialized with e everywhere. The behav-
ior of Hy is defined as follows.

41

e If Hy receives an input at pmask? it decomposes: into the arraymasked again. For every
maskedy? = 1 it masks the input porp? using a zero length bound. For evenuskedy, = 0
it sets the length bound @f? to the runtime ofA in the polynomial case; otherwise, it sets it to
infinity.

e If Hy receives an input at a portp?, it outputsc atp’!, 1 at p’“!. This case ensures that outputs
made by system are simply forwarded to the adversary.

e If Hy receives an input’ atp,?, it decomposes' into its original forme’ = ¢, (out-buff) presg-

— Incasec # 0, it does the following: For every elemeantit_buff, # 0 it schedules the mes-
sage stored iﬁ/ and saves them ibmﬁ_collp7.6 After that,H; outputs the arrayuff -coll,,
to the corresponding output pogtsand removes these elements from the array (which yields
an empty array again). Additionally, it outputst p! (the corresponding clocking port for
requests ap., 7).

— In casec = 0, it collects all messages stored in the buﬁ&rin buff _colly, again as in the
previous step. Finally, it outputs these messages at tbesponding ports andatpa_!, 1
atpa.“!. This case ensures that the adversawyill be scheduled again, so he can eventually
schedule its desired buffer (cf. Steépf the description of\;).

If the configurationconf is polynomial-time, we leH; also stop after a polynomial number of steps.
A possible polynomial bound can simply be derived if you édesthatH; has to make less than
|ports(As)| outputs for collecting messages from the nonempty buffeesé messages are stored in the
corresponding arrays and finally output as a tuple. The nuwfiqgorts is finite and does not depend on
the security parametét, so the number of steps whith, performs between two successive clockings
of itself in every run is constant, because masking of inmutspis done not only byA but alsoH;.
Moreover,H; can only be clocked either by the system or by the adversdrit. id clocked by the
system it immediately clock&s which has to be polynomial-time KX is polynomial-time as we showed
above. ThusH; can only perform a constant number of steps between two ssigeeclockings of\.

If we denote this constant kygt, H; simply stops afteest - La, (k) steps where the polynomidla_ (k)
bounds the number of stepg can perform.

Putting it all togetherH; and A, simply forward every message between the systegmand the
original adversaryA which is represented as a blackbox submachine of the neviilyedeadversary
A. Thus, we obtain identical views of the original adversarnthe systenSys, and the honest usét
in both configurations. To prove this more formally we coult@y go through all possible cases of
outputs ofA, H, and machines of the system and show that we obtain idefitedviors with respect
to the original machineBl, A, and the machines of the system in both configurations. We ibimere
because it is a rather simple but tedious proof, and we leetleat it is already clear by construction of
H; andAs and our above explanations.

As a direct consequence we obtain that the probability oftins restricted t& does not change,
becauséi; always outputs exactly the same tuple to the specified psttseeoriginalA and the view of
all machines of the system and the viewHbis identical in both configurations. We now combideind
H; into one machinéis. This combination is well-defined in the underlying modetl gields a closed
collection M U {Hs, As} again. Moreover, itonf is polynomial-time H andA are polynomial-time by
precondition which implies thats andH; are polynomial-time as shown above. Using the combination

®This is indeed possible, because the scheduled bufferetiéduleH; again by construction if it has a nonempty output.
This will always be the case, singt will only schedule buffers which he knows to be nonempty.

42

of two polynomial-time machine yields a polynomial-time chane again (formally proved in [68], we
know thatH; also has to be polynomial-time yielding a polynomial-tinemfiguration

conf, = (My, Sy, Ha, As) € Conf(Sys)

in this case. The view of any set of submachine$ipfind the probability of the runs restricted o
does not change at combination of machines, which yields

View conf (H) = view cong,(H) @Ndrun cong [s= run cong [s-

Finally, S¢ C ports(Hs) holds by construction, which finishes our proof.]

43

