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Abstract Causal inference from observational data is one of the most fun-
damental problems in science. In general, the task is to tell whether it is
more likely that X caused Y , or vice versa, given only data over their joint
distribution. In this paper we propose a general inference framework based on
Kolmogorov complexity, as well as a practical and computable instantiation
based on the Minimum Description Length (MDL) principle.

Simply put, we propose causal inference by compression. That is, we infer
that X is a likely cause of Y if we can better compress the data by first encoding
X, and then encoding Y given X, than in the other direction. To show this
works in practice, we propose Origo, an efficient method for inferring the
causal direction from binary data. Origo employs the lossless Pack compressor
and searches for that set of decision trees that encodes the data most succinctly.
Importantly, it works directly on the data and does not require assumptions
about neither distributions nor the type of causal relations.

To evaluate Origo in practice, we provide extensive experiments on syn-
thetic, benchmark, and real-world data, including three case studies. Altogether
the experiments show that Origo reliably infers the correct causal direction
on a wide range of settings.

Keywords Causal Inference · Kolmogorov Complexity · MDL · Decision
Trees · Binary Data

Kailash Budhathoki (�)
Max Planck Institute for Informatics and Saarland University
Saarland Informatics Campus, Saarbrücken, Germany
E-mail: kbudhath@mpi-inf.mpg.de

Jilles Vreeken
Max Planck Institute for Informatics and Saarland University
Saarland Informatics Campus, Saarbrücken, Germany
E-mail: jilles@mpi-inf.mpg.de



2 Kailash Budhathoki, Jilles Vreeken

1 Introduction

Causal inference, telling cause from effect, is perhaps one of the most important
problems in science. To make absolute statements about cause and effect, care-
fully designed experiments are necessary, in which we consider representative
populations, instrument the cause, and control for everything else [25]. In
practice, setting up such an experiment is often very expensive, or simply
impossible. The study of the effect of combinations of drugs is good example.

Certain drugs can amplify each others effect, and are therewith combinations
of drugs can turn out to be much more effective, or even only effective, than
when the drugs are taken individually. This effect is sometimes positive, and
for example in combination treatments against HIV and cancer, but sometimes
it is also negative, as it can lead to severe up to possibly lethal side effects.
For all but the smallest number of drugs, however, there are so many possible
combinations that it quickly becomes practically impossible to test these
combinations in a controlled manner. This even when we ignore the ethical
aspect of potentially exposing volunteers to lethal side effects, as we need
sufficiently many volunteers per combination of drugs, and all of these need
to be (as) identical (as reasonably possible) for all other aspects, except the
combination of drugs they get. That is, to investigate the combined effects of
only 10 drugs, we already need 210 = 1024 groups, each of say 100 volunteers,
meaning we would need to recruit over 100 000 near-identical volunteers. Clearly,
this is not practically feasible.

We hence consider causal inference from observational data. That is, our
goal is to infer the most likely direction of causation from data that has not been
obtained in a completely controlled manner but is simply available. In recent
years large strides have been made in the theory and practice of discovering
causal structure from such data [12; 16; 25]. Most methods, and especially those
that defined for pairs of variables, however, can only consider continuous-valued
or discrete numeric data [27; 39] and are hence not applicable on binary data
such as one would have in the above example.

We propose a general framework for causal inference on observational
data, and give a practical instantiation for binary data. We base our inference
framework on the solid foundations of Kolmogorov complexity [17; 20], and
develop a score for pairs of data objects that identifies not only the direction [12],
but also quantifies the strength of causation, without making any assumptions
on the distribution nor the type of causal relation between the data objects,
and without requiring any parameters to be set.

Kolmogorov complexity is not computable, however, and to be able to
put it to practice we derive a practical, computable version based on the
Minimum Description Length (MDL) principle [28; 9]. As a proof of concept,
we propose Origo,1 which is an efficient and parameter-free method for causal
inference on binary data. Origo builds on the MDL-based Pack algorithm [36],
and compresses data using decision trees. Simply put, it encodes the data one

1 Origo is Latin for origin



Origo: Causal Inference by Compression 3

attribute at a time using a decision tree. Such a tree may only split on previously
encoded attributes. We use this mechanism to measure how much better we
can compress the data of Y given the data of X, simply by (dis)allowing the
trees for Y to split on attributes of X, and vice versa. We identify the most
likely causal direction as the one with the most succinct description.

Extensive experiments on synthetic, benchmark, and real-world data show
that Origo performs well in practice. It is robust to noise, dimensionality, and
skew between cardinality of X and Y . It has high statistical power, and outper-
forms a recent proposal for discrete data by a wide margin. After discretization,
Origo performs well on both univariate and multivariate benchmark data.
Three case studies confirm that Origo provides intuitive results.

The main contributions of our work are as follows

– a theoretical framework for causal inference from observational data based
on Kolmogorov complexity,

– a practical framework for causal inference based on MDL,
– a causal inference method for binary data, Origo.
– an extensive set of experiments on synthetic and real data.

This paper builds upon and extends Budhathoki and Vreeken [2]. In par-
ticular, we give a much more thorough introduction to causal inference by
algorithmic information theory. We present our instantiation for binary data
using decision trees in detail and self-contained, including the rationale of why
decision tree models make sense, the exact encoding that we use, as well as
show that it is an information score that can indeed be used for causal inference,
and the algorithm for how to infer good models directly from data. Last, but
not least, we provide a much extended set of empirical evaluations.

The remainder of this paper is organized as follows. We introduce notation
and preliminaries in Section 2. Section 3 explains how to do causal inference
based on Algorithmic Information Theory. In Section 4 we show how to derive
practical, computable, causal indicators using the Minimum Description Length
principle. We instantiate this framework for binary data using a decision-tree
based compressor in Section 5. Related work is covered in Section 6, and we
evaluate empirically in Section 7. We round up with discussion and conclusions
in Sections 8 and 9, respectively.

All code and data are available for research purposes.2

2 Preliminaries

In this section, we introduce notations and background definitions we will use
in subsequent sections.

2 http://eda.mmci.uni-saarland.de/origo/

http://eda.mmci.uni-saarland.de/origo/
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2.1 Notation

In this work, we consider binary data. We denote a binary string of length n by
s ∈ {0, 1}n. A binary dataset D is a binary matrix of size n-by-m consisting
of n rows, or transactions, and m columns, random variables, or attributes.
A row is a binary vector of size m. We write Pr(X = v) for the probability
of a random variable X assuming value v from the domain dom(X). We say
X → Y to indicate that X causes Y . We will model our data with sets of
binary decision trees. The decision tree for Xi is denoted by Ti.

