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Abstract

Motivation: Genome-wide measurements of paired miRNA and gene expression data have

enabled the prediction of competing endogenous RNAs (ceRNAs). It has been shown that the

sponge effect mediated by protein-coding as well as non-coding ceRNAs can play an important

regulatory role in the cell in health and disease. Therefore, many computational methods for the

computational identification of ceRNAs have been suggested. In particular, methods based on

Conditional Mutual Information (CMI) have shown promising results. However, the currently

available implementation is slow and cannot be used to perform computations on a large scale.

Results: Here, we present JAMI, a Java tool that uses a non-parametric estimator for CMI

values from gene and miRNA expression data. We show that JAMI speeds up the computation of

ceRNA networks by a factor of �70 compared to currently available implementations. Further,

JAMI supports multi-threading to make use of common multi-core architectures for further

performance gain.

Requirements: Java 8.

Availability and implementation: JAMI is available as open-source software from https://github.

com/SchulzLab/JAMI.

Contact: mlist@mpi-inf.mpg.de or mschulz@mmci.uni-saarland.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) are �23 nt long RNAs that play an import-

ant role in the regulation of transcript abundance in mammalian

cells. They are estimated to regulate at least half of the genes in the

human genome (Friedman et al., 2009) and thus affect important

biological processes and show deregulation in many diseases (Jiang

et al., 2009). Several miRNAs often regulate the same transcript in a

combinatorial fashion and many transcripts are regulated by the

same miRNAs, leading to complex genome-wide networks of co-

regulation (Tsang et al., 2010). In these competing endogenous

RNA (ceRNA) networks, ceRNA genes that carry binding sites for

the same miRNA(s) compete over the limited pool of available

miRNA molecules (Arvey et al., 2010; Salmena et al., 2011; Tay

et al., 2014). Several examples of ceRNA crosstalk have already

been verified, including many genes involved in cancer such as

PTEN (Poliseno et al., 2010). This evidence has sparked interest in

developing systematic methods for inferring ceRNA interactions

from gene and miRNA expression data, reviewed in (Le et al.,

2017).

With the emergence of large-scale studies providing gene and

miRNA expression data for hundreds of samples, it has become pos-

sible to infer ceRNA interactions computationally and several

approaches have been suggested to achieve this. Sumazin et al. pro-

posed the use of conditional mutual information in their method
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HERMES (Sumazin et al., 2011), which was later implemented as

part of the CUPID software package (CUPID step III) (Chiu et al.,

2015). While this method was applied successfully for inferring

ceRNA networks for approximately 450 000 gene pairs (Chiu et al.,

2017), the current implementation is very slow and poses a bottle-

neck for the construction of large-scale networks.

This issue has motivated other researchers to design alternative

approaches that are faster. For example methods based on linear correl-

ation (Liu et al., 2017; Paci et al., 2014; Wang et al., 2015). However,

in contrast to CUPID, the linearity assumption limits the accuracy of

these methods (Le et al., 2017). We thus sought to speed up the compu-

tations of CMI values as the only known non-linear alternative for facil-

itating the efficient construction of large-scale ceRNA networks.

2 Results and discussion

Here, we present JAMI, a novel implementation of the CMI compu-

tation step of CUPID (Chiu et al., 2015). Like CUPID, JAMI uses

adaptive partitioning for estimating CMI values (Darbellay and

Vajda, 1999). This non-parametric estimator is consistent and

makes no assumption on the distribution of the data and can thus be

used with expression data from any technology. JAMI uses efficient

data structures in Java to implement the three-dimensional data

partitioning for the computation of CMI values. In contrast to

CUPID, JAMI was carefully designed to support multi-threading

(Supplementary Fig. S1). In Figure 1, we show that JAMI achieves a

substantially better single-threaded runtime compared to CUPID

implemented in either Matlab or Java. For the latter comparison, we

carefully re-implemented the original CUPID method in Java.

Both JAMI and CUPID rank expression values before the CMI

computation. In CUPID, all expression values of 0 are assigned differ-

ent ranks. This introduces bias and results in positive CMI values

even if genes are not expressed in any sample. To avoid this, we

extended JAMI to be zero expression aware, and demonstrate that

this has considerable effect on the results (Supplementary Figs S2–S5).

Preparing the input for CUPID is tedious and requires separate ex-

pression and miRNA interaction files as input for every gene pair of

interest. In contrast, JAMI accepts two expression matrices as input,

one for gene and one for miRNA expression, and filters these automat-

ically for the data needed. In addition, JAMI offers great flexibility with

regards to defining the triplets of interest, making it much more con-

venient to use JAMI in settings where several genes are of interest.

JAMI output files can be directly imported in network analysis tools

such as Cytoscape (Shannon et al., 2003). Moreover, JAMI does not re-

quire an expensive MatlabVR license like CUPID, making it available to

a broader audience. To make sure that JAMI can also be used conveni-

ently in a scripting language, we implemented the RJAMI wrapper

package for R (http://github.com/SchulzLab/RJAMI).

We illustrate the potential of JAMI by constructing a ceRNA

interaction network from the TCGA breast cancer data set (TCGA,

2012) for known ceRNAs (Tay et al., 2014) (Supplementary Fig. S6,

see user manual for a step by step guide). The resulting network

appears to be much denser than what is reported in the literature,

emphasizing the importance of robust tools for ceRNA network in-

ference from widely available expression data.

An open question in the field is whether linear or non-linear meth-

ods are better suited for ceRNA network inference (Le et al., 2017).

Answering this question was thus far impeded by the lack of a fast

tool for computing CMI values. JAMI overcomes this research barrier

and facilitates comparisons with correlation-based method such as

sensitivity correlation (Paci et al., 2014) (Supplementary Fig. S7).

In conclusion, JAMI is a fast, freely available and well-

documented (http://jami.readthedocs.io/) tool primarily targeted at

the inference of ceRNA networks. However, its implementation is

general and may be used to study other modulators of gene–gene

interactions, e.g. transcription factors (Flores et al., 2013).
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Fig. 1. Performance comparison between JAMI, CUPID (Matlab) and CUPID

(Java). (a) Process user time in seconds. (b) Peak memory usage
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