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Abstract We consider the problem of inferring the causal direction between
two univariate numeric random variables X and Y from observational data.
This case is especially challenging as the graph X causes Y is Markov equivalent
to the graph Y causes X, and hence it is impossible to determine the correct
direction using conditional independence tests.

To tackle this problem, we follow an information theoretic approach based
on the algorithmic Markov condition. This postulate states that in terms of
Kolmogorov complexity the factorization given by the true causal model is the
most succinct description of the joint distribution. This means that we can
infer that X is a likely cause of Y when we need fewer bits to first transmit the
data over X, and then the data of Y as a function of X, than for the inverse
direction. That is, in this paper we perform causal inference by compression.

To put this notion to practice, we employ the Minimum Description Length
principle, and propose a score to determine how many bits we need to transmit
the data using a class of regression functions that can model both local and
global functional relations. To determine whether an inference, i.e. the difference
in compressed sizes, is significant, we propose two analytical significance tests
based on the no-hypercompression inequality. Last, but not least, we introduce
the linear-time SLOPE and SLOPER algorithms, that through thorough empirical
evaluation we show outperform the state of the art by a wide margin.
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1 Introduction

Telling apart cause and effect given only observational data is one of the
fundamental problems in science [31; 22]. We consider the problem of inferring
the most likely causal direction between two statistically dependent univariate
numeric random variables X and Y, given only a sample from their joint
distribution, and assuming no hidden confounder Z causing both X and Y.
That is, we are interested in identifying whether X causes Y, whether Y causes
X, or whether they are merely correlated.

Traditional methods, that rely on conditional independence tests, cannot
decide between the Markov equivalent classes of X — Y and Y — X [22], as
these result in the same joint distribution. Recently, it has been postulated
that if X — Y, there exists an independence between the marginal distribution
of the cause, P(X), and the conditional distribution of the effect given the
cause, P(Y | X) [30; 10]. Intuitively, we assume X to be generated ‘first’, and
Y to be generated by some process that takes both X and noise independent
of X as inputs. This means that in the true causal direction the distribution of
Y given X will just be the distribution of the noise, which is independent of
X. In the anti-causal direction, however, such an independence does not hold;
to reconstruct X from Y we needed to remove the noise, and hence P(Y') and
P(X |Y) remain dependent. The state of the art exploits this asymmetry in
various ways, and overall obtain up to 70% accuracy on a well-known benchmark
of cause-effect pairs [29; 9; 25; 12; 21]. In this paper we break this barrier, and
give an elegant score that is computable in linear-time and obtains over 82%
accuracy on the same benchmark.

We base our method on the algorithmic Markov condition, a recent postulate
by Janzing and Scholkopf [10], which states that if X causes Y, the factor-
ization of the joint distribution P(X,Y") in the causal direction has a simpler
description—in terms of Kolmogorov complexity—than that in the anti-causal
direction. That is, if X - Y, K(P(X))+ K(P(Y | X)) < K(P(Y))+ K(P(X |
Y)). The key idea is strongly related to that above. Namely, because the distri-
bution of the cause and the distribution of the effect conditioned on the cause
are independent, we do not lose any bits compared to the optimal compression
if we describe these two terms separately. In the anti-causal direction, however,
because P(X | Y) is dependent on P(Y'), we have to ‘tune’ the noise and hence
have to spend additional bits that are not needed in the causal direction. As
any physical process can be modelled by a Turing machine, this ideal score
can detect any causal dependence that can be explained by a physical process.
However, Kolmogorov complexity is not computable, so we need a practical
instantiation of this ideal. In this paper, we do so using the Minimum De-
scription Length (MDL) principle, which provides a statistically well-founded
approximation of Kolmogorov complexity.

Simply put, we propose to fit a regression model from X to Y, and vice
versa, measuring both the complexity of the function, as well as the error
it makes in bits, and infer that causal direction by which we can describe
the data most succinctly. We carefully construct an MDL score such that we
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Fig. 1: Example deterministic and non-deterministic data. In both cases the
ground truth is X causes Y. The left-hand data is generated using a cubic
function with Gaussian noise, whereas the right-hand data is generated using
a non-deterministic function.

can meaningfully compare between different types of functional dependencies,
including linear, quadratic, cubic, reciprocal, and exponential functions, and
the error that they make. This way, for example, we will find that we can more
succinctly describe the data in Fig. 1a by a cubic function than with a linear
function, as while it takes fewer bits to describe the latter function, it will take
many more bits to describe the large error it makes.

We do not only consider models that try to explain all the data with a single,
global, deterministic regression function, but also allow for non-deterministic
models. That is, we consider compound regression functions that extend the
global deterministic function by also including regression functions for local
parts of the data corresponding to specific, duplicated X values. For example,
consider the data in Fig. 1b, where the Y values belonging to a single X value
clearly show more structure than the general linear trend. In contrast, if we
rotate the plot by 90 degrees, we do not observe the same regularities for the
X values mapped to a single Y value. In many cases, e.g., Y = 1 there is only
one mapping X value. We can exploit this asymmetry by considering local
regression functions per value of X, each individually fitted but as we assume
all non-deterministic functions to be generated by the same process, all should
be of the same function class. In this particular example, we therewith correctly
infer that X causes Y. The MDL principle prevents us from overfitting, as
such local functions are only included if they aid global compression. Last, but
not least, we give a linear-time algorithm, SLOPE, to compute this score.

As we model Y as a function of X and noise, our approach is somewhat
reminiscent to causal inference based on Additive Noise Models (ANMs) [30],
where one assumes that Y is generated as a function of X plus additive noise,
Y = f(X)+ N with X L N. In the ANM approach, we infer X — Y if we can
find a function from X to Y that admits an ANM, but cannot do so in the
opposite direction. In practice, ANM methods often measure the independence
between the presumed cause and the noise in terms of p-values, and infer the
direction of the lowest p-value. As we will see, this leads to unreliable confidence
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scores—not the least because p-values are often strongly influenced by sample
size [1], but also as that a lower p-value does not necessarily mean that H; is
more true, just that Hy is very probably not true [1]. We will show that our
score, on the other hand, is robust against sample size, and correlates strongly
with accuracy. Moreover, it admits an elegant and effective analytical statistical
test on the difference in score between the two causal directions based on the
no-hypercompression inequality [4; 8].

Our key contributions can be summarised as follows, we
(a) show how to model unobserved mechanisms via compound deterministic

and non-deterministic functions,

(b) propose an MDL score for causal inference on pairs of univariate numeric
random variables,

formulate two analytic significance tests based on compression,

introduce the linear-time algorithms SLOPE and SLOPER,

give extensive empirical evaluation, including a case study

and make all code, data generators, and data available.

This paper builds upon and extends the work appearing in ICDM’17 [18].
Notably, we provide a link between the confidence and significance score of our
method. In addition, we derive a second, p-value test relative to the sample
size. This new test allows us to set a threshold directly for the confidence value.
To improve the generality of our inference algorithm we include more basis
functions and allow combinations of them. As a result, we propose SLOPER,
which can fit more complex functions, if necessary. Further, we provide theory
to link the identifiability of our approach to ANMs and discuss to which extend
this holds. Last, we give a more thorough evaluation of SLOPE and SLOPER on
synthetic and real data, and include results with respect to identifiability of
ANMSs on synthetic data.

The remainder of this paper is organised as usual. We first give a brief primer
to Kolmogorov complexity and the Minimum Description Length principle in
Sec. 2. In Sec. 3 we introduce our score based on the algorithmic independence
of conditional, as well as a practical instantiation based on the MDL principle.
Sec. 4 rounds up the theory by discussing identifiability and significance tests.
To efficiently compute this score we introduce the linear-time SLOPE and
SLOPER algorithms in Sec. 5. Sec. 6 discusses related work. We empirically
evaluate our algorithms in Sec. 7 and discuss the results in Sec. 8. We round
up with conclusions in Sec. 9.

