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Abstract

We study the problem of discovering reliable causal rules from observational data.
Traditional descriptive rule discovery techniques do not suffice to this end, as
they struggle with the consistent detection of (potentially rare) conditions that
have a strong effect on an output variable of interest. Among the sources of
inconsistency are that naive empirical effect estimations have a high variance,
and, hence, their maximization is highly optimistically biased unless the search
is artificially restricted to high frequency events. Secondly, observational effect
measurements are often highly unrepresentative of the underlying causal effect
because they are skewed by the presence of confounding factors. This is a concern
especially in scientific data analysis.
To address these issues, we present a novel descriptive rule discovery approach
based on reliably estimating the conditional effect given the potential confounders.
We demonstrate that the corresponding score is a conservative and consistent effect
estimator, identify the admissible data generation process under which causal
rule discovery is possible, and derive an efficient optimization algorithm that
successfully detects valuable rules on a multitude of real datasets. Important for
both causal and associational data exploration, the presented approach naturally
allows for iterative rule discovery, where new non-redundant rules can be found by
treating previously discovered rules as confounders in subsequent iterations.

1 Introduction

Determining cause and effect from observational data—that is, from data that was not generated
through carefully randomized trials—is among the most important problems in science. Over the
years, we have gained a large amount of understanding of what is theoretically possible (Pearl, 2009;
Spirtes et al., 2000) which in turn has led to range of methods that, under strict assumptions, can
extract partially directed causal graphs from data (Spirtes et al., 2000; Chickering, 2002), up to
identify the most likely causal direction between pairs of variables (Shimizu et al., 2006).

Although both impressive and useful, stating that there exists a causal relationship from a set of
variables X towards a certain variable of interest Y does not fully satisfy ones curiosity; for a domain
expert it is of particular interest to know those conditions under which the effect is visible, such as the
specific combinations of drugs that lead to severe side-effects. That is, we are interested in discovering
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causal rules (σ s) from observational data that consistently maximize rule effect formalized as

e(σ) = E [Y | σ = true]− E [Y | σ = false] .

Though simple to state, this task is not only computationally hard; algorithmic solutions also have to
cope with an intricate combination of two semantic problems—one statistical and one structural.

The statistical problem is the well-known phenomenon of overfitting. This phenomenon results from
the high variance of the naive empirical (or “plug-in”) estimator of e for rules with too small sample
sizes for either of the two events, σ = true or σ = false. Combined with the maximization task over
a usually very large rule language, this variance turns into a strong positive bias that dominates the
search and causes essentially random results of either extremely specific or extremely general rules.

The structural problem is often referred to as Simpson’s paradox: even strong and confidently
measured effects of a rule might not actually reflect true domain mechanisms, but can be mere
artifacts of the effect of other variables. Notably, such confounding effects can not only attenuate or
amplify the marginal effect of a rule on the target variable, in the most misleading cases they can
even result in sign reversal.

In this paper, we present a theoretically sound approach to the discovery of causal large effect rules
that remedies each of the aforementioned problems.

1. To address the overfitting problem, we propose to measure and optimize the reliable effect
of a rule. In contrast to the plug-in estimator, we propose a conservative empirical estimate
of the population effect, that is not prone to overfitting. Additionally, and in contrast to
other known rule optimization criteria, it is also consistent, i.e., with increasing amounts of
evidence (data), the measure converges to the actual population effect of a rule.

2. To address the structural problem, we propose to control for the effect of a given set of poten-
tial confounder variables Z. In particular, we identify the admissible data generation process
under which it is possible to discover truly causal rules. While in practice the set of control
variables will rarely be complete, i.e., not contain all potential confounders, this approach
can rule out specific alternative explanations of findings as well as eliminate misleading
observations caused by selected observables that are known to be strong confounders. In
fact, this pragmatic approach is warranted not only by the usual lack of knowledge about the
causal structure of the domain, but is also a necessity due to the limited availability of data.

3. We develop a practical algorithm for efficiently discovering the top-k reliable effect rules.
In particular, we show how the optimization function can be cast into a branch-and-bound
approach based on computationally efficient tight, selection unaware, optimistic estimators.

In sum, we propose a practically applicable rule induction technique that is able to discover true
causal rules, and therewith insights to the application domain underlying a dataset. Moreover, our
approach lends itself naturally to an iterative data mining approach in which we can discover insights
beyond the factors included in Z. We support our claims by experiments on real-world datasets as
well as by reporting the required computation times on a large set of benchmark datasets.

2 Rules for Causal Reasoning

Suppose that we have a population U of individuals u. Let Y be a binary target variable, and X be a
set of description variables measured on the individuals. Let Y = {0, 1} be the domain of Y . Let
Xj be the domain of a description variable Xj ∈ X, which can be real or categorical. The domain
of X is an m-dimensional outer product space X = X1 × · · · × Xm. Let Π be a set of predicates,
where each predicate Π ∈ Π is either an equality or an inequality constraint on one of the description
variables Xj ∈ X, e.g. Π ≡ Xj < v for some threshold v. A rule descriptor σ : U → {true, false}
is a logical conjunction of predicates, i.e. σ ≡ Π1 ∧Π2 ∧ · · · ∧Π` where Πj ∈ Π. We denote by L
the set of all possible rules that can be formulated in this way, also referred to it as rule language.

