
Poster: TGX: Secure SGX enclave management
using TPM

Dhiman Chakraborty
CISPA Helmholtz Center for

Information Security, Germany
Saarland University, Germany

dhiman.chakraborty@uni-saarland.de

Atul Anand Jha
CISPA Helmholtz Center for

Information Security, Germany
Saarland University, Germany
s8atjhaa@stud.uni-saarland.de

Sven Bugiel
CISPA Helmholtz Center for

Information Security, Germany
bugiel@cispa.saarland

Abstract—Intel SGX provides a trusted execution environment
on commodity computing platforms. Recent micro-architectural
attacks like Spectre, Meltdown, or Foreshadow, however, raise
doubts about the promised isolation of SGX-protected code and
data, including some of the necessary cryptographic operations
and credentials, e.g., for attestation.

In this poster we present TGX, a combination of SGX and
TPM working together to provide stronger isolation of crucial
cryptographic operations of SGX and a way to circumvent micro-
architectural attacks against SGX. TGX enables SGX to move
its signing and verification mechanism from processor to TPM
making the security sensitive information never available outside
TPM, removing, for instance, the possibilities of stealing them
from L1 cache. In particular, TGX should motivate that SGX
and TPM can form a beneficial symbiosis.

I. INTRODUCTION

Trusted computing technology has become a valuable
building block for security solutions. Trusted computing com-
ponents are deployed in millions of devices in different forms,
such as Trusted Execution Environments (TEE) like ARM
TrustZone or the Trusted Platform Module (TPM). The most
recent addition to this list is Intel’s Software Guard Extension
(SGX). Intel SGX is a CPU-based implementation of pro-
cess isolation, providing a protection layer that isolates the
runtime of logical processes (enclaves). In particular, SGX
enables secure computation despite the complete software
stack including the host OS being malicious. SGX ensures this
isolation by implementing strict policies not only on enter and
exit to and from the enclaves, but also limiting state transfer
between enclaves and the untrusted software stack. To allow
remote parties to distinguish between legitimate hardware and
untrusted software and to establish secure end-to-end channels
with enclaves (e.g., to provision sensitive data), SGX also
implements remote attestation (RA) of enclaves.

However, recently discovered micro-architectural attacks,
like Spectre [2], Meltdown [3], or Foreshadow [1] raised doubts
about the strength of SGX enclave security and protection of
secrets entrusted to enclaves. For instance, Foreshadow allows
potentially reading sensitive data that can be brought into the
L1 cache, increasing the risk of leaking L1 cache data holding
enclave secrets, such as application data or secret keys.

The nature of those attacks also raises the question if
alternative solutions to the micro-architectural patches by the
processor manufacturers exist. Keeping the claims of SGX in

mind, one possible way of tackling the situation, which we
propose here, is in the form of support by onboard TPMs.
TPM is the most widely deployed form of trusted computing
technology on end-users devices, even being prescribed as
mandatory component on computing platforms by software
vendors like Microsoft. Thus, we have a situation in which
off-the-shelf devices come with TPM and SGX equipped at
the same time. TPM provides a crypto co-processor, protected
credentials, secure storage, NVM, monotonic counters, and the
attestation of its keys or stored measurements. One of the most
powerful features of TPM2.0 are its Extended Authorization
Policies (EAP) that allow access control on keys (and other
TPM protected) entities based on, e.g., a command issuer’s
privilege level (locality) or signature, or the current state of
the platform (counters or stored measurements). TPM can
be invoked by the CPU to perform various cryptographic
operations. Information protected inside TPM is not available
to the CPU or host platform. With this in mind, we propose in
this poster TGX, a symbiotic combination of SGX and TPM, in
general, and show this combination concretely for TPM-based
SGX enclave management:

• TPM-based enclave building: An enclave building using
the TPM as the key generator and the signing entity.

• TPM-based enclave verification: An enclave verification
process using TPM as the primary entity to create and verify
for enclave launching.

• Attestation with TPM: A remote attestation mechanism
via TPM to ensure confidentiality of the verification data.
TPM enables the user to perform a local attestation based
on TPM providing less dependency on Intel’s provisioning
server using extended authorization policies.

II. TECHNICAL BACKGROUND AND MOTIVATION

SGX heavily depends on two infrastructure enclaves,
namely i) Launch Enclave (LE) and ii) Quoting Enclave (QE).
LE is used to launch a user space enclave. In SGX a userspace
enclave requires generation of a valid and verified token
(EINITTOKEN) by LE using two information: a) measurement
of the content of the enclave (MRENCLAVE) and b) a valid
author of the enclave (MRSIGNER). To generate the EINIT-
TOKEN, LE generates a 128-bit key called Launch Key (LK).
After generation of EINITTOKEN and LK, einit verifies the
token against LK and upon a valid verification, einit launches
the enclave. On abrupt halt, the LK process lets the key stay in
L1 cache and, e.g., a Foreshadow attack can retrieve the key.

