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Abstract

We investigate how formal methods can be used for the verification of cryptographic protocols
such that the verified properties are valid for the concrete implementation of the protocol using actual
cryptography. We give an abstract deterministic specification for secure message transmission with
ordered channels along with a possible implementation thatwe prove to be secure in the sense of
simulatability, which is the cryptographic notion of a secure refinement. The correctness of this
proof relies on a composition theorem and a deterministic bisimulation, which we formally verify
using the theorem prover PVS. We further use PVS to formally verify that message reordering is
in fact prevented in the specification. We finally show that integrity properties are preserved under
simulatability, which allows for carrying over the proven property to the concrete implementation.
This yields the first example ever of a formally verified but nevertheless cryptographically sound
proof of a security protocol.
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1 Introduction

Many practically relevant cryptographic protocols like SSL/TLS, S/MIME, IPSec, or SET use crypto-
graphic primitives like signature schemes or encryption ina black-box way, while adding many non-
cryptographic features. Vulnerabilities have accompanied the design of such protocols ever since early
authentication protocols like Needham-Schroeder [61, 36], over carefully designed de-facto standards
like SSL and PKCS [70, 31], up to current widely deployed products like Microsoft Passport [40].
However, proving the security of such protocols has been a very unsatisfactory task for a long time.

One possibility was to take the cryptographic approach. This means reduction proofs between the
security of the overall system and the security of the cryptographic primitives, i.e., one shows that if
an overall system could be broken, one of the underlying cryptographic primitives could also be bro-
ken with respect to their cryptographic definitions, e.g., adaptive chosen-message security for signature
schemes. For authentication protocols, this approach was first used in [30]. In principle, proofs in
this approach are as rigorous as typical proofs in mathematics. In practice, however, human beings are
extremely fallible with this type of proofs. This is not due to the cryptography, but to the distributed-
systems aspects of the protocols. It is well-known from non-cryptographic distributed systems that many

∗Parts of this work were published in [11] and [10]. These parts were done while two of the authors were affiliated with
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wrong protocols have been published even for very small problems. Hand-made proofs are highly error-
prone because following all the different cases how actionsof different machines interleave is extremely
tedious. Humans tend to take wrong shortcuts and do not want to proof-read such details in proofs by
others. If the protocol contains cryptography, this obstacle is even much worse: Already a rigorous
definition of the goals gets more complicated, and often not only trace properties (integrity) have to be
proven but also secrecy. Further, in principle the complexity-theoretic reduction has to be carried out
across all these cases, and it is not at all trivial to do this rigorously. In consequence, there is almost
no real cryptographic proof of a larger protocol, and several times supposedly proven, relatively small
systems were later broken, e.g., [66, 37].

The other possibility was to use formal methods. There one leaves the tedious parts of proofs to
machines, i.e., model checkers or automatic theorem provers. This means to code the cryptographic
protocols into the language of such tools, which may need more or less start-up work depending on
whether the tool already supports distributed systems or whether interaction models have to be encoded
first. None of these tools, however, is currently able to dealwith reduction proofs. Nobody even thought
about this for a long time, because one felt that protocol proofs could be based on simpler, idealized
abstractions from cryptographic primitives. Almost all these abstractions are variants of the Dolev-Yao
model [38], which represents all cryptographic primitivesas operators of a term algebra with cancel-
lation rules. For instance, public-key encryption is represented by operatorsE for encryption andD
for decryption with one cancellation rule,D(E(m)) = m for all m. Encrypting a messagem twice in
this model does not yield another message from the basic message space but the termE(E(m)). Fur-
ther, the model assumes that two terms whose equality cannotbe derived with the cancellation rules
are not equal, and every term that cannot be derived is completely secret. However, originally there
was no foundation at all for such assumptions about real cryptographic primitives, and thus no guaran-
tee that protocols proved with these tools were still securewhen implemented with real cryptography.
Although no previously proved protocol has been broken whenimplemented with standard provably
secure cryptosystems, this was clearly an unsatisfactory situation, and artificial counterexamples can be
constructed.

Three years ago, efforts started to get the best of both worlds. Essentially, [65, 67] started to define
general cryptographic models that support idealization that is secure in arbitrary environments and under
arbitrary active attacks, while [2] started to justify the Dolev-Yao model as far as one could without
such a model. Both directions were significantly extended insubsequent papers, see the related work
section below. At the time of the research of this report, formal proof tools have not been used for the
verification of a concrete cryptographic protocol. We closethis gap by presenting the first tool-supported
security proof of a cryptographic protocol such that the proof is valid with respect to the cryptographic
semantics. Our paper is based on a model of reactive systems in asynchronous networks [68, 24, 22],
and it essentially consists of two parts:

In the first part, we define integrity properties in the underlying model, and we prove that they are
preserved under simulatability, which captures the cryptographic notion of a secure refinement. This
means that integrity properties automatically carry over from an abstract specification to a concrete
implementation if the implementation is proved to be securein the sense of simulatability, Moreover,
we show that logic derivations among integrity properties are valid for the concrete implementation in
the cryptographic sense, which is essential to make the properties accessible to theorem provers.

The second part of this paper is dedicated to the actual verification of a cryptographic protocol:
secure message transmission with ordered channels. We present a detailed deterministic specification of
secure message transmission with ordered channels and we subsequently derive a secure implementation
by refining the specification with respect to simulatability. The correctness proof of this refinement
mainly relies on a composition theorem of the underlying model and of a deterministic bisimulation
which we formally verify in a theorem proving system. We finally verify the desired integrity property
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– preventing message reordering – for the specification, andwe use the integrity preservation theorem
established in the first part of this work to carry over this property to the concrete secure implementation.

This yields the first example of a machine-aided proof of a cryptographic protocol that is neverthe-
less sound with respect to the cryptographic definitions.

Related Literature Both the cryptographic and the idealizing approach at proving cryptographic sys-
tems started in the early 80s. Early examples of cryptographic definitions and reduction proofs are
[42, 43]. Applied to protocols, these techniques are at their best for relatively small protocols where
there is still a certain interaction between cryptographicprimitives, e.g., [29, 69]. The early meth-
ods of automating proofs based on the Dolev-Yao model are summarized in [48]. More recently, such
work concentrated on using existing general-purpose modelcheckers [51, 60, 34] and theorem provers
[39, 64], and on treating larger protocols, e.g., [28].

Work intended to bridge the gap between the cryptographic approach and the use of automated
tools started independently with [65, 67] and [2]. In [2], Dolev-Yao terms, i.e., with nested operations,
are considered specifically for symmetric encryption. However, the adversary is restricted to passive
eavesdropping. Consequently, it was not necessary to definea reactive model of a system, its honest
users, and an adversary, and the security goals were all formulated as indistinguishability of terms. This
was extended in [1] from terms to more general programs, but the restriction to passive adversaries
remains, which is not realistic in most practical applications. Further, there are no theorems about
composition or property preservation from the abstract to the real system. Several papers extended this
work for specific models or specific properties. For instance, [44] specifically considers strand spaces
and information-theoretically secure authentication only. In [49] a deduction system for information
flow is based on the same operations as in [2], still under passive attacks only.

The approach in [65, 67] was from the other end: It starts witha general reactive system model,
a general definition of cryptographically secure implementation by simulatability, and a composition
theorem for this notion of secure implementation. This workis based on definitions of securefunction
evaluation, i.e., the computation of one set of outputs fromone set of inputs [41, 58, 27, 32]; earlier
extensions towards reactive systems were either without real abstraction [50] or for quite special cases
[45]. The approach was extended from synchronous to asynchronous systems in [68, 33, 24]. All the
reactive works come with more or less worked-out examples ofabstractions of cryptographic systems,
however they have not investigated the use of formal methodsfor the verification of a concrete example.
As of now (3,5 years after the original publication of the papers [11] and [10] that underlie this report),
computational soundness has become a highly active line of research, see e.g., [3, 21, 15, 20, 26, 23, 4,
16, 59, 18, 17, 7, 13, 8, 12].

The relationship between integrity properties and simulatability was investigated in [67], where it
was shown that integrity properties are preserved under simulatability for a synchronous timing model.
However, a synchronous definition of time is difficult to justify in the real world since no notion of
rounds is naturally given there and it seems to be very difficult to establish them for the Internet for
example. In contrast to that, asynchronous scenarios are attractive, because no assumptions are made
about network delays and the relative execution speed of theparties. Technically, the first part of our
work can be seen as an extension of the results of [67] to asynchronous scenarios. This extension
is not trivial since synchronous time is much easier to handle; moreover, both models do not only
differ in the definition of time but also in subtle, but important details. Similar preservation results
under simulatability have recently been shown for non-interference [14, 5] and liveness properties [19].
In general, results of these forms are particularly interesting since they offer security under system
composition, which is known to be very difficult to achieve ingeneral, see e.g., [54, 47, 55, 56, 57, 53,
35, 25, 6, 22, 9, 23, 16]).
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Organization of the Paper We start with a brief review of the model for reactive systemsin asyn-
chronous networks from [68] in Section 2. In Section 3 we define what it means for a system to provide
integrity properties in a cryptographic sense. We then prove that (1) proofs of such properties made for
an abstract specification also hold for the concrete implementation and (2) that logic derivations among
integrity properties are valid for the concrete implementation with respect to cryptographic definitions.
Section 4 contains our specification of secure message transmission with ordered channels. We give a
possible implementation in Section 5, which is shown to securely implement the specification in Sec-
tion 6, 7, and 8. More precisely, Section 6 establishes a security proof by defining a so-called simulator,
and by applying a deterministic bisimulation for proving the correctness of the refinement. Section 7
deals with the actual verification of the bisimulation within the theorem proving system PVS [63]. In
Section 8 we finally verify that message reordering is in factprevented for the deterministic specifica-
tion, again using PVS, and we use our preservation theorem toshow that the verified property carries
over to the concrete implementation. Section 9 summarizes.

2 The Model for Reactive Systems

In this section, we recapitulate the model for asynchronousprobabilistic reactive systems as introduced
by Pfitzmann and Waidner in [68].

Several definitions will only be sketched, whereas those that are important for understanding our
upcoming definitions and proofs are given in full detail. Allother details can be looked up in the
original paper.

2.1 General System Model

Systems mainly are compositions of several machines. Usually we consider real systems that are built
by a setM̂ of machines{M1, . . . ,Mn}, one for each useru from a setM = {1, . . . , n}, and ideal
systems built by one machine{TH}.

Communication between different machines is done via portsusing messages composed from an
alphabetΣ. Inspired by the CSP-Notation [46], we write output and input ports asq! andq? respectively.
The ports of a machineM are denoted byports(M). The subset of input and output ports are denoted by
in(ports(M)) andout(ports(M)), respectively. Channels are defined implicitly by naming convention,
that is portq! sends messages toq?. To achieve asynchronous timing, a message is not directly sent to
its recipient, but it is first stored in a special machineq̃ called a buffer and waits to be scheduled. If a
machine wants to schedule thei-th message of buffer̃q (this machine must have the unique clock-out
port q⊳!) it simply sendsi atq⊳!, see Figure 1. The buffer then schedules thei-th message and removes
it from its internal list. In our case, most buffers are either scheduled by a master scheduler or the
adversary, i.e., one of those has the clock-out port. In [68]the adversary and the master scheduler are
the same entity. This gives the adversary complete control over the overall scheduling of network traffic
and models the worst-case behavior we usually have to expectin an asynchronous system. We define
the complementpc of a portp to be the port which it connects to according to Figure 1, i.e., q!c = q↔?,
q⊳!c = q⊳?, q↔!c = q?, and vice versa. We use the same notation for sets of ports.

After introducing ports, we now focus on the definition of machines. Our machine model is prob-
abilistic state-transition machines, similar to probabilistic I/O automata as sketched by Lynch [52]. If
a machine is switched, it receives an input tuple at its inputports and performs its transition function
yielding a new state and an output tuple in the deterministiccase, or a finite distribution over the set of
states and possible outputs in the probabilistic case. At each switching step of one particular machine,
at most one value can arrive at every input port and the machine can produce at most one output per
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Figure 1: Ports and buffers.

port. Furthermore, each machine has a bound on the length of the considered inputs which allows time
bounds independent of the environment.

Definition 2.1 (Machines) Amachineis a tuple

M = (nameM,PortsM,StatesM, δM, lM, IniM,FinM)

of a namenameM ∈ Σ+, a finite sequencePortsM of ports (i.e.,PortsM = ports(M)), a setStatesM ⊆
Σ∗ of states, a computable probabilistic state-transition functionδM, a length functionlM : StatesM →
(N ∪ {∞})|in(PortsM)|, and setsIniM,FinM ⊆ StatesM of initial and final states. Its input set isIM :=
(Σ∗)|in(PortsM)|; the i-th element of an input tuple denotes the input at thei-th in-port. Its output set is
OM := (Σ∗)|out(PortsM)|. The empty word,ǫ, denotes no in- or output at a port.δM probabilistically
maps each pair(s, I) ∈ StatesM×IM of state and inputs to a pair(s′, O) ∈ StatesM×OM of successor
states and outputs. Following two restrictions apply toδM: (1) The induced output distribution has to be
finite, and (2) ifs ∈ FinM or I = (ǫ, . . . , ǫ), thenδM(s, I) maps always to the same state and no output,
i.e, (s, (ǫ, . . . , ǫ)). Inputs are ignored beyond the length bounds, i.e.,δM(s, I) = δM(s, I⌈lM(s)) for all
I ∈ IM, whereR⌈l:= (r⌈l)r∈R for R ∈ (Σ∗)∗ andr⌈l denotes thel-bit prefix of a sequencer ∈ Σ∗. ✸

In the text, we often write “M” also for nameM. We only briefly state here that these machines have a
natural realization as a probabilistic Turing machine.

A collectionĈ of machines is a finite set of machines with pairwise different machine names and
disjoint sets of ports. Thecompletion[Ĉ ] of a collectionĈ is the union of all machines of̂C and the
buffers needed for every channel. A port of a collection is called free if its connecting port is not in the
collection. These port will be connected to the users and theadversary. The free ports of a completion
[Ĉ ] are denoted asfree([Ĉ ]). A collection Ĉ is calledclosedif its completion[Ĉ ] has no free ports
except a special master clock-in portclk⊳?, i.e., free([Ĉ ]) = {clk⊳?}. The master clock-in portclk⊳? is
used to give control to the master scheduler as shown below. By convention, we assume that the master
scheduler expects a1 as input on this port.

A closed collection represents a “runnable” system. For such a closed collection, a probability space
of runs (sometimes calledtracesor executions) is defined. Scheduling of machines is done sequentially,
so we have exactly one active machineM at any time. If this machine has clock-out ports, it is allowed
to select the next message to be scheduled as explained above. If that message exists, it is delivered by
the buffer and the unique receiving machine is the next active machine. IfM tries to schedule multiple
messages, only one is taken, and if it schedules none or the message does not exist, the special master
scheduler is scheduled. Formally, runs are defined as follows.

