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ABSTRACT

We consider the problem of telling apart cause from effect between
two univariate continuous-valued random variables X and Y. In
general, it is impossible to make definite statements about causality
without making assumptions on the underlying model; one of the
most important aspects of causal inference is hence to determine
under which assumptions are we able to do so.

In this paper we show under which general conditions we can
identify cause from effect by simply choosing the direction with the
best regression score. We define a general framework of identifiable
regression-based scoring functions, and show how to instantiate it
in practice using regression splines. Compared to existing methods
that either give strong guarantees, but are hardly applicable in
practice, or provide no guarantees, but do work well in practice, our
instantiation combines the best of both worlds; it gives guarantees,
while empirical evaluation on synthetic and real-world data shows
that it performs at least as well as the state of the art.
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1 INTRODUCTION

Determining cause from effect is one of the most fundamental ques-
tions in science [19]. Unlike standard associative models, causal
models give insight in the true data generating process and allow
for answering what-if questions, which make them both robust
and transparent. Determining causality cannot, however, be done
without making assumptions on the causal model [19]. To ensure
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that we discover causation rather than association we need to as-
sume a model that is identifiable. That is, models that under specific
conditions and given infinite data are guaranteed to infer the correct
causal direction. After all, unless we know we can unambiguously
distinguish cause from effect given infinitely many samples there is
little point in trying it on fewer samples. A lot of research in causal
inference is therefore focused on identifiability results, figuring out
the conditions under which models are identifiable.

Here, we consider the problem of inferring the causal direction
between two statistically dependent continuous-valued random
variables. Given a sample from their joint distribution P(X,Y) we
want to determine whether X causes Y, or Y causes X. We assume
there is no hidden confounder Z that causes both X and Y, that is,
we assume causal sufficiency. This problem is particularly impor-
tant because not only do we often only have two variables—and
hence conditional independence tests are inapplicable—but also as
it allows us to orient any edge in the Markov-equivalent causal
skeletons that constraint-based methods discover [26].

The first approach proposed for this setting was the Additive
Noise Model (ANM). The main assumption of the ANM is that effect
is generated as a function of cause with additive noise independent
of the cause, i.e. Y = f(X) + Nx with X L Nx. Shimizu et al. [25]
showed that that the true causal direction is identifiable if f is linear
and Ny is non-Gaussian, as then there does not exist a function
g for which X = ¢g(Y) + Ny such that Y L Ny. It has since been
shown that this holds for a broad range of settings [8, 9, 21, 22, 31],
but the ANM remains a rather strict assumption on how the world
works; in practice we often find functions and independent noise
for both directions, which puts us back at square one.

The second main line of research in causal inference is based on
the algorithmic Markov condition [11]. This postulate by Janzing
and Scholkopf states that the true causal model coincides with the
factorization of the joint distribution with the lowest Kolmogorov
complexity. In other words, the causal model is the simplest ex-
planation of the joint distribution. This model is highly general,
as Kolmorogov complexity can capture any physical process [5],
but also unpractical as Kolmogorov complexity is not computable.
We can instantiate it, however, with other notions of complexity.
Although methods based on this postulate typically do not come
with strong identifiability results, they tend to perform very well
in practice [10, 16, 24, 28].

Recently, Blobaum et al. [3] gave a set of assumptions under
which the true causal direction is identifiable via regression; they
show that it is possible to identify cause from effect simply by
selecting the direction of minimal residual error. That is, they fit
both Y = f(X)+ Nx and X = ¢g(X) + Ny minimizing the respective
residual errors Nx and Ny, and then directly compare the sum of
squared errors. They show that for models of the complexity of the
true model, the one in the causal direction will achieve the lower
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error. This method is not very practical, however, as then we do
not know the complexity of the true model and will be comparing
residuals of arbitrarily under- or overfit models.

In this paper we extend these results, and show under which
conditions cause and effect are identifiable via regularized regres-
sion. That is, we do not have to assume the true complexity of
the causal model, but rather can compare models of different com-
plexity. The key assumption that makes this possible we derive
from Kolmogorov’s structure function, and states that the best anti-
causal model requires at least as many parameters as the causal
model. We show that a large class of Ly based regularized regression
functions are identifiable, and as a proof of concept instantiate this
general framework using spline-based regression.

Through experiments on synthetic and real-world data it turns
out that this instantiation, performs very well in practice; it out-
performs identifiable methods, such as RESIT [21], IGCI [10], and
performs either on-par or better than existing non-identifiable meth-
ods such as SropE [16], CAM [4], and QCCD [28]. Important for
practical usage, and unlike its competitors, it shows a strong correla-
tion between confidence and accuracy; essentially, if it is confident
we can trust it, and if it’s not, we should refrain from using it.

The roadmap of this paper is as follows. First, in Sec. 2 we cover
the preliminaries and give a short introduction to the main concepts
of RECI [3] that we build upon. We then in Sec. 3 show how we
can derive the key assumption to our approach. Based on this
assumption, we show that the class of identifiable regression-based
scoring functions is identifiable, and show how to instantiate it.
Related work is discussed in Sec. 5. We empirically evaluate our
method in Sec. 6, and round up with conclusions in Sec. 7

2 PRELIMINARIES

In this section, we first introduce the notation, then briefly explain
the main idea behind RECI [3], its limitations and how we want to
solve them.

2.1 Notation

We consider causal inference from two correlated random variables
X and Y and assume causal sufficiency—i.e. there exists no con-
founding variable Z. In particular, we use capital letters X for a
random variables and lowercase letters x to values from the domain
X of X. We write f3 for the set of parameters of a function f and
denote with || B¢ |lo to the number of non-zero parameters. Unless
explicitly stated, we use log to refer to the logarithm with base 2
and follow the convention that 0log0 = 0.