All logarithms are to base 2, and by convention we use 0 log 0 = 0.

2.2 Kolmogorov Complexity

To develop our causal inference principle, we need the concept of Kolmogorov
complexity [17; 33; 3]. Below we give a brief introduction.

The Kolmogorov complexity of a finite binary string x, denoted K(x), is
the length of the shortest binary program p∗ to a Universal Turing machine U
that generates x and halts. Let `(.) be a function that maps a binary string
to its length, i.e. ` : {0, 1}∗ → N. Then, K(x) = `(p∗). More formally, the
Kolmogorov complexity of a string x is given by

K(x) = min{`(p) | p ∈ {0, 1}∗ and U(p) = x} ,

where U(p) = x indicates that when the binary program p is run on U , it
generates x and halts. Intuitively, p∗ is the most succinct algorithmic description
of x, whereas K(x) is then the length of the ultimate lossless compression of x.

Conditional Kolmogorov complexity, denoted K(x | y), is the length of the
shortest binary program p∗ that generates x and halts when y is provided as an
input to the program. We have K(x) = K(x | ε) where ε is the empty string.

Although Kolmogorov complexity is defined over binary strings, we can
interchangeably use it over mathematical objects, or data objects in general, as
any finite object can be encoded into a string. A data object can be a random
variable, sequence of events, a temporal graph, etc.

The amount of algorithmic information contained in y about x is I(y : x) =
K(y)−K(y | x∗), where x∗ is the shortest binary program for x. Intuitively, it
is the number of bits that can be saved in the description of y when the shortest
description of x is already known. Algorithmic information is symmetric, i.e.

I(y : x)
+
= I(x : y), where

+
= denotes equality up to an additive constant, and

therefore also called algorithmic mutual information [20]. Two strings x and y
are algorithmically independent if they have no algorithmic mutual information,

i.e. I(x : y)
+
= 0.

For our purpose, we also need the Kolmogorov complexity of a distribution.
The Kolmogorov complexity of a probability distribution P , K(P ), is the length
of the shortest program that outputs P (x) to precision q on input 〈x, q〉 [10].
More formally, we have

K(P ) = min {|p| : p ∈ {0, 1}∗, |U(〈x, 〈q, p〉〉)− P (x)| ≤ 1/q} .
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We refer the interested reader to Li and Vitányi [20] for many more details on
Kolmogorov complexity.

3 Causal Inference by Kolmogorov Complexity

Suppose we are given data over the joint distribution of two random variables
X and Y of which we know they are dependent. We are interested in inferring
the most likely causal relationship between X and Y . In other words, we want
to infer whether X causes Y , whether Y causes X, or whether the two are
merely correlated. To do so, we assume causal sufficiency. That is, we assume
that there is no confounding variable Z that is the common cause of both X
and Y .

We base our causal inference method on the following postulate.

Postulate 1 (Independence of Input and Mechanism [30]) If X is the
cause of Y , X → Y , the marginal distribution of the cause P (X), and the con-
ditional distribution of the effect given the cause, P (Y | X) are “independent”—
P (X) contains no information about P (Y | X) and vice versa.

We can think of conditional P (Y | X) as the mechanism that transforms
observations of X into observations of Y , i.e. generates effect Y for cause
X. The postulate is plausible if this mechanism does not care how its input
was generated, i.e. it is independent of P (X). Importantly, this independence
does not hold in the opposite direction as P (Y ) and P (X | Y ) both inherit
properties from P (Y | X) and P (X) and hence will contain information about
each other. This creates an asymmetry between cause and effect.

It is insightful to consider the example of solar power, where it is intuitively
clear that the amount of radiation per cm2 solar cell (cause) causes the
generation of electricity in the cell (effect). It is relatively easy to change
P (cause) without affecting P (effect | cause), as we can take actions such as,
for example, moving the solar cell to a more sunny or more shady place, and
varying its angle to the sun – note that while this will of course change the
overall power output of the cell, it does not change the conditional distribution
of the effect given the cause. If the same amount of radiation hits the cell, it
will generate the same amount of power, after all. Likewise, it is easy to change
P (effect | cause) without affecting P (cause). We can do so, for instance, by
using more efficient cells – while this may again change the overall power output
of the cell, it does not affect the distribution of the incoming radiation. It is
surprisingly hard, however, to do the same in the anti-causal direction. That
is, it is difficult to find actions that only change the distribution of the effect ,
P (effect), while not affecting P (cause | effect) or vice versa, as through their
causal connection these two are intrinsically (more) dependent on each other.

The notion of independence in Postulate 1 is abstract, however. That
is, to put the postulate to practice, one needs to choose and formalize an
independence score. To this end, different formalisations have been proposed.
Janzing et al. [16], for example, define independence in terms of information
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geometry, Liu & Chan [21] formulate independence in terms of the distance
correlation between marginal and conditional empirical distribution, whereas
Janzing & Schölkopf [12] formalise independence using algorithmic information
theory, and postulate algorithmic independence of P (X) and P (Y | X).

Since any physical process can be simulated on a Turing machine [7], it can,
in theory, capture all possible dependencies that can be explained with a physical
process. As such, the algorithmic model of causality has particularly strong
theoretical foundations, and provides a better mathematical formalisation
of Postulate 1. Using algorithmic independence, we arrive at the following
postulate.

Postulate 2 (Algorithmic Independence of Markov kernels [12]) If X
is the cause of Y , X → Y , the marginal distribution of the cause P (X) and
the conditional distribution of the effect given the cause P (Y | X) are algorith-

mically independent, i.e. I (P (X) : P (Y | X))
+
= 0.

The algorithmic independence between P (X) and P (Y | X) implies that the
shortest description, in terms of Kolmogorov complexity, of the joint distribution
P (X,Y ) is given by separate descriptions of P (X) and P (Y | X) [12]. As a
consequence of the algorithmic independence of input and mechanism we have
the following Theorem.

Theorem 1 (Simplest Factorization of the Joint Distribution [22]) If
X is the cause of Y , X → Y ,

K(P (X)) +K(P (Y | X)) ≤ K(P (Y )) +K(P (X | Y )) ,

holds up to an additive constant.