Definition 2.2 (Runs) Given a closed collection̂C with master schedulerX and a tupleini ∈ Ini
Ĉ
:=

×
M∈Ĉ IniM of initial states, the probability space ofruns is defined inductively by the following al-

gorithm. It has a variabler for the resulting run, an initially empty list, a variableMCS (“current
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scheduler”) over machine names, initiallyMCS := X, and treats each port as a variable overΣ∗, ini-
tialized withǫ except forclk⊳? := 1. Probabilistic choices only occur in Step (1).

1. Switch current scheduler:Switch machineMCS, i.e., for a given current states and in-port values
I, set the new state and output(s′, O) to the output ofδMCS

(s, I). Then assignǫ to all in-ports of
MCS.

2. Termination:If X is in a final state, the run stops.

3. Buffer messages:For each simple out-portq! of MCS, in their given order, switch buffer̃q with
input q↔? := q!, cf. Figure 1. Then assignǫ to all these portsq! andq↔?.

4. Clean up scheduling:If at least one clock out-port ofMCS has a value6= ǫ, let q⊳! denote the first
such port and assignǫ to the others. Otherwise letclk⊳? := 1 andMCS := X and go back to
Step (1).

5. Scheduled message:Switchq̃ with inputq⊳? := q⊳! (cf. Figure 1), setq? := q↔! and then assign
ǫ to all ports ofq̃ and toq⊳!. LetMCS := M′ for the unique machineM′ with q? ∈ ports(M′). Go
back to Step (1).

Whenever a machine (this may be a buffer) with namenameM is switched from(s, I) to (s′, O), we add
a step(nameM, s, I ′, s′, O) to the runr for I ′ := I⌈lM(s), except ifs is final or I ′ = (ǫ, . . . , ǫ). This
gives a family of random variables indexed by the possible initial states

run
Ĉ
:= (run

Ĉ ,ini
)ini∈Ini

Ĉ
.

For a numberl ∈ N, l-step prefixesrun
Ĉ ,ini ,l

of runs are defined in the obvious way. For a function
l(·) : Ini

Ĉ
→ N, this gives a familyrun

Ĉ ,l(·) = (run
Ĉ ,ini ,l(ini))ini∈Ini Ĉ . ✸

Definition 2.3 (Views and Restrictions to Ports) Theview of a subsetM̂ of a closed collection̂C in a
run r is the restriction ofr to M̂ , i.e., the subsequence of all steps(nameM, s, I, s′, O) wherenameM is
the name of a machineM ∈ M̂ . Similarly, for a setS of ports, we define the restrictionr⌈S of a runr to
the setS , i.e., for every step of the run, we leave out the namenameM and the statess, s′, and restrict
the setsI andO to the ports inS . This gives two families of random variables

view
Ĉ
(M̂ ) = (view

Ĉ ,ini
(M̂ ))ini∈Ini

Ĉ
and

run
Ĉ
⌈S= (run

Ĉ ,ini
⌈S )ini∈Ini

Ĉ

and similarly forl-step prefixes. For a singleton̂M = {H} we writeview
Ĉ
(H) instead ofview

Ĉ
({H}).

✸

2.2 Security-specific System Model

For security purposes, special collections are needed, because an adversary may have taken over parts
of the initially intended system. Therefore, a system consists of several possible remaining structures.
First, the system part is defined and then the environment, consisting of users and adversaries.

Definition 2.4 (Structures and Systems)
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a) A structureis a pair struc = (M̂ ,S ) whereM̂ is a collection of simple machines (i.e., with only
normal in- and output ports and clock-out ports) calledcorrect machines, andS ⊆ free([M̂ ])
is called specified ports. If M̂ is clear from the context, let̄S := free([M̂ ]) \ S . We call
forb(M̂ ,S ) := ports(M̂ ) ∪ S̄ c the forbidden ports, i.e., those ports that an honest user should be
forbidden to have. (The ports inports(M̂ ) belong to the structure and must hence not be used by
the user because of name clashes; the ports inS̄ c should belong to the adversary.)

b) A systemSys is a set of structures. It is polynomial-time iff all machines in all its collectionsM̂
are polynomial-time.

✸

The separation of the free ports into specified ports and others is an important feature of the upcoming
security definitions. The specified ports are those where a certain abstract service is guaranteed. Typical
examples of inputs at specified ports are “send messagem to id ” for a message transmission system or
“pay amountx to id ” for a payment system. The ports in̄S are additionally available for the adversary.
The ports inforb(M̂ ,S ) will therefore be forbidden for an honest user to have.

A structure can be completed to aconfigurationby adding machinesH andA, modeling the joint
honest users and the adversary, respectively. The machineH is restricted to the specified portsS , A
connects to the remaining free ports of the structure and both machines can interact, e.g., in order to
model active attacks.

Definition 2.5 (Configurations)

a) A configurationof a systemSys is a tupleconf = (M̂ ,S ,H,A) where(M̂ ,S ) ∈ Sys is a struc-
ture,H is a machine without forbidden ports, i.e.,ports(H)∩ forb(M̂ ,S ) = ∅, and the completion
Ĉ := [M̂ ∪ {H,A}] is a closed collection. The set of configurations is writtenConf(Sys).

b) The initial states of all machines in a configuration are a common security parameterk in unary
representation. This means that we consider the families ofruns and views of the collection̂C re-
stricted to the subsetIni ′

Ĉ
:= {(1k)

M∈Ĉ |k ∈ N} of Ini
Ĉ

. We writerunconf andviewconf (M̂ ) for

the familiesrun
Ĉ

andview
Ĉ
(M̂ ) restricted toIni ′

Ĉ
, and similar forl-step prefixes. Furthermore,

we identifyIni ′
Ĉ

withN and thus writerunconf ,k etc. for the individual random variables.

c) The set of configurations ofSys with polynomial-time userH and adversaryA is called
Confpoly(Sys). The indexpoly is omitted if it is clear from the context.

✸

We only briefly state here that several machines can be combined into one single machine (which has the
original machines as submachines), cf. [68] for more details. Moreover, the view of every submachine
remains unchanged by this combination.

2.3 Defining Security with Simulatability

As we will see below, the system model provides a powerful instrument to compare two systems and to
assess whether one system securely implements another one.Based on this, our approach in defining
security is as follows: (1) We define the abstract specification of a secure service as an ideal systemSys id
consisting of a single machineTH. Given the simplicity of the idealized machine, the correctness of the
specification is often intuitively clear. Furthermore, we can gain additional confidence by analyzingTH
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Figure 2: Example of simulatability. The view ofH is compared.

using formal methods and automated tools. (2) Given any concrete real systemSys real implementing
the desired service, we then prove its security by showing that it securely implementsSys id.

The definition of one system securely implementing another one is based on the common concept
of simulatability. The notion of simulatability was introduced in [71] and hasasserted its position as
a fundamental concept of modern cryptography. Simulatability essentially means that whatever might
happen to an honest user in a concrete systemSysreal can also happen in an ideal systemSys id. As by
definition only good things can happen in the ideal system, simulatability guarantees that no bad things
can happen in the real system. More precisely, for every configurationconf 1 ∈ Conf(Sys real), there
exists a configurationconf 2 ∈ Conf(Sys id) yielding indistinguishable views of the same user in both
configurations. We abbreviate this bySys real ≥sec Sys id and we say thatSysreal is “at least as secure”
as the systemSys id. A typical situation is illustrated in Figure 2.

However, we do not want to compare a structure(M̂1,S1) ∈ Sys real with arbitrary structures of
Sys id, but only with certain “suitable” ones. What suitable actually means can be defined by a mapping
f from Sys real to the powerset ofSys id. The mappingf is calledvalid if it maps structures with the
same set of specified ports.

The upcoming simulatability definition is based on indistinguishability of views.

Definition 2.6 (Indistinguishability) Two families(vark)k∈N and (var′k)k∈N of random variables (or
probability distributions) on common domainsDk are

a) perfectly indistinguishable(“=”) if for each k, the two distributionsvark andvar′k are identical.

b) statistically indistinguishable(“ ≈SMALL”) for a suitable classSMALL of functions fromN to
R≥0 if the distributions are discrete and their statistical distances

∆(vark, var
′
k) :=

1

2

∑

d∈Dk

|P (vark = d)− P (var′k = d)| ∈ SMALL

(as a function ofk). SMALL must be closed under addition, and with a functiong also contain
every functiong′ ≤ g.

c) computationally indistinguishable(“ ≈poly”) if for every algorithmDis (the distinguisher) that is
probabilistic polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)| ∈ NEGL.

Intuitively, given the security parameter and an element chosen according to eithervark or var′k,
Dis tries to guess which distribution the element came from. TheclassNEGL denotes the set of all
negligible functions, i.e.,g : N → R≥0 ∈ NEGL if for all positive polynomialsQ, ∃k0∀k ≥ k0 :
g(k) ≤ 1/Q(k).
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We write≈ if we want to treat all three cases simultaneously. ✸

We now present the simulatability definition.

Definition 2.7 (Simulatability) Let systemsSys1 andSys2 with a valid mappingf be given.

a) We saySys1 ≥f,perf
sec Sys2 (perfectly at least as secure as) if for every configurationconf 1 =

(M̂1,S ,H,A1) ∈ Conf(Sys1), there exists a configurationconf 2 = (M̂2,S ,H,A2) ∈
Conf(Sys2) with (M̂2,S ) ∈ f(M̂1,S ) (and the sameH) such that

viewconf
1
(H) = viewconf

2
(H).

b) We saySys1 ≥f,SMALL
sec Sys2 (statistically at least as secure as) for a classSMALL if the same

as in a) holds withviewconf
1
,l(H) ≈SMALL viewconf

2
,l(H) for all polynomialsl, i.e., statistical

indistinguishability of all families ofl-step prefixes of the views.

c) We saySys1 ≥f,poly
sec Sys2 (computationally at least as secure as) if the same as in a) holds with

configurations fromConfpoly(Sys1) andConfpoly(Sys2) and computational indistinguishability
of the families of views.

In all cases, we callconf 2 an indistinguishable configurationfor conf 1. Where the difference between
the types of security is irrelevant, we simply write≥f

sec, and we omit the indexf if it is clear from the
context. ✸

Clearly, perfect simulatability implies statistical simulatability for every non-empty classSMALL. Sim-
ilarly, statistical simulatability for a classSMALL implies computational simulatability ifSMALL ⊆
NEGL.

An important feature of the system model is transitivity of≥sec, i.e., the preconditionsSys1 ≥sec

Sys2 andSys2 ≥sec Sys3 together implySys1 ≥sec Sys3, which has been proved in [68].

2.4 Composition

We conclude this section with a brief review of what has already been proven about composition of
reactive systems. Assume that we have already proven that a systemSys0 is at least as secure as
another systemSys ′0. Typically Sys0 is a concrete system whereasSys ′0 is an ideal specification of
the concrete system. If we now consider larger protocols that useSys ′0 as an ideal primitive we would
like to securely replace it withSys0. In practice this means that we replace the specification of asystem
with its implementation yielding a concrete system.

Usually, replacing means that we have another systemSys1 usingSys ′0; we call this composition
Sys∗, cf. Figure 3. We now want to replaceSys ′0 with Sys0 inside ofSys∗ which gives a composition
Sys#. TypicallySys# is a completely real system whereasSys∗ is at least partly ideal. This is illustrated
in the left and middle part of Figure 3. The composition theorem now states that this replacement
maintains security, i.e.,Sys# is at least as secure asSys∗ (see [68] for details).

However, typically a specification of the overall system should not prescribe that the implementation
must have two subsystems; e.g., in specifying a payment system, it should be irrelevant whether the
implementation uses secure message transmission as a subsystem. Hence, the overall specification is
typically monolithic, cf. Sysspec in Figure 3. Moreover, such specifications are well-suited for formal
verification, because they typically are deterministic andsingle machines are furthermore much easier
to validate. Our specification in Section 4 is of this kind.
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Figure 3: Composition of Systems.

3 Integrity Properties

In this section, we show how the relation “at least as secure as” relates to integrity properties a system
should fulfill, e.g., safety properties expressed in temporal logic.

3.1 Definition of Integrity Properties

As a rather general version of integrity properties, independent of the concrete formal language, we
consider those that have a linear-time semantics, i.e., that correspond to a set of allowed traces of in- and
outputs. We allow different properties for different sets of specified ports, since different requirements
of various parties in cryptography are often made for different trust assumptions. We will show later on
that integrity properties are preserved under simulatability which allows sound refinement of abstract
systems. Clearly this can only hold for properties formulated in terms of inputs and outputs at the
specified ports of a given structure, since only these ports are considered by simulatability.

Definition 3.1 (Integrity Properties) An integrity propertyReq for a systemSys is a function that
assigns to each setS with (M̂ ,S ) ∈ Sys a set of traces at the ports inS . Informally speaking,Req
states which are the “good” traces for the given structure. More precisely such a trace is a sequence
(vt)t∈I of values over port names andΣ∗ with I = {1, . . . , l} for l ∈ N or I = N, i.e., sets of port-value
pairs so thatvt is of the formvt :=

⋃
p∈S′{p : vp,t} for a subsetS ′ ⊆ S andvp,t ∈ Σ∗. Intuitively, S ′

contains those ports where “something happens”. ✸

After introducing what integrity properties are, we have todefine what it means that a system fulfills
them. We will see that there are different grades of fulfillment. We distinguish betweenperfect, statis-
tical, andcomputationalfulfillment, depending on whether the integrity property always holds, or only
with overwhelming probability, i.e., the probability of failure should be statistically small or negligible
in polynomial-time configurations, respectively.

Definition 3.2 (Fulfillment of Integrity Properties) Let an arbitrary systemSys and an integrity prop-
ertyReq for Sys be given. ThenSys fulfills Req

a) perfectly(written Sys |=perf Req ) if for any configurationconf = (M̂ ,S ,H,A) ∈ Conf(Sys),
the restrictionsr⌈S of all runs of this configuration to the specified portsS lie in Req(S ). In
formulas,[(runconf ,k⌈S )] ⊆ Req(S ) for all k, where[·] denotes the carrier set of a probability
distribution.

b) statistically for a classSMALL (Sys |=SMALL Req ) if for any configurationconf = (M̂ ,S ,
H,A) ∈ Conf(Sys), the probability thatReq(S ) is not fulfilled is small, i.e., for all polynomialsl
(and as a function ofk),

P (runconf ,k ,l(k)⌈S 6∈ Req(S )) ∈ SMALL.
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Figure 4: Sketch of the proof of Lemma 3.1

The classSMALL must be closed under addition and making functions smaller.

c) computationally(Sys |=poly Req ) if for any polynomial configurationconf = (M̂ ,S ,H,A) ∈
Confpoly(Sys), the probability thatReq(S ) is not fulfilled is negligible, i.e.,

P (runconf ,k⌈S 6∈ Req(S )) ∈ NEGL.

For the computational and statistical case, the trace has tobe finite. Note that a) is normal fulfillment.
We write “|=” if we want to treat all three cases together. ✸

Obviously, perfect fulfillment implies statistical fulfillment for every non-empty classSMALL and
statistical fulfillment for a classSMALL implies fulfillment in the computational case ifSMALL ⊆
NEGL.