(c)
(d)
(e)
(f)

2 Preliminaries

In causal inference, the goal is to determine for two random variables X and
Y that are statistically dependent whether it is more likely that X causes Y,
denoted by X — Y, or whether it is more likely that Y causes X, Y — X. In
this paper we consider the case where X and Y are univariate and numeric.
We work under the common assumption of causal sufficiency [5; 21; 25; 33].
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That is, we assume there is no hidden confounder variable Z that causes both
X and Y.

We base our causal inference score on the notion of Kolmogorov complex-
ity, which we will approximate via the Minimum Description Length (MDL)
principle. Below we give brief primers to these two main concepts.

2.1 Kolmogorov Complexity

The Kolmogorov complexity of a finite binary string x is the length of the
shortest binary program p* for a universal Turing machine U/ that outputs x
and then halts [13; 15]. Formally,

K(z) = min{[p| [ p € {0,1}",U(p) = «} .

Simply put, p* is the most succinct algorithmic description of z, and therewith
Kolmogorov complexity of x is the length of its ultimate lossless compression.
Conditional Kolmogorov complexity, K (z | y) < K(z), is then the length of
the shortest binary program p* that generates z, and halts, given y as input.

The Kolmogorov complexity of a probability distribution P, K(P), is the
length of the shortest program that outputs P(z) to precision g on input
(x,q) [15]. More formally, we have

K(P) =min{|p| : p € {0,1}", U((z, (¢,p))) — P(x)| <1/q} .

The conditional, K(P | @), is defined similarly except that the universal Turing
machine U now gets the additional information ). The algorithmic mutual
information between two distributions P and Q is I(P : Q) = K(P) — K(P |
Q*), where Q* is the shortest binary program for ¢). For more details on
Kolmogorov complexity see [15].

2.2 Minimum Description Length Principle

Kolmogorov complexity is not computable [15]. We can, however, approximate it
from above through lossless compression [15]. The Minimum Description Length
(MDL) principle [27; 8] provides a statistically well-founded and computable
framework to do so. Conceptually, instead of all programs, Ideal MDL considers
only those for which we know that they output z and halt, i.e., lossless
compressors. Formally, given a model class M, MDL identifies the best model
M € M for data D as the one minimizing

L(D,M) = L(M) + L(D | M),

where L(M) is the length in bits of the description of M, and L(D | M) is the
length in bits of the description of data D given M. This is known as two-part,
or crude MDL. There also exists one-part, or refined MDL. Although refined
MDL has theoretically appealing properties, it is only efficiently computable
for a small number of model classes.



6 Alexander Marx, Jilles Vreeken

To use MDL in practice we both need to define a model class as well as how
to encode a model and the data given a model in bits. It is important to note
that in both Kolmogorov complexity and MDL we are only concerned with
optimal code lengths, not actual codes—our goal is to measure the complexity
of a dataset under a model class, after all [8]. As is usual in MDL, all logarithms
are to base 2, and we use the common convention that 0log0 = 0.

3 Information Theoretic Causal Inference

In this section, we first introduce how to infer causal directions using Kol-
mogorov complexity. Thereupon, we show how to obtain a computable score
based on the MDL principle.

3.1 Causal Inference by Kolmogorov Complexity

A central postulate in causal inference concerns the algorithmic independence
of conditionals. For multiple random variables, this postulate is defined as
follows [10].

Algorithmic Independence of Conditionals: A causal hypothesis is only
acceptable if the shortest description of the joint density P is given by the
concatenation of the shortest description of the Markov kernels. Formally, we
write
K(P(X1,...,X,)) £ Y K(P(X; | PAy)) (1)
J

which holds up to an additive constant independent of the input, and where
PA; corresponds to the parents of X; in a causal directed acyclic graph (DAG).

As we consider two variables, X and Y, either X is the parent of Y or the
other way round. That is, either

K(P(X,Y)) £ K(P(X))+ K(P(Y | X)), or
K(P(X,Y)ZKP(Y)+K(P(X|Y)).

In other words, two valid ways to describe the joint distribution of X and Y
include to first describe the marginal distribution P(X) and then the conditional
distribution P(Y | X), or first to describe P(Y') and then P(X |Y).

Thereupon, Janzing and Schélkopf formulated the postulate for algorithmic
independence of Markov kernels [10].

Algorithmic Independence of Markov Kernels: If X — Y, the marginal
distribution of the cause P(X) is algorithmically independent of the conditional
distribution of the effect given the cause P(Y | X), i.e., the algorithmic mutual
information between the two will be zero,

I(P(X): P(Y | X)) =0, (2)
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while this is not the case in the other direction.

Simply put, for the true causal direction, the marginal distribution of the
cause is algorithmically independent of the conditional distribution of the effect
given the cause. Building upon Egs. (1) and (2), Mooij et al. [20] derived an
inference rule stating that if X causes Y,

K(P(X)) + K(P(Y | X)) < K(P(Y)) + K(P(X | Y)) 3)

holds up to an additive constant. This means that if X — Y, the description of
the joint distribution K(P(X,Y")) of first describing the marginal distribution
of the cause K(P(X)) and then describing the conditional distribution of the
effect given the cause K(P(Y | X)), will be shorter than the other way around.

Although Eq. (3) already allows for inferring the causal direction for a
given pair, we obtain a more robust score, allowing for fair comparison of
results independent of data sizes, when we normalize the result. In particular,
Budhathoki and Vreeken [5] recently proposed to normalize the scores with
the sum of the description lengths for the marginal distributions. We therefore
define our causal indicator as

K(P(X)) + K(P(Y | X))
K(P(X)+K(P(Y))

and Ay _, x in the same manner. Consequently, we infer X — Y, if Ax_,y <
Ayﬁx, andY — X, if Ax_y > Ay_, x and do not decide if Ax_,yv = Ay_ x.

The confidence of our score is C = |Ax_,y — Ay _, x|. The higher, the more
certain we are that the inferred causal direction is correct. To avoid confusion,
we want to emphasize that C has nothing to do with a confidence interval,
but can be used to rank results of several tests. Below, after introducing our
practical score, we will show how we can in addition define two analytical tests
to determine whether an inference is statistically significant.

Axy =

3.2 Causal Inference by MDL

As Kolmogorov complexity is not computable, we will instantiate Ax_,y and
Ay _,x using the Minimum Description Length principle [15; 8]. In practice
this means we will estimate Ax_,y as

LX)+ L(Y | X)
LX)+ L(Y)

Ax_y =

where L(X) is the length in bits of the description of the marginal distribution
of X, L(Y) that of the marginal distribution of Y, and L(Y | X) that of the
conditional distribution of Y given X. We define Ay x analogue to A XY,
and we infer X — Y, if AAX%y < AAyﬁX, Y —» X, if AAXHY > AAYHX and do
not decide if A Xy = AAY_) x or below a user-defined threshold. Like above,
confidence C is simply the absolute difference between A x_y and AAy_> x-
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Considering the difference between the encoded lengths is related to, but
not the same as considering the ratio of the posteriors; we also include the
complexity of the model, which helps against overfitting. Intuitively, if the
functions we find for the two directions both explain the data equally well, we
prefer that direction that explains it using the simplest function.

This leaves us to explain how we encode the data, and, most importantly,
how we encode L(Y | X).

Intuition of the Conditional Encoding

The general idea is simple: we use regression to model the data of Y given
X. That is, we model Y as a function f of X and independent noise N, i.e.
Y = f(X)+ N. We do so by fitting a regression function f over X and treating
the error it makes as Gaussian distributed noise. Naturally, the better f(X) fits
Y, the fewer bits we will have to spend on encoding errors. The more parameters
f(X) has, however, the more bits we will have to spend on encoding these.
This way, MDL naturally balances the complexity of the model to that of the
data [8]. For example, while a linear function is more simple to describe than a
cubic one, the latter will fit the data plotted in Fig. 1a so much better that
MDL decides it is the better choice.