2.2 A brief Introduction to RECI

The general idea behind RECI [3] is that we can infer cause from
effect simply by comparing the regression error of the best fitting
model for the causal and anti-causal direction. In particular, they
formulate a set of assumptions under which they can differentiate
between cause and effect with certainty. Formally, if ¢ is the func-
tion that minimizes the least-squared error when predicting the
effect Y from the cause X and vice versa i the function minimizing
the error when predicting the cause from the effect, Blobaum et
al. [3] formulate a set of assumptions, under which

E[(Ya - $(X))°] < E[(X = ¥/(Ya))’] ey

always holds. In other words, when their assumptions hold, Blobaum
et al. [3] proof that we can identify the true causal model using
Eq. (1). That is, if the assumptions below are fulfilled we know with
certainty that Eq. (1) holds. Hence, we can use the asymmetry in the
regression error to infer the causal direction between two random
variables. Identifiability is an important concept in causal inference,
as we can only make statements about the true causal model, when
we can guarantee identifiability. As this cannot be done in general,
the goal is to proof identifiability under a set of assumptions that
are as lightweight and as general as possible. The main assumptions
for RECI, can be summarized as follows [3].

AssuMPTION 1 (CAUSAL MODEL). We can write the effect as
Yo = f(X) +aN,
with noise term N and parameter « restricting the noise level.

AssuMPTION 2 (UNBIASED NOISE). The noise term N is unbiased
and has unit variance.

AssuMPTION 3 (COMPACT SUPPORTS). The distribution of X has
compact support and w.l.o.g. X attains values between 0 and 1, which
can be achieved by normalizing X. Further, the distribution of N has
compact support and there exist values ny > 0 > n_ such that for
each value x € X, [n—, ny] is the smallest interval that containing
the support for the conditional density of N given x. Hence, we know
that [an—, 1+ an.] is the smallest interval containing the support of
the density of Y, and rescale it to

- Yo —an-

Yo = — .
« 1+any —an—
Y, has the same scale as X and attains values between 0 and 1.

Based on Assumptions 1-3, Blobaum et al. [3] show that their
approach works under the additive noise assumption, that is, the
cause X is independent of the noise term. In addition, their frame-
work allows slight violations of this assumptions, as it also works
when there is a low dependence between the noise and the cause.
In particular, they show that Eq. (1) holds for strictly monotoni-
cally increasing and twice differentiable ¢ and trivially holds for
non-invertible functions, as there is an information loss in the anti-
causal direction. Last, they show that Eq. (1) holds with equality
iff ¢ is a linear function, which means that we cannot identify the
causal direction for linear functions.

In general, RECI provides a solid framework to identify cause
from effect only based on regression error, which is easy to obtain.
Also, Assumption 3 is not very restrictive, as we can achieve it by
normalizing the data, if we have a sufficient number of samples.
The problem is, however, that in practice we do not know the
true functions. Hence, we need to restrict ourselves to comparing
functions of the same type, i.e. polynomials of degree three or six,
but cannot compare across functions of different complexities. The
goal of this paper is to solve exactly this issue, while conserving
the identifiability guarantees.

2.3 Main Idea

The key idea to solve the limitations of RECI is simple. Instead of
only comparing the regression error, we use regularized regression
and compare the regularized scores of those functions for which
they are minimal. To illustrate this, consider the following example.
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Figure 1: Left: Error for the best fitting function in the causal
and anti-causal direction, when restricting the number of
parameters. Right: Error plus Ly penalty on the number of
parameters for the same data.

ExXAMPLE 1. Assume we are given a sample from the joint distribu-
tion of X and Y, and we know the true causal direction. Now we use
our go to algorithm to fit a regression function in both the causal and
the anti-causal direction. In Figure 1, we plot the minimum regression
error for both directions, where we gradually allow the model to fit
more parameters. If we allow a sufficient number of parameters, we
can reduce the regression error for both directions to approximately
the same level. As a consequence, comparing purely the regression
errors of the best fitting model does not identify the correct causal di-
rection. However, we observe that for the true causal direction, we can
find a much simpler function, which attains approximately the same
regression error; in contrast to the anti-causal direction. When we
compare the scores of those functions minimizing the regression error
plus an Ly penalty over the parameters (right plot), we can identify
the correct model, as there is a clear difference between both scores.

Of course, we do not want to rely on a proof by an artificial
example, but from Example 1 we get our motivation. What we
completely forgot about for a second, is the identifiability. It is
known that we can use regularized regression to fit functions, but
does this also result in scoring functions that are identifiable?

In the following, we will show that it does. In particular, we
define a class of scoring functions for regularized regression that
are identifiable under the assumption that the mechanism mapping
the cause to the effect is simpler than the anti-causal one. We derive
and justify this assumption from the algorithmic model of causality
using Kolmogorov’s structure function.

3 PRINCIPLED REGULARIZATION FOR
CAUSALITY

In order to define our new inference rule, we need to introduce one
more assumption, that is, we assume that true causal model has
a lower complexity than the anti-causal model. This claim might
not be too intuitive and hence we are going to carefully justify our
assumption in the following from the algorithmic model of causality,
which is formulated in terms of Kolmogorov complexity. Before
we introduce Kolmogorov complexity, note that in this context, a
lower-case letter x will refer to the binary string representation of
X and not to a value from the domain of X.