SGX TPM

Request MRSIGNER create RSA key pair
and loaded into TPM

returns key handle

Request MRENCLAVE
Enclave hex, Private blob and key handle

Sign enclave.so

return enclave_signed.so

Fig. 1. Secure enclave build in SGX using TPM.

On the other hand, QE is designed to validate local attestation
reports generated with an asymmetric private key that can be
verified by a remote verifier. After receiving the private key
from Intel, QE requests for a provisioning seal key using the
same key retrieval algorithm used by LE. And in a similar way
(like the attack on LE), on abrupt halting the get key operation
could expose the sealing key in the L1 cache.

TPM can help to mitigate the above explained problems
by keeping all the cryptographic secrets inside its protected
storage and having a dedicated communication with SGX. This
has historic precedent with Intel’s late-launch (or DRTM) tech-
nology, where the CPU has exclusive privilege (i.e., locality
level 4) to issue a reset of the TPM between power-cycles.
Using late-launch as a template, with EAP on TPM2.0 and the
particular features of SGX, flexible new policies can be built
that allow SGX and enclaves to securely outsource credentials
and cryptographic operations to the TPM. For instance, this
integration could allow a custom verification in cohesion with
TPM for QE, reducing dependency on Intel’s provisioning
service. Our prototype is currently under development in the
SGX simulator. Our changes are implemented solely inside the
SGX micro-code and make use of the default features of TPM.

III. EXAMPLE USE-CASES

A. TPM-based Enclave Build

We propose to bypass Intel’s launch control policy and
use TPM to generate MRSIGNER RSA key-pair for building
enclaves (see Figure 1). Using the generated key, loaded into
the TPM, SGX uses the TPM to sign the enclave code,
yielding enclave.signed.so. This enclave can be verified and
run by the SGX LE using previously generated public key.
This method alleviates the problem of key availability in L1
cache, removing the possible attack surface. To prevent misuse
of this TPM key by unauthorized parties, we use EAP for
the key including locality. The CPU will use locality level 3
for SGX management commands, level 2 for commands from
enclave code, and enforce level 0 for any non-SGX-related
code (e.g., host OS and user processes). Thus, this key can be
made exclusive to the SGX management code.

B. TPM-based Enclave Verification

We bypass the KEYID and EGETKEY sequence in LE
and use the TPM to generate a 128-bit launch key (LK)
that can be stored securely in TPM NVM (see Figure 2).
This is followed by enclave measurement and verification
against MRENCLAVE, MRSIGNER and enclave attribute data
provided to TPM by LE. Using the data in PCRs and NVM,

LE

einit

create launch key

request EINITTOKEN

TPM sgx_get_key

Enclave Initialization

NVM <= 128 bit LK

 PCR11 = MRSIGNER
PCR12 = MRENCLAVE
 PCR13 = Feature attr.

return EINITTOEKNUse EAP to generate
 EINITTOKEN

Start EINITTOKEN
verification sequenceEINITTOKEN

EAP MAC verification Return ACK
proceed enclave init.

Enclave measurement
verification sequence

return EINITTOEKN

Fig. 2. TPM-based enclave verification in TGX. TPM locks down the security
critical information inside its NV storage, securing it from cache based attacks.

TPM uses EAP to generate a MAC as EINITTOKEN. This
EINITTOKEN can safely by forwarded to the untrusted envi-
ronment and LE. On receiving EINITTOKEN, einit triggers
EINITTOKEN validation using EAP MAC verification of
TPM. Contrary to the SGX implementation, TPM preserves
LK for the session to validate EINITTOKEN.

C. Remote attestation with TPM

Upon receiving Attestation Key (AK) from Intel Provision-
ing Service (IPS), Provisioning Enclave (PE) forwards the AK
to TPM. TPM stores the AK into non-volatile memory and
henceforth acts the signer of attestation reports on behalf of
QE. When a remote verifier issues a challenge to the enclave,
enclave binds the attestation report to its identity and sends it
to QE, which forwards the report to TPM. TPM creates a quote
to answer the attestation and returns it to QE to be forwarded
to the remote verifier. Remote verifier checks the report against
the public attestation key using IPS. As before, EAP can be
used to protect the AK within the TPM.

