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ABSTRACT

Given the success of the Web platform, attackers have abused its
main programming language, namely JavaScript, to mount differ-
ent types of attacks on their victims. Due to the large volume of
such malicious scripts, detection systems rely on static analyses
to quickly process the vast majority of samples. These static ap-
proaches are not infallible though and lead to misclassifications.
Also, they lack semantic information to go beyond purely syntac-
tic approaches. In this paper, we propose JStap, a modular static
JavaScript detection system, which extends the detection capabil-
ity of existing lexical and AST-based pipelines by also leveraging
control and data flow information. Our detector is composed of ten
modules, including five different ways of abstracting code, with
differing levels of context and semantic information, and two ways
of extracting features. Based on the frequency of these specific
patterns, we train a random forest classifier for each module. In
practice, JStap outperforms existing systems, which we reimple-
mented and tested on our dataset totaling over 270,000 samples. To
improve the detection, we also combine the predictions of several
modules. A first layer of unanimous voting classifies 93% of our
dataset with an accuracy of 99.73%, while a second layer–based on
an alternative modules’ combination–labels another 6.5% of our
initial dataset with an accuracy over 99%. This way, JStap can be
used as a precise pre-filter, meaning that it would only need to
forward less than 1% of samples to additional analyses. For repro-
ducibility and direct deployability of our modules, we make our
system publicly available.1
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1 INTRODUCTION

The Web has become the most popular software platform, used
by billions of people every day. Given its popularity, it naturally
attracts the interest of malicious actors, which try to leverage the
Web as a vector for attacking their victim’s computer. Specifically,
attackers abuse JavaScript to exploit bugs in the browser, probe
systems for vulnerabilities before injectingmalicious content [9, 24],
e.g., targeting Flash plugins, or mine cryptocurrencies without
user’s consent [33]. Due to this plethora of attacks, the antivirus
industry has increased the focus on the detection of such nefarious
scripts. As a response, attackers use obfuscation techniques [56],
which foils techniques directly relying on content matching (e.g.,
traditional antivirus signatures) and imposes additional hurdles to
manual analysis. Nevertheless, abstracting the code on a lexical
(e.g., keywords, identifiers) or syntactic level (e.g., statement or
expression nodes extracted from the AST (Abstract Syntax Tree))
enables to collect specific and recurrent features, either typical of
malicious or of benign intent. This way, machine learning-based
detectors can leverage such static features for an accurate malicious
JavaScript detection [12, 17, 45].

Due to their speed and accuracy, static systems are particularly
relevant to quickly discard benign samples, leaving only those few
which are likely malicious for costly manual analysis or dynamic
components [9]; at the same, this implies that they must be accurate
to neither waste expensive resources nor let malicious files through.
Such static approaches are not infallible though. In particular, dif-
ferent lexical and AST-based detectors tend to yield (different) false
negatives and false positives [12, 17, 45]. At the same time, such
static systems merely consider the syntax of the analyzed files, i.e.,
how the lexical units (tokens) are arranged, or traverse the AST to
extract syntactic units. However, they do not retain semantic infor-
mation, such as control or data flow. This means that while they
take the syntactic order of code into account, they do not leverage
the semantic order of the code’s logic.

In this paper, we extend the detection capability of existing lex-
ical and AST-based pipelines to pre-filter JavaScript samples, by
augmenting such approaches with control and data flow informa-
tion. This way, we have a higher overall detection rate than existing
systems, while also limiting the number of samples forwarded to
more costly analyses. To this end and contrary to purely lexical and
syntactic systems, we also consider semantic information in our
abstract code representations, by means of control and data flow.
In particular, the Control Flow Graph (CFG) takes into account the
flow of control between statements. Besides flow of control, the
PDG (ProgramDependency Graph) also considers the dependencies
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between statements, meaning that, e.g., dead-code would not be
linked to the actual functionality of the programs by such flows.
On the contrary, ASTs and lexical units mainly represent the arbi-
trary sequencing choices made by the programmers. Specifically,
we present JStap, a modular JavaScript static classification system
for which the user can choose the level of the analysis, namely
lexical, AST, CFG, PDG with data flow only and PDG with data
and control flow. Similarly, the user may also choose to combine
several schemes. For a better overall detection accuracy and to limit
the number of features overlapping between the different compo-
nents, JStap can either analyze these features using an n-gram
approach or combine them with variable’s name information. We
refer to the resulting combinations of these two ways of analyzing
features extracted from one of the five considered code represen-
tations as ten different modules. Due to the static character and
high detection accuracy of each of JStap’s module separately, we
envision that combining several modules–with different code rep-
resentations, with more or less semantic information–can be used
as a pre-filtering step, sending only samples with conflicting labels
to further analysis. This way, JStap can help avoid unnecessary
invocation of costly dynamic analyses.