Kolmogorov complexity. The Kolmogorov complexity of a finite
binary string x is the length of the shortest binary program p* for

a universal Turing machine U that generates x, and then halts [13,
14]. Formally, we have

K(x) = rr}]in{lpl |pe{0.1}", Up) =x} .

That is, program p* is the most succinct algorithmic description of x,
or in other words, the ultimate lossless compressor for that string.
Hence, K(x) is the length of this compressor and therefore the
perfect measure of complexity. Further, the conditional Kolmogorov
complexity is defined as

K(x | y) = min{lq] | g € {0, 1}, U(y.q) = x} < K(x),

which is again the length of the shortest binary program p* that
generates x, and halts, but now given y as input for free.

We next introduce the algorithmic Markov condition, which
builds upon the algorithmic model of causality (AMC) [11]. The
latter is defined over a general causal directed acyclic graph and
states that in a causal network, each node can be generated from its
parents and an additional noise term. In the following, we simplified
the definition to the graph with only X and Y and a single edge,
thatis X — Y.

POSTULATE 1 (ALGORITHMIC MODEL OF CAUSALITY). Letx and
y be two strings and let further x — y be a causal graph, where no
latent confounder exists. Then y is computable by a program q with
length O(1) from x and an additional input n. We formally write

y = q(x,n),

meaning that the Turing machine computes y from the inputs x, n
using the additional program q and halts.

In other words, the effect can be generated from a program that
takes the cause and a noise term as input. This program can in
theory model every physical process [5], which includes functional
relationships. Hence, it also supports the causal model that we
assume in this paper (Assumption 1). Under the algorithmic model
of causality, Janzing and Scholkopf postulate that the symmetry of
information—i.e.

K(P(X,Y))  K(P(X)) + K(P(Y | X)) = K(P(Y)) + K(P(X | Y)),

where = denotes equality up to an additive constant, does not
hold [11]. In particular, they postulate that if X — Y,

K(P(X)) + K(P(Y | X)) < K(P(Y) + K(P(X | Y)). @)

That is, we infer that direction, which provides the simplest factor-
ization of the joint distribution of X and Y. In theory, we could infer
the causal direction for any physical process—if only we could com-
pute Kolmogorov complexity. One way to approximate Kolmogorov
complexity is to split it into the complexity of the meaningful in-
formation that can be efficiently represented by a short program
and the complexity of the irreducible noise that cannot be modelled
efficiently. A sound theoretical concept that differentiates between
those quantities is described by Kolmogorov’s structure function.
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Kolmogorov’s Structure Function. Although there is no written
publication of Kolmogorov about the structure function, it has
found its way into research [29]. The key concept we need is that
of amodel S 3 x, that is, a model is a set of binary strings of which
x is a member. Given such a set S and no further input, we will
need log |S| bits to look up x in S. Simple models, i.e. those with
low Kolmogorov complexity K(S), will consist of many possible
strings and hence it will take us relatively many bits to identify x
in S. If we increase the budget for K(S) we can contemplate more
complex models that consist of fewer possible strings, and for these
it will cost much fewer bits to single out x. In the most extreme
case, where we set K(S) = K(x), we can have S = {x}. Formally, we
can describe this relationship as Kolmogorov’s structure function

hy(a) = msin{log [S]: S 3 x,K(S) < a}

with S being a contemplated model for x and @ a non-negative

number bounding the complexity of the contemplated S’s [29].

There exists complexity threshold’s « for which a + hy(a) = K(x) +
O(1). For these, the associated model S is called an optimal set
for x. Its description of up to @ bits is called sufficient statistic
for x. Moreover, for a sufficient statistic S it holds that K(x) <
K(S)+1og|S| < K(x)+ O(1). If we consider all sufficient statistics S
for x, we call that S which is associated with the smallest a—i.e. «,
the minimal sufficient statistic for x. That is, the minimum sufficient
statistic S contains all meaningful information about x and the
associated term hy (o) measures the complexity of the irreducible
noise contained in x. Further, it holds that hx(ag) + @y = K(x). In
Figure 2 we visualize this concept as suggested by Vereshchagin
and Vitanyi [29]. We see that for ap the structure function h meets
the sufficiency line, that is defined as L(@) = K(x) — @, which is
optimal and hence ap + hy(a9) = K(x). For @ < ag, hx(cr) can be

arbitrarily far above the sufficiency line and for a > ay, hx(@) is
within a constant term above the sufficiency line.

Similar to conditional Kolmogorov complexity, we define the
conditional structure function as

hx(i | y) = min{log $]: § > x.K(S | y) < i}

We will need this conditional version as we will be considering
functional relationships from X to Y and vice versa.

Now let us consider Eq. (2) again and let x and y correspond
to the binary string representations of X and Y. Further, be ij the
complexity level of the minimum sufficient statistic of x conditioned
on y, and accordingly ig the complexity level of the minimum
sufficient statistic for y given x. We can rewrite Eq. (2) as

K(x) +ig +hy(if | x) < K(y) +i5 +hx(iy ).