Let Xσ ⊆ X be the subset of description variables over which predicates of σ are defined. We
denote an intervention on Xσ, such as setting Xσ to a vector value x, by a do-expression of the
form do(Xσ = x), or simply do(x) (Pearl, 2009, Chap. 3.4). For a rule σ, we define an unbiased
intervention do(σ) as the randomized operation of satisfying σ by setting Xσ to some x such that
σ(x) = true according to the probabilities p(Xσ = x | σ = true). Our goal is to find those rules σ
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Figure 1: A causal Bayesian network representing causal influences among three variables. Each
node is accompanied by its corresponding conditional probability distribution table.

that maximize the causal effect defined as the difference between the expectations of Y under two
interventions do(σ) and do(¬σ), i.e.

e(do(σ)) = E [Y | do(σ)]− E [Y | do(¬σ)]

= p(Y = 1 | do(σ))− p(Y = 1 | do(¬σ)) .

Unfortunately, as we consider observational data, we do not have direct access to these post-
intervention distributions. In the following subsection we will identify means by which the causal
effect can still be estimated under certain circumstances.

2.1 From Observational to Causal Effect

What we can do is approximate the causal effect from observational data by computing the observa-
tional effect of σ on Y by simply conditioning it on σ = true resp. σ = false, i.e.

e(σ) = E [Y | σ = true]− E [Y | σ = false]

= p(Y = 1 | σ = true)− p(Y = 1 | σ = false) .

However, unless special circumstances hold, the observed conditional probability p(Y = 1 | σ = true)
will not be the same as the post-intervention probability p(Y = 1 | do(σ)); they are only the same
when assignment of values to Xσ is randomized. In observational data, the description variables are
seldom randomized, however, and hence we typically have e(σ) 6= e(do(σ)). That is, in general, rule
effect measure e(σ) measures association rather than causation.

In particular, we need to be aware that the observed effect of a rule σ on the target Y may be an
artifact due to variations in some other factors (Z), also called “covariates” or “confounders”, that
(co-)cause the observed effect. Formally, a variable Z is a confounder of X and Y , if it influences
both X and Y . To illustrate this, let us consider the causal Bayesian network in Fig. 1. Without any
knowledge of the causal graph, the effect of a rule σ ≡ X1 = 1 on variable Y would be measured as

e(σ) = p(Y = 1 | σ = true)− p(Y = 1 | σ = false)

= p(Y = 1 | X1 = 1)− p(Y = 1 | X1 = 0) = 0.75 .

However, if we adjust the observed effect using Z1—that is, we partition the data into groups that are
homogeneous relative to Z1, estimate the effect of σ on Y in each homogeneous group, then average
the results—that influences both X1 and Y , we get the adjusted effect of

eadj(σ) = p(Z1 = 1) (p(Y = 1 | X1 = 1, Z1 = 1)− p(Y = 1 | X1 = 0, Z1 = 1)) +

p(Z1 = 0) (p(Y = 1 | X1 = 1, Z1 = 0)− p(Y = 1 | X1 = 0, Z1 = 0)) = 0.15 .

In general, confounders can not only amplify or attenuate the marginal effect of σ, in the extreme
cases we can even observe sign reversal. This phenomenon in which the association between a pair of
variables reverses sign when conditioned on the third variable is also known as Simpson’s paradox.

To avoid such paradoxical conclusions, we have to adjust the observational effect for confounders, or
more generally all spurious paths (or “back-door” paths) from Y to Xσ, i.e. any undirected path
from Y to any variable Xj ∈ Xσ that has an incoming edge into Xj (Pearl, 2009, Chap. 6). We
say that a set of variables Z satisfies the backdoor criterion for Xσ and Y if it blocks2 all their

2For the formal definition of “blocking”, please refer to (Pearl, 2009, Def. 1.2.3). For simplicity, we will
assume a simplified graphical structure and can simply think of blocking variables as lying on a path.
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Figure 2: A skeleton causal graph that represents the data-
generating process of an admissible input to causal rule dis-
covery (see Def. 1). In the causal graph, there are no outgoing
edges from X to Z; no edges between variables in X; and
no outgoing edges from the latent variables U to X.

spurious paths and there is no direct path from Xσ to Z. Given a set of variables Z, with domain Z ,
satisfying the back-door criterion, we can estimate the effect of an intervention do(Xσ = x) on Y
from observational data using the back-door adjustment formula (Pearl, 2009, Thm. 3.3.2), which
is given by

p(Y = 1 | do(Xσ = x)) =
∑
z∈Z

p(Y = 1 | Xσ = x,Z = z)p(Z = z)

= EZ [E [Y | Xσ = x,Z]] .

In order to perform sound causal rule discovery over the rule language L we have to find a set of
variables Z that satisfies the back-door criterion for all descriptive variables. The situation is further
complicated by the potential existence of latent variables (U) in the system. The following definition
gives a criterion for an admissible input to causal rule discovery.
Definition 1 (Admissible Input to Causal Rule Discovery). Let X be a set of description variables,
Y be a target variable, Z be a set of control variables, and U be a set of latent variables. Then X, Y ,
and Z are admissible input to causal rule discovery if the underlying causal graph of the variables
satisfies the following:
(a) there are no outgoing edges from X to Z,
(b) there are no edges between description variables X, and
(c) there are no outgoing edges from the latent variables U to X.