Our implementation responds to the following challenges: re-
silience to common obfuscation transformations, practical applica-
bility and high accuracy in terms of JavaScript classification, and
robustness against malware attempting to evade detection. We ad-
dress these challenges by proposing a methodology to build and
traverse the AST, CFG, and PDG before extracting and leveraging
specific features from these graphs, also considering lexical units,
for an effective and reliable malicious JavaScript detection. The key
elements of JStap are the following:
- Fully Static JavaScript Analysis — Besides extracting lexical units,
our system also leverages the AST produced by Esprima [23] to
build a CFG and a PDG, also representing the control and/or data
flow between the nodes.
- Features Extraction — We traverse the previous static structures,
extracting and combining tokens’ or nodes’ information before
selecting features typical of benign or malicious samples.
- Accurate JavaScript Classification— JStap considers the frequency
of the features previously extracted to build a random forest model
and accurately classify unknown JavaScript samples.

We evaluate our system on an extensive dataset totaling over
270,000 samples, including over 130,000 unique malicious JavaScript
samples and over 140,000 unique benign scripts. We focus on the
true-positive and true-negative rates of each JStap module sepa-
rately, the best one having a detection rate of 99.44%, which is sig-
nificantly higher than closely related work implementations, which
we trained and tested on our dataset. To make even more accurate
predictions, we envision that a combination of JStapmodules could
be used as a pre-filtering step, before sending only samples with
conflicting labels to more costly dynamic components or manual
analysis. In this configuration, we have a detection accuracy of
99.73% on 93% of our dataset, for which the selected modules can
make a unanimous decision. For the remaining 7% of the samples,
we can classify them with a second layer of unanimous voting, from
different modules, and with an accuracy still over 99%; meaning that
less than 1% of our initial dataset is sent to more costly analyses.

Figure 1: Architecture of JStap with focus on one module

For reproducibility and direct deployability of our modules, we
make our system publicly available. Specifically, we release as open-
source software our code to a) build the different data structures
we used (e.g., CFG, PDG), b) train a random forest classifier on
JavaScript samples (including the features selection process with χ2)
and c) classify (unknown) JavaScript inputs. More details can be
found at https://github.com/Aurore54F/JStap.

2 METHODOLOGY

JStap is composed of several modules, which can run independently
or combined, to accurately detect malicious JavaScript inputs. The
architecture of each module consists of an abstract code repre-
sentation (stage 1 of Figure 1), a feature-extractor (stage 2) and
learning components (stage 3). First, we perform a static analysis
of JavaScript samples, leveraging the Abstract Syntax Tree (AST)
to build the Control Flow Graph (CFG) and Program Dependency
Graph (PDG). Then, we traverse the graphs by following the control
and/or data flow to extract syntactic units, whose combination still
carries the initial control or data flow semantics. We also consider
lexical units and syntactic units extracted from the AST to extend
our approach with node context information, since control and data
flow only link statement nodes together. In particular, we combine
the previous units by groups of n, to build n-gram features. At
the same time, and independently of the prior approach, we also
combine the previous units with variable’s name information. In
both cases, we use the frequency of the extracted features as input
to learning components, which distinguish benign from malicious
JavaScript samples. In the following sections, we discuss the details
of each stage in turn.

2.1 Abstract Code Representations

The choice of a static analysis to detect malicious JavaScript in-
stances is motivated by its speed, reliability, and code coverage.
In particular, we can leverage different levels of code abstraction,
with more or less semantic information, to identify recurrent pro-
grammatic and structural constructs specific to malicious or benign
reports. In particular, a lexical analysis directly processes the code,
one word after the other. On the contrary, an AST-based analysis
takes into account the grammar, thereby the syntactic structure of
the program. As for the CFG, it adds some semantic information to
the analysis, as it takes into account the conditions that have to be
met for a specific program’s path to be taken. Finally, the PDG adds
more semantics by also considering the order in which statements
have to be executed. This way, each code representation processes
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Table 1: Lexical units extracted from the code of Listing 1

Token Value Token Value Token Value

Identifier x Numeric 1 Punctuator )
Punctuator . Punctuator ; Punctuator {
Keyword if Keyword if Identifier d
Punctuator = Punctuator ( Punctuator =
Numeric 1 Identifier x Identifier y
Punctuator ; Punctuator . Punctuator ;
Keyword var Keyword if Punctuator }
Identifier y Punctuator ==
Punctuator = Numeric 1

JavaScript at a different static level. Thereby, they can be combined
to represent the different code’s properties more accurately.