In the following, we explain the above inequality given that As-
sumption 1-3 hold. As i’ contains all meaningful information of x
given y, hy(iy | y) relates to K(C -~ §/(Eo)) and hy(ig | x) relates to
K(Eq — ¢(C)) = K(N). Now assume that ¢ is an invertible function,
we find that according to Postulate 1 both ij and ig must have
constant complexity. If the variance of the noise term goes to zero,
that is, the function is near deterministic, Blobaum et al. [3] showed
that the expected error for the causal model is smaller or equal to
the error in the anti-causal direction—i.e. hy(ig | x) < hx(if | y).
As a consequence, purely judging from the algorithmic Markov
condition, comparing only the expected least squared errors for
both directions, as done in RECI [3], can only be true if we assume
that K(x) < K(y). Conceptually, by standardizing or normalizing

X and Y, we can achieve that K(x) ik (y). If we standardize the
data and assume a Gaussian distribution, we can describe K(x) and
K(y) with a zero mean and unit variance, which leads to (approx-
imately) the same complexity. If we normalize, we can assume a
uniform distribution or prior and achieve the same effect. When
K(x) = K(y), we can infer that X — Y, if

ig +hy(iY | x) <if +he(iy | ). )

Note that this inequality also holds if the function ¢ is not invertible
and there does not exist an inverse function . This follows from
the fact that there is an information loss in the anti-causal direction
and we cannot efficiently use the information about x to derive
y. In addition, we can see from Eq. (3) that if we only consider
the regression error, it is important to know the true functions. If
we do not, and overfit in e.g. the anti-causal direction we fit noise
and obtain lower errors than are true, which can lead to wrong
inferences. Formally, if we allow for a complexity level i* > if,
it is possible and for large i* will eventually happen that hy (i* |
y) < hx(if | y). If, we also consider the complexity of the function,
however, we have that K(x | y) < i* + hx(i* | y) < K(x | y) + O(1)
and hence i* + hyx(i* | y) 2 if + hx(iJ | y). In other words, we
are resistant against making wrong inferences due to overfitting.
Further, we are also resistant to underfitting as for i* < i(’)‘ we have
that K(x | y) < i* + hx(i* | y) [29].

Hence, we need to include the complexity of the model into our
score, without breaking the identifiability results. Judging purely
algorithmically, we know from Postulate 1 that both i} and ig are



constant if ¢ is an invertible function. If not, i(’)‘ could be larger.

Asa consequence, we have that ig g i(’)‘ . As we cannot compute
Kolmogorov complexity, we need to formalize this idea differently.
In essence, if the causal mechanism has a lower complexity than
the anti-causal one, the true causal function ¢ should need at most
as many parameters or degrees of freedom as the reverse function
. We formulate this in Assumption 4.

ASSUMPTION 4 (SIMPLICITY). Let Y, be generated as in Assump-
tion 1 [3]. Further, let ¢ be the function minimizing the expected
least-squared error for predicting the effect Y from the cause X and
y be the function minimizing the expected least-squared error in
the anti-causal direction. We assume that  has at least as many

parameters as ¢, i.e. || Byllo < By llo-

While we cannot show that Assumption 4 holds in general, there
are strong indications that it holds in many real-world settings.
For example, if we know that ¢ consists of a linear combination
of basis functions that are linearly independent of each other, we
cannot find an inverse function that has fewer degrees of freedom.
Moreover, Kilbertus et al. [12] recently considered the problem
of anti-causal learning and give indications on why it is harder
than learning the causal direction. In particular, they give various
examples, why it is simpler to learn the causal direction, from which
we selected a few. As for low degree polynomials, it is easy to see
that it is not possible to formulate an inverse with less parameters as
the original function, the Abel-Ruffini theorem states that general
polynomial equations of degree greater than 4 do not have an
algebraic solution [1]. Further, it is known that some elementary
transcendental functions as x + sin(x) do not have an elementary
inverse. In addition, in cryptography there exist the concept of a
one-way function [1]. Those are functions, that are easy to obtain
in one direction but almost impossible to reverse.

Utilizing Assumption 4, we can finally connect all the dots and
introduce our new framework.

4 IDENTIFIABLE REGULARIZED
REGRESSION

In the following, we show how we can design scoring functions,
which 1) allow to identify the true causal direction under Assump-
tions 1-4, 2) help to identify the true functions ¢ and  and 3) are
more robust w.r.t. overfitting. To this end, we define below a Identi-
fiable Regression-based Scoring Function, or short IRSF and show
that an IRSF fulfils the claims listed above.

DEFINITION 1 (IDENTIFIABLE REGRESSION-BASED SCORING FUNC-
TIONS). Given two random variables X and Y and a regression func-
tion ¢ that maps X to Y. Further, we are given a scoring function
S :R>0 XN - R that takes as input the expected least-squared error
E[(Y - ¢(X))?] and the number of parameters of ¢, 1Bgllo- We call
such a scoring function

S(Y | X, ¢) = y(EL(Y = $(X))*]) + Al Bg llo)

an Identifiable Regression-based Scoring Function (IRSF), if both y :
Rxo — R and A : N — R are strictly monotonically increasing.

It is easy to see that the number of parameters corresponds to the
complexity of the function and hence A(|| 4 lo) could be instantiated

such that it approximates ig . Further, under Assumptions 1-2, we
can see that y(E[(Y — $(X))?]) can be formulated to approximate
hy(ig | x). Hence, if we instantiate y and A correctly, comparing
S(Y | X, ¢)toS(X | Y, ) is an approximation of comparing K(y | x)
to K(x | y) and hence sufficient to infer the causal direction, if we
preprocess the data, e.g. via standardization or normalization, such
that K(x) ik (y). However, the question that remains is, can we
identify this model and under which conditions. This we formalize
in our main theorem.

THEOREM 1. Let Assumptions 1-4 hold, where ¢ denotes the func-
tion that minimizes the expected least-squared error when predicting
the effect Y from the cause X andy be the function minimizing the ex-
pected least-squared error for predicting X from Y —i.e. §(x) = E[Y|x]
and vice versa /(y) = E[X|y]. Further, let S be an IRSF according to
Definition 1. The following limit always holds

. S(E[(Ya ~ $())]: 11 lo) -
a=0 SE[X = ¢y (Ya))?L 1By llo)
with equality if and only if ¢ is linear.