IV. CONCLUSION

TGX is a combination of SGX and TPM, which by working
in unison can help SGX to securely outsource cryptographic
operations and secure storage to the TPM, which offers a
dedicated chip with stronger isolation. Using EAP and the
unique access of SGX to certain TPM localities together with
measurements created by SGX, such TPM-managed creden-
tials can be further protected. In this poster we show three use-
cases of TPM-based enclave management. Further use-cases
can be envisioned, e.g., using the TPM’s monotonic counters
for replay protection of enclave data stored in TPM-protected,
persistent storage or using EAP for user authentication to
unlock enclave’s credentials protected by TPM.

REFERENCES

[1] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, 2018.

[2] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 40th IEEE Sym-
posium on Security and Privacy (S&P’19), 2019.

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in 27th USENIX Security Symposium, 2018.

TGX: Secure SGX Enclave
Management using TPM

Dhiman Chakraborty, Atul Anand Jha, Sven Bugiel

References:
[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M.

 Schwarz, and Y. Yarom,“Spectre attacks: Exploiting speculative execution,” in 40th IEEE Symposium on
 Security and Privacy (S&P’19), 2019.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin et al.,
 “Meltdown: Reading kernel memory from user space,” in 27th USENIX Security Symposium (USENIX Security ’18),
 2018.

[3] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R.
 Strackx, “Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution,” in 27th
 USENIX Security Symposium, 2018.

SGX in a Nutshell

 Hardware based isolation in CPU.
 Isolates runtime for secure execution using enclaves.
 Widely deployed with Intel CPUs.

Problems: Side-channel attacks

 Discovery of Spectre [1] and Meltdown [2].
 Discovery of Foreshadow [3].
 Cryptographic secrets can be stolen from L1 cache.

Possible solutions

 Fix of micro-architectural attacks,
➔ Requires Intel to patch micro code.

 Attaching other Secure Elements such as TPM together with SGX.

TPM in a Nutshell

 Most widely available Trusted Computing Technology.
 Works as a trusted third party on the system.
 Offers:

 Crypto co-processor.
 Protected credentials.
 Secure storage.
 Extended authorization policy.

1. Introduction

 TPM creates LK on behalf of SGX-LE and stores it in NVM.
 LE requests EINITTOKEN for MRSIGNER, MRENCLAVE.
 TPM creates EINITTOKEN usign LK and returns to LE.
 LE - einint invokes EINITTOKEN verification in TPM.
 TPM performs verification using session LK.
➡ Malicious agents cannot obtain LK and forge EINITTOKEN.

4. TPM based enclave launch workflow

 SGX uses TPM to create MRSIGNER key pair.
 SGX invokes TPM to sign enclave using signer private key.

➡ Malicious agents cannot obtain MRSIGNER private key.

3. TPM based enclave build workflow

Roadblock and workaround

 Cannot change the SGX hardware code.
 TPM cannot be changed.
 Current development is in emulator, easy to deploy in hardware

through micro-code patching.

6. Roadblock for the project TPM provides certain gains

 Completely separate processing and storage of cryptographic
data.

 Stores SGX secrets like keys securely in NV-memory.
 Custom verification procedure, removing dependency from Intel

provisioning service.
➡ SGX together with TPM 2.0 (a la DRTM) allows advanced use-cases
based on locality, EAP and CPU-supplied measurements.

7. Gains using TPM

SGX dependency on cryptography for

 Launch enclave (LE).
 Quoting enclave (QE).

Our proposal → TGX (Trusted Guard Extension)

 A cohesion between SGX and TPM,
 Secure enclave building.
 Secure enclave verification.
 Attestation with TPM.

2. Motivation

Efficient and secure attestation protocol with TPM

 TPM stores the attestation key (AK) from Intel provisioning
service.

 Works as report issuer for QE.
 Plays challenge-response game with remote verifier through QE.
➡ TPM works as a signer on behalf of QE and by safe-keeping of AK,
TPM makes the remote attestation process safer.

5. Attestation using TPM

Adding TPM in the signing and verification protocol of SGX will not only strengthen SGX but also protects it from micro-architectural attacks. Together
with TPM, SGX will open more possibilities for trusted and secure computing such as custom verification protocol.

8. Conclusion

LE

einit

create launch key

request EINITTOKEN

TPM sgx_get_key

Enclave Initialization

NVM <= 128 bit LK

PCR11 = MRSIGNER
PCR12 = MRENCLAVE
PCR13 = Feature attr.

return EINITTOEKNUse EAP to generate
EINITTOKEN

Start EINITTOKEN
verification sequenceEINITTOKEN

EAP MAC verification Return ACK
proceed enclave init.

Enclave measurement
verification sequence

return EINITTOEKN

SGX TPM

Request
MRSIGNER

create RSA key pair
and load into TPM

returns key handle

Request
MRENCLAVE Enclave binary, private blob

and key handle Sign enclave.so

return enclave_signed.so