3.2 Preservation of Integrity Properties Under Refinement

In this section, we show that our definitions of integrity properties and their fulfillment behaves well
under simulatability. Usually, defining a cryptographic system starts with an abstract specification stat-
ing what the system should do. After that, this specificationcan be refined stepwise with respect to
simulatability, which finally yields a secure implementation. At this time, we may wonder whether the
verification of these properties made for the ideal specification carries over to the concrete implementa-
tion. This is essential for modular proofs. We can answer this question in the affirmative yielding the
preservation theorem presented below.

The actual proof will be done by contradiction, i.e., we willshow that if the concrete implementation
did not fulfill its goals, the two systems could be distinguished. However, in order to exploit simulatabil-
ity, we have to consider an honest user that connects toall specified ports. Otherwise, the contradiction
might stem from those specified ports which are connected to the adversary, but those ports are not
considered by simulatability. The following lemma circumvents this problem:

Lemma 3.1 Let a systemSys be given. For every configurationconf = (M̂ ,S ,H,A) ∈ Conf(Sys),
there is a configurationconfs = (M̂ ,S ,Hs,As) ∈ Conf(Sys) with S ⊆ ports(Hs), such that
runconf ⌈S= runconfs⌈S , i.e., the probability of the runs restricted to the setS of specified ports is
identical in both configurations. Ifconf is polynomial-time, thenconfs is also polynomial-time. ✷

Proof (sketch).Since the proof is quite technical, we only give a brief sketch. For a complete proof we
refer the reader to Appendix A. We define a new machineH1 which is inserted between the system and
the adversary, so thatH1 now exactly uses the specified ports formerly connected toA (cf. Figure 4).
This machine mainly forwards messages, so it does not changethe probability of the runs at the specified
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ports. Combination ofH1 and the originalH yields the intended userHs. The adversaryAs is mainly
derived by port renaming ofA with the only difference that clock-out ports ofA have to be simulated
by As in a different way, mainly by additional output ports. This will give us a configurationconfs ∈
Conf(Sys) as shown in the right side of Figure 4, where the honest userHs connects to all specified ports.
The main difficulty of the proof is that we have to ensure that the new honest userHs is polynomial-
time in case of a polynomial-time configuration. This aspectrequires a thorough look at the details and
significantly lengthens the proof, cf. Appendix A.

Before we now turn our attention to the actual preservation theorem, we state the following well-known
lemma which we will need in the theorem’s proof.

Lemma 3.2 The statistical distance∆(φ(vark), φ(var
′
k)) between a functionφ of two random variables

is at most∆(vark, var
′
k). ✷

Theorem 3.1 (Preservation of Integrity Properties) Let a systemSys2 be given that fulfills an in-
tegrity propertyReq , i.e., Sys2 |= Req , and letSys1 ≥f

sec Sys2 for a valid mappingf . Then also
Sys1 |= Req . This holds in the perfect and statistical sense, and in the computational sense if member-
ship in the setReq(S ) is decidable in polynomial time for allS . ✷

Proof. Req is well-defined onSys1, since simulatability implies that for each(M̂1,S1) ∈ Sys1 there
exists(M̂2,S2) ∈ f(M̂1,S1) with S1 = S2. We will now prove that ifSys1 did not fulfill the property,
the two systems could be distinguished yielding a contradiction.

Assume that a configurationconf 1 = (M̂1,S1,H,A1) ∈ Conf(Sys1) contradicts the theorem. As
already described above, we need an honest user that connects to all specified ports. This is precisely
what Lemma 3.1 does, i.e., there is a configurationconf s,1 in which the user connects to all specified
ports, withrunconf s,1

⌈S1
= runconf

1
⌈S1

, soconf s,1 also contradicts the theorem. Note that all specified
ports are now connected to the honest user; thus, we can exploit simulatability. In the proof for the
synchronous timing model, this problem was avoided by combining the honest user and the adversary
to the new honest user. However, in the asynchronous model, this combination contradicts the definition
of configurations, since this user would not be valid any more, cf. Definition 2.5.

Because of our preconditionSys1 ≥f
sec Sys2, there exists an indistinguishable configuration

conf s,2 = (M̂ ,S ,Hs,A2) ∈ Conf(Sys2), i.e., viewconf s,1
(Hs) ≈ viewconf s,2

(Hs). By assumption,
the property is fulfilled for this configurationconf s,2 (perfectly, statistically, or computationally). Fur-
thermore, the view ofHs in both configurations contains the trace atS := S1 = S2.

In the perfect case, the distributions of the views are identical. This immediately contradicts the
assumption that[(runconf s,1,k

⌈S )] 6⊆ Req(S ) while [(runconf s,2,k
⌈S )] ⊆ Req(S ).

In the statistical case, let any polynomiall be given. The statistical distance∆(viewconf s,1,k,l(k)
(Hs),

viewconf s,2,k,l(k)
(Hs)) is a functiong(k) ∈ SMALL. We apply Lemma 3.2 to the characteristic function

1v⌈S 6∈Req(S) on such viewsv. This gives

|P (runconf s,1,k,l(k)
⌈S 6∈ Req(S ))− P (runconf s,2,k,l(k)

⌈S 6∈ Req(S ))| ≤ g(k).

As SMALL is closed under addition and under making functions smaller, this gives the desired contra-
diction.

In the computational case, we define a distinguisherDis: Given the view of machineHs, it extracts
the run restricted toS and verifies whether the result lies inReq(S ). If yes, it outputs0, otherwise1. This
distinguisher is polynomial-time (in the security parameter k) because the view ofHs is of polynomial
length, and membership inReq(S ) was required to be polynomial-time decidable. Its advantage in
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distinguishing is

|P (Dis(1k, viewconf s,1,k
) = 1)− P (Dis(1k, viewconf s,2,k

) = 1)|

= |P (runconf s,1,k
⌈S 6∈ Req(S ))− P (runconf s,2,k

⌈S 6∈ Req(S ))|.

If the difference were negligible, then the first term would have to be negligible because the second term
is andNEGL is closed under addition. Again this yields the desired contradiction.

3.3 Logic Derivations

In order to apply this theorem to integrity properties formulated in a logic, e.g., temporal logic, we have
to show that abstract derivations in the logic are valid withrespect to the cryptographic sense. This can
be proven similar to the version with synchronous time, we only include it for reasons of completeness.

Theorem 3.2 Let Sys be a system, andReq1, Req2 be integrity properties forSys . Then the following
holds:

a) If Sys |= Req1 andReq1 ⊆ Req2, then alsoSys |= Req2.

b) If Sys |= Req1 andSys |= Req2, then alsoSys |= Req1 ∩ Req2.

Here “⊆” and “‘∩” are interpreted pointwise, i.e., for eachS . This holds in the perfect and statistical
sense, and in the computational sense if for a) membership inReq2(S ) is decidable in polynomial time
for all S . ✷

Proof. Part a) is trivially fulfilled in all three cases. Part b) is trivial in the perfect case. For the statistical
case and everyconf = (M̂ ,S ,H,A) ∈ Conf(Sys),

P (runconf ,k ,l(k)⌈S 6∈ (Req1(S ) ∩Req2(S ))

≤ P (runconf ,k ,l(k)⌈S 6∈ Req1(S )) + P (runconf ,k ,l(k)⌈S 6∈ Req2(S )) ∈ SMALL

because both summands are inSMALL which is closed under addition. The computational case holds
analogously becauseNEGL is closed under addition.

The first part of Theorem 3.2 resembles the Boolean “implies”operator, whereas the second part resem-
bles the Boolean “and”. We now have to show that the common deduction rules hold. For example,
we consider modus ponens, i.e., if one has derived thata anda → b are valid in a given model, then
b is also valid in this model. IfReqa etc. denote the semantics of the formulas, i.e., the trace sets they
represent, we have to show that

(Sys |= Reqa andSys |= Reqa→b) impliesSys |= Reqb .

From Theorem 3.2b we concludeSys |= Reqa∩Reqa→b . Obviously,Reqa∩Reqa→b = Reqa∧b ⊆ Reqb
holds, so the claim follows from Theorem 3.2a.

4 A Specification for Secure Message Transmission in CorrectOrder

In this section an abstract specification forordered secure message transmissionis presented, so neither
reordering the messages in transit nor replay attacks are possible for the adversary. In the subsequent
sections, a secure implementation for this specification isderived following the composition approach
from Section 2.4. We include all definition details like ports and structures as needed for the notion of
simulatability because the abstract specification is the abstract cryptographic module based on which
protocols should be proved in future work. Hence it has to be defined precisely, and encoded faithfully
into proof tools. We start with a brief review on standard cryptographic systems.
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4.1 A Brief Review of Standard Cryptographic Systems

In real life, every useru usually has exactly one machineMu, which is correct if and only if its user
is honest. The machineMu has special portsinu? andoutu ! for connecting to the useru. A standard
cryptographic systemSys can now be derived by a trust model, which consists of an access structure
ACC and a channel modelχ. If n denotes the number of participants, thenACC is a set of subsetsH of
M := {1, . . . , n} and denotes the possible sets of correct machines. For each setH there will be exactly
one structure consisting of the machines belonging to the set H; the remaining machines are considered
part of the adversary. The channel model classifies every connection as secure (private and authentic),
authenticated or insecure and derives the correspondent network connectivity. These changes can easily
be done via port renaming and duplication (cf. [68]). For a fixed setH and a fixed channel model, we
obtain a modified machineMu,H for every machineMu with u ∈ H. We denote the set of them bŷMH

(i.e., M̂H := {Mu,H | u ∈ H}), so real systems are given bySys real = {(M̂H,SH) | H ∈ ACC}. Ideal
systems are typically of the formSys id = {({THH},SH) | H ∈ ACC} with the same setsSH as in the
corresponding real systemSys real, i.e., each structure consists of onlyonemachineTHH that we refer
to astrusted host.

4.2 The Abstract Specification

Given a numbern of participants and a tupleL of parameters (about lengths and bounds) discussed in
Section 4.2.1, our specification is a typical ideal system

Sys
OSM,spec
n,L = {(THOSM

H ,SOSM
H ) | H ∈ {1, . . . , n}}

as described in Section 4.1, whereH denotes the set of honest users (i.e., the access structure makes no
restriction on the possible corruptions). WhenH is clear from the context, letA := M\H denote the
indices of corrupted machines. The ideal machineTHOSM

H models initialization, sending and receiving
of messages. The ports ofTHOSM

H intended for the users are

userportsOSM
H := {inu?, outu !, outu

⊳! | u ∈ H}.

Intuitively eachu represents one user. The ports of the users which connect to those ports are

SOSM
H

c
:= {inu !, outu?, inu

⊳! | u ∈ H}.

For the adversary, the machineTHOSM
H offers ports

advportsOSM
H := {from advu?, to advu !, to advu

⊳! | u ∈ H}.

Altogether, this yields

ports(THOSM
H ) := userportsOSM

H ∪ advportsOSM
H .

4.2.1 Lengths and Bounds

To allow a polynomial-time implementation to be as secure asthis abstract specification, we use func-
tionsmax len, max in user, andmax in adv bounding the length of each message that should be trans-
mitted, the number of inputs thatTHH accepts from each user, and the number of inputs thatTHH

accepts from the adversary for each user, respectively. Thetuple of these three functions is the system
parameterL. Each function must be bounded by a polynomial and efficiently computable.

The reason for including these functions is to ensure that only a polynomial number of inputs will
be processed by the machineTHOSM

H independent of the environment. This is essential for applying
existing results of the underlying model, in particular forthe composition theorem. For real applications,
one would choose these functions so large that they will never be reached.
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4.2.2 States

The state ofTHOSM
H consists of seven arrays:

• (sc inOSM
u )u∈H over{0, . . . ,max in user(k)} for counting the number of inputs thatTHOSM

H has
received atinu?,

• (sc outOSM
u )u∈H over {0, . . . ,max in adv(k)} for counting the number of inputs thatTHOSM

H

has received atfrom advu?,

• (initOSM
u,v )u,v∈M over{0, 1} for modeling initialization of users, whereinitOSM

u,u = 1 means that
u has generated its encryption and signature key pair, andinitOSM

u,v = 1 that v has received the
public keys ofu,

• (msg inOSM
u,v )u∈H,v∈M over{0, . . . ,max in user(k)} for counting the number of messages sent

from u to v,

• (msg outOSM
u,v )u,v∈H over {0, . . . ,max in adv(k)} for storing the number of the next expected

message. This array is used to achieve the desired ordering (cf. the description below),

• (stoppedOSM
u )u∈H over{0, 1} for storing whether the machine of useru has already been stopped,

i.e., whether it has reached its runtime bounds (again cf. the below description),

• (deliverOSM
u,v )u,v∈H of lists for storing the actual messages.

The first six arrays are initialized with0 everywhere, except thatmsg outOSM
u,v is initialized with 1

everywhere. The last array is initialized with empty lists everywhere. Roughly, the five arraysinitOSM
u,v ,

msg outOSM
u,v , msg inOSM

u,v , stoppedOSM
u , anddeliverOSM

u,v ensure functional correctness, whereas the
arrayssc inOSM

u andsc outOSM
u are included to allow a polynomial-time system to be as secure as this

specification, cf. Section 4.2.1.

4.2.3 Inputs and their Evaluation

We now define the precise inputs and howTHOSM
H evaluates them based on its abstract state. First, the

machine model contains length functions which allow to bound how many bits of input are accepted at
each port, depending on the current state. The length functions are determined by the domain specified
for each input in the part “for ...” after the parameter list,i.e., the overall length function for each
port in each state is the maximum of the possible lengths of possible inputs in that state; it can easily
be computed. In the following, we introduce commands for initialization, for sending or receiving
messages and for stopping a particular machine. If these commands are entered with correct parameters
at a permitted port according to the below description, we speak ofwell-formedinputs. If an input is not
well-formed, we call ittrash.

Initialization. Assume that the useru wants to generate its encryption and signature keys and dis-
tribute the corresponding public keys over authenticated channels. He can do so by sending a command
(snd init) toTHOSM

H . For the sake of readability, we exemplarily annotate this transition in detail.
Upon receiving on input(snd init) the system checks that the user has not already reached his

input bound (which is improbable in this case unless he triedto send trash all the time), and that no
key generation of this user already occurred in the past. These checks correspond tosc inOSM

u <
max in user(k), andinitOSM

u,u = 0, respectively. If at least the first check holds, the countersc inOSM
u,v

is increased. If both checks hold, the keys are distributed over authenticated channels, modeled by an
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output(snd init) to the adversary which either can schedule them immediately, later or even leave them
on the channels forever. Because of the asynchronous timingmodel,THOSM

H has to wait for a term
(rec init, u) input by the adversary atfrom advv? signaling that a connection betweenu andv should
be established.

• Send initialization:(snd init) at inu?:

If sc inOSM
u < max in user(k), setsc inOSM

u := sc inOSM
u + 1, otherwise do nothing. If the test

holds checkinitOSM
u,u = 0. In this case setinitOSM

u,u := 1 and output(snd init) at to advu !, 1 at
to advu

⊳!.

• Receive initialization:(rec init, u) at from advv? for u ∈ M:

If stoppedOSM
v = 0, initOSM

u,v = 0, and [u ∈ H ⇒ initOSM
u,u = 1], set initOSM

u,v := 1, other-
wise do nothing. Ifsc outOSM

u < max in adv(k) setsc outOSM
u := sc outOSM

u + 1 and output
(rec init, u) atoutv !, 1 atoutv ⊳!.