A key idea in our approach is to consider not only single global deterministic
regression functions f,, which works well for deterministic data, but to also
consider non-deterministic, or compound functions as models. That is, we
consider models that besides the global regression function f, may additionally
consist of local regression functions f; that model Y for those values x of X
that non-deterministically map to multiple values of Y. That is, per such value
of X, we take the associated values of Y, sort these ascending, and uniformly
re-distribute them on X over a fixed interval. We now see how well, just for
these re-distributed points, we can fit a local regression model f;. This way, we
will for example be able to much more succinctly describe the data in Fig. 1b
than with a single global deterministic regression function, as we can now
exploit the structure that the values of Y have given a value of X, namely,
being approximately equally spaced. To avoid overfitting we use MDL, and
only allow a local function for a value of X into our model if it provides a gain
in overall compression. Since we assume that for the true causal model the
data in the local components follows the same pattern, we only allow models
in which all local functions are of the same type, e.g., all are linear, all are
quadratic, etc.

In the following paragraphs, we formalize these ideas and define our cost
functions.

Complezity of the Marginals

We start by defining the cost for the marginal distributions, L(X) and L(Y),
which mostly serve to normalize our causal indicators Ax_,y and Ay _x. As
we beforehand do not know how X or Y are distributed, and do not want to
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incur any undue bias, we encode both using a uniform prior with regard to
the data resolution 7 of X and Y. That is, we have L(X) = —nlog 7x, where
7 is the resolution of the data of X. Note that resolution 7 can be different
between X and Y—we specify how we choose 7 in the next section. We define
L(Y') analogue.

Complezity of the Conditional Model

Formally, we write F for the set of regression functions, or model, we use
to encode the data of Y given X. A model F consists of at least one global
regression function f;, € F, and up to the size of the domain of X local
regression functions f; € F, associated with individual values of X. We write
Fy for the set of local regression functions f; € Fj, and require that all f; € Fj
are of the same type. The description length, or encoded size, of F' is

L(F) =Ly(|F|) + log (|X| B 1>+

B -1
2log(|F|) + L(fy) + > L(fi) »
fieF,

where we first describe the number of local functions using Ly, the MDL optimal
encoding for integers z > 1 [28], then map each f; to its associated value of
X, after which we use log | F| bits to identify the type of the global regression
function f,, and whenever F; is non-empty also log |F| bits to identify the type
of the local regression functions f;, finally, we encode the functions themselves.
Knowing the type of a function, we only need to encode its parameters, and
hence
L(f) = Ln(s) + Lu([¢ - 10°T) + 1,
bED;

where we encode each parameter ¢ up to a user defined precision p. We shift ¢
by the smallest integer number s such that ¢ - 10° > 10P, i.e. p = 3 means that
we consider three digits. Accordingly, we encode the shift, the shifted digit and
the sign.

Complezity of the Conditional Data

Reconstructing the data of Y given f(X) corresponds to encoding the residuals,
or the error the model makes. Since we fit our regression functions by minimizing
the sum of squared errors, which corresponds to maximizing the likelihood
under a Gaussian, it is a natural choice to encode the errors using a Gaussian
distribution with zero-mean.

Since we have no assumption on the standard deviation, we use the empirical
estimate 6 to define the standard deviation of the Gaussian. By doing so, the
encoded size of the error of F(X) with respect to the data of Y corresponds to

1
LY |F,X)= Z (Zf <1r12 +10g27r[72) - nflog7y> ,
fer
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where ny is the number of data points for which we use a specific function
f € F. Intuitively, this score is higher the less structure of the data is described
by the model and increases proportionally to the sum of squared errors.

Complexity of the Conditional

Having defined the data and model costs above, we can now proceed and define
the total encoded size of the conditional distribution of Y given X as

L(Y | X)=L(F)+ L(Y | F,X) . (4)

By MDL we are after that model F' that minimises Eq. (4). After discussing a
significance test for our score, we will present the SLOPE algorithm to efficiently
compute the conditional score in the next section.

4 Identifiability and Significance

As it is not only important to find the causal direction, but also to provide
some insight in when to trust the method and when to be careful, we here
discuss identifiability and significance testing.

4.1 Identifiability

Determining for which generative processes and noise distributions we can
reliably infer the causal direction from observational data alone is a non-trivial
task; most of the work related to identifiability was done for additive noise
models (ANMs) [23; 30; 9], and later generalized to Identifiable Functional
Model Classes (IFMOCs) [24]. In the following, we discuss the relation of
existing results on identifiability to SLOPE.

In causal inference based on ANMs, one assumes the generative model to
be of the form Y = f(X) 4+ N where noise N 1L X. If the data does admit
such a model in the direction of X — Y, but not in the opposite direction, we
infer that X causes Y. As the functional form of the method is known, and the
independence between residual and source measured are directly, it is relatively
straightforward to determine whether the correct direction is identifiable for
a function class and noise distribution [30; 9; 37; 23]—for example, if f is
linear and both X and N are Gaussian distributed, the causal direction is not
identifiable as it is possible to find an ANM in both direction.

For functional causal models Peters et al. [24] defined the Identifiable Func-
tional Model Classes (IFMOC), which includes bivariate identifiable functions
as linear, whereas either the cause or the independent noise can be Gaussian
noise or non-linear with both cause and noise being Gaussian. In essence,
IFMOCs generalize individual results for additive noise models [30; 9; 37; 23].

Janzing and Scholkopf [10] show that the statistic model of causality is
closely linked to the more general algorithmic version. In particular, both the
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statistic and the algorithmic causal model assume that the local and global
Markov conditions for the causal DAG G are fulfilled.

Local Markov Condition: For each node X; € G it holds that X; 1L ND; |
PA;, where ND; are the non-descendants and PA; the parents of X;.

Global Markov Condition: Given the sets of nodes S, T, R. If and only if
S and T are d-separated by R, then S L T | R.

Further, both frameworks assume the same generative model. The functional
model of causality and the corresponding algorithmic model of causality state
that X; can be generated as a function, respectively a program, of its parents
and jointly independent noise [10]. Notably, a program can also be a functional
relationship, which means that the algorithmic model of causality includes
the functional model as well. Based on the previous statements, the authors
postulate that the decomposition

K(P(X1,....X,) > K(P(X;|P4;))
je{1,...,n}

only holds for the true causal DAG. In fact, Janzing and Steudel [11] show
that it is unlikely that for both functional and the algorithmic causal models it
is unlikely that in real world data the additive noise assumption is violated.

Our inference rule is based on this postulate, and hence we inherit the
property that the factorization of the joint in the true distribution is simpler
in terms of Kolmogorov complexity. We are able to determine this direction
if we use Kolmogorov complexity as a measure of complexity. However, as
Kolmogorov complexity is not computable, and not even approximable up to
arbitrary precision, but only approximable from above [15], it is impossible
to make general statements about identifiability for any method build on this
model; we have to rely on the quality of our MDL approximation. This means
that we can only refer to the IFMOC definition under the assumption that
the MDL score perfectly approximates the Kolmogorov complexity. Ideal MDL
does have this property, but is not useable in practice. Using Refined MDL [8]
we can make such statements relative to a model class, but such scores are
only efficiently computable for a small number of model classes. Given enough
samples, a two-part MDL score behaves like a Refined MDL score [8]. We use a
two-part MDL score, which means that given enough samples we approximate
the optimal MDL score for the class of functions we consider up to a constant
that only depends on the model class we consider.

The dominant part of our score is the regression error. If we either ignore the
model cost, or, equivalent, if we allow only models for the same complexity, we
have a direct connection to the recent results of Blobaum et al. [3]. In essence,
they showed that if the true functional relationship is invertible, monotonically
increasing and two times differentiable, we can identify the causal direction
based on regression errors. From their results, it shows the approach is most
reliable in a low noise setups. Relating this back, our approach is similar but
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more general: we can compare different functions types to each other, whereas
Blobaum et al. fit the same function type in both directions.

To conclude, given enough samples our approach is expected to be reliable
for IFMOCs with the restriction, that the function is in our model class and
that we can model the noise distribution. In addition, we expect our approach
to perform better in low noise setups. As a consequence, we can extend the
class of identifiable functions by i) extending the function class and ii) by fitting
functions that minimize a different error function. In addition, we can increase
reliability by providing a significance value for an inference. For that manner,
we propose two significance tests in the following subsections.