2.1.1 Lexical Units Extraction. First, we perform a lexical analysis
of JavaScript with the tokenizer Esprima [23], which builds an
abstract representation of the code. This way, the source code is
linearly converted into a list of abstract symbols representing lexical
units (e.g., Keyword, Identifier). Still, this technique uses neither
the context in which a given word appears nor the overall syntactic
structure of the snippet it analyses; therefore it is, e.g., unable to
infer that a traditionally reserved word (if ) is not always used as a
Keyword, but can be used as an Identifier (Table 1, line 3).

2.1.2 Abstract Syntax Tree (AST). Contrary to the previous tokens,
the AST describes the syntactic structure of an input sample, as it
rests upon the JavaScript grammar [15]. In particular, we use the
parser Esprima [23], which can produce up to 69 different syntactic
units, referred to as nodes. Inner nodes represent operators such as
VariableDeclaration, AssignmentExpression or IfStatement,
while the leaf nodes are operands, e.g., Identifier, Literal or
EmptyStatement. As an illustration, Figure 2 shows the Esprima
AST obtained from the code snippet of Listing 1 (for legibility
reasons, the variables’ names and values appear in the paper’s
graphical representations, but they are not part of the graphs). This
time, the construct x.if is recognized as a MemberExpression with
x and if being correctly labeled as Identifier. Still, the AST only
retains information about the nesting of programming constructs to
form the source code but does not contain any semantic information
such as control or data flow.

2.1.3 Control Flow Graph (CFG). Contrary to the AST, the CFG
allows to reason about the conditions that have to bemet for specific
program’s paths to be taken. To this end, statements (predicates
and non-predicates) are represented by nodes that are connected
by labeled and directed edges to represent flow of control.

Since the Esprima AST comprises not only statements but also
non-statement and still non-terminal nodes, as shown in Figure 2,
we construct the CFG over the previous AST (we refer to the exten-
sion of the AST with control flow edges as CFG) so as not to lose
the relationships between nodes, which are both non-statement
and non terminal. We use the JavaScript grammar [15] to determine
which nodes are statements and which ones are not. Nevertheless,
we consider that a SwitchCase and a ConditionalExpression
are both statements, in order to indicate the conditional flow of
control originating from these two nodes. Then, we traverse the
AST depth-first pre-order and define two labels to link statement

Program

ExpressionStatement VariableDeclaration IfStatement

AssignmentExpression

MemberExpression Literal

Identifier Identifier

x if

1

VariableDeclarator

Identifier Literal

y 1

BinaryExpression BlockStatement

MemberExpression Literal

Identifier Identifier

x if

1

ExpressionStatement

AssignmentExpression

Identifier Identifier

d y

Figure 2: AST corresponding to the code of Listing 1

ExpressionStatement

AssignmentExpression

MemberExpression Literal

IdentifierIdentifier

x Identifier

data

if

1

x

VariableDeclaration

VariableDeclarator

IdentifierLiteral

y Identifier

data

1

y

IfStatement

BinaryExpression BlockStatement

True

MemberExpression Literal

Identifier

if

1

ExpressionStatement

e

AssignmentExpression

Identifier

d

Figure 3: AST of Listing 1 extended with control flow (red

dotted edges) and data flow (blue dashed edges)

1 x.if = 1;
2 var y = 1;
3 if (x.if == 1) {d = y;}

Listing 1: JavaScript code example

nodes with a control flow dependency. The label e is used for edges
originating from non-predicate statements, while edges originating
from predicates are labeled with a boolean, standing for the value
the predicate has to evaluate to, for this path in the graph to be
chosen. Contrary to the AST of Figure 2, Figure 3 (considering only
the control flow edges) shows an execution path difference when
the if condition is true, and when it is not. Still, the CFG does not
enable to reason about the order in which statements are executed.

2.1.4 Program Dependency Graph (PDG). To this end, we build a
PDG [20] by adding data flow information to the previous CFG.
We connect statements with a directed data dependency edge iff a
variable (also including object and function) defined or modified at
the source node is used at the destination node, taking into account
its reaching definition. Since this code representation captures the
data and control flow between the different program components,
it is not influenced by arbitrary sequencing choices made by the
programmer. Contrary to the AST of Figure 2, Figure 3 indicates
the order in which statements from Listing 1 should be executed
(for legibility reasons, we drew the data dependencies between
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leaf nodes instead of their corresponding nearest statement nodes),
e.g., as shown by the data flow, lines 1 and 2 are executed before
line 3; still, we could swap lines 1 and 2 without altering the code
semantics.