Sending and receiving messages.Sending a messagem to a userv is triggered by a command
(send,m, v). If v is honest, the message is stored in the arraydeliverOSM

u,v of THOSM
H together

with the countermsg inOSM
u,v indicating the number of the message. After that, the information

(send blindly, i, l, v) is output to the adversary, wherel and i denote the length of the messagem
and its position in the array, respectively. This models that a real-world adversary may see that a
message is sent and it may even see its length. We speak of tolerable imperfections that are explic-
itly given to the adversary. Because of the asynchronous timing model,THOSM

H again has to wait for
a term(receive blindly, v, i) input by the adversary atfrom advv?, signaling that theith message in
deliverOSM

u,v should be delivered tov . NowTHOSM
H reads(m, j) := deliverOSM

u,v [i] and checks whether
j ≥ msg outOSM

u,v holds. This test prevents replay and message reordering. Ifthe test is successful the
message is delivered, yielding an output(receive, u,m) to userv, and the countermsg outOSM

u,v is set to
j + 1.

If v is dishonest,THOSM
H simply outputs(send,m, v) to the adversary. The adversary can also send

a messagem to a useru by inputting a command(receive, v,m) to the portfrom advu? of THOSM
H for

a corrupted userv.

• Send:(send,m, v) at inu? for v ∈ M \ {u}, m ∈ Σ∗, l := len(m) ≤ max len(k):

If sc inOSM
u < max in user(k), setsc inOSM

u := sc inOSM
u +1 andmsg inOSM

u,v := msg inOSM
u,v +

1, otherwise do nothing. IfinitOSM
u,u = 1 andinitOSM

v,u = 1 holds:

If v ∈ A then { output (send, (m,msg inOSM
u,v ), v) at to advu !, 1 at to advu

⊳! } else {set

i := size(deliverOSM
u,v )+1, deliverOSM

u,v [i] := (m,msg inOSM
u,v ) and output(send blindy, i, l, v) at

to advu !, 1 at to advu
⊳! }.

• Receive from honest partyu: (receive blindly, u, i) at from advv? for u ∈ H, i ∈ N:

If stoppedOSM
v = 0, initOSM

v,v = 1, initOSM
u,v = 1, sc outOSM

v < max in adv(k) and(m, j) :=

deliverOSM
u,v [i] 6= ↓, checkj ≥ msg outOSM

u,v (j = msg outOSM
u,v in the perfect ordered system). If

this holds setsc outOSM
v := sc outOSM

v +1, msg outOSM
u,v := j +1 and output(receive, u,m) at

outv !, 1 atoutv ⊳!.

• Receive from dishonest partyu: (receive, u,m) at from advv? for u ∈ A, m ∈ Σ∗, len(m) ≤
max len(k):
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If stoppedOSM
v = 0, initOSM

v,v = 1, initOSM
u,v = 1 and sc outOSM

v < max in adv(k), set
sc outOSM

v := sc outOSM
v + 1 and output(receive, u,m) atoutv !, 1 atoutv ⊳!.

Stop commands. The adversary is further to cause the machine of any useru to stop processing inputs
received from the network by entering a command(stop) at from advu?. This roughly corresponds to
exceeding the machine’s runtime bounds in the real world.

• Stop:(stop) at from advu?:

If stoppedOSM
u = 0 andsc outOSM

v < max in adv, setstoppedOSM
u := 1 and output(stop) at

outu !, 1 atoutu⊳!.

Trash inputs. Finally, if THOSM
H receives an input at a portinu? which is not comprised by the above

transitions (i.e., the user sends some kind of trash), it increases the countersc inOSM
u . Similarly, if

THOSM
H receives such an input at a portfrom advv? it increases the countersc outOSM

v .
Sys

OSM,spec
n,L is as abstract as we hoped for. It is deterministic without containing any cryptographic

objects. Furthermore it is simple, so that its state-transition function can easily by expressed in formal
languages, e.g., in PVS. In the following we writeSysOSM,spec instead ofSysOSM,spec

n,L if the parameters
n andL are not necessary for understanding.

4.3 The Security Property

Our goal is to prove that message reordering inSys
OSM,spec
n,L is not possible for the adversary. Formally,

this means that foru, v ∈ H, the messages thatv received fromu via THOSM
H always have to be a

sublist of those messages thatu sent tov. The former list is called thereceive-list, the latter thesend-
list. More formally, this means that foru, v ∈ H, a tracetr, and a pointt in time, we define the send-list
send list tru,v(t) at timet as follows:

1. The tracetr is first restricted to inputs atinu?.

2. The resulting sub-trace is further restricted to inputs of the form (send,m, v) with len(m) ≤
max len(k).

3. Finally, every element(send,m, v) is replaced bym.

Similarly, the receive-listrecv list tru,v(t) at timet is defined as follows:

1. The tracetr is first restricted to outputs atoutu !.

2. The resulting sub-trace is further restricted to outputsof the form(receive, u,m) with len(m) ≤
max len(k).

3. Finally, every element(receive, u,m) is replaced bym.

We are now ready to introduce the desired integrity propertyreqOSM, which we callordering property:

Definition 4.1 (Ordering Property) LetSOSM
H be the specified ports ofSysOSM,spec

n,L as defined in Sec-

tion 4.2. Then a tracetr is contained inReqOSM(SOSM
H ) if for all u, v ∈ H and any timet:

recv list tru,v(t) ⊆ send list tru,v(t),

where “⊆” is the sublist relation. ✸
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The following theorem finally captures the security of the systemSys
OSM,spec
n,L with respect to the order-

ing property.

Theorem 4.1 (Ordering Property of the Ideal System for Ordered Secure Message Transmission)
Let SysOSM,spec

n,L be the ideal system for ordered secure message transmissiondefined in Section 4.2

for arbitrary parametersn,L, and let ReqOSM be the integrity property of Definition 4.1. Then
Sys

OSM,spec
n,L |=perf ReqOSM. ✷

We will prove this theorem in Section 8 by means of the theoremproving system PVS.

5 The Cryptographic Implementation

In this section, we derive a possible implementation of the proposed specification, and we will prove this
implementation to be secure in the subsequent sections. We start with the definition of an intermediate,
calledhybrid system in Sections 5.1-5.3. If we take a look at Figure 3, the systemSysOSM,spec plays the
role of the monolithic specificationSysspec. We now split our specification into a systemSysOSM,hybr

(corresponding toSys∗ in Figure 3) such thatSysOSM,hybr ≥sec SysOSM,spec holds. SysOSM,hybr is
the combination of two systemsSysfilt andSysSM,spec. The systemSysSM,spec is the ideal system for
secure unordered message transmission presented in [68], and the systemSysfilt will filter messages
that are out of order. Finally, replacing the subsystemSysSM,spec with the concrete system for secure
message transmissionSysSM,real from [68] and using the composition theorem yields a concrete system
SysOSM,real that is as secure asSysOSM,spec.

We start with the definition of the filtering system.

5.1 The Filtering System

Given a numbern of participants and the tupleL of functions as introduced in Section 4.2.1, the filtering
system is given by

Sysfiltn,L = {(M̂ filt
H ,Sfilt

H ) | H ⊆ {1, . . . , n}},

whereM̂ filt
H := {Mfilt

u | u ∈ H} andports(Mfilt
u ) := {inu?, outu !, outu

⊳!} ∪ {infiltu ?, outfiltu !, outfiltu
⊳
!}.

All free ports of[M̂ filt
H ] are specified, i.e.,Sfilt

H consists of all ports corresponding toports(M̂ filt
H ).

5.1.1 States

Each machineMfilt
u maintains two arrays and three variables, whose meanings follow closely from the

description of the state ofTHOSM
H introduced in Section 4.2.2:

• (msg infilt
u,v)v∈M over{0, . . . ,max in user(k)},

• (msg outfiltv,u)v∈M over{0, . . . ,max in adv(k)},

• sc infilt
u over{0, . . . ,max in user(k)},

• sc outfiltu over{0, . . . ,max in adv(k)},

• stopped filt
u over{0, 1}.

Both arrays should be initialized with0 everywhere, and the three counters should be initially0.
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5.1.2 Inputs and their Evaluation

The length functions for each port of each machineMfilt
u are defined similarly to Section 4.2.3, i.e.,

they are determined by the domain specified for each input in the part “for ...” after the parameter
list. However, if the countersc infilt

u reaches the boundmax in user(k), sc outfiltu reaches the bound
max in adv(k), or stopped filt

u = 1 holds, we use different bounds to ensure polynomial runtimeof the
system. These bounds are introduced in Section 5.1.3.

We further assume that encoding of tuples has the following straightforward length property:
len((m,num)) = len(m) + c(k) for everynum ∈ {0, . . . ,max{max in user(k),max in adv(k)}}
and an arbitrary polynomially bounded functionc, i.e., len(num) is constant for each fixed secu-
rity parameterk. This condition can easily be achieved by padding all valuesnum to a fixed size
≥ len(max{max in user(k),max in adv(k)}). Now the behavior ofMfilt

u is defined as follows.

Initialization.

• Send initialization:(snd init) at inu?:

If sc infilt
u < max in user(k), setsc infilt

u := sc infilt
u + 1 and output(snd init) at outfiltu !, 1 at

outfiltu
⊳
!.

• Receive initialization:(rec init, v) at infiltu ? for v ∈ M:

If stopped filt
u = 0 and sc outfiltu < max in adv(k), setsc outfiltu := sc outfiltu + 1 and output

(rec init, v) atoutu !, 1 atoutu⊳!.

Sending and receiving messages.

• Send:(send,m, v) at inu? for v ∈ M \ {u}, m ∈ Σ∗, len(m) ≤ max len(k):

If sc infilt
u < max in user(k), setsc infilt

u := sc infilt
u + 1, msg infilt

u,v := msg infilt
u,v + 1 and

output(send, (m,msg infilt
u,v), v) atoutfiltu !, 1 atoutfiltu

⊳
!.

• Receive:(receive, v,m′) at infiltu ? for v ∈ M, m′ ∈ Σ∗, len(m′) ≤ max len(k) + c(k):

If stopped filt
u = 0 andsc outfiltu < max in adv(k), decompose the messagem′ into (m,num).

If num ≥ msg outfiltv,u (or num = msg outfiltv,u in the perfect ordered system), setsc outfiltu :=

sc outfiltu + 1, msg outfiltv,u := num + 1 and output(receive, v,m) atoutu !, 1 atoutu⊳!.

Stop commands.

• Stop:(stop) at infiltu ?:

If stopped filt
u = 0 andsc outfiltu < max in adv(k), setstopped filt

u := 1 and output(stop) atoutu !,
1 atoutu⊳!.

Trash inputs. Finally, if Mfilt
u receives an input at a portinu? which is not comprised by the above

transitions, it increases the countersc infilt
u . Similarly, if Mfilt

u receives such an input at portinfiltu ? it
increases the countersc outfiltu .
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5.1.3 On Polynomial Runtime

In order to apply existing results of the underlying model, in particular the composition theorem, the
systemSysfiltn,L must be polynomial-time, i.e., every machineMfilt

u must be polynomial-time. Note that
each input at portinu? checks ifsc infilt

u < max in user(k) holds, doing nothing at failure. In case of a
successful check,Mfilt

u increasessc infilt
u . Similar reasoning holds for the portinfiltu ? with sc outfiltu and

max in adv(k), where additionallystopped filt
u = 0 is checked and maybestopped filt

u = 1 is set. This
means that only a polynomial number of inputs lead to a state change or a non-empty output. However,
since the machine still has to read its input to perform the mentioned checks, this is not yet sufficient
for polynomial runtime. We therefore use the length functions of the underlying model to “cut off” an
input port as soon as a corresponding counter has reached itslimit.

More formally, the value0 for the length function for a portp? means that no input is accepted
(without a Turing step) atp?. This means that whenever the countersc infilt

u reaches the bound
max in user(k) or sc outfiltu reaches the boundmax in adv(k), the length function for the portinu?
respectivelyinfiltu ? is always zero. Similarly, ifstopped filt

u = 1 then the length function forinfiltu ? is zero.
Note that this does not affect the functional behavior of themachineMfilt

u since the portinu? is only cut
off if no further input atinu? can causeMfilt

u to change its state or produce a non-empty output, similarly
for the portinfiltu ?.

Lemma 5.1 The systemSysfiltn,L is polynomial-time for all parametersn,L. ✷

Proof. Each transition of eachMfilt
u can surely be realized in polynomial time, since the length bounds

only read a polynomially bounded number of bits in each transition. Moreover, non-empty inputs at
inu? can only occur ifsc infilt

u < max in user(k); if this condition does not hold, the length function
for inu? is explicitly defined to be zero. If the check succeeds, each transition increases the counter
sc infilt

u , hence there can at most bemax in user(k) inputs atinu?. Similarly, non-empty inputs atinfiltu ?
can only occur ifstopped filt

u = 0 andsc outfiltu < max in adv(k), and each transition in this case either
increases the countersc outfiltu or setsstopped filt

u = 1. Hence there are at mostmax{max in adv(k), 1}
inputs atinfiltu ?, i.e., a polynomial number of inputs total, which finishes the proof.

5.2 The Ideal System for Unordered Secure Message Transmission

As described above, the systemSysSM,spec is the ideal system for secure unordered message transmis-
sion of [68]. We now describe it in full because we need it for our security proof in Sections 6 and 7. We
made a few adaptations (in particular renaming the ports intended for the users), which do not invalidate
the proof.

Let n denote the number of participants. Similar to the system forordered secure message trans-
mission, the system for secure unordered message transmission has a parametermax len bounding the
permitted message length. Then the ideal system for secure unordered message transmission is given by

Sys
SM,spec
n,max len = {(THSM

H ,SSM
H ) | H ⊆ {1, . . . , n}},

with ports(THSM
H ) := {outfiltu ?, infiltu !, infiltu

⊳
!, from advu?, to advu !, to advu

⊳! | u ∈ H}. If H is clear
from the context, let againA := M\H. The ports of the users which connect to those ports are

SSM
H

c
:= {infiltu ?, outfiltu !, outfiltu

⊳
! | u ∈ H}.
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5.2.1 States

The machineTHSM
H maintains three arrays, whose meanings should already be clear from the description

of the state ofTHOSM
H .

• (initSMu,v)u,v∈M over{0, 1} initialized with0 everywhere.

• (stopped SM
u )u∈H over{0, 1} initialized with0 everywhere,

• (deliverSMu,v)u,v∈H of lists, all initially empty.

5.2.2 Inputs and their Evaluation

The length functions of the machineTHSM
H are defined similarly to Section 4.2.3, i.e., they are deter-

mined by the respective domains. The state-transition function of THH is defined by the following
rules:

Initialization.

• Send initialization:(snd init) atoutfiltu ?:

If initSMu,u = 0, setinitSMu,u := 1 and output(snd init) at to advu !, 1 at to advu
⊳!.

• Receive initialization:(rec init, u) at from advv? for u ∈ M:

If stoppedSM
v = 0 and initSMu,v = 0 and [u ∈ H ⇒ initSMu,u = 1], setinitSMu,v := 1 and output

(rec init, u) at infiltv !, 1 at infiltv
⊳
!.