4.2 Significance by Hypercompression

Ranking based on confidence works well in practice. Ideally, we would ad-
ditionally like to know the significance of an inference. It turns out we can
define an appropriate hypothesis test using the no-hypercompressibility in-
equality [4; 8]. In a nutshell, under the hypothesis that the data was sampled
from the null-model, the probability that any other model can compress k bits
better is

Py(Lo(z) — L(x) > k) <27% .

This means that if we assume the null model to be the direction corresponding
to the least-well compressed causal direction, we can evaluate the probability
of gaining k bits by instead using the most-well compressed direction. Formally,
if we write L(X —Y) for L(X) + L(Y | X), and vice-versa for L(Y — X), we
have

Lo =max{L(X - Y),L(Y —» X)}.

The probability that the data can be compressed
E=|L(X—->Y)- LY - X)|

bits better than the encoding in the anti-causal direction is then simply 2%,

In fact, we can construct a more conservative test by assuming that the data
is not causated, but merely correlated. That is, we assume both directions are
wrong; the one compresses too well, the other compresses too poorly. Following,
if we assume these two to be equal in terms of exceptionality, the null complexity
is the mean between the complexities of the two causal directions, i.e.,

Lo=min{L(X - Y),L(Y > X)} +|L(X = Y) - LY = X)|/2.
The probability of the best-compressing direction is then 2% with

L LX = Y) — LY X))
— > .

We can now set a significance threshold « as usual, such as « = 0.001, and use
this to prune out those cases where the difference in compression between the
two causal directions is insignificant.
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4.3 Significance by Confidence

Although the above significance test based on the absolute difference in com-
pression follows nicely from theory, and behaves well in practice, it is not free of
problems. In particular, as most significance tests, it is sensitive to the number
of samples, which in our context can be directly linked to the initial complex-
ities L(X) and L(Y'). Assume X and X' follow the exact same distribution,
where X contains 100 samples and X’ 10000. Further, Y respectively Y’ have
been generated by the same process, as a function over X, respectively X',
plus additive noise. It is easy to see that L(X) will be much smaller than
L(X"). Despite this difference, we would observe that the confidence value for
both processes is similar because it considers the gain relative to the uncondi-
tioned costs. The absolute difference between |L(X —Y) — L(Y — X)| and
|IL(X' = Y") — L(Y' — X)| will likely be larger for the pair X’ and Y”, as it
contains more samples. In essence, we assume that it is easier to gain k bits
for large data sets than for smaller data sets. Following this assumption, the
above significance test using the absolute difference is biased towards larger
data sets.

To resolve this bias we can reformulate the null hypothesis with respect to
the marginal complexity. One way to do so is to rescale the initial complexity
L(X) + L(Y) to b bits. We write the new null hypothesis as Hy: Given a
budget of b bits both directions compress equally well. With this hypothesis, we
calculate k as

|IL(X -Y)—- LY — X)| b C-b

k= 2 LX)+ LY) 2

This means that finding a threshold for the confidence value is equivalent
to the relative significance test. In particular, we can calculate a confidence
threshold given a significance level o and a budget b as C = —21log(«)/b. For
instance, allowing a budget of b = 1000 bits and a significance level of o = 0.05
renders all inferences with a confidence value lower than 0.00864 insignificant.
Informally, we say that we do not expect that a difference of more than k in b
bits, is due to a random effect.

We will evaluate both of the above procedures, in addition to our confidence
score, in the experiments. This concludes the theoretical part. In the next
section we describe how we compute the marginal and conditional costs in
linear time.

5 The Slope Algorithm

With the framework defined in the previous section, we can determine the most
likely causal direction and the corresponding confidence value. In this section,
we present the SLOPE algorithm to efficiently compute the causal indicators. To
keep the computational complexity of the algorithm linear, we restrict ourselves
to linear, quadratic, cubic, exponential, and their counterparts, reciprocal and
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Algorithm 1: CONDITIONALCOSTS(Y, X)

input :random variables Y and X
output :score L(Y | X)

1 F = empty model;

2 fg = FITDETERMINISTIC(Y ~ X, F);

3 F=FU fg;

4 s=sq=L(F)+L(Y | F,X);

5 X, = {z € X | count(z) > 2}

6 foreach F. ¢ F do

7 Sc = 8g, Fe = F,

8 foreach z; € X, do

9 Y; ={y € Y | y maps to z;};
10 X; =norm(1 : |Y;|, min = —¢, max = t);
11 fi = FITDETERMINISTIC(Y; ~ X, Fe);
12 S = L(F.U fi) + L(Y | Fe U fi, X);
13 if § < sc then sc =38, F. = F. U f;
14 if s < s then s = s.;
15 return s;

logarithmic functions—although at the cost of extra computation this class
may be expanded arbitrarily. We start by introducing the subroutine of SLOPE
that computes the conditional complexity of Y given X.

5.1 Calculating the Conditional Scores

Algorithm 1 describes the subroutine to calculate the conditional costs L(Y | X)
or L(X | Y). We start with fitting a global function f, for each function class
c € F and choose the one f; with the minimum sum of data and model costs
(line 2). Next, we add f, to the model F' and store the total costs (3-4). For
purely deterministic functions, we are done.

If X includes duplicate values, however, we need to check whether fitting a
non-deterministic model leads to a gain in compression. To this end we have
to check for each value x; of X that occurs at least twice, whether we can
express the ascendingly ordered corresponding Y values, Y;, as a function f;
of uniformly distributed data X; between [—t,t], where t is a user-determined
scale parameter (lines 9-12). If the model costs of the new local function f; are
higher than the gain on the data side, we do not add f; to our model (13). As
it is fair to assume that for truly non-deterministic data the generating model
for each local component is the same, we hence restrict all local functions to be
of the same model class F. € F. As final result, we return the costs according
to the model with the smallest total encoded size. In case of deterministic data,
this will be the model containing only f,.
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5.2 Causal Direction and Confidence

In the previous paragraph, we described Algorithm 1, which is the main
algorithmic part of SLOPE. Before applying it, we first normalize X and Y
to be from the same domain and then determine the data resolutions 7x and
Ty for X and Y. To obtain the data resolution, we calculate the smallest non-
zero difference between two instances of the corresponding random variable.
Next, we apply Algorithm 1 for both directions to obtain L(Y | X) and
L(X | Y). Subsequently, we estimate the marginals L(X) and L(Y) based
on their data resolutions. This we do by modelling both as a uniform prior
with L(X) = —nlog7x and L(Y) = —nlog7y. In the last step, we compute
A x_y and AAy_> x and report the causal direction as well as the corresponding
confidence value C.

The choice of the resolution might seem to be ad-hoc, which it is. However,
since we compute the unconditioned complexities with a uniform prior, the
exact value of the resolution is not important! In general, setting a resolution
in our score prevents us from getting negative scores in case & approaches zero.
In this special setting, where we only consider two univariate variables with
the same sample size, the penalty for the resolution cancels out. In particular,
in both AX_>Y and Ay_>X, we subtract n times the negative logarithm of
the resolution for X and Y. Hence, the number of bits spent to correct for
the resolution is equal on both sided of our equation Ax_y < Ay_x or
respectively Ayﬁx < Ax_y.

5.3 Combining Basis Functions

To extend the generality of SLOPE, we provide a second version of it, which we
call SLOPER. The aim of SLOPER is to allow for more complex functions, e.g.
Y =a+bX + clog(X) +dX 3+ N. This we do by fitting a mixture of basis
functions as the global function. As a consequence, SLOPER is more flexible
and can help to infer more complex functional relationships. Naturally, this
comes at a cost. In particular, we go over each possible combination of basis
functions—in our case 2/*! — 1 with |F| = 8 basis functions—and find the one
minimizing the two part-costs.

Since all possible combinations can be non-ambiguously enumerated, we
can still use the same encoding.

5.4 Computational Complexity

To assess the computational complexity, we have to consider the score calcula-
tion and the fitting of the functional relations. The model costs are computed
in linear time according to the number of parameters, whereas the data costs
need linear time with regard to the number of data points n. Since we here
restrict ourselves to relatively simple functions, we can fit these in time linear
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to the number of data points. To determine the non-deterministic costs, in
the worst case we perform n/2 times |F| fits over two data points, which is
still linear. In total the runtime complexity of SLOPE hence is O(n|F]), for
SLOPER respectively O(n271). In practice, SLOPE and SLOPER are very fast
and typically only takes a few seconds, up to a few minutes for pairs with tens
of thousands of samples.