That is, if X causes Y , factorising the joint distribution P (X,Y ) into
P (X) and P (Y | X) will lead, in terms of Kolmogorov complexity, to simpler
descriptions of the distributions than factorising it into P (Y ) and P (X | Y ).
Note that the total complexity of the causal model X → Y is given by the
complexity of the marginal distribution of the cause P (X) and the complexity
of the conditional distribution of the effect given the cause P (Y | X).

With that, we can perform causal inference by simply identifying that
direction between X and Y where factorization of the joint distribution yields
the lowest total Kolmogorov complexity. Although this inference rule has sound
theoretical foundations, Kolmogorov complexity is not computable — amongst
which due to the halting problem. We can approximate Kolmogorov complexity
from above, however, through lossless compression [20]. More generally, the
Minimum Description Length (MDL) principle [28; 9] provides a statistically
sound and computable means for approximating Kolmogorov complexity [37; 9].
Next, we discuss how MDL can be used for causal inference.

4 Causal Inference by Compression

The Minimum Description Length (MDL) [28] principle is a practical version of
the Kolmogorov complexity. Both embrace the slogan Induction by Compression.
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Instead of all possible programs, MDL considers only those programs for which
we know they generate x and halt. That is, lossless compressors. The more
powerful the compressor, the closer we are to Kolmogorov complexity. Ideal
MDL, which considers all programs that generate x and halt, coincides with
Kolmogorov complexity.

The MDL principle has its root in the two-part decomposition of Kolmogorov
complexity [20, Ch. 5]. It can be roughly described as follows.

Minimum Description Length Principle. Given a set of models M and
data D, the best model M ∈M is the one that minimises

L(D,M) = L(M) + L(D |M) ,

where

– L(M) is the length, in bits, of the description of the model, and
– L(D |M) is the length, in bits, of the description of the data when encoded

with M .

Intuitively L(M) represents the compressible part of the data, and L(D |M)
represents the noise in the data. In general, a model is a probability measure,
and the set of models is a parametric collection of such models. Note that MDL
requires the compression to be lossless in order to allow for fair comparison
between different models M ∈M.

The algorithmic causal inference rule is based on the premise that we
have access to the true distribution. In practice, we of course do not know
this distribution, we only have observed data. MDL eliminates the need for
assuming a distribution, as it instead identifies the model from the class that
best describes the data. The total encoded size, which takes into account
both how well the model fits the data as well as the complexity of the model,
therefore functions as a practical instantiation of K(P (·)).

To perform causal inference by MDL, we will need a model class M of
causal models. Let MX→Y ∈M be the causal model from the direction X to
Y . The causal model MX→Y consists of model MX for X and MY |X for Y
given X. We define MY→X analogously. The total description length for the
data over X and Y in the direction X to Y is given by

LX→Y = L(X,MX)︸ ︷︷ ︸
L(MX)+L(X|MX)

+ L(Y,MY |X | X)︸ ︷︷ ︸
L(MY |X)+L(Y |MY |X ,X)

,

where the first term is the total description length of X and MX , and the
second the total description length of Y and MY |X given the data of X. We
define LY→X analogously.

From Theorem 1, using the above indicators, we arrive at the following
causal inference rules:

• If LX→Y < LY→X , we infer X → Y .
• If LX→Y > LY→X , we infer Y → X.
• If LX→Y = LY→X , we are undecided.
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That is, if total description length from X towards Y is simpler than
vice versa, we infer X is likely the cause of Y under the causal mechanism
represented by the used model class. If it is the other way around, we infer Y
is likely the cause of X. The larger the difference between the two indicators,
i.e. |LX→Y − LY→X |, the stronger the causal explanation in one direction. If
the total description length is the same in both directions, we are undecided.
In practice, one can naturally introduce a threshold ε and treat differences
between the two indicators smaller than ε as undecided.

To use these indicators in practice, we have to define what causal model
class M we use, how to describe a model M ∈ M in bits, how to encode a
dataset D given a model M , and how to efficiently approximate the optimal
M∗ ∈M. This we discuss in the next section.

5 Causal Inference by Tree-based Compressors

To apply the MDL-based causal inference rule in practice, we need a class
of models suited for causal inference. As such, the model class must allow
to causally explain Y given X and vice versa. One such model class is that
of decision trees. A decision tree allows us to model dependencies on other
attributes by splitting, i.e. conditionally describe the data of an attribute
Xi given an attribute Xj . In other words, decision trees can model local
dependencies between variables that can identify parts of the data that causally
depend on each other. Note that this comes close to the spirit of average
treatment effect in randomized experiments [29].

As models we consider sets of decision trees, such that we have one decision
tree per attribute in the data. The dependencies between variables modelled
by these trees induce a directed graph. To ensure lossless decoding, there needs
to an order on the variables in a graph. It is easy to see that there exists an
order of the variables if an only if the graph is acyclic. Hence, we enforce that
there are no cyclic dependencies between variables across these trees.

In Figure 1, we give a toy example to show the valid models. For MX and
MY , we only allow dependencies between variables in X, and between variables
in Y respectively, but not in between. In MY |X , we only allow variables in Y
to acyclically depend on each other, as well as on variables in X. Therefore,
for the causal model MX→Y , we allow variables in X to depend on each other,
and variables in Y to depend on either X or Y . The reverse model MY→X is
constructed analogously.

Next we instantiate the MDL-based causal inference framework for binary
data. As such, we require a compressor for binary data that uses a set of decision
trees as its model class. Importantly, the compressor should consider both the
complexity of the model and that of the data under the model into account.
One such compressor that fits our requirements is Pack [36]. In particular, we
build upon Pack to instantiate the MDL-based causal score. Next we briefly
explain how Pack works.
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Fig. 1: A toy example of valid models. A directed edge from a node P to a
node Q indicates that Q depends on P .

X2
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(a) Tree for X1

1: 0.9

0: 0.1

(b) Tree for X2
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1: 0.25

0: 0.75

1 0

(c) Tree for X3

X2

X3X1

(d) Dependency DAG

Fig. 2: In (a), (b), and (c), we give the example decision trees generated by
Pack for a toy binary dataset containing three attributes, namely X1, X2, and
X3. In (d), we show the dependency graph for these trees.