Such a set Z is then called an admissible set of control variables.

In Fig. 2, we show the skeleton of causal graph of an input system with an admissible set of control
variables. A dashed edge from a node u to v indicates that u potentially affects v. Condition (a)
ensures that any intervention on X does not affect Z. As such, it rules out the possibility of opening
a spurious path between X and Y via Z when conditioning on Z—which can happen in case of a
collider structure. By virtue of condition (b), when considering a subset of description variables
Xσ ⊂ X, we do not have to condition on the remaining description variables X \Xσ to block any
spurious path between Xσ and Y . Condition (c) ensures that, by conditioning on Z, we block any
spurious path between X and Y via U.

With the definition of admissible control variables we can now state how the causal effect of a rule
σ ∈ L, i.e., the effect of the unbiased intervention do(σ), can be computed from observational data.
Let Z be a set of control variables. For a rule σ ∈ L we define the conditional effect as

e(σ | Z) = EZ [E [Y | σ = true,Z]]− EZ [E [Y | σ = false,Z]] .

As the following theorem shows, this rule measure is indeed capable of capturing the causal effect if
the set of controls variables is admissible.
Theorem 1. Let Z be an admissible set of control variables for a target Y , and a set of description
variables X. Then, for any rule σ ∈ L, we have e(σ | Z) = e(do(σ)).

Exceptional cases aside, in practice, we often do not know the complete causal diagram, and hence
do not know if we are considering—or have even measured—all of Z. In an attempt to block any
path other than the direct ones between X and Y , a naive approach would be to include as many
variables in Z as possible. This, however, likely leads to measuring association rather than causation.
A second problem, which we will discuss in the next section, is that the more control variables we
consider, the more the confidence of our estimate of the conditional effect is reduced. In short, we
need to be careful in selecting Z.

One strategy would be to initialize Z with our best guess, which could be the empty set, and then
discover the rules with the strongest conditional effect. From these, we can then carefully select
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those that we wish to add to Z, and then iterate to investigate whether there exist strong effect rules
between X and Y conditioned on Z. While this does not guarantee we discover the true Z, it does
provide a natural approach to causal exploration—as well as to iterative data mining, where we wish
to discover hypotheses that explain the data beyond what we already know (Hanhijärvi et al., 2009).

2.2 Statistical Considerations

In practice, we want to estimate the conditional effect of a rule from a sample drawn from the
population. Let S = {ui = (xi, yi, zi)}Ni=1 be the sample, with xi ∈ X , yi ∈ Y and zi ∈ Z . We
assume that the sample is a stratified sample. Let Ê [y] be the expectation of a random variable y
based on its empirical distribution p̂. Let Zj be the domain of a control variable Zj ∈ Z, which can
be real or categorical. The domain of Z is an `-dimensional outer product space Z = Z1 × · · · × Z`.
The naive estimator of the conditional effect is the estimator based on the empirical distribution p̂, i.e.
the plug-in estimator, which is defined as

ê(σ | Z) = Ê
[
Ê [Y | σ = true,Z]− Ê [Y | σ = false,Z]

]
=
∑
z∈Z

p̂(Z = z)
(
p̂(Y = 1 | σ = true,Z = z)− p̂(Y = 1 | σ = false,Z = z)

)
=
∑
z∈Z

p̂(z)(p̂σ − p̂¬σ),

where p̂σ = p̂(Y = 1 | σ = true,Z = z), and p̂¬σ = p̂(Y = 1 | σ = false,Z = z), and p̂(z) is a
shorthand for p̂(Z = z). In a stratified sample, the empirical distribution of the control variable p̂(z)
is the same as its distribution in the population p(z). As the empirical distribution is an unbiased
and a consistent estimator of the population distribution, the plug-in estimator is an unbiased and a
consistent estimator of the conditional effect.

Although unbiased and consistent, the plugin estimator shows high variance for rules with overly
small sample sizes for either of the two events, σ = true or σ = false. To illustrate this, in Fig. 4 (left),
we show the score distribution for the plug-in estimator for a very specific rule of five conditions,
and see that while it is close to the true conditional effect, it shows very high variance in small
samples. This high variance is problematic, as it leads to overfitting: if we use this estimator for
the optimisation task over a very large space of rules, the variance will turn into a strong positive
bias—we will overestimate the effects of rules from the sample—that dominates the search, and we
end up with random results of either extremely specific or extremely general rules.

We address this problem of high variance by introducing bias to the plugin-estimator. In particular,
we introduce bias in terms of our confidence in the point estimates using confidence intervals. Note
that we need not quantify the confidence of the point estimate p̂(z) as p̂(z) = p(z); the point
estimates of particular concern are simply the empirical conditional probability mass functions
p̂(Y = 1 | σ = true,Z = z), and p̂(Y = 1 | σ = false,Z = z).