Sending and receiving messages.

• Send:(send,m, v) atoutfiltu ? for v ∈ M \ {u}, m ∈ Σ∗, l := len(m) ≤ max len(k) + c(k):

If initSMu,u = 1, andinitSMv,u = 1:

If v ∈ A then{ output(send,m, v) at to advu !, 1 at to advu
⊳! }, else{i := size(deliverSMu,v) + 1;

deliverSMu,v [i] := m; output(send blindly, i, l, v) at to advu !, 1 at to advu
⊳! }.

• Receive from honest partyu: (receive blindly, u, i) at from advv? for u ∈ H, i ∈ N:

If stoppedSM
v = 0, initSMv,v = 1, initSMu,v = 1, and m := deliverSMu,v [i] 6= ↓, then output

(receive, u,m) at infiltv !, 1 at infiltv
⊳
!.

• Receive from dishonest partyu: (receive, u,m) at from advv? for u ∈ A, m ∈ Σ∗, len(m) ≤
max len(k):

If stoppedSM
v = 0, initSMv,v = 1 andinitSMu,v = 1, then output(receive, u,m) at infiltv !, 1 at infiltv

⊳
!.

Stop commands.

• Stop:(stop) at from advu?:

If stoppedSM = 0, setstopped SM
u = 1 and output(stop) at infiltu !, 1 at infiltu

⊳
!.

Trash inputs. THSM
H simply ignores trash inputs at every port.
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5.3 The Hybrid System

We now combine the two systemsSysSM,spec
n,max len andSysfiltn,L in the “canonical” way, i.e., we combine

those structures with the same indexH. We further restrict ourselves to the case, where the parame-
ter max len of SysSM,spec

n,max len is equal to the respective message length function of the parameterL (cf.

Section 4.2.1). This yields a systemSysOSM,hybr
n,L , which we callhybrid system for ordered secure mes-

sage transmission. It is depicted in Figure 5. The specified ports of the hybrid system forH are then
given by{outu?, inu !, inu⊳! | u ∈ H}c, i.e., they are equal to the specified portsSOSM

H of the specifica-
tion. Finally, we define all connections{outfiltu !, outfiltu ?} and{infiltu !, infiltu ?} of SysOSM,hybr

n,L to be secure,
because they correspond to local subroutine calls.

5.4 The Real System

The concrete systemSysOSM,real
n,L,E,S is derived by replacingSysSM,spec

n,max len with Sys
SM,real
n,max len,E,S , which is the

concrete implementation ofSysSM,spec
n,max len as introduced in [68]. For understanding it is sufficient to give

a brief review ofSysSM,real
n,max len,E,S . It is a standard cryptographic system of the formSysSM,real

n,max len,E,S =

{(M̂ SM
H ,SSM

H ) | H ∈ {1, . . . , n}}, cf. Section 4.1, wheren denotes the number of participants, i.e., any
subset of participants may be dishonest;max len is the usual bound on the message length, which we
defined to be equal to the message length function inL. The system uses an asymmetric encryption
schemeE and a digital signature schemeS as cryptographic primitives, which are additional parameters
of the system. A useru can let his machine create signature and encryption keys that are sent to other
users over authenticated channels. Messages sent from useru to userv are signed and encrypted by
Mu and sent toMv over an insecure channel, representing a real network. The adversary can schedule
the communication between correct machines and send arbitrary messagesm to arbitrary users. He can
also replay messages and also change their order, which is prevented in our scheme by the additional
filtering system.

We now build the combination ofSysSM,real
n,max len,E,S andSysfiltn,L again in the canonical way, which

yields a new systemSysOSM,real
n,L,E,S that we refer to as thereal system for ordered secure message trans-

mission. It is depicted in Figure 6.
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6 Proving Security of the Real Ordered System

In this section, we start to prove that the real ordered system Sys
OSM,real
n,L,E,S is at least as secure as the

specificationSysOSM,spec
n,L provided that the encryption and signature system used are secure. We further

show thatSysOSM,real
n,L,E,S computationally fulfills the integrity property of Definition 4.1.

6.1 The Simulatability Property

We start with the simulatability property, which is captured in the following theorem.

Theorem 6.1 (Security of Real Ordered Secure Message Transmission)We haveSysOSM,real
n,L,E,S ≥poly

sec

SysOSM
n,L for all parametersn,L, E ,S (and for the canonical mapping), provided the signature anden-

cryption schemes used are secure. This holds with blackbox simulatability.1 ✷

The proof is split into four steps, which can be illustrated in Figure 3:

1. First, [68] contains the resultSysSM,real
n,max len,E,S ≥poly

sec Sys
SM,spec
n,max len.

2. Secondly, the composition theorem (cf. Section 2.4) yields the relationSysOSM,real
n,L,E,S ≥poly

sec

Sys
OSM,hybr
n,L . The only remaining task is to check that its preconditions are fulfilled, which is

straightforward since we showed that the systemSysfiltn,L is polynomial-time in Lemma 5.1.

3. Thirdly, we proveSysOSM,hybr
n,L ≥poly

sec Sys
OSM,spec
n,L .

4. Finally,SysOSM,real
n,L,E,S ≥poly

sec Sys
OSM,spec
n,L follows from the transitivity lemma, cf. Section 2.1.

Thus, we only have to proveSysOSM,hybr
n,L ≥poly

sec Sys
OSM,spec
n,L . We will even prove the perfect case

Sys
OSM,hybr
n,L ≥perf

sec Sys
OSM,spec
n,L , which is separately captured in the following lemma:

1See [68] for further details on canonical mappings and different kinds of simulatability.
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Lemma 6.1 For all parametersn,L, we haveSysOSM,hybr
n,L ≥perf

sec Sys
OSM,spec
n,L (for the canonical map-

ping), and with blackbox simulatability. ✷

In order to prove this, we assume a configurationconfhybr := ({THSM
H }∪M̂ filt

H ,SH,H,A) of SysOSM,hybr
n,L

with M̂ filt
H = {Mfilt

u | u ∈ H} to be given, which we call ahybrid configuration. We then have to show
that there exists a configurationconfspec := ({THOSM

H },SH,H,A
′) of SysOSM,spec

n,L , called aspecifica-
tion configuration, yielding indistinguishable views for the honest userH .

The adversaryA′ consists of two machines: a so-called simulatorSimH, which we define in the fol-
lowing, and the original adversaryA. This is exactly the notion of blackbox simulatability. These con-
figurations are shown in Figure 7. We will now first give some preliminaries of the proof of Lemma 6.1,
and give a rigorous definition of the simulator afterwards.

6.1.1 Preliminaries for Proving Lemma 6.1

Given a hybrid configuration and a specification configuration as defined above, the ultimate goal is to
show that the collectionŝMhybr := {THSM

H } ∪ {Mfilt
u | u ∈ H} andM̂spec := {THOSM

H ,SimH} have the
same input-output behavior, i.e., if they obtain the same inputs they produce the same outputs. We do so
by proving a deterministic bisimulation, i.e., we define a relation φ on the states of the two collections
and show thatφ is maintained in every step of every trace and that the outputs of both systems are always
equal. This is exactly the procedure we will perform in the next section using the theorem prover PVS.

Definition 6.1 (Deterministic Bisimulation) Let two arbitrary collections M̂1 and M̂2 of deterministic
machines with identical sets of free ports be given, i.e.,free([M̂1]) = free([M̂2]). A deterministic bisim-
ulation between these two collections is a binary relationφ on the states of̂M1 and M̂2 such that the
following holds.

• The initial states of̂M1 andM̂2 satisfy the relationφ.

• The transition functionsδ1 and δ2 of M̂1 and M̂2 preserve the relationφ and produce identical
outputs. I.e., letS1 andS2 be two states of̂M1 andM̂2, respectively, with(S1, S2) ∈ φ, letI be an
arbitrary overall input ofM̂1 andM̂2, and let(S′

1,O1) := δ1(S1,I) and(S′
2,O2) := δ2(S2,I).

Then we have(S′
1, S

′
2) ∈ φ andO1 = O2.

We call two collectionŝM1 andM̂2 bisimilar if there exists a deterministic bisimulation between them.
✸

We will apply this definition to composed transition functions of each of the two collectionŝMhybr and
M̂spec, i.e., the overall transition from an external input (fromH or A) to an external output (toH or A).
It is quite easy to see that a deterministic bisimulation in this sense implies perfect indistinguishability
of the view ofH, cf. Figure 7, and even of the joint view ofH and the original adversaryA. Assume
for contradiction that these views are not identical. Thus,there exists a first time where they can be
distinguished. This difference has to be produced by the collections. Since we defined this to be the first
different step, the prior input of both collections is identical. But thus, both collections also produce
identical outputs because they are bisimilar. This yields the desired contradiction.

The next section describes how the machines are expressed inthe formal syntax of PVS and partly
explains the bisimulation proof, which then finishes the proof of Lemma 6.1, and hence also the simu-
latability proof of Theorem 6.1.

It is worth mentioning that we used standard paper-and-pencil proofs before we decided to use a
formal proof system to validate the desired bisimulation. However, these proofs have turned out to be
prone to error since they are straightforward on the one hand, but long and tedious on the other, so they
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are mainly vulnerable to slow-down of concentration. During our formal verification, we in fact found
several errors in both our machines and our proofs, which were quite obvious afterwards, but had not
been found before. We decided to put the whole paper-and-pencil proof in the web2, so readers can
make up their own minds.

6.1.2 Definition of the SimulatorSimH

The SimulatorSimH is placed between the trusted hostTHOSM
H and the adversaryA, see Fig-

ure 7. Its ports are given by{to advu?, from advu !, from advu
⊳! | u ∈ H} ∪ {from adv′u?, to adv′u !,

to adv′u
⊳! | u ∈ H}. The first set contains the ports connected toTHOSM

H , the ports of the second
set are for communication with the adversary. This means that we have to rename the portsto advu?,
from advu !, and from advu

⊳! of the adversary intoto adv′u?, from adv′u !, and from adv′u
⊳!, respec-

tively. (Port renaming is permitted in simulatability proofs, since the view is defined independently
from the port names.)

States.

Internally,SimH maintains four arrays:

• (init simu,v)u,v∈M over{0, 1},

• (stopped sim
u )u∈H over{0, 1},

• (msg out simu,v)u∈A,v∈H over{0, . . . ,max in user(k)}.

All three arrays are initialized with0 everywhere.

Inputs and their Evaluation.

We now define the behavior of the simulator. The length functions are again determined by the respective
domains. In most casesSimH simply forwards inputs to their corresponding outputs, modifying some
internal values.

2http://www.zurich.ibm.com/∼mbc/PVS/OrdSecMess.tgz
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• Send initialization:(snd init) at to advu?:

Setinit simu,u := 1 and output(snd init) at to adv′u !, 1 at to adv′u
⊳!.

• Receive initialization:(rec init, u) at from adv′v? for u ∈ M:

If stopped sim
u = 0 andinit simu,v = 0 and[u ∈ H =⇒ init simu,u = 1] setinit simu,v := 1 and output

(rec init, u) at from advv !, 1 at from advv
⊳!.

• Send:(send blindy, i, l′, v) at to advu? for v ∈ H, l′ ≤ max len(k), i ≤ n ·max in user(k):

Setl := l′ + c(k) and output(send blindy, i, l, v) at to adv′u !, 1 at to adv′u
⊳!.

• Send 2:(send,m, v) at to advu? for v ∈ M, m ∈ Σ∗, len(m) ≤ max len(k) + c(k):

Output(send,m, v) at to adv′u ! and1 at to adv′u
⊳!.

• Receive from honest partyu: (receive blindly, u, i) at from adv′v? for u ∈ H:

If stopped sim
v = 0 then output(receive blindly, u, i) at from advv ! and1 at from advv

⊳!.

• Receive from dishonest partyu: (receive, u,m′) at from adv′v? with u ∈ A, len(m′) ≤
max len(k) + c(k):

Decomposem′ := (m,num): If stopped sim
v = 0, initsimv,v = 1, init simu,v = 1, num ≥ msg out simu,v

(num = msg out simu,v in the perfect ordered system), setmsg out simu,v := num + 1, and output
(receive, u,m) at from advv !, 1 at from advv

⊳!.

• Stop:(stop) at from adv′u?:

If stopped sim
u = 0, setstopped sim

u := 1 and output(stop) at from advu !, 1 at from advu
⊳!.

If a trash input occurs atto advu?, SimH forwards this input toto adv′u !; trash inputs atfrom adv′u? are
ignored.

The simulator essentially recalculates the length of messagem into len((m,num)) to achieve indis-
tinguishability. Furthermore it decomposes messages sentby the adversary, maybe sorting them out, in
order to achieve identical outputs in both systems. Now the overall adversaryA′ is defined by combining
A andSimH.

It is easy to see that this combination is polynomial-time incase of a polynomial-time adversary:
Each transition ofSimH is surely polynomial-time andSimH only accepts inputs of polynomial length
at the portsto advu?. By construction, every such input (either “send initialization”, “send”, or “trash”)
will cause the simulator to schedule the adversary subsequently. Since the remaining ports of the simu-
lator are connected to the adversary, there has to at least one step of the adversary after a polynomially
bounded number of steps of the simulator. However, since theadversary is polynomial-time, it will
enter a final state after a polynomial number of steps, which implies that the steps of the combined ma-
chine are also polynomially bounded at the time the adversary halts. Since the definition of combination
(cf. [68] ensures that a combined machine enters final state as soon as a contained master scheduler
enters final state, we conclude that the combination of a polynomial-time adversary (which is a master
scheduler) and the simulatorSimH is polynomial-time.

6.1.3 The Ordering Property of the Real Ordered System

We finally address the ordering property of the real ordered system. If the ordering propertyReqOSM for
the specification (Theorem 4.1) and the simulatability property between the specification and the real
ordered system (Theorem 6.1) has been proved, it follows easily that the real ordered system also fulfills
the propertyReqOSM, which is captured in the following theorem.
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Theorem 6.2 (Ordering Property of the Real System for Ordered Secure Message Transmission)
Let SysOSM,real

n,L,E,S be the real system for ordered secure message transmission defined in Section 5.4

for arbitrary parametersn,L, E ,S, and letReqOSM be the integrity property of Definition 4.1. Then
Sys

OSM,real
n,L,E,S |=poly ReqOSM provided that the encryption and signature schemes used aresecure. ✷

Proof. Theorem 6.1 yields the relationSysOSM,real
n,L,E,S ≥poly

sec Sys
OSM,spec
n,L , and Theorem 4.1 gives

Sys
OSM,spec
n,L |=perf ReqOSM, which impliesSysOSM,spec

n,L |=poly ReqOSM. Now Theorem 3.1 implies

Sys
OSM,real
n,L,E,S |=poly ReqOSM, since membership inReqOSM(SOSM

H ) is decidable in polynomial time for

all SOSM
H , since the send-list and the receive-list are of polynomiallength in a polynomial-time config-

uration.

7 Formal Verification of the Bisimulation

In this section, we describe how Theorem 6.1 is formally verified in the theorem proving system
PVS [63]. As we already showed in the previous section, it is sufficient to prove that the two collections
M̂hybr andM̂spec are contained in a deterministic bisimulation.