5.1 Tree-based Compressor for Binary Data

Pack is an MDL based algorithm for discover interesting itemsets from binary
data [36]. To do so, it discovers a set of decision trees that together encode the
data most succinctly. The authors of Pack show there is a connection between
interesting itemsets and paths in these trees [36]. While we do not care about
these itemsets, it is the decision tree model Pack infers that is of interest to
us.

For example, consider a hypothetical binary dataset with three attributes
X1, X2, and X3. Pack aims at discovering the set of trees such that we can
encode the whole data in as few as possible bits. In Figure 2a – 2c we give an
example of the trees Pack could discover. As the figure shows, X1 depends
on X2, and X3 depends on both X1 and X2. These trees identify both local
causal dependencies, as well as the global causal DAG shown in Figure 2d.

Let D be a binary data having n rows over m attributes X. We encode
an attribute Xi using its decision tree Ti. Let M be a model that consists of
a set of decision trees for the attributes, M = {T1, T2, . . . Tm}. To encode an
attribute Xi using its decision tree Ti over the complete data D, we use an
optimal prefix code. For a probability distribution P on some finite set S, the
length of an optimal prefix code for a symbol s ∈ S is given by − logP (s) [5].
In particular, we encode each leaf l ∈ lvs(Ti) of the tree. Hence the total cost
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of encoding Xi using Ti over the complete data D is given by

L(Xi | Ti) = −
∑

l∈lvs(Ti)

∑
v∈{0,1}

nvl logP (Xi = v | l) ,

where P (Xi = v | l) is the empirical probability of Xi = v given that leaf l is
chosen, and nvl is the number of samples in leaf l taking value v [36].

To decode the attributes, we need to transmit the decision trees as well.
To this end, first we transmit the leaves of the decision trees. We use refined
MDL [9, chap 1] to compute the complexity of a leaf l ∈ lvs(Ti) as

L(l) = log

r∑
j=0

(
r

j

)(
j

r

)j (
r − k
r

)r−k
,

where r is the number of rows for which the leaf l is used [36]. It can be
computed in linear time for the family of multinomial distributions [18].

Then we encode the number of nodes in the decision tree Ti. In doing so,
we use one bit to indicate whether the node is a leaf or an intermediate node.
If the node is an intermediate node, we use an extra logm bits to identify
the split attribute [36]. Let intr(Ti) be the set of all intermediate nodes of a
decision tree Ti. Then the number of bits needed to describe a decision tree Ti
is given by

L(Ti) =
∑

N∈intr(Ti)

(1 + logm) +
∑

l∈lvs(Ti)

(1 + L(l)) .

Therefore the total number of bits needed to describe the decision tree Ti,
and describe Xi over the complete data D using Ti is given by

L(Xi, Ti) = L(Ti) + L(Xi | Ti) .

Putting it together, the total number of bits needed to describe all the trees,
one for each attribute, and the complete data D is given by

L(D,M) =
∑
Ti∈M

L(Xi, Ti) .

To discover good models directly from data, Tatti & Vreeken propose the
GreedyPack algorithm [36]. For self containment, we give the pseudo-code of
the main algorithm as Algorithm 1. We start with a model consisting of only
trivial trees—simple tree without splitting on any other attributes as shown
in Figure 2b—per attribute (line 1). To ensure that the decision tree model
is valid, we build a dependency graph between attributes (line 2–3). We then
proceed to iteratively discover the split that maximizes compression. To this
end, for each attribute Xi ∈ X, we consider splitting on the other attributes
Xj that we have not split on before, as long as the induced graph remains
acyclic (line 5–9). We store the best split per attribute (line 10–12). Then we
greedily select the overall best split, and iterate until no further split can be
found that can save any bits (line 13–16). We refer the interested reader to the
original paper [36] for more details on Pack.
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Algorithm 1: GreedyPack
Input: A binary data D over m attributes X
Output: A set of binary decision trees {T1, T2, . . . , Tm}

1 Ti ← TrivialTree(Xi) for i = 1, 2, . . . ,m;
2 V ← {1, 2, . . . ,m}, E ← φ;
3 G← (V,E);
4 while L(D,M) decreases do
5 for Xi ∈ X do
6 Ci ← Ti;
7 for l ∈ lvs(Ti) and j = 1, 2 . . .m do
8 if E ∪ (i, j) is acyclic and j /∈ path(l) then
9 T ← SplitTree(Ti, l, Xj);

10 if L(T ) < L(Ci) then
11 Ci ← T ;
12 ui ← j;

13 k ← arg min
i

(L(Ci)− L(Ti));

14 if L(Ck) < L(Tk) then
15 Tk ← Ck;
16 E ← E ∪ (k, uk);

17 return {T1, T2, . . . , Tm}

5.2 Pack as an Information Measure

The algorithmic independence of Markov kernels (Postulate 2) links observations
to causality: we can reject a causal hypothesis if the algorithmic independence
of Markov kernels is violated [12]. The notion of algorithmic independence,
however, uses Kolmogorov complexity as an information measure, and is hence
incomputable. While we know that MDL provides a well-founded way to
approximate Kolmogorov complexity in general, the question remains whether
this also holds for causal inference, and in particular, whether this holds for our
Pack score. The answer is yes. Steudel et al [35] show that independence of
Markov kernels is justified when we use a compressor as an information measure,
if we restrict ourselves to the class of causal mechanisms that is adapted to
the information measure. In general, let X be a set of discrete-valued random
variables and Ω be the powerset of X , i.e. the set of all subsets of X . We then
have the following definition of an information measure.

Definition 1 (Information measure [35]) A function R : Ω → R is an
information measure if it satisfies the following axioms:

(a) normalization: R(0) = 0,
(b) monotonicity : X ≤ Y implies R(X) ≤ R(Y ) for all X,Y ∈ Ω,
(c) submodularity : R(X ∪ Z) − R(X) ≥ R(Y ∪ Z) − R(Y ) for all X,Y ∈ Ω,

X ⊆ Y , and for all Z /∈ Y .

This leaves us to show that Pack is an information measure, i.e. that it
fulfills these properties. Let L : Ω → R be the Pack score.
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(a) Pack trivially satisfies the normalization property.
(b) We examine the monotonicity property under subset restriction. If X ⊆ Y ,

we can decompose Y into X and Z such that Y = X ∪ Z. Then L(Y ) =
L(X ∪ Z) = L(X) + L(Z | X) ≥ L(X). This shows that Pack score is
monotonic.