Proor. We know from Blébaum et al. [3] that under Assump-
tions 1-3 the following always holds

) < tim Bl = 6COPT
@=0 B[(X - y(¥a)?] ~

As S is an IRSF, we can write it as S(a, b) := y(a) + A(b), where y is
a strictly monotonically increasing function. Hence, the statement
does not change by applying y to the nominator and denominator
in Eq. (4). Based on Assumption 4 we know that ||gllo < ||y lo-
Hence,

4

Y E[(Ye = ¢(X))*]) + B¢ llo .
yEIX =y (Ya)2D + 1By llo
with equality if and only if || B4 [lo = [|By llo- As A is strictly monoton-

ically increasing, applying it to [|f4lo and ||By llo will not change
this statement. O

().

4.1 Specifying y and A

Theorem 1 holds independently of how we exactly specify y and A.
The problem, however, is that we do not know ¢ nor ¢ beforehand.
If we knew those functions, we could also apply the inference rule
that is used in RECI [3]. The advantage of our score is that it not
only identifies the true causal direction, when given ¢ and ¢, but
also if specified correctly, can help to find exactly those functions
and hence reduces the probability to overfit and underfit.

The perfect definition of y and A would be such that the minimum
value of S is attained when the function we find approximates
the minimum sufficient statistic and no further structure can be
exploited, leaving y to be the cost function over the irreducible
noise. Therefore, it is important to specify S s.t. it approximates
the Kolmogorov complexity of the conditional. If S gives too much
weight to y, we prioritize minimizing the error, which will lead to
overfitting. On the other hand, if we define A such that it grows too
fast, we over-penalize complexity and underfit.

To illustrate this, consider Example 1 again. If we assign too
little weight to the complexity of the function, we could probably



train a deep neural network for the anti-causal direction that has a
similar regression error as the simple causal model. Luckily, model
selection is not a new topic and there already exist model selection
criteria that try to avoid overfitting and aim at recovering the true
function [2, 7, 23]. Interesting for us are only those that can be
specified as an IRSF. We provide a selection of those below.

The most well-known scoring functions that we can write as
an IRFS according to Definition 1 are the Akaike information crite-
rion [2] (AIC) and the Bayesian information criterion [23] (BIC).

AIC. For the causal direction AIC can be written as

nlog(E[(Ya — ¢(X))*]) + 2 Bgllo + ¢,

where c is a constant term independent of the model. As the sample
size n is the same for the causal and the anti-causal direction, we
can consider it as a parameter of the function y and write down an
IRSF with y(a) := nlog(a) and A(b) = 2b + c.

BIC. The Bayesian information criterion for scoring the causal
direction is equal to

nlog(E[(Ya — $(X))*]) +log(n) - 11B4llo

and can similar to AIC be written as an IRSF. Hence, both scores can
be used in Theorem 1. One detail that we have to consider for AIC
and BIC is that log is not defined for 0 and is negative for values
between 0 and 1. Hence, it is necessary to adjust both scores by
taking log(E[(Yq — ¢(X))%] + 1).

MDL. One well defined way to balance the complexity of the
model and the data given the model is to use two-part Minimum
Description Length (MDL) codes [7]. Simply put, when we want
to measure the complexity of data D, or its description length, we
restrict ourselves to a model class M for which we know how
to compute the description length—i.e. this could be the class of
regression functions. Then we find that model M € M for which

L(D, M) = L(D | M) + L(M)

is minimal. In other words, we jointly minimize the complexity of
the data given the model and the complexity of the model. In addi-
tion, there is a close connection between MDL and Kolmogorov’s
structure function. In particular, L(D | M) corresponds to the value
of the structure function h and L(M) to the complexity level a. Fur-
ther, when the model class M contains the true model, the model M
minimizing L(D, M) describes the minimum sufficient statistic [29].

Defining an optimal encoding for continuous data without mak-
ing any assumptions is a hard problem. One approach that utilizes
two-part MDL to approximate the algorithmic Markov condition
for continuous data is SLOPE [17]. In SLOPE, the main assumption is
that the error is Gaussian distributed. Crudely speaking, the score
used in SLOPE can be written as y(E[(f/a - #(X))?]), where y is
based on the negative log likelihood, plus a function p over the
parameters. As this function p does not purely consider the number
of parameters, but assigns different weights according to the value,
of the parameter, the corresponding scoring function is not an IRSF
and hence Theorem 1 does not apply for SLorE. If we loosen the
encoding from SLoPE slightly and “forget” about the exact values of
the parameters but encode each parameter with the same constant
number of bits, we arrive at an IRFS and Theorem 1 can be applied.

In this case, the encoding would be called lossy as we do not encode
all the information available to us!

4.2 Instantiation

In theory, there are many possible ways to instantiate our frame-
work, as we can use every function learning algorithm that min-
imizes the regression error and allows to control the number of
parameters. During our empirical evaluation, we evaluate two pos-
sible ways, one using basis functions and one splines.

We refer to our method as SLopPy. We name it such both because
it is partially inspired by SLOPE, because it is the first instantiation
of the IRSF framework, but primarily because from an information-
theoretic perspective the notion of a constant penalty per parameter
can be inefficient (too high), as well as lossy (too low), and hence,
sloppy. In practice, we consider the following two variants,

(1) SLoppyp: We find the best linear combination according to
the given score function S from a set of basis functions that
include polynomials up to a degree of six, an exponential
and logarithmic basis function as well as reciprocal up to the
degree of two. This can be done with an algorithm following
the standard forward-backward selection scheme.