6 Related Work

Causal inference from observational data is an important open problem that
has received a lot of attention in recent years [5; 21; 29; 22]. Traditional
constraint based approaches, such as conditional independence test, require at
least three random variables and can not decide between Markov equivalent
causal DAGs [22; 33]. In this work, we focus specifically on those cases where
we have to decide between the Markov equivalent DAGs X — Y and Y — X.

A well studied framework to infer the causal direction for the two-variable
case relies on the additive noise assumption [30]. Simply put, it makes the
strong assumption that Y is generated as a function of X plus additive noise,
Y = f(X)+ N, with X L N. It can then be shown that while such a
function is admissible in the causal direction, this is not possible in the anti-
causal direction. There exist many approaches based on this framework that
try to exploit linear [30] or non-linear functions [9] and can be applied to
real valued [30; 9; 37; 25] as well as discrete data [23]. Recently, Mooij et
al. [21] reviewed several ANM-based approaches from which ANM-pHSIC, a
method employing the Hilbert-Schmidt Independence Criterion (HSIC) to test
for independence, performed best. For ANMs the confidence value is often
expressed as the negative logarithm of the p-value from the used independence
test [21]. P-values are, however, quite sensitive to the data size [1], which leads
to a less reliable confidence value. As we will show in the experiments, our
score is robust and nearly unaffected by the data size.

Another class of methods rely on the postulate that if X — Y the marginal
distribution of the cause P(X) and the conditional distribution of the effect
given the cause P(Y | X) are independent of each other. The same does not hold
for the opposite direction [10]. The authors of IGCI define this independence
via orthogonality in the information space. Practically, they define their score
using the entropies of X and Y [12]. Liu and Chan implemented this framework
by calculating the distance correlation for discrete data between P(X) and
P(Y | X) [16]. A third approach based on this postulate is CURE [29]. Here, the
main idea is to estimate the conditional using unsupervised inverse Gaussian
process regression on the corresponding marginal and compare the result to
the supervised estimation. If the supervised and unsupervised estimation for
P(X |Y) deviate less than those for P(Y | X), an independence of P(X |Y)
and P(X) is assumed and causal direction X — Y is inferred. Although well
formulated in theory, the proposed framework is only solvable for data of up
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to 200 data points and otherwise relies strongly on finding a good sample of
the data.

Recently, Janzing and Scholkopf postulated that if X — Y, the complexity
of the description of the joint distribution in terms of Kolmogorov complexity,
K(P(X,Y)), will be shorter when first describing the distribution of the cause
K(P(X)) and than describing the distribution of the effect given the cause
K(P(Y | X)) than vice versa [10; 14]. To the best of our knowledge, Mooij et
al. [20] were the first to propose a practical instantiation of this framework
based on the Minimum Message Length principle (MML) [35] using Bayesian
priors. Vreeken [34] proposed to approximate the Kolmogorov complexity for
numeric data using the cumulative residual entropy, and gave an instantiation
for multivariate continuous-valued data. Perhaps most related to SLOPE is
ORICO [5], which uses MDL to infer causal direction on binary data, whereas
we focus on univariate numeric data.

7 Experiments

In this section, we empirically evaluate SLOPE and SLOPER. In particular, we
consider synthetic data, a benchmark data set, and a real-world case study. We
implemented both in R and make both the code, the data generators, and real
world data publicly available for research purposes! We compare SLOPE and
SLOPER to the state of the art for univariate causal inference. These include
CURE [29], IGCI [12] and RESIT [25]. From the class of ANM-based methods
we compare to ANM-pHSIC [9; 21], which a recent survey identified as the
most reliable ANM inference method [21]. We use the implementations by the
authors, sticking to the recommended parameter settings.

To run SLOPE, we have to define the parameter ¢, which is used to normalize
the data X; within a local component, on which the data Y; is fitted. Generally,
the exact value of ¢ is not important for the algorithm, since it only defines the
domain of the data points X;, which can be compensated by the parameters of
the fitted function. In our experiments, we use ¢ = 5 and set the precision p for
the parameters to three.

7.1 Evaluation Measures

As simply giving the accuracy over a set of experiments does not suffice to
judge about the quality of an inference algorithm, we briefly explain frequently
used measures. In general, it is not only important to have a high accuracy, but
also to assign high confidence values to decisions about which the corresponding
approach is most certain and low confidence values to less certain decisions as
in our case high noise settings.

Commonly used measures to give more insight to this behaviour than the
overall accuracy, are the area under the receiver operating characteristic (ROC)

I http://eda.mmci.uni-saarland.de/slope/
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curve and the area under the precision recall (PR) curve. However, both have
the drawback that they assign a preference to either select X — Y as the true
positive and Y — X as the true negative or vice versa. As a consequence, they
are not symmetric. The assignment of X and Y for the tested pairs is highly
arbitrary and hence, the imposed preference of those tests is arbitrary, too.

An alternative measure is the accuracy with respect to the decision rate,
which we simply denote by accuracy curve. The decision rate is the percentage
of pairs for which we force a decision—i.e. a decision rate of p% means that we
consider those p% of all decisions with the highest confidence. In contrast to
ROC and PR the decision rate is independent of the label of the result. To
get the accuracy curve, we simply calculate the accuracy per decision rate.
Similar to ROC and PR, we can also calculate the area under the accuracy
curve (AUAC).

We use the accuracy curve and the area under the accuracy curve as our
default measures and give additional results with respect to ROC and PR in
Appendix A.

7.2 Synthetic Data

We first consider data with known ground truth. To generate such data, we
follow the standard scheme of Hoyer et al. [9]. That is, we first generate X
randomly according to a given distribution, and then generate Y as Y =
f(X)+ N, where f is a function that can be linear, cubic or reciprocal, and N
is the noise term, which can either be additive or non-additive.

Accuracy

First, we evaluate the performance of SLOPE under different distributions.
Following the scheme above, we generate X randomly from either

1. a uniform distribution with min = —¢ and max = ¢, where ¢ ~ unif(1, 10),
2. a sub-Gaussian distribution by sampling data with N(0,s), where s ~
unif(1, 10) and taking each value to the power of 0.7 maintaining its sign?
3. a binomial distribution with p ~ unif(0.1,0.9) and the number of trials
t ~ [unif(1,10)], or
4. a Poisson distribution with A ~ unif(1, 10).
Note that the binomial and Poisson distribution generate discrete data points,
which with high probability results in non-deterministic pairs. To generate
Y we first apply either a linear, cubic or reciprocal function on X, with
fixed parameters, and add either additive noise using a uniform or Gaus-
sian distribution with ¢,s ~ unif(1, max(z)/2) or non-additive noise with
N(0,1)|sin(2rvX)| + N (0,1)|sin(27(10v) X)|/4 according to [29], where we
choose v ~ unif(0.25,1.1). For every combination we generate 100 data sets of
1000 samples each.

2 We consider sub-Gaussian distributions since linear functions with both X and N
Gaussian distributed are not identifiable by ANMs [9].
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Fig. 2: [Higher is better] Accuracies of SLOPE, RESIT and IGCI on synthetic
data—SLOPER performs identical to SLOPE. The first letter of the labels corre-
sponds to the distribution of X (u: uniform, g: sub-Gaussian, b: binomial and
p: Poisson), the second letter to that of the noise (w: uniform, ¢g: Gaussian and
n: non-additive).

Next, we apply SLOPE, RESIT, and IGCI and record how many pairs they
correctly infer. Since all tested functions can be modelled by SLOPE, they can
also be modelled by SLOPER. Hence, the performance of SLOPER is identical,
and we only give the results for one of them. As they take up to hours to
process a single pair, we do not consider CURE and ANM here. We give the
averaged results over all three function types in Fig. 2. In general, we find that
SLoPE and IGCI perform on par and reach 100% for most setups, whereas
SLOPE performs better on the sub-Gaussian data. If we consider the single
results for linear, cubic and reciprocal, we find that on the linear data with
sub-Gaussian distributed X, SLOPE performs on average 7% better than IGCI.
We provide further details in terms of the non-aggregated results for only linear,
cubic and reciprocal in Appendix A.