In repeated random samples of units with σ = true and Z = z, the number of units with outcome
Y = 1 is a binomial random variable with the success probability p̂(Y = 1 | σ = true,Z = z). Let
ns be the number of successes in n trials. The one-sided confidence interval of the probability of
success, q = ns/n, of a binomially distributed observation, using a normal approximation on the
distribution of error, is hence β

√
q(1− q)/n, where β is the 1 − α

2 quantile of a standard normal
distribution for an error rate α. For the 95% confidence level, the error rate is α = 0.05, thereby
β = 1.96. Observe that the maximum value of q(1− q) is 1/4, and hence the maximum value of the
one-sided confidence interval is β/(2

√
n).

Taking a conservative approach, we bias the difference p̂σ − p̂¬σ by subtracting the sum of the
maximum values of the one-sided confidence intervals of the point estimates. In a control group z,
let nσ be the number of data points that satisfy σ = true, and n¬σ be the number of remaining data
points that satisfy σ = false. Then the confidence interval corrected difference p̂σ − p̂¬σ is given by

τ(σ, z) = (p̂σ − p̂¬σ)−
(
β/(2

√
nσ) + β/(2

√
n¬σ)

)
.

Note that τ(σ, z) lower bounds the true probability mass difference in the population with confidence
1− α. That is, there is a 1− α chance that the true difference is larger than τ(σ, z). For a fixed β,
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Y = 1 Y = 0
∑

σ = true a b nσ
σ = false c d n¬σ∑

n1 n0 n

Figure 3: Contingency table for a control group
z ∈ Z . We have n1 = a + c, n0 = b + d,
nσ = a + b, n¬σ = c + d and n = n1 + n0 =
nσ + n¬σ .

the lower bound gets tighter with increasing sample size. In fact, it is easy to see that τ(σ, z) is a
consistent estimator of the true probability mass difference in the population; the bias term vanishes
asymptotically. More formally, for a fixed finite β, we have

lim
min(nσ,n¬σ)→∞

β

2
√
nσ

+
β

2
√
n¬σ

= 0 .

As we use empirical probability mass functions, we can express τ(σ, z) in terms of the counts in the
contingency tables. Suppose that we have a contingency table as shown in Fig. 3 for a control group
z ∈ Z . We can then express τ(σ, z) in terms of cell counts as

τ(σ, z) =
a

nσ
− c

n¬σ
− β

2
√
nσ
− β

2
√
n¬σ

.

In the extreme case, however, a rule may select all or none of the entities in a control group, resulting
in nσ = 0 or n¬σ = 0, and hence the empirical conditional probability mass functions can be
undefined. In practice, we encounter this problem often, compounded both due to specificity of a
rule—addition of predicates to a rule—as well as small sample sizes to begin with.

As a remedy, we apply a Laplace correction to the score. That is, we increment count of each cell
in the contingency table by one. This way we start with a uniform distribution within each control
group. Thus a control group of size n increases to n+ 4, and the total effective sample size increases
to N + 4|Z|. After applying Laplace correction, we have p̂(z) = (n+ 4)/(N + 4|Z|), and τ(σ, z)
is given by

τ(σ, z) =
a+ 1

nσ + 2
− c+ 1

n¬σ + 2
− β

2
√
nσ + 2

− β

2
√
n¬σ + 2

.

After introducing the bias and applying Laplace correction to the plug-in estimator, we obtain reliable
estimator of the conditional effect as

r̂(σ | Z) =
∑
z∈Z

p̂(z)τ(σ, z) .

Although biased, r̂(σ | Z) is still a consistent estimator of the conditional effect. Importantly, in
contrast to the plug-in estimator, the reliable estimator is much better at generalisation as it avoids
overfitting.

Consider the following example to see the generalisation behaviour of the estimators. Suppose that
we generate the population using the causal graph in Fig. 1. In addition, we generate five uniformly
distributed binary description variables, X2, X3, . . . , X6 that are independent of each other as well
as the rest of the variables. We can now numerically estimate the variance of the two estimators for a
specific rule, such as σ′ ≡ X1 = 1 ∧X2 = 0 ∧X3 = 1 ∧X4 = 0 ∧X5 = 1, which does not only
contain truly causal attribute X1 but also other four attributes that are independent of the target Y .

To do so, we draw stratified samples of increasing sizes from the population, and report ê(σ | Z) and
r̂(σ | Z) scores averaged over 25 simulations along with one sample standard deviation in Fig. 4
(left). We observe that variances of both estimators decrease with increasing sample size. Although
the reliable estimator is biased, its variance is relatively low compared to the plug-in estimator. As
a result of this low variance, unlike the plug-in estimator, the reliable estimator is indeed able to
avoid overfitting, and hence, better at generalisation. Let σ∗ be the top-1 rule in the population, i.e.
σ∗ = argmaxσ∈L e(σ | Z). Let ϕ∗ = argmaxσ∈L ê(σ | Z), and ρ∗ = argmaxσ∈L r̂(σ | Z). In
Fig. 4 (right), we plot e(ϕ∗ | Z) against e(ρ∗ | Z). We observe that with increasing sample sizes
e(ρ∗ | Z) is both relatively closer, as well as converges much faster to the reference e(σ∗ | Z), which
is in agreement with both theory and intuition.