(2) SLopPPYg: We fit a cubic spline, where we control the degrees
of freedom and find that selection of splines, for which S
is minimal. Even, when we do this exhaustively, SLoppyg is
still very fast in practice.

For our experiments, we use AIC and BIC as scoring function S.

Inference. Before applying SLoppy, we standardize X and Y to
zero mean and unit variance or normalize them between zero and
one. Hence, we have that K(x) Ik (y) and can infer the causal
direction according to Theorem 1, as described in the previous
section. Then given an IRSF S, we use SLopPPY to compute those
functions ¢ and ¢ that minimize S(Y | X, $#) and S(X | Y, ¢). We
decide that X — Y if S(Y | X,¢) < S(X | Y,¢), that Y — X if
S(Y | X,¢) > S(X | Y, ) and do not decide in case of equality.

4.3 Confidence

The authors of RECI [3] showed that in empirical evaluations we
can use the minimum of the error terms for both directions divided
by the maximum as a confidence measure. We do so accordingly
and define the confidence of a decision as

min{S(Y | X, $),S(X | Y, )}

CX,Y):=1- max{S(Y | X, $), S(X | Y, )}~

The higher C(X, Y), the more certain we are that our decision is
correct. This allows to order decisions across different inferences
by their confidence. In addition, we can set a threshold t such that
we require C(X, Y) > t and otherwise do not decide for a direction
as we are not confident enough about the decision.

5 RELATED WORK

Recently, causal inference for the bivariate setting assuming no con-
founder has attracted a lot of attention [3, 9, 16, 20, 28]. Traditional
constraint based approaches, such as conditional independence

!Such an encoding could also mean that we assume that all parameters are drawn
from the same distribution and hence use a fixed amount of bits to encode them.



tests, require at least three random variables and hence cannot be
used to identify the causal direction in the bivariate setting [19, 30];
unlike those approaches that we are going to discuss. In this section,
we restrict ourselves to state of the art methods for continuous data
and those that are strongly connected to our work.

The first approaches with strong identifiability guarantees are
those that are based on the Additive Noise Model (ANM) [20, 25]
where we assume that Y was generated as a function of X with
additive noise Ny independent of X, i.e. Y = f(X) + Nx with
X 1 Nx. It turns out that for various settings [21, 22] this model
is identifiable as there does not exist an ANM in the anti-causal
direction; it is impossible to find a function X = g(Y) + Ny where
Y L Ny holds. This is the case for linear functions f and non-
Gaussian noise Ny [25], nonlinear functions and additive noise [8],
post-nonlinear models [31], as well as for mixtures of multiple
additive noise models [9].

A limiting factor of these approaches is that the results strongly
rely on the used independence test and the fitting algorithm [18].
Problems can arise when the functions overfit. In addition, it is hard
to derive a meaningful confidence score from the corresponding
p-values, as they are highly dependent on the sample size [16].

Similar to RECI, Janzing et al. [10] also developed an approach
for the low noise setup. In particular, they infer the causal direction
based on the Shannon entropy of the marginals. A problem with
this approach is, that it is hard to accurately estimate the entropy
for continuous data.

More closely related to our approach are methods based on the
algorithmic Markov condition [11]. The first step towards this direc-
tion was a method based on Minimum Message Length (MML) [27],
however, it did not outperform the competing methods based on
the additive noise setup. More recent approaches on the other hand
have shown good performance on real world as well as synthetic
data, outperforming state of the art methods that try to maximize
the independence between cause and noise distribution [16, 28].
A very recent proposal, QCCD [28], approximates the algorithmic
Markov condition using non-parametric conditional quantile esti-
mation. Although performing well in practice, QCCD lacks strong
identifiability guarantees.

As already described in Section 4, the most related methods to
this work are RECI [3] and SLoPE [16] as both approaches base
their inference rules on the regression error. However, RECI does
not employ model selection and SLOPE has no strong identifiability
results. A third method that uses the regression error is CAM [4],
which was designed to find a general causal graph. For the bivariate
case, CAM decides for the causal direction using regularized log-
likelihood scores.

6 EXPERIMENTS

In this section, we empirically evaluate SLoppy and benchmark it
against competing state of the art methods. To represent additive
noise models, we select RESIT [21] using the Hilbert Schmidt Inde-
pendence Criterion to measure the independence between cause
and noise distribution [6]. A recent study shows that the overall
performance of RESIT on simulated and real-world data is on par
if not better than competing methods of this type [28]. In addition,

we compare against IGCI [10] representing methods for the low-
noise setup and QCCD [28] as it is to the best of our knowledge
the method with the best overall performance. Note that we can
configure SLoPE and CAM such that we obtain similar results as
those obtained with SLoppy. We provide this information as well as
the configurations for all methods in the supplemental material?

We first show the overall performance over synthetic and real-
world benchmark data sets and then go a bit more into details.
For all experiments, we applied both SLoppYg and SLoppYp. As it
turned out that the results differ only marginally, we here show
only the results for SLoPPYg, which for conciseness we will refer to
as SLoppy. For completeness, we provide the results for SLorpyp in
the appendix. As the default scoring criterium, we used BIC for our
experiments. We only applied AIC for the real-world benchmark
data set, as there we found that BIC was too restrictive and mainly
fitted linear models.