Confidence

Second, we investigate the dependency of the RESIT, IGCI, and SLOPE scores
on the size of the data. In an ideal world, a confidence score is not affected by
the size of the data, as this allows easy comparison and ranking of scores.

To analyse this, we generate 100 datasets of 100, 250, 500 and 1 000 samples
each, where X is Gaussian distributed and Y is a cubic function of X with
uniform noise. Subsequently, we apply RESIT, IGCI and SLOPE and record
their confidence values. We show the results per sample size in Fig. 3. As
each method uses a different score, the scale of the Y-axis is not important.
What is important to note, is the trend of the scores over different sample
sizes. We see the mean of the confidence values of SLOPE is very consistent and
nearly independent of the number of samples. In addition, our score becomes
more precise with more data: the size of the confidence interval decreases. In
strong contrast, the standard deviation of the confidence values increases with
larger sample size for RESIT. For IGCI, we observe that the average confidence
increases with the number of samples.
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Fig. 3: [The more stable the better] Confidence values on a cubic function
for different sample sizes. Unlike RESIT and IGCI, the SLOPE scores can be
meaningfully compared between different sample sizes.

In addition to theses plots, we check if there is a significant mean shift
in the confidence values for different sample sizes. Hence, we apply the exact
two-sided Wilcoxon rank-sum test [36; 19]. In particular, we compare the
confidence values for the sample sizes 100, 200, 500 to the ones for sample size
1000 for all methods. As result, we observe that for a significance level of 0.01
we find a significant shift in all three tests for IGCI. Also, for RESIT, there
is a significant mean shift between the values for 100 and 1000 as well as for
250 and 1000. SLOPE is consistent from 250 samples onwards. In other words,
while it is easy to compare and rank SLOPE scores, this is not the case for the
two others—which, as we will see below results in comparatively bad accuracy
curves.

7.3 Identifiability of ANMs on Synthetic Data

Connected to the vulnerability of p-values, that RESIT uses, to the size of
the data, we investigate in a similar problem. When the data size or the
complexity of the function increases, the test for independence between X
and N is likely to hold in both directions. Accordingly, we generate uniform
data with Gaussian noise for different data sizes and plot the results for linear
and cubic functions in Figure 4. We can observe that this problem does very
rarely occur for the linear data. For the more complex generative function,
the cubic function, we observe that this problem frequently occurs. Notably,
most of the time one direction is significant, the other is so, too. In such cases,
RESIT and other ANM based algorithms, decide for the more extreme p-value.
As stated by Anderson et al. [1], a more extreme p-value does not necessarily
imply a stronger independence. The only valid statement we can make is that
it is highly unlikely that the noise is dependent on X as well as on Y for the
inverse direction. Deciding for the correct direction, however, is not well defined.
Especially, if we consider that the p-values can be very low and in the order of
107190 as we saw in the previous experiment.
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Fig. 4: Percentage of cases where one or both causal directions are significant
under an ANM.
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Fig. 5: [SLOPE does not overfit] Percentage of non-deterministic models SLOPE
chooses, resp. the expected number of Y values per X value, for the number of
unique values of X.

Since SLOPE does not rely on p-values, but decides based on the the fit as
well as the complexity of the model, we can avoid these problems.

Non-Determinacy

Local regression on non-deterministic data adds to the modelling power of
SLOPE, yet, it may also lead to overfitting. Here we evaluate whether MDL
protects us from picking up spurious structure.

To control non-determinacy, we sample X uniformly from k& equidistant
values over [0, 1], i.e., X € [%, %7 cee %] To obtain Y, we apply a linear function
and additive Gaussian noise as above. Per data set we sample 1000 data points.

In Fig. 5 we plot the non-determinism of the model, i.e. the average number
of used bins divided by the average number of bins SLOPE could have used,
against the number of distinct X values. As a reference, we also include the
average number of values of Y per value of X. We see that for at least 75 unique
values, SLOPE does not infer non-deterministic models. Only at 40 distinct
values, i.e., an average of 25 duplicates per X, SLOPE consistently starts to
fit non-deterministic models. This shows that if anything, rather than being
prone to overfit, SLOPE is conservative in using local models.
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Fig. 6: [Higher is better] Accuracy curves of SLOPE and SLOPER on the SIM,
SIM-In and SIM-G data sets. The gray area refers to the 95% confidence
interval of a random coin flip.

GP Simulated Data

Next, we want to show that considering a richer function class is beneficial
for our approach. As a showcase, we apply both SLOPE and SLOPER to the
synthetic data pairs proposed by Mooij et al. [21], where both the data over
the cause X and the function that maps X to Y have been generated using a
Gaussian Process. We consider three scenarios? each containing 100 pairs of
1000 samples. The first one, SIM is the standard setup, SIM-In has low noise
levels and for SIM-G both the distribution of X and the additive noise are
near Gaussian.

In Fig. 6 we provide the accuracy curves for SLOPE and SLOPER. Overall,
we can observe that SLOPER clearly improves upon the the results of SLOPE,
since it is able to fit the more complex GP functions better. Especially for
the low noise scenario, SLOPER improves significantly and reaches an overall
accuracy of 80%. In general, we can observe that the accuracy curves for both
are good since the correct decisions have the highest confidence values.

If we consider the area under the accuracy curve, SLOPER performs well
having an AUAC of 96% on SIM-In, 77% on SIM-G and 75% on SIM whereas
SLOPE has an AUAC of about 50% for all of them. As we expect our approach
to work better in a low noise setup, it is not surprising that SLOPER performs
best on the SIM-In data set.

7.4 Real World Data

Next we evaluate SLOPE on real world benchmark data. In particular, we
consider the Tiibingen cause-effect data set? At the time of writing the data set
included 98 univariate numeric cause effect pairs. We first compare SLOPE to
IGCI, REsiT, ANM, and CURE, using their suggested parameter settings for

3 We exclude the confounded scenario since it violates our assumptions.
4 https://webdav.tuebingen.mpg.de/cause-effect /
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this benchmark. Afterwards, we compare compare between different variants
of SLOPE.

Accuracy Curves and Overall Accuracy

We first consider the overall accuracy and the accuracy curves over the bench-
mark data, where we weight all decisions according to the weights specified
in the benchmark. In case an algorithm does not decide, we consider this a
toss-up and weight this results as one half of the corresponding weight.

We plot the results in Fig. 7, where in addition we show the 95% confidence
interval for the binomial distribution with success probability of 0.5 in gray.
We observe that SLOPE strongly outperforms its competitors in both area
under the accuracy curve and overall accuracy; it identifies the correct result
for top-ranked 34 data sets, over the top-72 pairs (which correspond to 72.4%
of the weights) it has an accuracy of 90%, while over all pairs it obtains an
accuracy of 81.7%.

In Fig. 8 we show the corresponding confidence values of SLOPE for the
benchmark pairs. The plot emphasises not only the predictive power of SLOPE,
but also the strong correlation between confidence value and accuracy. In
comparison to the other approaches the area under the accuracy curve (Fig. 7)
of SLOPE is stable and only decreases slightly at the very end. Our competitors,
obtain overall accuracies of between 56% (CURE) and 71% (RESIT), which
for the most part are insignificant with regard to a fair coin flip. This is also
reflected in the AUAC values, which lie between 0.588 (CURE) and 0.736
(IGCTI), whereas SLOPE has an AUAC of 0.942.

If we not only consider the confidence values, but also our proposed sta-
tistical test based on the absolute difference, we can improve our results even
further. After adjusting the p-values using the Benjamini-Hochberg correc-
tion [2] to control the false discovery rate (FDR), 81 out of the 98 decisions are
significant w.r.t. @ = 0.001. As shown in Fig. 8 the pairs rated as insignificant
correspond to small confidence values. In addition, from the 17 insignificant
pairs, 11 were inferred incorrect from SLOPE and 6 correct. Over the significant
pairs the weighted accuracy increases to 85.2%, and the AUAC to 0.965.