(c) We have L(X ∪ Z) − L(X) = L(Z | X) and L(Y, Z) − L(Y ) = L(Z | Y ).
Since X ⊆ Y , and providing Pack more possibilities to split on can only
improve compression, L(Z | X) ≥ L(Z | Y ). Therefore, L(X ∪Z)−L(X) ≥
L(Y ∪ Z)− L(Y ), which implies that Pack is submodular.

By which we have shown that Pack is indeed an information measure, and hence
can pick up causal structure from observations where the causal mechanism is
modelled by binary decision trees.

Next we discuss how to compute our MDL-based causal score using Pack.

5.3 Instantiating the MDL score with Pack

To compute L(X,MX), we can simply compress X using Pack. However,
computing L(Y,MY |X | X) is not straightforward, as Pack does not support
conditional compression off-the-shelf. Clearly, it does not suffice to simply
compress X and Y together as this gives us L(XY,MXY ) which may use any
acyclic dependency between X and Y and vice versa. When computing LX→Y
or L(Y,MY |X), however, we do not want the attributes of X to depend on
the attributes of Y . Therefore, we modify line 8 of GreedyPack such that
an attribute of X is only allowed to split on other attributes of X, and an
attribute of Y is allowed to split on both the attributes of X and the other
attributes of Y .

From here onwards, we refer to the Pack-based instantiation of the causal
score as Origo, which means origin in latin. Although our focus is primarily
on binary data, we can infer causal direction from categorical data as well. To
this end, we can binarize the categorical data creating a binary feature per
value. As the implementation of Pack already provides this feature, we do
not have to binarise categorical data ourselves. Moreover, as we will see in the
experiments, with a proper discretization, we can even reliably infer causal
directions from discretized continuous real-valued data.

5.4 Computational Complexity

Next we analyse the computational complexity of Origo. To compute LX→Y ,
we have to run Pack only once. Greedy Pack uses the ID3 algorithm to
construct binary decision trees, therewith the computational complexity of
Greedy Pack is O(2mn), where n is the number of rows in the data, and m
the total number of attributes in X, and Y , i.e. m = |X|+ |Y |. To infer the
causal direction, we have to compute both LX→Y , and LY→X . Therefore, in
the worst case, the computational complexity of Origo is O(2mn). In practice,
Origo is fast, and completes within seconds.
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6 Related Work

Inferring causal direction from observational data is a challenging task if no
controlled ranodmized experiments are available. Due to its importance in
practice, however, causal inference has recently seen increased attention [25;
34; 31; 12]. Most proposed causal inference frameworks are limited in practice,
however, as they rely on strong assumptions, or have been defined only for
either continuous real-valued, or discrete numeric data.

Constraint-based approaches like the conditional independence test [34; 25]
require at least three observed random variables. Moreover, these constraint-
based approaches cannot distinguish Markov equivalent causal DAGs [38] as
the factorization of the joint distribution P (X,Y ) is the same in both direction,
i.e. P (X)P (Y | X) = P (Y )P (X | Y ). Hence they cannot decide between
X → Y and Y → X.

There do exist methods that can infer the causal direction from two random
variables. Generally, they exploit the sophisticated properties of the joint
distribution. The linear trace method [14; 42] infers linear causal relations of
the form Y = AX, where A is the structure matrix that maps the cause to the
effect, using the linear trace condition which operates on A, and the covariance
matrix of X, ΣX . The kernelized trace method [4] can infer non-linear causal
relations, but requires the causal relation to be deterministic, functional, and
invertible. In theory, we do not make any assumptions on the causal relation
between variables.

One of the key frameworks for causal inference are the Additive Noise
Models (ANMs) [31; 11; 41; 27]. The ANMs assume that the effect is governed
by the cause and an additive noise, and the causal inference is done by finding
the direction that admits such a model. Peters et al. [26] propose an ANM for
discrete numeric data. However regression is not ideal for modelling nominal
variables. Furthermore, it only works with univariate cause-effect pairs.

Algorithmic information theory provides a sound general theoretical foun-
dation for causal inference [12]. As such, causality is defined in terms of the
algorithmic similarity between data objects. In particular, for two random vari-
ables X and Y , if X causes Y , the shortest description of the joint distribution
P (X,Y ) is given by the separate description of the marginal distribution of
the cause P (X) and the conditional distribution of the effect given the cause
P (Y | X) [12]. The algorithmic information theoretic viewpoint of causality
is more general in the sense that any physical process can be simulated by a
Turing Machine. Janzing & Steudel [13] use it to justify the ANM-based causal
discovery.

Kolmogorov complexity, however, is not computable. To perform causal
inference based on algorithmic information theoretic frameworks therefore
requires (efficiently) computable notions of independence or information. The
information-geometric approach [16] defines independence in terms of the
orthogonality in information space. Sgouritsa et al [30] define independence
in terms of the accuracy of the estimation of conditional distribution using
corresponding marginal distribution. Janzing and Schölkopf [12] sketch how
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comparing marginal distributions, and resource bounded computation could be
used to infer causal direction, but do not give practical instantiations. Vreeken
[39] proposed Ergo, a causal inference framework based on relative conditional
complexities, K(Y | X)/K(Y ) and K(X | Y )/K(X), and infers the direction
with the lowest relative complexity. To apply this method in practice for uni-
variate and multivariate continuous real-valued data, Vreeken instantiates it
using cumulative entropy.

All above methods consider numeric data only. Causal inference on obser-
vational binary data has seen much less attention. The classic proposal by
Silverstein et al [32] uses conditional independence test, and hence requires an
independent variable Z to tell whether X and Y have any causal relation. A
very recent proposal by Liu and Chan [21] defines independence in terms of the
distance correlation between empirical distributions P (X) and P (Y | X), and
propose Dc to infer the causal direction from nominal data. In the experiments,
we will compare to Dc directly. In addition, we will compare to the Ergo
score [39], instantiating it with Pack as L(Y,MY |X | X)/L(Y,MY ) and vice
versa.

7 Experiments

We implemented Origo in Python and provide the source code for research
purposes, along with the used datasets, and synthetic dataset generator.3 All
experiments were executed single-threaded on MacBook Pro with 2.5 GHz
Intel Core i7 processor and 16 GB memory running Mac OS X. We consider
synthetic, benchmark, and real-world data. We compare Origo against the
Ergo score [39] instantiated with Pack, and Dc [21].