7.1 Defining the Machines in PVS

In order to do so, we first describe how the machines are formalized in PVS. We subsequently made
minor adaptations in the definition of the machines to deal with polynomial runtime more concisely,
which do not invalidate the proof.3

Since the formal machine descriptions are too large to be given here completely, we use the machine
THOSM

H as an example. The complete machine descriptions and the proof are available online.4

We denote the number of participating machines byN , and for a given subsetH ∈ {1, . . . , N},
we denote the number of honest users byM := #H. As defined in Section 4.2, the machineTHOSM

H
has2M input ports{inu?, from advu? | u ∈ H}. In PVS, we number these input ports1, . . . , 2M ,
where we identify1, . . . ,M with the user ports andM+1, . . . , 2M with the adversary ports. Similarly,
THOSM

H has output ports{outu !, to advu ! | u ∈ H}, which also are numbered1, . . . , 2M . In PVS, we
define the following types to denote machines, honest users,and ports:

MACH: TYPE = subrange(1,N) %% machines
USERS: TYPE = subrange(1,M) %% honest users
PORTS: TYPE = subrange(1,2*M) %% port numbers

Thesubrange(i,j) type is a PVS built-in type denoting the integersi, . . . , j. We further define a
typeSTRING to represent messages.

In Section 4.2.3, the different possible inputs to machineTHOSM
H are listed, e.g.,(snd init),

(rec init, u), . . . In PVS, the type of input ports is defined using a PVS abstract datatype [62]. The
prefix m1i in the following stands for “inputs of machine 1”, which isTHOSM

H , and is used to distin-
guish between inputs and outputs of the different machines.

m1_in_port: DATATYPE
BEGIN
m1i_snd_init: m1i_snd_init?

3Unfortunately, we are currently not able to incorporate these changes in the PVS proof, since PVS is not freely accessible
for commercial use, which prohibits us from using it as we arecurrently affiliated with IBM. The existing proof was developed
when the authors were affiliated with Saarland University.

4http://www.zurich.ibm.com/∼mbc/PVS/OrdSecMess.tgz
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m1i_rec_init(u: MACH): m1i_rec_init?
m1i_send(m: STRING, v: MACH): m1i_send?
m1i_receive_blindly(u: USERS, i: posnat): m1i_receive_blindly?
m1i_receive(u: MACH, m: STRING): m1i_receive?
m1i_stop: m1i_stop?

END m1_in_port

This defines an abstract datatype withconstructorsm1i snd init, m1i rec init etc. For ex-
ample, for givenu, i, m1i receive blindly(u,i) constructs an instance of the above datatype,
which we identify with(receive blindly, u, i). Given an instancep of this datatype, we can use the
recognizerson the right side of the definition to distinguish between thedifferent forms. For exam-
ple, m1i receive blindly?(p) checks whether the instancep of the m1i in port datatype
was constructed from them1i receive blindly constructor. If it was, the componentsu and i
can be restored using theaccessor functionsu(·) andi(·); for example,u(p) returns theu component
of p. The accessor functions may be overloaded for different constructors (e.g.,u is overloaded in
m1i rec init, m1i receive blindly andm1i receive).

The machineTHOSM
H performs a step iff exactly one of the input ports is active. In this case, we call

the inputok, otherwisegarbage. The type of the complete inputs toTHOSM
H comprising all2M input

ports is therefore either garbage, or the numberu of the active port together with the inputp on portu.
This is formalized in the following PVS datatype:

M1_INP: DATATYPE
BEGIN
m1i_garbage: m1i_garbage?
m1i_ok(u: PORTS, p: m1_in_port): m1i_ok?

END M1_INP

Similar datatypesm1 out port andM1 OUT are defined to denote the type of individual outputs, and
the type of the complete output ofTHOSM

H , respectively.
Next we define the state type ofTHOSM

H . As defined in Section 4.2.2, this state consists of seven
one- or two-dimensional arrays. In PVS, arrays are modeled as functions mapping the indices to the
contents of the array. For example[MACH,USERS -> nat] defines a two-dimensional array of
natural numbers, where the first index ranges overM, and the second ranges overH. The state type of
THOSM

H is defined as a record of such arrays. There is only one small exception: the arraydeliverOSM
u,v

stores lists of tuples(m, i) (e.g., see the “Send” transition), wherem is a string andi ∈ N. It is
convenient in PVS to decompose this array of lists of tuples into two arrays of lists, where the first array
deliverOSM

u,v stores lists of messagesm, and the second arraydeliv iOSM
u,v stores lists of naturalsi. Lists

are defined as a recursive algebraic abstract datatype in thePVS library [62]. Altogether, this yields a
state type of eight arrays:

M1_STATE: TYPE = [# init_spec: [MACH,MACH -> bool],
sc_in_spec: [USERS -> nat],
msg_in_spec: [USERS,MACH -> nat],
msg_out_spec: [USERS,USERS -> posnat],
sc_out_spec: [USERS -> nat],
deliver_spec: [USERS,USERS -> list[STRING]],
deliv_i_spec: [USERS,USERS -> list[posnat]],
stopped_spec: [USERS -> bool] #]

The initial statem1 init is defined as a constant of typeM1 STATE:

M1_init: M1_STATE = (#
init_spec := LAMBDA (w1,w2: MACH): FALSE,
...
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deliv_i_spec := LAMBDA (u1,u2: USERS): null,
stopped_spec := LAMBDA (u1: USERS): FALSE #)

The constructornull denotes the empty list. The machineTHOSM
H is now formalized in PVS as a next-

state/output function mapping current state and inputs to the next state and outputs. We exemplarily give
the first few lines of the PVS code:

M1_ns(S: M1_STATE, I: M1_INP): [# ns: M1_STATE, O: M1_OUT #] =
IF m1i_garbage?(I) THEN

(# ns:=S, O:=m1o_garbage #)
%% do not change the state, output nothing

ELSE
LET ua1=ua(I), p=p(I) IN

%% ua1 is the active port number,
%% p is the input on this port

IF ua1<=M AND m1i_snd_init?(p) THEN
%% we have a send-init on a user port (<=M);
IF S‘sc_in_spec(ua1)<s1k AND NOT S‘stopped_spec(ua1) THEN

IF S‘init_spec(ua1,ua1) THEN
(# ns:=S WITH [ ‘sc_in_spec(ua1) := sc_in_spec(ua1)+1,

O:=m1o_garbage #)
%% increment sc_in_spec, but do not send any output

ELSE
(# ns:=S WITH [ ‘sc_in_spec(ua1) := sc_in_spec(ua1)+1,

‘init_spec(ua1,ua1) := TRUE ],
O := m1o_ok(M+ua1, m1o_snd_init) #)

%% increment sc_in_spec, set init_spec(ua1,ua1):=true
%% send m1o_snd_init to adversary port M+ua1

ENDIF
ELSE %% otherwise do nothing

(# ns:=S, Out:=m1o_garbage #)
ENDIF

ELSIF ua1>M AND m1i_rec_init?(p) THEN
...

In a similar way we have formalized the machinesTHSM
H , {Mfilt

u | u ∈ H}, andSimH. TheM ma-
chinesMfilt

u in the left part of Figure 7 have been combined into a single machine in PVS; however,
this is only syntactic and does not change the semantics. Thecombination of the machinesTHSM

H and
{Mfilt

u | u ∈ H} respectivelyTHOSM
H andSimH is straightforward by composition of the correspond-

ing state transition functions: An input fromH is always first handled by a machineMfilt
u andTHOSM

H ,
and then byTHSM

H andSimH, respectively, and vice versa. This saves us from implementing the full
asynchronous scheduling algorithm in PVS for this example.

The only non-trivial choice we have made in the transliteration of the machines to PVS is the type
of the input- and output-ports. In a previous attempt, we didnot use the abstract datatype definition of
M1 INP, but definedM1 INP as an array of2M individual input ports; in order to model non-active
ports, we added anm1i inactive form to the input port typem1i in port. An input fromM1 INP
was defined to beok iff exactly one of the ports is different fromm1i inactive. This obviously mod-
els the same valid inputs as the definition ofM1 INP above. The problem with the array definition is that
extracting the active port numberu involves an application of the choice-functionε in order to choose
the indexu of the array for which the port is active. The application of the choice-function considerably
complicates the proofs in PVS, since the definition ofε is not constructive in PVS. In contrast, in the
definition using the abstract datatype, the active port numberu can be constructively extracted from the
input by applying the accessor function of the abstract datatype. Due to constructiveness, the proofs in
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PVS become much simpler. This problem in the port definition also applies to the output ports of the
machines.

The rest of the transliteration of the machine definitions toPVS is straightforward. In the following,
we revert to standard mathematical notation for the sake of brevity and readability.

7.2 Proving the Bisimulation

In order to prove Lemma 6.1, we consider the following predicates on the states of the collectionsM̂hybr

andM̂spec and show them to be invariant.

• Stop Flags:This invariants consists of two subparts:

– ∀u ∈ H : stoppedOSM
u = stopped filt

u ∧ stoppedSM
u = stopped sim

u ,

– ∀u ∈ H : stoppedSM
u = 0 ⇒ stoppedOSM

u = 0,

• Inputs Counters:∀u ∈ H : sc infilt
u = sc inOSM

u ,

• Output Counters:∀u ∈ H : sc outfiltu = sc outOSM
u ,

• Initialization Arrays:∀u ∈ H, w ∈ M : initSMw,u = init simw,u = initOSM
w,u ,

• User Messages:∀u ∈ H, w ∈ M : msg infilt
u,w = msg inOSM

u,w ,

• Network Messages:This invariant consists of two subparts:

– ∀u,w ∈ H : msg outfiltw,u = msg outOSM
w,u ,

– ∀u ∈ H with sc outOSM
u < max in adv(k), w ∈ M \H : msg outfiltw,u = msg out simw,u,

• Message Array Content:∀u, v ∈ H : deliverSMu,v = deliverOSM
u,v ∧ deliv iSMu,v = deliv iOSM

u,v ,

• Message Array Length:∀u, v ∈ H : length(deliverSMu,v ) = length(deliv iSMu,v ), wherelength is
the PVS function delivering the length of lists,

• Message Array Length 2:∀u, v ∈ H : length(deliverOSM
u,v ) = length(deliv iOSM

u,v ).

Each of the 9 invariants is formalized as a predicateφi(Shybr, Sspec) on the current states of the two
collectionsM̂hybr andM̂spec. The conjunction of all theφi yields the bisimulation relationφ. Let δhybr
andδspec denote the overall transition function of the machine collectionsM̂hybr andM̂spec, respectively.
The following theorem asserts that the invariants indeed are invariants of these collections:

Theorem 7.1 LetShybr andSspec be states of the two collectionŝMhybr andM̂spec such that all invari-
antsφi(Shybr, Sspec), 1 ≤ i ≤ 9 hold. The transition functionsδhybr, δspec preserve the invariants, i.e.,
for an arbitrary overall inputI of M̂hybr andM̂spec we have

φi(S
′
hybr, S

′
spec) ∀i, 1 ≤ i ≤ 9

with (S′
hybr,Ohybr) := δhybr(Shybr,I) and (S′

spec,Ospec) := δspec(Sspec,I). Furthermore, the initial
statesinitialhybr andinitialspec satisfy all9 invariants. ✷

In PVS, this theorem is split into 9 lemmas, one for each invariant. Using the invariantsφi, we prove
the following theorem:
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Theorem 7.2 LetShybr andSspec be states satisfying all invariantsφi(Shybr, Sspec), 1 ≤ i ≤ 9, and let
I be an overall input of the collectionŝMhybr andM̂spec. Then both collections make the same outputs
on all ports to the users and the adversary. ✷

Together, Theorems 7.1 and 7.2 prove that the two systems arebisimilar, which finishes the proof of
Lemma 6.1, and hence also the proof of Theorem 6.1.

7.3 Verification Effort

The manual proof effort in PVS is rather small. The proofs make heavy use of the built-in PVS strategy
(grind), which expands definitions and performs automatic case-splitting. The main effort was to fig-
ure out the correct parameters for the(grind) command. The proof goals not resolved by(grind)
were proved with little manual assistance. However, looking for errors and thinking about the necessary
modifications of the machines was a time-consuming task. During our proof attempts, we simultane-
ously debugged the machines until we finally found the correct specifications of all machines. After
that, the proof itself turned out to be quite easy. Altogether, the formalization of the machines in PVS
took 2 weeks, and the development of the proofs took another week (given prior familiarity with PVS).
A complete checking of the proof takes about one hour on a 600 MHz Athlon processor.

8 Verification of the Ordered Channel Specification

In this section, we formally verify Theorem 4.1, i.e., that message reordering in our specification of
Section 4 is in fact prevented. the property seems to hold by construction, but experience shows that
such proofs made by ‘simply looking’ are often flawed. Even ifproofs of this kind are made by hand
in a rigorous way, they often turn out to be apparently straightforward and dull which yields proofs
with faults and imperfections. Following our approach of the previous section, we formally verify the
integrity property in PVS. This will be described in the following. For reasons of readability and brevity,
we again use standard mathematical notation instead of PVS syntax. The PVS sources are available
online.4

According to Definition 2.1, we assume that the machineTHOSM
H operates on an input setITHOSM

H

(shortI), a state setStatesTHOSM
H

(shortS ), and an output setOTHOSM
H

(shortO). For convenience, the
(deterministic) transition functionδTHOSM

H

: I×S → S×O is split intoδ : I×S → S andω : I×S → O,
which denote the next-state and output part ofδTHOSM

H

, respectively.
In order to formulate the property, we need a PVS-suited, formal notation of (infinite) runs of a

machine, of lists, of what it means that a listl1 is a sublist of a listl2, and we need formalizations of the
receive-listandsend-list.

Definition 8.1 (Input sequence, state trace, output sequence) LetM be a machine with input setIM,
state setStatesM, output setOM, state transition functionδ, and output transition functionω. Call
sinit ∈ StatesM the initial state. Aninput sequencei : N → IM for machineM is a function mapping
the time (modeled as the setN) to inputsi(t) ∈ IM. A given input sequencei defines a sequence of
statessi : N → StatesM of the machineM by the following recursive construction:

si(0) := sinit,

si(t+ 1) := δ(i(t), si(t)).

The sequencesi is calledstate-trace ofM underi. Theoutput sequenceoi : N → O of the run is defined
as

oi(t) := ω(i(t), si(t)).
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We omit the indexi if the input sequence is clear from the context. For components x of the state type,
we writex(t) for the content ofx in s(t). For example, we writedeliverOSM

u,v (t) to denote the content at

timet of the listdeliverOSM
u,v , which is part of the state ofTHOSM

H . ✸

In the context ofTHOSM
H , the input sequencei consists of the messages that the honest users and the

adversary send toTHOSM
H .

As our upcoming definitions uses the PVS-intern terminologyof lists, we restate the definition
from [62], and further give the definition of sublists.