To provide further evidence that the confidence values and the p-values
are indeed related, we plot the adjusted p-values and confidence values in
Fig. 9a. We observe that high confidence values correspond to highly significant
p-values. We also computed the area under the accuracy curve for SLOPE when
ranking by p-values, and find it is only slightly worse than that ranked by
confidence. We posit that confidence works better as it is more independent of
the data size. To test this, we calculate the correlation between data size and
corresponding measures using the maximal information coefficient (MIC) [26].
We find a medium correlation between confidence and p-values (0.64), and
between p-values and data size (0.55), and only a weak correlation between
confidence and data size (0.31).

Apart from the accuracies, we also tracked which functional dependencies
SLOPE found on the benchmark data. We found that most of the time (54.6%),
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Fig. 7: [Higher is better] Accuracy curves of SLOPE, CURE, REsIT, IGCI and
ANM on the Tiibingen benchmark data set (98 pairs).
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Fig. 8: Confidence values of SLOPE for the Tiibingen benchmark pairs, in
descending order, corresponding to Fig. 7. Correct inferences marked in green,
errors in red, and inferences insignificant at o = 0.001 for the absolute p-value
test are marked with a gray arrow.

it fits linear functions. For 23.7% of the data it fits exponential models, and for
15.5% cubic models. Quadratic and reciprocal models are rarely fitted (6.2%).

A key observation to make here is that although we allow to fit complex
models, in many cases SLOPE prefers a simple model as it has sufficient
explanatory power at lower model costs. In fact, if we only allow linear functions
SLOPE is only a few percentage points less accurate compared to the full class of
functions. The confidence of the method, however, is much larger in the latter
case as only then SLOPE is able to better measure the difference in complexity
in both directions.

Relative P-Values Next, we compare the absolute p-value test, that we applied
in the last section, to finding a cut-off for the confidence value based on the
relative significance test.

As explained in Sec. 4, the confidence value can be interpreted as a relative
p-value with respect to a given reference size, e.g. 1000 bits. Whereas ranking
by the p-value corresponding to the significance by confidence would obviously
result in the same area under the accuracy curve as taking the confidence value
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Fig. 9: (left) Confidence and significance of SLOPE on the Tiibingen benchmark
pairs. Only samples with low confidence are also insignificant. (right) Runtime
in seconds over all 98 pairs, in log-scale. SLOPE and SLOPER both are more
accurate than all, and faster than all except for IGCI.

itself, it does allow us to determine a sensible threshold to decide between
significant and random decisions.

Given budget b = 1000 bits and a significance level @ = 0.05, we obtain
a confidence threshold 7 = 0.00864. If we reconsider Fig. 8, we observe that
32 decisions are rendered insignificant by this threshold. From those, 17 are
incorrect and 15 correct. Consequently, this threshold exactly prevents our
algorithm to make 50 : 50, or random decisions. At the same time, considering
only the significant decisions, results in an accuracy of 95.2%. Alternatively, if we
lower the significance threshold to 0.01, eleven more decisions are insignificant,
out of which more than two thirds are correct, which implies that a o = 0.01
might be too restrictive.

SLOPE and its Variations As a last test on the benchmark data set, we
compare SLOPE, SLOPER and two additional variants of our algorithm. Those
are SLOPEp, which only fits deterministic functions and SLOPEp, which has
the same results as SLOPE, but uses the absolute p-value as confidence. For
each variant we plot the accuracy curve for all significant decisions with respect
to the absolute significance test with a = 0.001 in Fig. 10.

First of all, we observe that SLOPER is on par with SLOPE up to a decision
rate of 75% and reaches an overall accuracy of 80%. The AUAC of SLOPER
(0.936) is nearly as good as the one for SLOPE (0.945). Hence, only in the low
confidence region, SLOPER had a slightly worse performance. When we inspected
those decisions, we found that the corresponding pairs mainly consisted of pairs
with high noise levels. This explains why SLOPE and SLOPER made different
decisions as both were not very certain. Moreover, we observe that using the
p-value as confidence measure leads to a slightly worse accuracy curve and
AUAC of 0.918, however, as expected it is still good as the confidence values
correlate with the p-values. SLOPEp has an overall accuracy of about 73% and
an AUAC of 0.861, which clearly shows the necessity of fitting non-deterministic
functions.
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Fig. 10: [Higher is better| Accuracy curves for SLOPE, SLOPER, SLOPEp and
SLOPEp on the Tiibingen benchmark data set. SLOPEp is inferred with SLOPE,
but ranked according to the p-value and SLOPEp is an ablated version of
SLOPE, which fits the data with a single deterministic function. Only significant
decisions with respect to a = 0.001 are considered.

7.5 Runtime

Next, we evaluate the computational efficiency of SLOPE and SLOPER. To this
end we report, per method, the wall-clock time needed to decide on all 98
pairs of the benchmark data set. We ran these experiments on Linux servers
with two six-core Intel Xenon E5-2643v2 processors and 64GB RAM. The
implementations of SLOPE, IGCI and RESIT are single-threaded, whereas
ANM and CURE are implemented in Matlab and use the default number of
threads. We give the results in Fig. 9. We see that IGCI is fastest, followed
by SLOPE and SLOPER, taking 1475 rsp. 1936 seconds to processes all pairs.
The other competitors are all at least one order of magnitude slower. Taking
13 days, CURE has the longest runtime. The large gain in runtime of SLOPE
compared to RESIT, ANM and CURE rises from the fact that those methods
employ Gaussian process regression to fit the functions.

7.6 Case Study: Octet Binary Semi Conductors

To evaluate real-world performance we conduct a case study on octet binary
semi-conductors [6; 32]. In essence, the data set includes the 82 different
materials one can form by taking one each from two specific groups of atoms,
and of which the resulting material either forms a rocksalt or zincblende
crystal structure. The aim of current research is to predict, given a set of
physical properties, the crystal structure of the material. A key component to
distinguish between both forms is the energy difference §r between rocksalt
and zincblende. At the time of writing, it is not known which combination of
physical properties can be used to calculate dg, however, there exist candidates
that are known to have some impact [6; 7]. Since the data set contains very
high quality measurements, it is well suited as a case study for our method.
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In particular, form the set of physical properties, which also contains derived
properties consisting of combinations or log transformations, we extracted the
top 10 that had the highest association to d. [17]. The point is that we know
that all of these properties somehow influence dg, but an exact formula to
calculate g is not known yet. After consulting the domain experts, we thus
obtain 10 new cause effect pairs. For each of those pairs, we define dg as X and
one of the top 10 features as Y. Since the energy difference is influenced by the
features, we can assume that Y — X is the true causal direction for all pairs.
For more detailed information to the data set, we refer to Ghiringhelli et al. [6].
We make these extracted cause-effect pairs available for research purposes?

Last, we applied SLOPE, SLOPER and their competitors to each of the ten
pairs. As result, we find that SLOPE and SLOPER perform identical and infer
the correct direction for 9 out of 10 pairs. The only error is also the only
insignificant score (p = 0.199) at o = 0.001. In comparison, we find that CURE
infers all pairs correctly, whereas IGCI makes the same decisions as SLOPE.
RESIT and ANM, on the other hand, only get 4 resp. 5 pairs correct.

8 Discussion

The experiments clearly show that SLOPE works very well. It performs well in a
wide range of settings, both on synthetic and real world data. In particular on
the latter it outperforms the state of the art, obtaining highly stable accuracy
curves and an overall accuracy of more than 10% better than the state of
the art. Our case study showed it makes sensible decisions. Most importantly,
SLOPE is simple and elegant. Its models are easy to interpret, it comes with
a stable confidence score, a natural statistical test, and is computationally
efficient.

The core idea of SLOPE is to decide for the causal direction by the simplest,
best fitting regression function. To deal with non-deterministic data, we allow
our model to additionally use local regression functions for non-deterministic
values of X, which the experiments show leads to a large increase in performance.
Importantly, we employ local regression within an MDL framework; without
this, fitting local regressors would not make sense, as it would lead to strong
overfitting. Moreover, we extend SLOPE to SLOPER, to also fit combinations of
basis functions which helps us to pick up more complex functional relationships.