7.1 Synthetic Data

To evaluate Origo on the data with known ground truth, we consider synthetic
data. In particular, we generate binary data X and Y such that attributes in
Y probabilistically depend on the attributes of X, termed here onwards as
dependency. Throughout the experiments on synthetic data, we generate X of
size 5000-by-k, and Y of size 5000-by-l.

To this end, we generate data on a per attribute basis. First, we assume
the ordering of attributes – the ordering of attributes in X followed by the
ordering of attributes in Y . Then, for each attribute, we generate a binary
decision tree. In doing so, we only consider the attributes preceding it in the
ordering as candidate nodes for its decision tree. Then, each row is generated
by following the ordering of attributes, and using their corresponding decision
trees. Further, we use the split probability to control the depth/size of the tree.
We randomly choose weighted probabilities for the presence/absence of leaf
attributes.

3 http://eda.mmci.uni-saarland.de/origo/

http://eda.mmci.uni-saarland.de/origo/
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With the above scheme, with high probability, we generate data with a
strong dependency in one direction. In general, we expect this direction to
be the true causal direction, i.e. X → Y . Although unlikely, it is possible,
that the model in the reverse direction is superior. Moreover, unless we set
the split probability to 1.0, however, it is possible that by chance we generate
pairs without dependencies, and hence without a true causal direction. Unless
stated otherwise we choose not to control for either case, by which at worst we
underestimate the performance of Origo.

All reported values are averaged over 500 samples unless stated otherwise.

Performance.

First we examine the effect of dependency on various metrics – the percentage
of correct inferences (accuracy), the percentage of indecisive inferences, and
the percentage of incorrect inferences. We start with k = l = 3. We fix the
split probability to 1.0, and generate trees with the maximum possible height,
i.e. k + l − 1 = 5. In Figure 3a, we give the plot showing various metrics at
various dependencies for the generated pairs. We see that with the increase
in dependency, indecisiveness quickly drops to zero, while accuracy increases
sharply towards 90%. Note that at zero dependency, there are no causal edges,
hence Origo is correct in being indecisive.

Next we study the effect of the maximum height h of the trees on the
accuracy of Origo. We set k = l = 3, and the split probability to 1.0. In
Figure 3b, we observe that the accuracy gets higher as h increases. This is
due to the increase in the number of causal edges with the increase in the
maximum height of the tree. Although the increase in accuracy is quite large
when we move from h = 1 to 2, it is almost negligible when we move from h =
2 onwards. This shows that Origo already infers the correct causal direction
even when there are only few causal dependencies in the generating model.

Next we analyse the effect of split probability on the accuracy of Origo.
To this end, we set k = l = 3, fix the dependency to 1.0, and generate trees
with the maximum possible height. In Figure 4a, we observe that the accuracy
of Origo increases with the increase in the split probability. This is due to
the fact that the depth of the tree increases with the increase in the split
probability. Consequently, there are more causal edges, therewith the more
accurate Origo is.

Next, we examine whether considering a rather large space of data instead
of single sample improves the result. To this end, we perform bootstrap ag-
gregating, also called bagging [1]. Bagging is the process of sampling K new
datasets Di from a given dataset D uniformly and with replacement. We fix
the dependency to 0.7, the probability of split to 1.0, the number of bagging
samples to K = 50 and generate trees with maximum height of h =5. We
run Origo on each sampled cause-effect pair. Then we take the majority
vote to decide the causal direction. In Figure 4b, we compare the accuracy
of Origo against bagging (OrigoB) for symmetric cause effect pairs. We
see that bagging does not really improve the result. This is not unexpected



16 Kailash Budhathoki, Jilles Vreeken

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

correct

indecisive

incorrect

dependency

p
e
rc
e
n
ta

g
e

(a) dependency vs various metrics

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

dependency

a
c
c
u
ra

c
y

h=1 h=2

h=3 h=4

h=5

(b) dependency vs accuracy

Fig. 3: For synthetic datasets with k = l = 3, we report (a) fraction of correct,
incorrect and indecisive decisions at various dependencies (b) the accuracy at
various dependencies for trees with various maximum heights.

as bagging is mainly a way to overcome overfitting, which by MDL we are
naturally protected against [9]. These results confirm this conviction.

Next we investigate the accuracy of Origo on cause-effect pairs with
asymmetric number of attributes. For that, we fix the split probability to
1.0, and generate trees with the maximum possible height. At every level of
dependency, we generate 500 cause-effect pairs, 250 of which with k = 1, l = 3
and remaining 250 with k = 3, l = 1. In particular, we consider those pairs for
correctness where there is at least one causal edge from X to Y . In Figure 5a,
we give the plot comparing the accuracy of Origo against Ergo and Dc. We
see that Origo performs much better than the other methods. In particular,
the difference in accuracy gets larger as the dependency increases. We also note
that the performance of Dc has a striking resemblance to flipping a fair coin.

Next we consider the symmetric case where k = l = 3. We fix the split
probability to 1.0, and generate trees with the maximum possible height. As in
the asymmetric case, we consider those pairs for correctness where there is at
least one causal edge from X to Y . In Figure 5b, we show the plot comparing
the accuracy of Origo against Ergo, and Dc. We see that both Origo
performs as good or better than other methods. We note that for the pairs
without dependency, Dc infers a causal relationship in over 50% of the cases.

Dimensionality

Next we study the robustness against dimensionality. First we consider cause-
effect pairs with symmetric number of attributes, i.e. k = l and vary it between
1 and 10. We fix the dependency to 0.7, the split probability to 1.0, and the
maximum height of trees to 5. In particular, we compare Origo against Ergo
and Dc. In Figure 6a, we see that Origo is highly accurate in every setting.
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Fig. 5: For synthetic datasets, we compare (a) the accuracy in asymmetric
case (1 vs. 3), and (b) the accuracy at various dependencies in symmetric case
(k = l = 3)

With the exception of the univariate case, Ergo also performs well when both
X and Y have the same cardinality.

In practice, however, we also encounter cause-effect pairs with asymmetric
cardinalities. To evaluate performance in this setting, we set respectively k
and l to 5 and vary the other between 1 to 10 – and generate 100 data pairs
per setting. We see that Origo outperforms Ergo by a huge margin the
stronger the unbalance between the cardinalities of X and Y . This is due to
the inherent bias of Ergo favouring the causal direction from the side with
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Fig. 6: For synthetic datasets, we report the accuracy (a) in symmetric case
with k = l, and (b) in asymmetric case (5 vs. varying cardinalities).

higher complexity towards the simple one. In addition, we see that Origo
outperforms Dc in every setting.