6



100 1,000 2,000 3,000

−0.8

−0.6

−0.4

−0.2

0

sample size (N )

sc
or

es
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Figure 4: In stratified samples drawn from the population generated using Fig. 1 mixed together with
5 independent random description variables X2, . . . , X6, we show (left) variance of the estimators of
the conditional effect for a specific rule σ′, and (right) generalisation error of the estimates.

3 Discovering Rules

Now that we have a reliable and consistent score for the conditional effect, we turn to the problem
of discovering rules that yield maximal reliable conditional effect. Below, we provide the formal
problem definition.

Definition 2 (Top-k causal rule discovery). Given a sample S, and a positive integer k, find the set
Fk ∈ L, |Fk|≤ k, such that for all σ ∈ Fk and σ′ ∈ L \ Fk, r̂(σ | Z) ≥ r̂(σ′).

Given the hardness of empirical effect maximisation problems (Wang et al., 2005), it is unlikely that
the optimisation of the reliable conditional effect allows a worst-case polynomial algorithm. While
the exact computational complexity of the causal rule discovery problem is open, here we proceed to
develop a practically efficient algorithm using the branch-and-bound paradigm, which is a standard
approach in rule discovery.

3.1 Branch-and-Bound Search

The branch-and-bound search scheme (Mehlhorn and Sanders, 2008, Ch. 12) provides a systematic
way for efficient exhaustive search by restricting the exploration to promising candidates only. More
formally, the goal of branch-and-bound is to find a solution S that optimizes the objective function
f : Ω → R, among a set of admissible solutions Ω, also called the search space. Let ext(σ), also
called the extension of a rule σ, be the the subset of data points in a sample described by σ, defined
as ext(σ) = {u ∈ S | σ(u) = true}. Then the generic search scheme requires the following two
ingredients (Boley et al., 2017):

• A refinement operator r : L → P(L) that is monotone, i.e. for σ, ϕ ∈ L with ϕ = r(σ) it holds
that ext(ϕ) ⊆ ext(σ), and that non-redundantly generates the search space L. That is, for every
rule σ ∈ L, there is a unique sequence of rules σ0, σ1, . . . , σ` = σ with σi = r(σi−1).

• An optimistic estimator f̄ : Ω → R that provides an upper bound on the objective function
attainable by extending the current rule to more specific rules. That is, it holds that f̄(σ) ≥
f(ϕ) for all ϕ ∈ L with ext(ϕ) ⊆ ext(σ).

A branch-and-bound algorithm simply enumerates the search space L starting from the root φ using
the refinement operator r (branch), but based on the optimistic estimator f̄ prunes those branches
that cannot yield improvement over the best rules found so far (bound). Depending on the branching
operator, solutions may be reachable via multiple paths. To avoid evaluating solutions multiple times,
more advanced implementations of branch-and-bound enumerate the search space non-redundantly,
for example by considering only closures (Uno et al., 2003; Boley and Grosskreutz, 2009).

The optimistic estimator depends on the objective function. Interestingly, there are many optimistic
estimators for an objective function f . Not all of these are equally well-suited in practice, as the
tightness of the optimistic estimator determines its pruning potential. The ideal choice would therefore
be the strictest optimistic estimator, which takes the maximum over all possible refinements of σ,
i.e. f̄(σ) = max{f(ϕ) | ext(ϕ) ⊆ ext(σ) for all ϕ ∈ L}. Computing this estimator, however, is
as hard as the original optimisation problem itself, and therefore not a practical solution. As the
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Y = 1 Y = 0

σ = true a b
σ = false c d∑

n1 n0 n

Y = 1 Y = 0

σ′ = true a′ b′

σ′ = false c′ a′∑
n1 n0 n

Figure 5: Contingency tables for (left) σ and (right) its refinement σ′ = r(σ) for a control group z.

next best choice, we instead look over the valid subsets of the extension of σ without taking L into
account. That is, we consider the tight optimistic estimator (Grosskreutz et al., 2008) given by

f̄(σ) = max{f(Q) | Q ⊆ ext(σ)}
≥ max{f(ϕ) | ext(ϕ) ⊆ ext(σ) for all ϕ ∈ L} .

The branch-and-bound search scheme also provides an option to trade-off the optimality of the result
for the speed. Instead of asking for the f -optimal result, we can ask for the γ-approximation result
for some approximation factor γ ∈ (0, 1]. This is done by relaxing the optimistic estimator, i.e.
f̄(σ) ≥ γf(ϕ) for all ϕ ∈ L with ext(ϕ) ⊆ ext(σ). Lower γ generally yields better pruning, at the
expense of guarantees on the quality of the solution.

In our problem setting, we define the refinement operator as

r(σ) = {σ ∧Πi | Πi ∈ Π, i > max{j : Πj ∈ Π(σ)}} ,
where Π(σ) is the set of predicates used in rule σ. That is, we maintain a lexicographical ordering of
predicates in the pool, and only extend the current rule with a predicate from the pool that is larger
than the largest predicate in current description rule in lexicographical ordering. Next we derive
optimistic estimators for the objective function r̂.

3.2 Efficient optimistic estimators

To develop optimistic estimators for the reliable estimator r̂(σ | Z), we first review its definition first,

r̂(σ | Z) =
∑
z∈Z

p̂(z)τ(σ, z) .