In particular, our PDG implementation respects JavaScript’s scop-
ing rules, makes the distinction between function declarations–a
standalone construct defining named function variables–and func-
tion expressions–functions that are part of larger expressions–and
handles lexical scoping. Also, we connect the function call nodes
to the corresponding function definition nodes with a data depen-
dency, thus defining the PDG at the program level [57].

2.2 Features Extraction

Once JStap built abstract code representations to analyze JavaScript
samples, we extract lexical units and traverse the different graphs
to collect syntactic units. Subsequently and for each code repre-
sentation, we consider (independently) n-gram features and the
combination of the extracted units with their corresponding node’s
value (variable’s name). Finally, learning components take the fre-
quency of such features as input for the classification process.

2.2.1 Graph Traversal. As far as the lexical analysis is concerned,
we already extracted lexical units (tokens) in Section 2.1.1. For the
AST, CFG and PDG, we need to traverse each graph by following
its specific edges to extract the name of each node (referred to as
a syntactic unit). Specifically, a depth-first pre-order traversal of
Figure 2 gives the following syntactic units: ExpressionStatement,
AssignmentExpression, MemberExpression, [...] Identifier (the
Program node just represents the root and does not have any syn-
tactic meaning). For the CFG, we also traverse the AST but only
store nodes linked by a control flow edge (i.e., the e, True and
False labels), e.g., on Figure 3: IfStatement, BlockStatement and
ExpressionStatement. In practice, considering only statement
nodes is not informative enough to distinguish benign from ma-
licious JavaScript inputs though (due to them linking the same
statements with one another, cf. Section 3.2.1). To add more con-
text information, we also traverse the sub-AST of each node with
a control flow once. For example, in Figure 3, JStap reports the
IfStatement node and traverses its sub-AST before following
the control flow and traversing the BlockStatement, then the
ExpressionStatement nodes. This time, we do not traverse their
corresponding sub-ASTs, as we already did it, while handling the
IfStatement node.2 Finally, the process is similar for the PDG,
with consideration of the data flow. In the following, we use the
term PDG-DFG (for Data Flow Graph) to refer to this traversal only
along data flow edges, and the term PDG to refer to the PDG tra-
versal through the data flow edges, followed by a second traversal
along the control flow edges.

2.2.2 Features Analysis. For the five previous abstract code rep-
resentations, namely tokens, AST, CFG, PDG-DFG, and PDG, we
(independently) consider n-gram features and the combination of
the extracted units with their corresponding node values to build
features. JStap therefore contains ten modules, with five different
2At the end, we retain the following units: IfStatement, BinaryExpression,
MemberExpression, Identifier, Identifier, Literal, BlockStatement,
ExpressionStatement, AssignmentExpression, Identifier, Identifier,
BlockStatement, ExpressionStatement

Table 2: Number of relevant features per module

Tokens AST CFG PDG-DFG PDG

ngrams 602 11,050 18,105 17,997 24,706
value 24,912 45,159 36,961 45,566 46,375

static code analysis levels, and two ways of representing features
extracted from these different code representations.

N-Gram Features. To identify specific patterns in JavaScript doc-
uments, in the first scenario, we move a fixed-length window
of n symbols over each lexical or syntactic unit previously ex-
tracted, to get every sub-sequence of length n (n-grams) at each
position. For example, the first 2-grams of Table 1 are: (Identifier,
Punctuator), (Punctuator, Keyword) and (Keyword, Punctu-
ator). The use of n-grams feature enables a representation of how
the lexical and syntactic units were originally arranged in the ana-
lyzed JavaScript files, and is an effective means for abstracting the
files [32, 34, 36, 53, 54]. Thus, we build n-grams upon the lexical
units and the features previously extracted from the AST, CFG,
PDG-DFG and PDG (Section 2.2.1). We empirically evaluated differ-
ent n values, and selected n = 4, which provides the best trade-off
between detection accuracy and run-time performance. In the fol-
lowing, we use the keyword ngrams to refer to the 4-gram features
we built as described above.

Node Value Features. In the second scenario, we do not use n-
gram features, but combine each lexical unit with their correspond-
ing value (as presented in Table 1) and each syntactic unit extracted
from the AST, CFG, PDG-DFG, and PDG with their corresponding
Identifier/Literal value. For example, the first features of Fig-
ure 2 are (ExpressionStatement, x) and (AssignmentExpression,
x). In the following, we use the keyword value to refer to the fea-
tures combining lexical or syntactic units with their corresponding
value, as described above.

2.2.3 Features Space. JavaScript samples sharing several features
with the same frequency present similarities with one another,
while files with different features have a more dissimilar content.
Hence, analyzing the frequency of the features previously extracted
(ngrams and value, Section 2.2.2) is an indicator to accurately de-
termine if a given input is either benign or malicious.