Definition 8.2 (Lists) A list over type Tis the closure of applications of the constructornull yielding
an empty list, and the constructorcons(car : T, cdr : list[T ]) yielding a list with headcar and tail cdr.
It holdscar(cons(t, l)) = t andcdr(cons(t, l)) = l. The predicatesnull?(l) andcons?(l) are used to
test whetherl is empty or non-empty, respectively. PVS provides functions length(l), append(t, l), and
nth(l, i) to measure the length of a listl, to append an elementt at the end of the listl, and to access
theith element ofl (counted from 0). ✸

Definition 8.3 (Sublists) A list l1 is called sublist of a listl2 (written l1 ⊆ l2) iff the following recursive
predicate is satisfied:

l1 ⊆ l2 : ⇐⇒ null?(l1)∨
cons?(l1)∧

(
car(l1) = car(l2) ∧ cdr(l1) ⊆ cdr(l2)
∨ l1 ⊆ cdr(l2)

)
.

Letk ∈ N0. The listl1 is called sublist of thek-prefix ofl2 (written l1 ⊆k l2) iff the following recursive
predicate is satisfied:

l1 ⊆
k l2 : ⇐⇒ null?(l1)∨

cons?(l1) ∧ k ≥ 1∧
(
car(l1) = car(l2) ∧ cdr(l1) ⊆

k−1 cdr(l2)
∨ l1 ⊆

k−1 cdr(l2)
)
.

✸

The following lemma summarizes some facts on lists and sublists:

Lemma 8.1 Let l1, l2, l3 be lists over some typeT , let t ∈ T , andk, k′ ∈ N0. It holds:

1. k ≤ length(l1) =⇒ nth(append(t, l1), k) =

{
nth(l1, k) if k < length(l1)

t otherwise

2. l1 ⊆ l2 =⇒ l1 ⊆ append(t, l2)

3. l1 ⊆ l2 =⇒ append(t, l1) ⊆ append(t, l2)

4. l1 ⊆k l2 =⇒ l1 ⊆
k append(t, l2)

5. k < length(l2) ∧ l1 ⊆
k l2 =⇒ append(nth(l2, k), l1) ⊆

k+1 l2,
that is, one may append thekth element (counted from 0) ofl2 to l1 while preserving the prefix-
sublist property.

6. k′ ≥ k ∧ l1 ⊆
k l2 =⇒ l1 ⊆

k′ l2

7. l1 ⊆k l2 =⇒ l1 ⊆ l2
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8. l1 ⊆ l2 ∧ l2 ⊆ l3 =⇒ l1 ⊆ l3

✷

All claims are proved by induction on the recursive structure of the lists.

Definition 8.4 (Receive- and send-list)Let i be an input sequence for machineTHOSM
H , and lets and

o be the corresponding state-trace ofTHOSM
H and the output sequence, respectively. Letu, v ∈ H. The

receive-list is obtained by appending a new elementm wheneverv receives a message(receive,m, u)
from THOSM

H . The send-list is obtained by appendingm wheneveru sends a message(send,m, v) to
THOSM

H . Formally, this is captured in the following recursive definitions:

recvlistiu,v(t) :=





null if t = −1,

append(m, recvlistiu,v(t− 1)) if t ≥ 0 ∧ oi(t) = (receive,m, u)

at outv !.

recvlistiu,v(t− 1) otherwise

sendlistiu,v(t) :=





null if t = −1,

append(m, sendlistiu,v(t− 1)) if t ≥ 0 ∧ i(t) = (send,m, v)

at inu?.

sendlistiu,v(t− 1) otherwise

✸

We now are ready to give a precise, PVS-suited formulation ofTheorem 4.1, i.e., the integrity property
we are aiming to prove:

Theorem 8.1 For anyTHOSM
H input sequencei, for anyu, v ∈ H, u 6= v, and any point in timet ∈ N,

it holds
recvlistiu,v(t) ⊆ sendlistiu,v(t). (1)

In the following, we omit the indexi. ✷

Proof (sketch).The proof is split into two parts: we proverecvlistu,v(t − 1) ⊆ deliverOSM
u,v (t) and

deliverOSM
u,v (t) ⊆ sendlistu,v(t− 1). The claim of the theorem then follows from Lemma 8.1.8.

The second claimdeliverOSM
u,v (t) ⊆ sendlistu,v(t − 1) is proved by induction ont. Both induction

base and step are proved in PVS by the built-in strategy(grind), which performs automatic definition
expanding and rewriting with Lemma 8.1.

The first claimrecvlistu,v(t−1) ⊆ deliverOSM
u,v (t) is more complicated. The claim is also proved by

induction ont. However, it is easy to see that the claim is not inductive: incase of a(receive blindly, u, i)
at from advv?, THOSM

H outputs(receive,m, u) to outv !, where(m, j) := deliverOSM
u,v [i], i.e.,m is the

ith message of thedeliverOSM
u,v list. By the definition of the receive-list, the messagem is appended

to recvlistu,v. In order to prove thatrecvlistu,v ⊆ deliverOSM
u,v is preserved during this transition, it is

necessary to know that the receive list was a sublist of the prefix of thedeliverOSM
u,v list that does not

reach tom. It would suffice to know that

recvlistu,v(t− 1) ⊆i deliverOSM
u,v (t).

Then the claim follows from Lemma 8.1.5.
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We therefore strengthen the invariant to comprise the prefix-sublist property. However, thei in the
above prefix-sublist relation stems from the input(receive blindly, u, i), and hence is not suited to state
the invariant. To circumvent this problem, we recursively construct a sequencelast rcv blindlyu,v(t)

which holds the parameteri of the last valid(receive blindly, u, i) received byTHOSM
H at from advv?;

then
recvlistu,v(t− 1) ⊆l deliverOSM

u,v (t) with l = last rcv blindlyu,v(t)

is an invariant of the system. We further strengthen this invariant by asserting thatlast rcv blindlyu,v(t)

and thej’s stored in thedeliverOSM
u,v list grow monotonically. Together this yields the inductive invariant.

We omit the details and again refer the to the PVS files available online.

8.1 Verification Effort

Together, the development of the inductive invariant and its proof took 2 weeks, which included some
failed approaches in strengthening the invariant to becomeinductive. The proof of the invariant takes
500 proof commands. A further week and 350 proof commands were needed for the development of
the sublist theory, which can be reused in future verification projects. The main difficulty during the
verification of the invariant was finding the stronger inductive invariant. Once the correct invariant was
found, its proof was quite easy. Before we started the formalverification, we had a hand-written proof
of Theorem 8.1. However, the proof was incomplete in the sense that we did not prove some needed
invariants; in fact, we did not even notice that we used theseinvariants in our hand-made proofs, because
of our intuitive understanding of the system.

9 Conclusion and Outlook

In this paper, we have addressed the problem how cryptographic protocols in asynchronous networks
can be verified both machine-aided and sound with respect to the definitions of cryptography. We
have established a preservation theorem for integrity properties stating that the verification of integrity
properties of abstract specifications automatically carries over to the concrete implementations if the
implementation is secure in the sense of simulatability. Moreover, we have shown that logic deriva-
tions among integrity properties are valid for the concretesystems in the cryptographic sense, which
makes them accessible to theorem provers. As an example, we have presented a specification of secure
message transmission with ordered channels, which we formally validated using the theorem proving
system PVS. Furthermore, we used formally verified bisimulations to derive a secure implementation.
Together with the preservation theorem these results implythat the correctness of the verified property is
equivalent to the security of the underlying cryptographicprimitives, i.e., if the primitives for encryption
and digital signatures are secure with respect to their respective security definitions, the integrity prop-
erty holds for the concrete implementation. This yields thefirst formal verification of a cryptographic
protocol that is sound with respect to the cryptographic definitions. We hope that our work paves the
way for the actual use of automatic proof tools for many similar cryptographically faithful proofs of
security protocols.

Acknowledgments

We thankMichael SteinerandMichael Waidnerfor interesting discussions.

34



References

[1] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. InProc.
4th International Symposium on Theoretical Aspects of Computer Software (TACS), pages 82–94,
2001.

[2] M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computational soundness
of formal encryption. InProc. 1st IFIP International Conference on Theoretical Computer Science,
volume 1872 ofLecture Notes in Computer Science, pages 3–22. Springer, 2000.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness
of formal encryption).Journal of Cryptology, 15(2):103–127, 2002.

[4] M. Backes. A cryptographically sound dolev-yao style security proof of the Otway-Rees proto-
col. In Proceedings of 9th European Symposium on Research in Computer Security (ESORICS),
volume 3193 ofLecture Notes in Computer Science, pages 89–108. Springer, 2004.

[5] M. Backes. Quantifying probabilistic information flow in computational reactive systems. In
Proceedings of 10th European Symposium on Research in Computer Security (ESORICS), volume
3679 ofLecture Notes in Computer Science, pages 336–354. Springer, 2005.

[6] M. Backes. Unifying simulatability definitions in cryptographic systems under different timing
assumptions.Journal of Logic and Algebraic Programming (JLAP), 2:157–188, 2005.

[7] M. Backes and M. Duermuth. A cryptographically sound Dolev-Yao style security proof of an
electronic payment system. InProceedings of 18th IEEE Computer Security Foundations Work-
shop (CSFW), pages 78–93, 2005.

[8] M. Backes, M. Duermuth, D. Hofheinz, and R. Kuesters. Conditional reactive simulatability. In
Proceedings of 11th European Symposium on Research in Computer Security (ESORICS), volume
4189 ofLecture Notes in Computer Science, pages 424–443. Springer, 2006. Preprint on IACR
ePrint 2006/132.

[9] M. Backes and D. Hofheinz. How to break and repair a universally composable signature func-
tionality. In Proceedings of 7th Information Security Conference (ISC), volume 3225 ofLecture
Notes in Computer Science, pages 61–72. Springer, 2004. Preprint on IACR ePrint 2003/240.

[10] M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of security
protocols. InProc. 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 2607 ofLecture Notes in Computer Science, pages 675–686. Springer, 2003.

[11] M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound implementations using
composition and formally verified bisimulation. InProc. 11th Symposium on Formal Methods Eu-
rope (FME 2002), volume 2391 ofLecture Notes in Computer Science, pages 310–329. Springer,
2002.

[12] M. Backes and P. Laud. Computationally sound secrecy proofs by mechanized flow analysis. In
Proceedings of 13th ACM Conference on Computer and Communications Security (CCS), pages
370–379, 2006.

[13] M. Backes, S. Moedersheim, B. Pfitzmann, and L. Vigano. Symbolic and cryptographic analysis
of the secure WS-ReliableMessaging Scenario. InProceedings of Foundations of Software Science

35



and Computational Structures (FOSSACS), volume 3921 ofLecture Notes in Computer Science,
pages 428–445. Springer, 2006.

[14] M. Backes and B. Pfitzmann. Computational probabilistic non-interference.International Journal
of Information Security (IJIS), 3(1):42–60, 2004.

[15] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-
Lowe public-key protocol.IEEE Journal on Selected Areas of Computing (JSAC), 22(10):2075–
2086, 2004.

[16] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style crypto-
graphic library. InProceedings of 17th IEEE Computer Security Foundations Workshop (CSFW),
pages 204–218, 2004.

[17] M. Backes and B. Pfitzmann. Limits of the cryptographic realization of Dolev-Yao-style XOR. In
Proceedings of 10th European Symposium on Research in Computer Security (ESORICS), volume
3679 ofLecture Notes in Computer Science, pages 178–196. Springer, 2005.

[18] M. Backes and B. Pfitzmann. Relating cryptographic und symbolic secrecy.IEEE Transactions
on Dependable and Secure Computing (TDSC), 2(2):109–123, 2005.

[19] M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial liveness.Journal of Computer
Security, 12(3-4):589–617, 2004.

[20] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested op-
erations (extended abstract). InProc. 10th ACM Conference on Computer and Communications
Security, pages 220–230, 2003.

[21] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library.IACR
Cryptology ePrint Archive, 2003:15, 2003.

[22] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive
system. InProceedings of 1st Theory of Cryptography Conference (TCC), volume 2951 ofLecture
Notes in Computer Science, pages 336–354. Springer, 2004.

[23] M. Backes, B. Pfitzmann, and M. Waidner. Low-level idealsignatures and general integrity ide-
alization. InProceedings of 7th Information Security Conference (ISC), volume 3225 ofLecture
Notes in Computer Science, pages 39–51. Springer, 2004.

[24] M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems.IACR Cryptol-
ogy ePrint Archive, 2004:82, 2004.

[25] M. Backes, B. Pfitzmann, and M. Waidner. Reactively secure signature schemes.International
Journal of Information Security (IJIS), 4(4):242–252, 2005.

[26] M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable crypto-
graphic library.International Journal of Information Security (IJIS), 4(3):135–154, 2005.

[27] D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4(2):75–122, 1991.

[28] G. Bella, F. Massacci, and L. C. Paulson. The verification of an industrial payment protocol: The
set purchase phase. InProc. 9th ACM Conference on Computer and Communications Security,
pages 12–20, 2002.

36



[29] M. Bellare, T. Kohno, and C. Namprempre. Authenticatedencryption in ssh: Provably fixing
the ssh binary packet protocol. InProc. 9th ACM Conference on Computer and Communications
Security, pages 1–11, 2002.

[30] M. Bellare and P. Rogaway. Entity authentication and key distribution. InAdvances in Cryptology:
CRYPTO ’93, volume 773 ofLecture Notes in Computer Science, pages 232–249. Springer, 1994.

[31] D. Bleichenbacher. Chosen ciphertext attacks againstprotocols based on the RSA encryption
standard PKCS. InAdvances in Cryptology: CRYPTO ’98, volume 1462 ofLecture Notes in
Computer Science, pages 1–12. Springer, 1998.

[32] R. Canetti. Security and composition of multiparty cryptographic protocols.Journal of Cryptology,
3(1):143–202, 2000.

[33] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–145, 2001.
Extended version in Cryptology ePrint Archive, Report 2000/67, http://eprint.iacr.
org/.

[34] Z. Dang and R. Kemmerer. Using the ASTRAL model checker for cryptographic protocol analy-
sis. InProc. DIMACS Workshop on Design and Formal Verification of Security Protocols, 1997.
http://dimacs.rutgers.edu/Workshops/Security/.

[35] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition (extended ab-
stract). InProc. 1st ACM Workshop on Formal Methods in Security Engineering (FMSE), pages
11–23, 2003.

[36] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Communications of
the ACM, 24(8):533–536, 1981.

[37] Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. InAdvances
in Cryptology: EUROCRYPT 2000, volume 1807 ofLecture Notes in Computer Science, pages
557–572. Springer, 2000.

[38] D. Dolev and A. C. Yao. On the security of public key protocols.IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

[39] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication protocols.
In Proc. International Conference on Theorem Proving in Higher Order Logics (TPHOL), volume
1275 ofLecture Notes in Computer Science, pages 121–136. Springer, 1997.

[40] D. Fisher. Millions of .Net Passport accounts put at risk. eWeek, May 2003. (Flaw detected by
Muhammad Faisal Rauf Danka).

[41] S. Goldwasser and L. Levin. Fair computation of generalfunctions in presence of immoral major-
ity. In Advances in Cryptology: CRYPTO ’90, volume 537 ofLecture Notes in Computer Science,
pages 77–93. Springer, 1990.

[42] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28:270–299, 1984.

[43] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks.SIAM Journal on Computing, 17(2):281–308, 1988.