We see that, regardless of σ, p̂(z) remains the same for all control groups z ∈ Z . This implies we can
obtain an optimistic estimate of r̂(σ | Z) by simply bounding τ(σ, z) for all z ∈ Z . The optimistic
estimator of r̂(σ | Z) is hence given by

r̄ =
∑
z∈Z

p̂(z)τ̄(σ, z) ,

where τ̄(σ, z) is the optimistic estimator of τ(σ, z) yet to be defined. To derive optimistic estimators
τ̄(σ, z), for clarity of exposition we first project τ(σ, z) in terms of free variables a and b, such that
we can write

τ(a, b) =
a+ 1

a+ b+ 2
− n1 − a+ 1

n− a− b+ 2
− βc

2
√
a+ b+ 2

− βc

2
√
n− a− b+ 2

.

Suppose that we have a contingency table as shown in Fig. 5 (left) for a control group z with a rule
σ. The refinement of σ, σ′ = r(σ), results in a contingency table as shown in Fig. 5 (right). Note
that n1, n0, and n do not change within a group regardless of a rule. Now, since ext(σ′) ⊆ ext(σ)
for any σ′ = r(σ), we have the following relations: a′ ≤ a and b′ ≤ b. This implies that the subsets
of the extensions of σ will have contingency table counts a′ in the range {0, 1, . . . , a}, and b′ in the
range {0, 1, . . . , b}. Let C = {0, 1, . . . , a} × {0, 1, . . . , b}. Then the optimistic estimator of τ(σ, z)
can be defined in terms of C as

τ̄(σ, z) ≥ max
(a′,b′)∈C

τ(a′, b′) .

This suggests that we can get a tight optimistic estimate of τ(σ, z) by simply taking the maximum
value of τ from all possible configurations C in linear time. If possible, however, an improvement
over this is always desirable. It turns out that we can speed up the computation of the tight optimistic
estimator, which we formalize in the following proposition.
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Proposition 1. Let C = {0, 1, . . . , a} × {0, 1, . . . , b} be the set of all possible configurations of
(a′, b′) in Fig. 5 (right) that can result from the refinement of a rule σ from the contingency table of
Fig. 5 (left). Then the tight optimistic estimator of τ(σ, z) is given by

τ̄t(σ, z) = max
a′∈{0,1,...,a}

a′ + 1

a′ + 2
− n1 − a′ + 1

n− a′ + 2
− βc

2
√
a′ + 2

− βc

2
√
n− a′ + 2

.

4 Related Work

In rule-based classification the goal is to find a (set of) rules that together optimally predict the target
label. Classic approaches include CN2 (Lavrac et al., 2004), and FOIL (Quinlan and Cameron-Jones,
1995). In more recent work, the attention shifted from accuracy to optimizing more reliable scores,
such as Area-Under-ROC (Fürnkranz and Flach, 2005). While related, the overall goal in learning
classification rules is different than ours; we want to find rules that describe the strong causal effects,
rather than separate two classes.

Association rules (Agrawal et al., 1993) are such rules, taking the form x → y, where x is a set
of items, and y is a target item. The interestingness of an association rule is typically measured in
terms of its relative occurrence frequency. To get reliable rules, we can impose hard constraints on
the relative occurrence frequency of an association rule. Despite that, within this framework we
conflate the goal of finding rules with large effect size with the relative occurrence frequency of the
rule. Contrast patterns (Dong and Li, 1999; Dong and Bailey, 2012), otherwise known as emerging
patterns, are patterns whose supports differ significantly between datasets. As the support of a pattern
is an empirical effect measure, without special measures such as taken here, emerging patterns tend to
overfit the given sample and hence capture unreliable statements that are not necessarily characteristic
of the underlying domain.

Subgroup discovery (Atzmueller, 2015) is a related, but subtly different task. Most subgroup discovery
methods optimize a surrogate function based on some statistical null hypothesis test. The resulting
objective function are usually some multiplicative combination of coverage and effect and, hence, do
not consistently optimize for large effect. Also patterns found through standard subgroup discovery
frameworks do not correct for the influence of confounder and are hence purely associational. Closer
to our approach is RAWR (Kalofolias et al., 2017), which discovers patterns that both have large
deviation from the mean of the population, but at the same time are also representative with respect
to a univariate binary control variable z in terms of statistical parity. Besides that we introduce a
reliable measure of effect, our framework allows for control variables of higher dimensionality that,
under the specific circumstances, directly optimizes the causal effect.

Causal falling rule lists (Wang and Rudin, 2017) are sequences of “if-then” rules over the covariates
such that the treatment effect decreases monotonically down the list. Our formulation, on the other
hand, is aimed at finding top-k interventions, represented by rules, that have maximal effect on the
target given Z. Atzmueller and Puppe (2009) propose a semi-automatic approach to discovering
causal interactions by mining subgroups, inferring a causal network over these, and visually presenting
this to the user. Li et al. (2015) are specifically concerned with discovering causal association rules
from observational data. They propose to do so by first mining association rules, and then performing
cohort studies per rule. Unlike our setup, the scores they optimize are not statistically consistent.

Overall, despite the importance of the problem, to the best of our knowledge there does not exist a
generally applicable, theoretically well-founded, efficient, and reliable approach to discovering rules
with strong causal effect from observational data.