All experiments were performed single threaded and Sroppy
took only up to a couple of seconds for a single pair. For research
purposes and to make our results reproducible, we make the code
for SLoppy available online3

6.1 Benchmarking

In order to benchmark Sroppy against RESIT, QCCD and IGCI,
we applied them to ten benchmark data sets and reported their
accuracies. We took five data sets from Mooij et al. [18]. Those
consist of four simulated data sets generated using a Gaussian pro-
cess: SIM (without confounder), SIM-In (with low noise), SIM-G
(with distributions close to Gaussian) and SIM-c¢ (with confounder).
The fifth one is a collection of 99 real-world bivariate continu-
ous cause effect pairs, known as the Tiibingen benchmark data set
(version from December 17), for which we weigh the pairs as recom-
mended. The remaining five data sets were taken from Tagasovska
et al. [28]. These consist of nonlinear functions with additive noise
(AN), sigmoidal functions with additive noise (AN-s), nonlinear and
sigmoidal location scale functions (LS and LS-s), where

Y = f(X) +9(X)- Ny

and sigmoid functions with multiplicative uniform noise (MN-U)—
i.e. we can write the effect Y as

Y = f(X)- Ny .

All simulated data sets consist of 100 cause-effect pairs with 1000
samples per pair.

In Figure 3 we show the accuracies for SLoppy, RESIT, QCCD and
IGCI on all data sets. On average, SLoPPY has an accuracy of 81%. If
we consider only those data sets for which our assumptions hold,
those are AN and AN-s, we have an accuracy of 100%. The reason
why we could not achieve this for the SIM data sets is because they
also contain pairs for which the function is close to linear, have
high noise or are sampled from mixture models. Taking this under
consideration, SLOPPY still performs very well on these data sets.
The only data set where we have a poor performance is LS-s, which
violates our assumption w.r.t. the generating model. This is also the

2 As RECI can be instantiated with any regression method and the authors do not
provide a sample implementation, we cannot fairly compare against it but do give an
intuition in the appendix.

3https://eda.mmci.uni-saarland.de/sloppy/
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Figure 3: Accuracy of SLoppy, RESIT, QCCD and IGCI over
all synthetic data set and the Tiibingen benchmark data set.

only data set where we clearly lose to QCCD. In turn, we perform
better than QCCD on AN-s and are on par for the remaining data
sets. Overall, RESIT and IGCI have more problems than SLoppry
with those data sets that do not follow their assumptions.

6.2 Setting a Confidence Threshold

In this experiment, we consider the same data sets as above and
look at the confidence of SLoppy. In particular, we show in Figure 4
how the accuracy of SLopPpY improves when we only consider those
decisions with a confidence greater or equal than {0, 0.01, 0.05, 0.1}.
We can observe that setting a threshold of 0.1 improves the average
accuracy over all data sets from 81% to 89%, which clearly shows
that we assign low confidence values to bad decisions. In addition,
we show the percentage of pairs that do not reach the corresponding
threshold. We undoubtedly see that this number is higher for those
data sets that do not fulfil our assumptions, whereas for those data
sets that do, the number of pairs where we do not decide remains
low, even for a cut-off of 0.1.

6.3 Decision Rates

Highly related to confidence values are decision rates. In particular,
we obtain a decision rate, if we order a set of decisions by their
confidence values and report for each percentage k the accuracy
over the top k% of the decisions. In Figure 5 we report the decision
rates of SLoppy for each tested data set. Importantly, we observe
that for all data sets, even for LS-s, the first 10% of our decisions are
correct. Then, depending on the overall accuracy that we achieve
on the corresponding data set, the accuracy slowly drops after
considering more and more decisions with lower confidence values.

In addition, we show in Figure 6 the decision rates for SLopPy,
RESIT, QCCD and IGCI for the real-world benchmark data set.
Although the overall performance of all methods does not differ too

SiM-c SiM-c
SIM Tubingen SIM Tubingen

SIM-G

SIM-In

AN MN-U

AN-s

(a) accuracy [%] (b) undecided [%]

Figure 4: Accuracy of SLopPPY (left), for those decisions that
have a higher confidence than {0, 0.01,0.05,0.1} and right the
corresponding percentage of pairs where we did not decide.
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Figure 5: [Higher is better] Decision rates of SLoPPY for ev-
ery tested data set. As we obtain 100% accuracy for AN, AN-s
and LS, those curves lie above each other.
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Figure 6: [Higher is better] Decision rates for SLorPyY, RE-
SIT, QCCD and IGCI on the Tiibingen benchmark data set.
The gray area marks the 95% confidence interval of a ran-
dom coin flip.

much, we can clearly see that SLopPY has the best decision rate. In
particular, for the first 31% of all decisions, we only get one decision
wrong and only drop below 95% accuracy after considering more
than 40% of all decisions. In comparison, the competing approaches
more frequently assign high confidence values to wrong decisions.

6.4 Confidence Distribution

In the last experiment, we consider the distribution of the confi-
dence values for correct and incorrect decisions for the real-world
pairs and the simulated pairs, as shown in Figure 7. It is encour-
aging to see that there is a clear difference in the distribution and
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Figure 7: Distribution of confidence values for correct and in-
correct decisions for the Tiibingen benchmark data set (left)
and the simulated data sets (right).

higher confidence values are assigned to correct decisions. For the
simulated data, the first quartile for the incorrect decisions (0.094)
is approximately on the same level as the third quartile for the cor-
rect decisions (0.085), which means that we could almost separate
the correct form the incorrect decisions using a threshold in this
region. For the real-world data the distributions overlap a bit more,
however, when applying the Wilcoxon-Mann-Whitney test [15],
we get that the confidence values for the incorrect directions are
smaller than for the correct directions with a p-value < 1074,

7 CONCLUSION

We considered causal inference between two continuous random
variables X and Y without hidden confounders. In this setup, we
showed under which conditions we can use regularized regression
to identify cause from effect with guarantees.