To compare the frequency of the features appearing in several
JavaScript files, we construct a vector space such that each feature
is associated with one consistent dimension, and its corresponding
frequency is stored at this position in the vector. To limit the size
of the vector space, which has a direct impact on the performance,
we use the χ2 test to check for correlation. We select only features
for which χ2 ≥ 6.63, meaning that feature’s presence and script
classification are correlated with a confidence of 99% [52]. Table 2
presents the number of features considered for each of the ten
JStap modules based on our training set, which we describe in
Section 3.1.3. For the ngrams variant, there are more statistically
representative features when the complexity of the code represen-
tation structure increases, as complex graph structures lead here
to more edges. This also holds for the value approach, except for
the CFG traversal, for which we both have fewer representative
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features and fewer features in general than for the AST or PDG. We
assume that it comes from benign and malicious actors using more
similar variables name in statements with a control flow than in
other statements. This is confirmed to some extent in Section 3.2.2,
where this approach does not perform as well as the other ones. Fi-
nally, we store the frequency of each feature in Compressed Sparse
Row (CSR matrix) [10] to efficiently represent non-zero values.

2.3 Learning and Classification

The learning-based detection completes the design of our system.
We first build and leverage the CSR matrix of a representative and
balanced set of both benign and malicious JavaScript files to train
our classifier, as presented in Section 3.1.3.We empirically evaluated
several off-the-shelf systems (Bernoulli naive Bayes, multinomial
naive Bayes, Support Vector Machine (SVM), and random forest),
and selected random forest, which provided the most reliable de-
tection results, with the best true-positive and true-negative rates.

3 COMPREHENSIVE EVALUATION

In this section, we outline the results of our evaluation of JStap. In
particular, we leverage a high-quality dataset from various sources,
totaling over 270,000 unique samples. First, we study and justify the
detection rate of all ten modules of JStap, comparing themwith one
another and analyzing their high(er) detection performance, before
comparing our implementations with closely-related work, and
explaining why our systems perform better. Finally, we analyze the
detection accuracy of a detector combining the predictions of three
JStapmodules, before evaluating the overall run-time performance.

3.1 Experimental Protocol

The experimental evaluation of our approach rests upon two exten-
sive datasets, with a total size over 6.2 GB. The first one contains
131,448 SHA1-unique malicious JavaScript samples and the second
one 141,768 unique benign files. We used these two datasets to both
train and test our random forest classifier on.

3.1.1 Malicious Dataset. Our malicious dataset (Table 3) is a collec-
tion of samples mainly provided by the German Federal Office for
Information Security (BSI) [8]. These samples have been labeled as
malicious based on a score provided by the combination of antivirus
systems, malware scanners, and a dynamic analysis. To reduce pos-
sible similarities between samples from the same source, we got the
malware collection of Hynek Petrak (Hynek) [43], exploit kits from
Kafeine DNC (DNC) [27] and GeeksOnSecurity (GoS) [21], and
additional samples from VirusTotal [50]. This way, our malicious
dataset contains different samples performing various activities. For
example, we have JScript-loaders leading to, e.g., drive-by download
or ransomware attacks, and exploit kits (e.g., Blackhole, Donxref,
RIG) targeting vulnerabilities in old versions of Java, Adobe Flash
or Adobe Reader plugins, also trying to exploit old browsers ver-
sions. Most of these samples are obfuscated, e.g., through string
manipulation, dynamic arrays, encoding obfuscation [56]. Even
though the samples are labeled by their sources, in some cases, we
extracted JavaScript from HTML documents and thereby had to
ensure that the maliciousness lay in the script and was not, e.g.,
contained in an SWF bundle. For this purpose, we manually ana-
lyzed our 19,942 extracted JavaScript samples, 15,475 of which are

Table 3: Malicious JavaScript dataset

Source #JS Creation Obfuscated

BSI 83,361 2017-2018 y
Hynek 29,558 2015-17 y
DNC 12,982 2014-18 y
GoS 2,491 2017 y
VirusTotal 3,056 2018 y

Total 131,448 2014-18 y

Table 4: Benign JavaScript dataset

Source #JS Collection Obfuscated

Tranco-10k 122,910 2019 N/A
Microsoft 16,271 2015-18 y
Games 1,992 N/A n
Web frameworks 427 N/A N/A
Atom 168 2011-18 n

Total 141,768 - -

malicious (we discarded the other samples, which are also not rep-
resented in Table 3). Since our analysis is entirely static, it provides
a complete code coverage based on the proportion of source code
analyzed. In turn, it is unable to consider dynamically generated
JavaScript.3 To this end, we parsed each malicious file with Esprima
and automatically inlined all code passed through eval (for invoca-
tions with static strings). Thereby, we increased the code coverage
of JStap on 1,868 unique scripts, as we did not merely consider a
CallExpression node with a fixed string parameter anymore, but
the code contained in the string, possibly (depending on JStap’s
selected module) along with its control and/or data flow. Also, 1,094
samples used conditional compilation [39], which Esprima parses
as a large comment. Thus, we automatically replaced this construct
with the corresponding code for the parser to produce the actual
ASTs of such scripts.