5 Experiments

We implemented the branch-and-bound search algorithm in free and open source realKD3 Java
library, and provide the source code online.4 We use a priority-queue based implementation of
branch-and-bound search. All experiments were executed single threaded on Intel Xeon E5-2643 v3

3https://bitbucket.org/realKD/
4https://goo.gl/tcntcT
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machine with 256 GB memory running Linux. We report the results at β = 2.0, which corresponds
to a 95.45% confidence level. Let the coverage of a rule σ be the size of the extension of σ relative
to the sample size, defined as cvg(σ) = |ext(σ)|/N .

5.1 Efficiency

First we assess the efficiency of the branch-and-bound search with the proposed optimistic estima-
tors. To this end, we consider all the standard classification datasets (22 of them) from the KEEL
repository (Alcalá-Fdez et al., 2011). For each dataset, we select the classification target as the target
variable (Y ). We binarize a nominal target variable by mapping one of the outcomes to the positive
category (Y = 1), and the rest to the negative category (Y = 0). We select one of the attributes
for the set of control variables (Z). We discretize a continuous real-valued description variable into
maximum 8 equi-frequent bins. On each dataset, we search for the top-1 result.

In Table 2 (see Appendix), we provide the summary of the datasets along with the efficiency results.
For each dataset, we report the target variable (Y ), the set of control variables (Z), the number of rows,
the number of attributes, the approximation factor (γ) such that the branch-and-bound implementation
finishes within an hour, the runtime in seconds, and the number of nodes expanded during the search.
We observe that the branch-and-bound search with the tight optimistic estimator retrieves the optimal
top-1 result (γ =1.0) within seconds for most datasets, taking up to an hour (or more) for few datasets.

5.2 Qualitative Study on Real-World Data

Next we investigate whether the rules discovered by the proposed method are meaningful. To this
end, we consider the titanic training set from Kaggle.5 The sinking of RMS Titanic is one of the
notorious shipwrecks in history. One of the reasons behind such tragic loss of lives was the lack of
lifeboats. During the evacuation, some passengers were treated differently than the others; some
groups of people were, hence, more likely to survive than the others. Thus it is of interest to find
those groups of people. The dataset contains the demographics and travel attributes of the passengers
on board. The target variable of interest is the survival of a passenger.

In Table 1, we present the results of iterative rule mining on this dataset. For every iteration, we
report the control variables (Z) used in that run, and the optimal top-1 rule along with their coverage,
followed by r̂(σ | Z) and ê(σ | Z) scores. We start without control variables in the first iteration. In
the subsequent iterations, we put the top-1 rules discovered from previous iterations in Z.

In the first iteration, without any control variables, we observe that being a female passenger
(sex=female) with the first, or the second class ticket (class ≤ 2) has the highest effect on survival
with a score of r̂(σ | Z) = 0.576. It is well-known that passengers from different classes were treated
differently during evacuation. What is interesting is that although females were more likely to survive,
this only applied to the females from the first and the second class; this is also corroborated by the
fact that roughly half of the females from the third class did not survive the mishap compared to the
one-tenth from the other classes combined.

In the second iteration, the top-1 rule discovered in the first iteration is used as a control variable. We
find that children (age < 12.5) with fewer siblings (sib-sp ≤ 2), and parents on board (par-ch ≥ 1)
have highest effect on survival. The fact that this rule came out on top with a coverage of only 4.6%
demonstrates that the proposed method can discover rare rules.

In the third iteration, after controlling for the top-1 rules discovered from the previous two iterations,
we find that unmarried females (title=Miss) despite paying a low fare (fare < 19.85) have the highest
effect on survival with a score of r̂(σ | Z) = 0.003. In the fourth iteration, we find that the top-3 rules
have negative r̂(σ | Z) scores. Although the ê(σ | Z) score is positive for the top-1 rule, the negative
r̂(σ | Z) score indicates that there is no evidence. Therefore we stop after the fourth iteration.

6 Conclusions

We studied the problem of discovering reliable causal rules from observational data. Whereas
traditional descriptive rule discovery methods struggle with the consistent detection of conditions

5https://www.kaggle.com/c/titanic/data
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Table 1: Results of iterative rule mining on the titanic dataset with “survival” as a target variable.
We start without control variables in the first iteration. In the subsequent iterations, we control for the
top-1 rules discovered in the previous iterations. “par-ch” stands for the number of parents/children
aboard, and “sib-sp” for the number of siblings/spouses aboard.