A key advantage of our MDL-based instantiation of the algorithmic Markov
condition, compared to HSIC-based independence tests and IGCI, is that
our score is not dependent on the size of the data. This makes it possible to
meaningfully compare results among different tests; this is clearly reflected in
the stable decision rates. Another advantage is that it allows us to define a
natural statistical test based on compression rates, which allows us to avoid
insignificant inferences. We further showed the link between significance and
confidence by introducing a relative significance measure. Although this test

5 http://eda.mmci.uni-saarland.de/slope/
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is invariant of the size of the data, it has the drawback of introducing a new
parameter. To get high confidence results, we recommend to use the relative
significance measure with a budget of 1000 bits.

Although the performance of SLOPE is impressive, there is always room for
improvement. For instance, it is possible to improve the search for local com-
ponents by considering alternate re-distributions of X’, apart from uniformly
ascending values. This is not trivial, as there exist n! possible orders, and it is
not immediately clear how to efficiently optimize regression fit over this space.
More obviously, there is room to expand the set of function classes that we
use at the moment—Kkernel based, or Gaussian Process based regression are
powerful methods that, at the expense of computation, will likely improve
performance further.

In addition, the topic of identifiability is rarely studied for practical instan-
tiations of the algorithmic model of causality. Most findings are only based on
the Kolmogorov complexity, which makes it hard to make accurate statements
over the identifiability. Obviously, having an optimal encoding w.r.t. the model
class would help, but this is hard to achieve for numeric data.

For future work, we additionally aim to consider the detection of confounding
variables—an open problem that we believe our information theoretic framework
naturally lends itself to—as well as to extend SLOPE to multivariate and possibly
mixed-type data. We are perhaps most enthusiastic about leveraging the high
accuracy of SLOPE towards inferring causal networks from biological processes
without the need of conditional independence tests.

9 Conclusion

We studied the problem of inferring the causal direction between two univariate
numeric random variables X and Y. To model the causal dependencies we
proposed an MDL-based framework employing local and global regression.
Further, we proposed SLOPE, an efficient linear-time algorithm, to instanti-
ate this framework. Further, we extend SLOPE to consider combinations of
basis functions which allows us to fit more complex functions. Moreover, we
introduced 10 new cause effect pairs from a material science data set.

Empirical evaluations on synthetic and real world data show that SLOPE
reliably infers the correct causal direction with a high accuracy. On benchmark
data, at 82%, accuracy SLOPE outperforms the state of the art by more than
10%, provides a more robust accuracy curve, while additionally also being
computationally more efficient. In future research, we plan to consider detecting
confounding, causal inference on multivariate setting, and use SLOPE to infer
causal networks directly from data.
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A Appendix

In this section, we give additional results and compare the area under the ROC, PR and
Accuracy curves as evaluation measures for causal inference.

Synthetic Data For the synthetic data, we additionally provide the performance on only
linear, cubic or reciprocal data in Fig. 11. We observe that SLOPE and IGCI are at ~ 100%
accuracy for all scenarios except to sub-Gaussian distributed X with Y derived as a linear
function. Nonetheless, SLOPE still reaches an accuracy of at least 65% on these data. IGCI,
however drops under 60% when Gaussian noise is added. RESIT on the other hand has a
good performance on linear sub-Gaussian data but struggles with the reciprocal function as
well as with linear binomial or Poisson data with Gaussian or non-linear noise.
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Fig. 11: [Higher is better] Accuracies of SLOPE, RESIT and IGCI on synthetic
data (SLOPER has identical performance). The first letter of the labels corre-
sponds to the distribution of X (u: Uniform, g: sub-Gaussian, b: Binomial and
p: Poisson), the second letter to that of the noise (u: uniform, g: Gaussian and
n: non-additive).
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Unweighted Accumcy Curves In this paragraph, we discuss the accuracy curves for
the Tiibingen benchmark data set, whereas we weight each decision equally—assigning it a
weight of one. For the original plot, we weighted the results as recommended. The weights
have the effect that multiple experiments on the same data set, which are very similar, get
lower weights—e.g. their weights sum up to one full experiment. To show that the weighing is
not just coincidentally in our favour, we give the results of the same experiment with every
pair the same weight in Fig. 12. Although, the overall accuracy of SLOPE decreases slightly
to 75.5%, we still significantly outperform ANM, which is ranked on the second place with
66.0% accuracy.
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Fig. 12: [Higher is better] Accuracy curves for SLOPE, CURE, REsIT, IGCI
and ANM on the unweighted Tiibingen benchmark data set—i.e. the weights of
all 98 pairs were set to one.

Benchmark Version 0.9 For those readers that are familiar with the competing ap-
proaches, we give one additional plot. The original papers for CURE [29], ANM [25], etc,
report higher accuracies than we found above as they consider an older version of the
benchmark data set that contains only 79 pairs, most of which with weight one. To allow
for fair comparison on this setting, we give the results on this data in Fig. 13. CURE and
ANM perform better on this subset, especially on the first few pairs. SLOPE, however, has
roughly the same performance (81.2%) as for the whole data set. Quite a margin behind
SLoPE is IGCI reaching 68.7% accuracy, followed by CURE, having an overall accuracy of
65.7%. Notably, although CURE here performs better than above, it does not quite reach
the performance of 75% reported by the authors. One reason could be the probabilistic
nature of the method, but otherwise we ran the experiments with the original code and the
recommended parameter settings and therefore cannot fully explain the large difference in
performance.

Area under the ROC, PR and Accuracy Curve Next, we briefly discuss different
evaluation measures as the area under the ROC, PR, and Accuracy curve. We use each
measure to evaluate SLOPE, SLOPER, CURE, RESIT, IGCI and ANM on both the Tiibingen
data set including 98 univariate pairs and the older version 0.9, including only 79 univariate
pairs. For the ROC and PR curves, we compute both directions, where ROC x corresponds to
selecting X — Y as true positive and ROCy to selecting Y — X as true positive—accordingly
so for PR. We show the results in Tab. 1.

First of all, we observe that both SLOPE and SLOPER have very similar results and
outperform the competing approaches on each scoring metric. In general, the results relate
to the corresponding accuracy curves. Further, we observe that it makes a huge difference for
every approach whether we consider PRx or PRy . This difference relates to the imbalance
of the benchmark data set. However, since it is an arbitrary choice how to assign X and Y
for each data set, we consider the area under the decision recall curve not as an appropriate
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Fig. 13: [Higher is better] Weighted accuracy curves of SLOPE, CURE, RESIT,
IGCI and ANM on the 0.9 version of the Tiibingen benchmark data set (79
pairs).

SLopE  SLOPER CURE REesiT IGCI ANM

ROCx 0.898 0.865 0.424 0.573 0.671 0.472
ROCy  0.897 0.862 0.413 0.564 0.675  0.472

PRx 0.962 0.948 0.716  0.791  0.808 0.734
PRy 0.728 0.705 0.232 0.265 0.600 0.255

AUAC  0.942 0.927 0.588 0.676  0.736  0.713

ROCx 0.812 0.792 0.381  0.508 0.388  0.469
ROCy  0.851 0.830 0.414  0.528 0.422  0.502

PRx 0.942 0.935 0.740 0.800 0.675 0.742
PRy 0.575 0.573 0.200 0.254 0.269 0.232

AUAC 0.933 0.924 0.819 0.534 0.715  0.802

Tibingengg

Tibingenyg

Table 1: [Higher is better] Area under the ROC, PR and Accuracy curves for
SLOPE, SLOPER, CURE, RESIT, IGCI and ANM on both the Tiibingen data
set including 98 univariate pairs and the older version 0.9, including only 79
univariate pairs. All decisions are weighted with the corresponding weights of
the benchmark.

measure for causal inference. We observe a similar effect for the area under the ROC curve,
but much weaker. Still the score is dependent on the choice of the true positive and hence
we consider the area under the accuracy curve as the most objective measure.
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