Type I Error

To evaluate whether Origo infers relevant causal direction, we employ swap
randomization [8]. Swap randomization is an approach for producing random
datasets by altering the internal structure of the data while preserving its row
and column margins. The internal structure of the data is altered by successive
swap operations, which correspond to steps in a Markov chain process.

More formally, given a binary data matrix, D, with n rows and m columns,
we randomly identify four cells in D characterised by combination of row
indices r1, r2 ∈ {1, 2, . . . , n} and column indices c1, c2 ∈ {1, 2, . . . ,m} such that
Dr1,c1 6= Dr1,c2 and Dr2,c1 6= Dr2,c2 but Dr2,c1 = Dr1,c2 and Dr1,c1 = Dr2,c2 .
Then, we swap the values of these four cells either in clockwise or anti-clockwise
direction. The swap operation is performed repeatedly until the data mixes
sufficiently enough to break the internal structure of the data, also called
mixing time of a Markov chain. Although there is no optimal theoretical bound
for the mixing time of a Markov chain, Gionis et al. [8] empirically suggest the
number of swap operations to be in the order of number of 1s in the data.

The key idea behind significance testing with swap randomization is to
create several random datasets with the same row and column margins as the
original data, run the data mining algorithm on those data, and see if the
results differ significantly between the original data and random datasets.

Let ∆ = |LX→Y −LY→X |. We compare the ∆ value of the actual cause-effect
pair to those of 500 swap randomized versions of the pair. We set k = l = 3,
fix the dependency to 1.0, the probability of split to 1.0, and generate trees
with the maximum possible height. The null hypothesis is that the ∆ value
of the actual data is likely to occur in random data. In Figure 7a, we show
the histogram of the ∆ values for 500 swap randomized pairs. The ∆ value
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Fig. 7: For synthetic datasets with k = l = 3, we show (a) the histogram of
∆ = |LX→Y − LY→X | values of 500 swap randomized cause-effect pairs using
Origo, and (b) the statistical power at various dependencies.

of the actual cause-effect pair is indicated by an arrow. We observe that the
probability of getting the ∆ value of the actual data in a random data is zero,
i.e. p-value = 0. Therefore, we can reject the null hypothesis at a much lower
significance level.

Type II Error

To assess whether Origo identifies causal relationship when causal relationship
really exists, we test its statistical power. The null hypothesis is that there
is no causal relationship between cause-effect pairs. To determine the cut-off
for testing the null hypothesis, we first generate 250 cause-effect pairs with
no causal relationship. Then we compute their ∆ values and set the cut-off
∆ value at a significance level of 0.05. Next we generate new 250 cause-effect
pairs with causal relationship. The statistical power is the proportion of the
250 new cause-effect pairs whose ∆ value exceeds the cut-off delta value.

We set k = l = 3, the split probability to 1.0, and generate trees with the
maximum possible height. We give the results in Figure 7b. The lines corre-
sponding to Origo and Ergo overlap as both have the same high statistical
power, outperforming Dc in every setting.

Last, but not least, we observe that for all the above experiments inferring
the causal direction for one pair typically takes only up to a few seconds. Next
we evaluate Origo on real-world data.

7.2 Real-world Data

Next, we evaluate Origo on real-world data.
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Univariate Pairs

First we evaluate Origo on benchmark cause-effect pairs with known ground
truth [23]. In particular, we here consider the 95 univariate pairs. So far there
does not exist a discretization strategy that provably preserves the causal
relationship between variables. To complicate matters further we do not know
the underlying domain of the data, and each cause-effect pair is from a different
domain. Hence, for exposition we enforce one discretization strategy over all
the pairs.

We considered various discretization strategies – including Equi-Frequency,
and Equi-Width binning, MDL-based histogram density estimation [19], and
parameter-free unsupervised interaction preserving discretization (Ipd) [24].
Overall, we obtained the best results using Ipd using its default parameters,
and will report these below.

Next we investigate the accuracy of Origo against the fraction of decisions
Origo is forced to make. To this end, we sort the pairs by their absolute
score difference ∆ in two directions in descending order. Then we compute the
accuracy over top-k% pairs. The decision rate is the fraction of top cause-effect
pairs that we consider. Alternatively, it is also the fraction of cause-effect pairs
whose ∆ is greater than some threshold ∆t. For undecided pairs, we flip a
coin. For other methods, we follow the similar procedure with their respective
absolute score difference.

In Figure 8, we show the accuracy versus the decision rate for the benchmark
univariate cause-effect pairs. If we look over all the pairs, we find that Origo
infers correct direction in roughly 58% of all pairs. When we consider only those
pairs where ∆ is relatively high, i.e. those pairs where Origo is most decisive
we see that over the top 8% most decisive pairs it is 75% accurate, yet still 70%
accurate for the top 21% pairs, which is comparable with the top-performing
causal inference frameworks for continuous real-valued data [16; 27; 30].



Origo: Causal Inference by Compression 21

Table 1: Results on Tübingen multivariate cause-effect pairs [23]. “X” means
the correct causal direction is inferred, “×” means the wrong direction, and
“−” means indecision.

Dataset #rows |X| |Y | Truth Origo Ergo Dc

Weather forecast 10 226 4 4 Y → X − X −
Ozone 989 1 3 Y → X X X ×
Auto-Mpg 392 3 2 X → Y X X ×
Radiation 72 16 16 Y → X × × ×
Chemnitz 1 440 3 7 X → Y X × X

Car 1 728 6 1 X → Y X X X

Multivariate Pairs

Next we evaluate Origo quantitatively on real-world data with multivariate
pairs. For that we consider four cause-effect pairs with known ground truth
taken from [23]. The Chemnitz dataset is taken from Janzing et al. [15], whereas
the Car dataset is from the UCI repository.4 We again use Ipd to discretize
the data. We give the base statistics in Table 1. For each pairs, we report the
number of rows, the number of attributes in X, the number of attributes in Y ,
the ground truth. Furthermore, we report the results of Origo, Ergo, and
Dc.

We find that both Origo and Ergo infer correct direction from four pairs.
Whereas Origo is incorrect in one pair and remains indecisive in the other,
Ergo is incorrect in two pairs. Dc, however, is mostly incorrect.