Itr. Controls (Z) Top-3 rules (σ) cvg(σ)% r̂(σ | Z) ê(σ | Z)

1 ∅ (σ1) class ≤ 2 ∧ sex = female 19.07 0.576 0.690

2 {σ1} (σ2) age < 12.5 ∧ sib-sp ≤ 2 ∧ par-ch ≥ 1 4.6 0.239 0.482

3 {σ1, σ2} (σ3) fare < 19.85 ∧ title = Miss 10.36 0.003 0.222

4 {σ1, σ2, σ3} (σ4) embarked=C 18.21 −0.036 0.149

under which a strong effect on an output variable of interest happens. Instead, we presented a novel
descriptive rule discovery approach based on reliably estimating the conditional effect given the
value of potential confounders. We demonstrated that the corresponding score is a conservative and
consistent effect estimator, identified the admissible data generation process under which causal
rule discovery is possible, and derived an efficient optimization algorithm that successfully detects
valuable rules on a multitude of real datasets. Through empirical evaluation we showed our framework
is efficient and applicable on datasets of realistic sizes and dimensions. Moreover, and of particular
importance for both causal and associational data exploration, we showed that the presented approach
naturally allows for iterative rule discovery.
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Proof of Theorem 1

Proof. By condition (b), Z also satisfies the back-door criterion for any subset of description variables
Xσ ⊂ X and Y . Thus the effect of do(σ) on the probability of Y = 1 can be computed using the
back-door adjustment formula as

p(Y = 1 | do(σ)) =
∑

x:σ(x)=true

p(Y = 1 | do(Xσ = x))p(Xσ = x | σ = true)

=
∑

x:σ(x)=true

EZ [p(Y = 1 | Xσ = x,Z)] p(Xσ = x | σ = true)

using the linearity of expectation, the definition of joint probability, and that p(Xσ = x, σ = true) =
p(Xσ = x) for x with σ(x) = true, this results in

= EZ

[∑
x:σ(x)=true p(Y = 1 | Xσ = x,Z)p(Xσ = x)

p(σ = true)

]

= EZ

[∑
x:σ(x)=true p(Y = 1,Xσ = x | Z)

p(σ = true)

]
= EZ [p(Y = 1 | σ = true,Z)]

= EZ [E [Y | σ = true,Z]] .

Similarly the effect of do(¬σ) on the probability of Y = 1 can be computed as

p(Y = 1 | do(¬σ)) = EZ [E [Y | σ = false,Z]] .

Combining the two, we get

e(σ | Z) = EZ [E [Y | σ = true,Z]]− EZ [E [Y | σ = false,Z]]

= p(Y = 1 | do(σ))− p(Y = 1 | do(¬σ))

= e(do(σ)) .

Proof of Proposition 1

Proof. The expression for τ(a′, b′) from the contingency table in Fig. 5 (right) is given by

τ(a′, b′) =
a′ + 1

a′ + b′ + 2
− n1 − a′ + 1

n− a′ − b′ + 2
− βc

2
√
a′ + b′ + 2

− βc

2
√
n− a′ − b′ + 2

.

Combining the first and the third term above, we get

λz(a
′, b′) =

2a′ + 2− βc
√
a′ + b′ + 2

2(a′ + b′ + 2)
− n1 − a′ + 1

n− a′ − b′ + 2
− βc

2
√
n− a′ − b′ + 2

.

Note that if we fix the value of a′, then the value of b′ that maximises τ(a′, b′) has to maximise the
first term above, but minimise the other two terms. Observe that b′ = 0, out of b′ ∈ {0, 1, . . . , b},
does both simultaneously. Thus we have the following relation.

τ(a′, 0) > τ(a′, b′) for all b′ > 0.

Then the tight optimistic estimator of τ(σ, z) is the maximum value over all possible configurations
C given by

τ̄t(σ, z) = max
a′∈{0,1,...,a}

τ(a′, 0)

= max
a′∈{0,1,...,a}

a′ + 1

a′ + 2
− n1 − a′ + 1

n− a′ + 2
− βc

2
√
a′ + 2

− βc

2
√
n− a′ + 2

.
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Efficiency Results on Benchmark Datasets

Table 2: Summary of the datasets used for the evaluation along with the results. For each dataset,
we report the target variable (Y ), the control variables (Z), the number of rows (N ), the number of
description variables (m), the approximation factor γ for the branch-and-bound implementation to
finish within an hour, the runtime in seconds, and the number of nodes expanded during the search.

Dataset Target (Y ) Controls (Z) N m γ time (s) #nodes

adult class sex 48, 842 13 0.8 1, 717 258, 575

australian class a4 690 13 1.0 146 952, 175

automobile output engine-type 205 24 1.0 1 15, 167

breast class age 286 8 1.0 78 420

car acceptability safety 1, 728 5 1.0 1 33

chess class bkblk 3, 196 35 1.0 851 1, 613, 398

connect-4 class a1 67, 557 61 0.3 1, 679 140, 707

crx class a1 690 14 1.0 14 101, 621

fars injury-severity case-state 100, 968 28 0.8 724 22, 328

flare class prev24hour 1, 066 10 1.0 1 32

german customer statusAndSex 1, 000 19 1.0 8 43, 007

housevotes class el-salvador-aid 435 15 1.0 1 57

kddcup class atr-6 494, 020 40 0.99 37 219

kr-vs-k game white-king-col 28, 056 5 1.0 30 7, 304

lymphography classes changes-in-lym 148 17 1.0 1 1, 666

mushroom class gill-size 8, 124 21 1.0 1 215

nursery class social 12, 690 7 1.0 1 279

post-operative decision l-core 90 7 1.0 1 258

splice class pos1 3, 190 59 1.0 1.03 1, 855

tic-tac-toe class topleft 958 8 1.0 1 488

titanic survived sex 891 9 1.0 4.5 26, 700

zoo type aquatic 101 15 1.0 1 96
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