3.1.2 Benign Dataset. As for the benign dataset (Table 4), we used
Chromium to visit the start pages of Tranco top 10,000websites [35].4
For each visited web page, we waited for the load of the page and
observed the site for one second, to also collect dynamically gener-
ated scripts. In particular, we stored all inline scripts from the same
document in one file–keeping the order in which they are executed–
and consider all external scripts separately. This way, we obtain
122,910 unique JavaScript files. Given the fact that we extracted
JavaScript from the start pages of high-profile websites, we assume
them to be benign. Based on a study from Skolka et al. [48], over 30%
of first-party scripts are either obfuscated or minified and over 55%
of third-party scripts. In addition, we consider benign JavaScript
from Microsoft products,5 the majority of which are also obfus-
cated, which enables us to ensure that JStap does not confound
obfuscation with maliciousness. As we also own malicious scripts
from Microsoft (i.e., JScript-loaders), we are not introducing a bias
in our dataset, even if Microsoft uses custom obfuscation methods.

3We discuss some possible drawbacks induced by the static analysis in Section 4.1
4Even though we crawled Tranco top 10,000 in 2019, the scripts were not necessarily
written in 2019, such that our malicious dataset is not older than our benign dataset
5Microsoft Exchange 2016 and Microsoft Team Foundation Server 2017
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Finally, we collected benign JavaScript from open source games,
web frameworks, and Atom [2]. As these samples may contain new
or specific (e.g., games) coding styles, we show that JStap does
not confound unknown or unusual structures with maliciousness
either.

3.1.3 Classifier Training. For the next sections, we built machine
learning models using the following protocol. First, we randomly
selected 10,000 JavaScript samples from our malicious dataset. We
deemed our malicious training set to be representative of the distri-
bution found in the wild due to our multiple malware sources and
random selection from an initial malicious pool with over 130,000
samples. For the benign part, we also randomly selected 10,000
samples to build a balanced model. As previously, we assume our
benign training set to be representative of the distribution found
in the wild through our multiple sources, with different coding
styles (e.g., games). In the following sections, we consider that the
remaining samples are unknown and use them to evaluate the per-
formance of the different detectors. In addition, we extracted all
features present in our training set, before randomly selecting 5,000
new unique malicious and as many benign samples, to check on
this validation dataset which of the previous features are correlated
with the classification, using the χ2 test described in Section 2.2.3.
In the remainder of this paper, we consider only these features.

We specifically chose to assemble balanced datasets, even though
in reality, benignwebpages outnumbermalicious ones.WithTesser-
act [42], Pendlebury et al. argue that using unrealistic assumptions
about the ratio of benign samples to malware in the data can lead
to inflated detection results. In our case, it is not an issue, since
we specifically chose metrics to evaluate the detection accuracy
of JStap on both benign and malicious samples, and not merely a
score to rate the proportion of correct predictions of our modules
(cf. Section 3.2). Finally, to limit any statistical effects from random-
ized datasets, we repeated the previous procedure five times and
averaged the detection results. Contrary to 5-fold cross-validation,
we explore more ways of partitioning data, such that each sample
is not necessarily tested only once.

3.2 JStap’s Detection Performance

First, we compare the detection performance of JStap, in terms of
true-positive (correct classification of a malicious script as mali-
cious) and true-negative (correct classification of a benign input as
benign) rates, depending on the level of the analysis, i.e., tokens,
AST, CFG, PDG-DFG, or PDG. We make, in particular, the distinc-
tion between the ngrams and the value approach (Section 2.2.2).
Specifically, we chose to compare the accuracy of the different mod-
ules over their true-positive (TPR) and true-negative rates (TNR),
and not AUC [18] or F-measure, so as to evaluate how well they
can detect benign and malicious inputs. For this reason, AUC and
F-measure would be heavily biased by the composition of our test
sets (proportion of benign and malicious samples), while we aim at
having a more realistic estimation of our modules’ accuracy both
on benign and malicious samples. Then, we conclude on the pre-
dictions’ accuracy of JStap’s modules, before justifying why they
make such accurate predictions.