As a possible instantiation of our framework, we introduced
Sroppy—which finds the best fitting function for the causal and anti-
causal direction according to a given IRFS. In practice, we model
functions using either a set of basis functions or cubic splines and
use AIC or BIC as scoring function. Our results show that SLoppy
outperforms the state of the art algorithms with identifiability guar-
antees on synthetic and real world data and is on par with methods
that do not have such guarantees. We note, however, that SLoppY
is just a first instantiation and are quite certain it is possible to
define—and are looking forward to see—instantiations of IRFS that
will outperform our method in practice.

For future work, we would like to extend our framework to causal
discovery, and are particularly interested how an instantiation based
on a regularized deep neural network would perform.
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A APPENDIX

In this section, we first clarify how exactly we applied the competing
methods in our experiments. Then we explain in which configura-
tion we applied SLoPPY and analyze the differences between SLoppy,
RECI, CAM and SLOPE.

A.1 Configuration for Competing Methods

For RESIT and QCCD, we used the default configurations as rec-
ommended by the authors [21, 28]. Before we applied IGCI to the
synthetic data sets, we standardized X and Y to have zero mean
and unit variance. As for all of the simulated data sets the cause
was generated as a Gaussian or near Gaussian distributed random
variable this preprocessing step led to better results than standard-
izing the data. However, when we applied IGCI to the Tiibingen
data set, we found that normalizing the data between zero and one
led to better results, hence we reported those results.

A.2 Configuration of SLopPPY

We implemented SLoppY using cubic splines, as described in Sec-
tion 4.2. Equivalent to the preprocessing that we did for IGCI, we
standardized X and Y to have zero mean and unit variance for the
simulated data sets, as for those we knew that the cause was gener-
ated with a Gaussian or near Gaussian distribution. Since we did
not know the distributions for the real-world data sets beforehand,
we choose to use a uniform prior and normalized the data between
zero and one for the Tiibingen data set. As scoring function we
used BIC for the simulated data pairs. For the normalized real-world
data sets, however, BIC was too restrictive and mainly fitted linear
models. Hence, we used AIC for these.

When we apply SLopPYp with the same configuration, we obtain
similar results, as shown in Figure 8.

A.3 Comparison to RECI, CAM and SLOPE

In the following, we are going to explain how we needed to config-
ure SLOPPY to obtain similar results to RECI, CAM and SLOPE and
briefly discuss the differences to the results that we presented in
the main part of the paper.

A.3.1 RECI. AsRECI assumes that the true functions are known, it
is hard to do a fair comparison without preselecting for a suitable re-
gressor [3]. To provide an impression of the results, we preprocessed
the data by normalizing it between zero and one (as suggested by
the authors) and then applied SLoppys with zero penalty for the
parameters. First of all, we observe that the splines strongly overfit,
where the average number of degrees of freedom is over 140, in
contrast to SLOPPY, where the average number of degrees of free-
dom is 5. Nonetheless, the results on the synthetic and benchmark
data are still reasonable, as shown in Figure 8. The overall average
performance, however, drops from 81% to 60%. Since the authors
of RECI suggest to only fit low degree polynomials [3], splines are,
however, a sub-optimal choice.

A.3.2  CAM. In the bivariate setting, CAM is very related to SLoppy.
CAM also uses regularized splines and standardizes the data, where
they maximize the log-likelihood for both directions [4]. Therefore,
it is not surprising, that the results obtained with CAM are very

similar to the results we get with SLoPPY, as shown in Figure 8.
However, as mentioned in Section 4, when CAM was developed,

the authors only showed consistency of their method and did not
have strong identifiability results. In addition, when we compare
the decision rates of CAM and SrLoppyY on the Tiibingen benchmark
data set (see Figure 9), we see that SLoPpY clearly outperforms CAM.

SIM-c SIM-c
SIM Tubingen SIM Tubingen

SIM-G SIM-G Ls-s

SIM-In SIM-In Ls

AN-s AN-s
(a) SLoPPY (b) RECIpjines
SIM-¢ SIM-c

siM Tubingen SIM Tubingen

SIM-G SIM-G

SIM-In SIM-In

AN-s

(c) CAM (d) SLoPE

Figure 8: Accuracy of Sroppy (solid: SLoppyp, dashed:
SLopPPYs), RECI (using cubic splines), CAM and SLoOPE (solid:
SLoPE allowing for non-deterministic functions, dashed:
SLOPE using a mixture of deterministic basis functions) over
all synthetic data set and the Tiibingen benchmark data set.

accuracy

decisions [%]

Figure 9: Decision rates for SLopPY and CAM on the Tiibin-
gen benchmark data set.

A.3.3 Store. For SLoPE, the authors also standardize the data be-
tween zero and one. In particular, there exist two versions: SLOPE
using a deterministic function and allowing for non-deterministic
functions [16] and SLOPER using a set of basis functions, without
fitting non-deterministic functions [17]. Apart from the exact score
and the preprocessing, SLOPER comes close to SLorpyg. When we
look at the results over all data sets (Figure 8), we see that SLOPER
performs similar to RECI using cubic splines. On average, SLOPE per-
forms much worse than SLOPER and only has a better performance
on the Tiibingen benchmark data set.
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