37



[44] J. D. Guttman, F. J. Thayer Fabrega, and L. Zuck. The faithfulness of abstract protocol analy-
sis: Message authentication. InProc. 8th ACM Conference on Computer and Communications
Security, pages 186–195, 2001.

[45] M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multiparty
computation.Journal of Cryptology, 13(1):31–60, 2000.

[46] C. A. R. Hoare.Communicating Sequential Processes. International Series in Computer Science,
Prentice Hall, Hemel Hempstead, 1985.

[47] D. M. Johnson and F. Javier Thayer. Security and the composition of machines. InProc. 1st IEEE
Computer Security Foundations Workshop (CSFW), pages 72–89, 1988.

[48] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis.
Journal of Cryptology, 7(2):79–130, 1994.

[49] P. Laud. Semantics and program analysis of computationally secure information flow. InProc.
10th European Symposium on Programming (ESOP), pages 77–91, 2001.

[50] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for
protocol analysis. InProc. 5th ACM Conference on Computer and Communications Security,
pages 112–121, 1998.

[51] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. InProc.
2nd International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), volume 1055 ofLecture Notes in Computer Science, pages 147–166. Springer,
1996.

[52] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco, 1996.

[53] H. Mantel. On the composition of secure systems. InProc. 23rd IEEE Symposium on Security &
Privacy, pages 88–101, 2002.

[54] D. McCullough. Specifications for multi-level security and a hook-up property. InProc. 8th IEEE
Symposium on Security & Privacy, pages 161–166, 1987.

[55] D. McCullough. A hookup theorem for multilevel security. IEEE Transactions on Software Engi-
neering, 16(6):563–568, 1990.

[56] J. McLean. A general theory of composition for trace sets closed under selective interleaving
functions. InProc. 15th IEEE Symposium on Security & Privacy, pages 79–93, 1994.

[57] J. McLean. A general theory of composition for a class of”possibilistic” security properties.IEEE
Transactions on Software Engineering, 22(1):53–67, 1996.

[58] S. Micali and P. Rogaway. Secure computation. InAdvances in Cryptology: CRYPTO ’91, volume
576 ofLecture Notes in Computer Science, pages 392–404. Springer, 1991.

[59] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adver-
saries. InProc. 1st Theory of Cryptography Conference (TCC), volume 2951 ofLecture Notes in
Computer Science, pages 133–151. Springer, 2004.

[60] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using murφ.
In Proc. 18th IEEE Symposium on Security & Privacy, pages 141–151, 1997.

38



[61] R. Needham and M. Schroeder. Using encryption for authentication in large networks of comput-
ers.Communications of the ACM, 12(21):993–999, 1978.

[62] S. Owre and N. Shankar. Abstract datatypes in PVS. Technical report, Computer Science Labora-
tory, SRI International, 1993.

[63] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. InProc. 11th Inter-
national Conference on Automated Deduction (CADE), volume 607 ofLecture Notes in Computer
Science, pages 748–752. Springer, 1992.

[64] L. Paulson. The inductive approach to verifying cryptographic protocols.Journal of Cryptology,
6(1):85–128, 1998.

[65] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems. Presented
at theDERA/RHUL Workshop on Secure Architectures and Information Flow, 1999, Electronic
Notes in Theoretical Computer Science (ENTCS), March 2000.http://www.elsevier.
nl/cas/tree/store/tcs/free/noncas/pc/menu.htm.

[66] B. Pfitzmann and M. Waidner. How to break and repair a “provably secure” untraceable payment
system. InAdvances in Cryptology: CRYPTO ’91, volume 576 ofLecture Notes in Computer
Science, pages 338–350. Springer, 1992.

[67] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems.
In Proc. 7th ACM Conference on Computer and Communications Security, pages 245–254, 2000.
Extended version (with Matthias Schunter) IBM Research Report RZ 3206, May 2000,http:
//www.semper.org/sirene/publ/PfSW1_00ReactSimulIBM.ps.gz.

[68] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. InProc. 22nd IEEE Symposium on Security & Privacy, pages
184–200, 2001.

[69] P. Rogaway. Authenticated-encryption with associated-data. InProc. 9th ACM Conference on
Computer and Communications Security, pages 98–107, 2002.

[70] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIX Workshop on
Electronic Commerce, pages 29–40, 1996.

[71] A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 80–91, 1982.

A Postponed Proofs

Proof. (Lemma 3.1) LetSA denote the set of specified ports the adversary connects to, i.e.,

SA := {p | p ∈ S \ ports(H)c}.

Roughly speaking, we will define a new machineH1 which is inserted between the system and the
adversary such thatH1 uses all ports ofSA. Combination ofH1 andH will yield the new honest userHs.
However, we will at first concentrate on the machineAs.

If the configurationconf is polynomial-time, let the adversaryA be bounded byL(k) for a poly-
nomialL and the security parameterk. We now define the new adversaryAs of confs starting with its
ports.
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• First of all, every portp ∈ ports(A) that does not connect to a specified port, i.e.pc 6∈ SA, is also
a port ofAs.

• For every simple portp ∈ ports(A) with pc ∈ SA, As has a portp′ of the same kind.

• For every clock-out portp⊳! ∈ ports(A) that connects to the specified ports, i.e.p⊳!c ∈ SA, As

has a clock-out portpcr⊳! and an additional output portpcr!.5

• As has additional portspAs
?, pH1

!, pH1

⊳! which will be needed for synchronizing the communica-
tion with H1 and portspmask back?, pmask!, pmask

⊳! needed to make the machineH1 polynomial-
time in case of a polynomial-time configurationconf .

We assume without loss of generality that all these primed and additional ports are new ports of the
configuration. Internally,As maintains an arrayO′ save = (O ′ savep⊳!)p⊳!∈ports(As) overΣ+ initialized
with ǫ everywhere and two arrays(out buff p!)p!∈Sc

A
and(maskedp?)p?∈Sc

A
over{0, 1} initialized with

0 everywhere.
The arrayout buff will be used to indicate the buffers betweenA and the corresponding specified

ports of the system which have nonempty contents. The arraymasked will be used to explicitly tellH1

which input ports it has to “cut off”, i.e., which ports it hasto mask with a length bound0.
The behavior ofAs is now defined as follows. On an arbitrary given outputO = (Op)p∈ports(A) and

the given states′ of the blackboxA, the corresponding outputO′ = (O′
p)p∈ports(As) of As is derived by

the following algorithm. Initially, all components ofO′ are set toǫ. They are automatically reset toǫ at
every call ofδA.

• Preliminary Step:First of all,As checks whetherA masked one of its own input ports connected
to the specified ports using a zero length bound, which it can easily do, because it knows the
current states′ of the blackbox. For every masked input portp? 6∈ S c

A, i.e., a port connected to
an unspecified port of the system, it masks this input too; forevery non-masked input port of this
kind, it sets the length bound to the runtime ofA in the polynomial case and to infinity in the
remaining cases. For every masked input portp? ∈ S c

A, it setsmaskedp? := 1. Afterwards, it sets
O save := O (i.e., it saves the whole output tuple, since it will need thetuple after it has been
scheduled byH1 again) and encodes the whole arraymasked into c ∈ Σ∗. Finally, it outputsc at
pmask!, 1 atpmask

⊳!. Informally speaking,As has to tellH1 which ports it should mask, so it stores
them in the arraymasked and sends the whole array toH1.

• Step 1:p! 6∈ S c
A: At first, As simply goes through the tuple and setsO′

p! = Op! for every portp!
with p! 6∈ S c

A. This case ensures that outputs to itself, to the system, andto the original honest
userH will simply be forwarded.

• Step 2: p! ∈ S c
A: Then,As goes through the tuple and setsO′

p′! = Op! for every portp! with
p! ∈ S c

A. If Op! 6= ǫ, As additionally setsout buffp′! := 1, i.e., it stores which buffers betweenAs

andH1 have nonempty content.

So far we have considered outputs at the simple ports ofA. NowAs goes through the tuple and searches
for the first nonempty output at a clock-out portp⊳!.

• Step 3:p⊳! ∈ S c
A: If A outputsc at a clock-out portp⊳! ∈ S c

A, A′ encodesc and the whole array
out buffp into c′ ∈ Σ+. It then setsO′

pcr!
= c′, O′

pcr⊳!
= 1, andout buffp = 0 for all elements of

5The indexcr serves as an abbreviation for “clocking request”. These ports will later be used to tellH1 which buffer it has
to schedule.
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the array and outputsO′. Informally speaking,As tellsH1 what buffer have nonempty contents at
the moment, and that it should schedule thec-th message of buffer̃p afterwards.

• Step 4: p⊳! 6∈ S c
A or no non-empty clock output at all: If A outputsc at p⊳! with p⊳!c 6∈ SA,

As encodes the whole arrayout buffp into c′ ∈ Σ+ as in the previous step but containing the
number0 instead of the numberc. It then setsO′

pH1 !
:= c′, O′

pH1
⊳! := 1, O′ savep⊳! := c, and

out buffp = 0 for all elements of the array and outputsO′.

We again briefly sketch the intuition behind this case. Messages intended for the system are
directly output, but no message is immediately scheduled. Again,As tells H1 all necessary in-
formation for delivering messages to the specified ports, but additionally, it stores which buffer it
has to schedule afterwards. Anticipating,H1 will give back control toAs by construction after he
delivered the messages to the specified ports, soAs will be able to schedule the desired bufferp̃.

If there is no nonempty clock output,As acts identically but setsO′ savep⊳! := ǫ instead. This
ensures that no buffer will be scheduled after the control comes back fromH1 toAs, so the master
scheduler will be scheduled just as in the original configuration conf .

The behavior ofAs on external inputs can be described quite simply.

• If As receives an input1 at pAs
? (i.e., the machineH1 gives back the control), it simply outputs

O′ save and setsO′ savep⊳! = ǫ afterwards for all elements of the array. This case can only
occur as a direct consequence of Step4 of the above algorithm. Inputs at other ports are simply
forwarded to their corresponding ports ofA.

• If As receives an input1 at pmask back? it sets all components ofmasked back to0 andO :=
O save and proceeds with Step1.

• If A enters final state, we define thatAs finishes the delivering of messages and enters final state
too. More precisely, it outputs its tuple derived by the above algorithm and stops. If Step4 applies,
it additionally waits for a nonempty input atpAs

?, outputs the tupleO′ save, i.e., the scheduling
of the desired buffer, and enters final state after that.

Note, thatAs obviously can only do a polynomial number of steps between two successive calls ofδA
by construction which yields a polynomial-time adversaryAs again ifA is polynomial.

We can now turn our attention to the machineH1 which is defined as follows. Its ports are given by

• {p | pc ∈ SA}: Ports for connecting to the specified portsSA.

• {p′?, p′⊳! | p?c ∈ SA}: Input ports for connecting toAs.

• {p′!, p′⊳! | p!c ∈ SA}: Output ports for connecting toAs.

• {pcr? | p
⊳!c ∈ SA}: Input ports for clocking requests ofAs.

• {pH1
?, pAs

!, pAs
⊳!}: Ports for synchronization withAs.

• {pmask?, pmask back!, pmask back
⊳!}: Ports for making explicit changes of length bounds. As al-

ready described above, these ports will be used for masking certain inputs.

Internally,H1 maintains an array(buff collp?)p?∈SA
overΣ+ initialized with ǫ everywhere. The behav-

ior of H1 is defined as follows.
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• If H1 receives an inputc at pmask? it decomposesc into the arraymasked again. For every
maskedp? = 1 it masks the input portp? using a zero length bound. For everymaskedp? = 0
it sets the length bound ofp? to the runtime ofA in the polynomial case; otherwise, it sets it to
infinity.

• If H1 receives an inputc at a portp?, it outputsc at p′!, 1 at p′⊳!. This case ensures that outputs
made by system are simply forwarded to the adversary.

• If H1 receives an inputc′ atpcr?, it decomposesc′ into its original formc′ = c, (out buff p!)p!∈Sc

A
.

– In casec 6= 0, it does the following: For every elementout buffp! 6= 0 it schedules the mes-
sage stored iñp′ and saves them inbuff collp?.

6 After that,H1 outputs the arraybuff collp?
to the corresponding output portsp! and removes these elements from the array (which yields
an empty array again). Additionally, it outputsc atp⊳! (the corresponding clocking port for
requests atpcr?).

– In casec = 0, it collects all messages stored in the buffersp̃′ in buff collp? again as in the
previous step. Finally, it outputs these messages at their corresponding ports and1 atpAs

!, 1
atpAs

⊳!. This case ensures that the adversaryA will be scheduled again, so he can eventually
schedule its desired buffer (cf. Step4 of the description ofAs).

If the configurationconf is polynomial-time, we letH1 also stop after a polynomial number of steps.
A possible polynomial bound can simply be derived if you consider thatH1 has to make less than
|ports(As)| outputs for collecting messages from the nonempty buffer. These messages are stored in the
corresponding arrays and finally output as a tuple. The number of ports is finite and does not depend on
the security parameterk, so the number of steps whichH1 performs between two successive clockings
of itself in every run is constant, because masking of input ports is done not only byA but alsoH1.
Moreover,H1 can only be clocked either by the system or by the adversary. If it is clocked by the
system it immediately clocksAs which has to be polynomial-time ifA is polynomial-time as we showed
above. Thus,H1 can only perform a constant number of steps between two successive clockings ofAs.
If we denote this constant bycst, H1 simply stops aftercst · LAs

(k) steps where the polynomialLAs
(k)

bounds the number of stepsAs can perform.
Putting it all together,H1 andAs simply forward every message between the systemSys and the

original adversaryA which is represented as a blackbox submachine of the newly defined adversary
As. Thus, we obtain identical views of the original adversaryA, the systemSys , and the honest userH
in both configurations. To prove this more formally we could simply go through all possible cases of
outputs ofA, H, and machines of the system and show that we obtain identicalbehaviors with respect
to the original machinesH, A, and the machines of the system in both configurations. We omit it here
because it is a rather simple but tedious proof, and we believe that it is already clear by construction of
H1 andAs and our above explanations.

As a direct consequence we obtain that the probability of theruns restricted toS does not change,
becauseH1 always outputs exactly the same tuple to the specified ports as the originalA and the view of
all machines of the system and the view ofH is identical in both configurations. We now combineH and
H1 into one machineHs. This combination is well-defined in the underlying model and yields a closed
collectionM̂ ∪ {Hs,As} again. Moreover, ifconf is polynomial-time,H andA are polynomial-time by
precondition which implies thatAs andH1 are polynomial-time as shown above. Using the combination

6This is indeed possible, because the scheduled buffer will scheduleH1 again by construction if it has a nonempty output.
This will always be the case, sinceH1 will only schedule buffers which he knows to be nonempty.
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of two polynomial-time machine yields a polynomial-time machine again (formally proved in [68], we
know thatHs also has to be polynomial-time yielding a polynomial-time configuration

confs = (M̂1,S1,Ha,As) ∈ Conf(Sys)

in this case. The view of any set of submachines ofHs and the probability of the runs restricted toS
does not change at combination of machines, which yields

viewconf (H) = viewconfs(H) andrunconf ⌈S= runconfs⌈S .

Finally, S c ⊆ ports(Hs) holds by construction, which finishes our proof.
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