3.2.1 ngrams Features. In the first scenario, we consider the ngrams
approach. As Figure 4 shows, both the true-positive (TPR) and true-
negative rates (TNR) of JStap stay constant across our five analyses.
Specifically, the TPR ranges from 98.73% (tokens) to 99.22% (CFG),
making the CFG the most reliable malicious JavaScript detector in
this configuration. As for the TNR, it ranges from 99.34% (PDG) to
99.62% (AST), meaning that the AST detects benign JavaScript best.
In terms of overall detection rate, defined as the proportion of sam-
ples correctly classified, the AST performs best with an accuracy
around 99.38%, whereas the token-based approach performs worst
with a detection rate of 99.08%, while CFG, PDG-DFG, and PDG
have similar detection rates between 99.27% and 99.28%.

As mentioned in Section 2.1.1, the lexical level of code abstrac-
tion does not use the context (in terms of syntactic structure) in
which a given token occurs (e.g., IfStatement, ForStatement,
VariableDeclaration), but merely processes JavaScript inputs
one word after the other. For example, the following two JavaScript
snippets for(i = 0; i < 5; i++) and if(i == 1) j = 2;k--;
are composed of exactly the same tokens, namely Keyword, Punc-
tuator, Identifier, Punctuator, Numeric, Punctuator,
Identifier, Punctuator, Numeric, Punctuator, Identifier,
Punctuator, Punctuator, while performing different actions. On
the contrary, the AST-based analysis leverages the JavaScript gram-
mar, which provides more insight than an analysis purely based on
tokens, and makes the distinction, e.g., between the previous for
and if constructs, hence a better detection accuracy.

Even though the AST-based approach performs better overall,
the CFG, PDG-DFG, and PDG also are reliable. Still, we observe
that the AST code representation may be slightly more informative
to distinguish benign from malicious JavaScript than the control
and data flow. We ran the same experiments where the CFG, PDG-
DFG, and PDG only followed the control and/or data dependency,
without also traversing the sub-AST corresponding to nodes with
such a control/data flow (Section 2.2.1). The TPR stays relatively
similar to the results from Figure 4, between 98.87% (PDG-DFG) and
99.33% (CFG), but the TNR decreased between 94.92% (PDG-DFG)
and 95.50% (PDG). As the control and data flow are represented
only between statement nodes, these nodes are less representative
of benign or malicious intent than the AST structure. Specifically,
we extracted the five features most representative of malicious or
benign intent, for all five ngrams modules, according to the cor-
responding random forest models [47]. Since Identifier nodes
are always part of each of these five most important features, we
highlight the importance, in terms of predictions’ accuracy, of not
just considering statement nodes (which, thereby, do not include
Identifier). Thus, adding AST information into the CFG, PDG-
DFG, and PDG improved their detection rates up to the AST stan-
dards. Still, these three approaches may inherently be limited if
there is no control or data flow present in the considered files. Out
of the 253,216 samples6 we classified, the CFG could handle on av-
erage 231,490.8 of them (91.4%), the PDG-DFG 233,484 (92.2%) and
PDG 237,415.4 (93.8%), while the token- and AST-based analyses
classified them all. Nevertheless, due to the possibility of combining
several modules (Section 3.4), JStap can still classify such samples.

6We excluded the samples used to train the model
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Figure 4: Accuracy comparison with the ngrams approach

3.2.2 value Features. In the second scenario, we consider the
value approach. Contrary to the previous ngrams variant, the TPR
and TNR are less constant across our five analyses (Figure 5), given
that considering node values increases the number of different fea-
tures. In particular, the TPR ranges from 98.44% (AST) to 99.23%
(CFG). Even though the CFG performs best to detect malicious
JavaScript, it performs worse to accurately label benign samples,
with a TNR of 95.87% compared to 99.67% for the token-based ap-
proach. The overall detection rates across the five analyses also are
more sparse than with the ngrams approach: from 97.55% for the
CFG to 99.44% for the lexical analysis, while AST, PDG-DFG, and
PDG have similar detection rates between 98.9% and 99.1%.