7.3 Qualitative Results

Last, we consider whether Origo provides results that agree with intuition.
To this end we consider three case studies.

Acute inflammation

The Acute inflammation data is taken from the UCI repository.4 It consists of
the presumptive diagnosis of two diseases of urinary system for 120 potential
patients. There are 6 symptoms – temperature of the patient (X1) , occurrence
of nausea (X2), lumber pain (X3), urine pushing (X4), micturition pains (X5),
burning of urethra, itch, swelling of urethra outlet (X6). All the symptoms are
binary but the temperature of the patient, which takes a real value between
35◦C−42◦C. The two diseases for diagnosis are inflammation of urinary bladder
(Y1) and nephritis of renal pelvis origin (Y2).

4 https://archive.ics.uci.edu/ml/

https://archive.ics.uci.edu/ml/


22 Kailash Budhathoki, Jilles Vreeken

Table 2: Results of Origo on ICDM. We give 8 characteristic and non-
redundant exemplars drawn from top 17 causal directions.

discovered causal direction ∆ (bits)

frequent itemset → mining 4.809964

fp → tree 0.880654

drift → concept 0.869090

anomaly → detection 0.804479

lda → linear 0.772805

neural → network 0.748579

walk → random 0.701649

social → network 0.694999

We discretize the temperature into two bins using Ipd. This results in two
binary attributes X11 and X12. We then run Origo on the pair X,Y where
X = {X11, X12, X3, X4, X5, X6} and Y = {Y1, Y2}. We find that Y → X. That
is, Origo infers that the diseases cause the symptoms, which is in agreement
with intuition.

ICDM abstracts

Next we consider the ICDM abstracts dataset, which is available from the
authors of [6]. This dataset consists of abstracts – stemmed and stop-words
removed – of 859 papers published at the ICDM conference until the year 2007.
Each abstract is represented by a row and words are the attributes.

We use Opus Miner on the ICDM abstracts dataset to discover top 100
self-sufficient itemsets [40]. Then, we apply Origo on those 100 self-sufficient
itemsets. We sort the discovered causal directions by their ∆ value in descending
order. In Table 2, we give 8 highly characteristic and non-redundant results
along with their ∆ values taken from top 17 causal directions. We expect the
causal directions having higher ∆ values to show clear causal connection, and
indeed we see that this is the case.

For instance, frequent itemset mining is one of the core topics in data mining.
Clearly when frequent itemset appears in a text, it gives more information about
the word mining than vice versa because mining could be about data mining,
process mining, etc. among others. Likewise, neural gives more information
about the word network than the other way around. Overall, the causal
directions discovered by Origo in the ICDM dataset are sensible.

Census

The Adult dataset is taken from the UCI repository and consists of 48 832
records from the census database of the US in 1994. Out of 14 attributes, we
consider only four – work-class, education, occupation, and income. In particular,
we binarise work-class attribute into four attributes as private, self-employed,
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Table 3: Results of Origo on Adult. We give 5 characteristic and non-redundant
exemplars drawn from top 7 causal directions.

discovered causal direction ∆ (bits)

public-servant admin hs-graduate → ≤ 50K 9.917098

public-servant professional doctorate → > 50K 8.053542

bachelors self-employed white-collar → > 50K 7.719200

public-servant professional masters → > 50K 7.583210

hs-graduate blue-collar → ≤ 50K 5.209738

public-servant, and unemployed. We binarise education attribute into seven
attributes as dropout, associates, bachelors, doctorate, hs-graduate, masters,
and prof-school. Further, we binarise occupation attribute into eight attributes
as admin, armed-force, blue-collar, white-collar, service, sales, professional,
and other-occupation. Lastly, we binarise income attribute into two attributes
as > 50K and ≤ 50K.

We run Opus Miner on the resulting data and get top 100 self-sufficient
itemsets. Then we apply Origo on those 100 self-sufficient itemsets. In Table 3,
we report 5 interesting and non-redundant causal directions identified by Origo
drawn from the top 7 strongest causal directions. Inspecting the results, we
see that Origo infers sensible causal directions from the adult dataset. For
instance, a professional with a doctorate degree working in a public office causes
them to earn more than 50K per annum. However, working in a public office
in an administrative position with a high school degree causes them to earn
less than 50K per annum.

These case studies show that Origo discovers sensible causal directions
from real-world data.

8 Discussion

The experiments show that Origo works well in practice. Origo reliably
identifies true causal structure regardless of cardinality, skew, with high statis-
tical power, even at low level of causal dependencies. On benchmark data it
performs very well, despite information loss through discretization. Moreover,
the qualitative case studies show that the results are sensible.

Although these results show the strength of our framework, and of Origo
in particular, we see many possibilities to further improve. For instance, Pack
does not work directly on categorical data. By binarizing the categorical data,
it can introduce undue dependencies. This presents an inherent need for a
lossless compressor that works directly on categorical data which is likely to
improve the results.

Further, we rely on discretization strategies to discretize continuous real-
valued data. We observe different results on continuous real-valued data depend-
ing on the discretization strategy we pick. It would make an engaging future
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work to devise a discretization strategy for continuous real-valued data that
preserves causal dependencies. Alternatively, it will be interesting to instantiate
the framework using regression trees to directly consider real-valued data. This
is not trivial, as it requires both a encoding scheme for this model class, as
well as efficient algorithms to infer good sets of trees.

Our framework is based on causal sufficiency assumption. Extending Origo
to include confounders is another avenue of future work. Moreover, our inference
principle is defined over data in general, yet we restricted our analysis to binary,
categorical, and continuous real-valued data. It would be interesting to apply
our inference principle on time-series data. To instantiate our MDL framework
the only thing we need is a lossless compressor that can capture directed
relations on multivariate time-series data.

9 Conclusion

We considered causal inference from observational data. We proposed a frame-
work for causal inference based on Kolmogorov complexity, and gave a generally
applicable and computable framework based on the Minimum Description
Length (MDL) principle.

To apply the framework in practice, we proposed Origo, an efficient method
for inferring the causal direction from binary data. Origo uses decision trees to
encode data, works directly on the data and does not require assumptions about
neither distributions nor the type of causal relations. Extensive evaluation
on synthetic, benchmark, and real-world data showed that Origo discovers
meaningful causal relations, and outperforms the state-of-the-art.
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