This time and contrary to Section 3.2.1, the lexical level of code ab-
straction leverages context information, since the value approach
takes the value of each token into consideration (Section 2.2.2).
Thus, the for and if code snippet from the ngrams approach in Sec-
tion 3.2.1 would have a different representation, which contributes–
for the reasons mentioned previously–to a better overall detection
accuracy. In particular, each token has a value by construction, while
only the Identifier and Literal nodes have one in the graph
representation. For this purpose, we mapped the non-identifier and
non-literal nodes to their nearest Identifier/Literal child, if
any (on average, only 2.8 samples did not have any Identifier
nor Literal nodes [41], representing 0.001% of our dataset). As a
consequence, the same value is used by several nodes and may not
always be informative, even though it is significant w.r.t. χ2 (Sec-
tion 2.2.3). Besides, the syntactic analyses do not benefit from the
JavaScript grammar anymore, as each feature is analyzed indepen-
dently (compared to an ngrams analysis previously). As mentioned
in Section 3.2.1, the context information was mainly responsible
for the high detection results; therefore, the lexical analysis now
performs best. To overcome the lack of context, we tried to combine
the current value approach with an n-gram analysis, by combining
pairs of (unit, value) n times, but the TNR dropped to 80%. As a
matter of fact, the features got too specific to one file and could not
be generalized over the whole dataset anymore. Last but not least,
we assume that the CFG approach does not perform as well as the
other ones, since benign and malicious developers may tend to use
similar names for nodes with control flow, as suggested by the small
number of features compared to the AST or PDG (Section 2.2.3).

3.2.3 Predictions’ Accuracy Summary of JStap’s Modules. To sum
up, each of the ten JStap modules could correctly classify our
JavaScript collection with an accuracy over 97.6%, eight modules
of which had an accuracy over 99%. For the ngrams approach, the
AST performs best, mainly due to the context information brought

Figure 5: Accuracy comparison with the value approach

by the combination of syntactic units. Similarly, the value lexical
module performs best thanks to the context information brought
by the tokens’ values. Nevertheless, the CFG, PDG-DFG, and PDG
also are very accurate ways of detecting malicious JavaScript and
add all the more semantic information into the considered features.

3.2.4 Most Important Features for Classification. To accurately dis-
tinguish benign from malicious JavaScript inputs over 97.6% of
the time, JStap leverages differences between benign and mali-
cious samples at several abstract levels (e.g., AST, CFG). Specifically,
using the way in which given lexical and syntactic units are ar-
ranged in JavaScript files, along with their frequency, provides
valuable insight to capture the salient properties of the code and
identify recurrent patterns, specific to malicious or benign intent.
For the ten JStap’s modules, we extracted the five features most
representative of malicious or benign intent, according to the cor-
responding random forest models [47]. For example, the most rep-
resentative feature for the ngrams approach and for the AST, CFG,
PDG-DFG and PDG levels is the following: [MemberExpression,
MemberExpression, Identifier, Identifier], which is in line
with the tokens’ most representative feature, namely [Punctuator,
Identifier, Punctuator, Identifier], and represents an el-
ement of the form a.b.c. We assume that this construct is rather
typical of benign samples, such as jQuery, which define several
objects with multiple properties, while our malicious files rather
store data inside simpler variables or tables. For instance, the fourth
most representative feature of the tokens value module is the
Punctuator "+", which might point to the string splitting/string
concatenation data obfuscation form [56], massively used in ma-
licious samples to evade, e.g., signatures-based detection, while
benign inputs might rather tend to avoid it, du to the resulting
performance downgrade. Similarly, the fifth most important feature
of the AST value module is (NewExpression, ’Array’), which
may this time point to the obfuscation technique where strings are
fetched from a global array.

All in all, malicious JavaScript samples try to hide their mali-
ciousness by using different obfuscation techniques, which leave
specific and recognizable traces in the source code. While benign
documents may also be obfuscated to protect code privacy and
intellectual property, they have more concerns about the perfor-
mance, and therefore use different techniques. For this reason, we
also assume that malicious code is so different from benign inputs
that the natural evolution of the code experienced over a few years
should not change the detection results. Therefore, we consider
that even if our benign (Table 4) and malicious (Table 3) datasets
have been collected over a few years, it does not introduce a bias in
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our experiments. Still, we discuss to what extent an attacker could
make benign and malicious features similar in Section 4.2.

3.3 Analysis of Closely Related Detectors

Several systems already combined differences at a lexical or an AST
level with off-the-shelf supervised machine learning algorithms
to distinguish malicious from benign JavaScript. In this section,
we focus on Cujo [45], JaSt [17] and Zozzle [12], as they are–
to the best of our knowledge–the most closely related works to
our token- and AST-based approaches. After explaining the better
overall detection rates of JStap compared to the previous systems,
we focus on combining their predictions.

3.3.1 Presentation of Cujo, Zozzle and JaSt. In 2010, Rieck et al.
developed Cujo [45], which builds n-gram features from JavaScript
lexical units, before using an SVM classifier for an accurate mal-
ware detection. As the system is not open source, we contacted the
authors who pointed us to the tokenizer they initially used [44]
and encouraged us to use the HashingVectorizer from Scikit-
learn [46] to map the extracted features to a corresponding vec-
tor space. In the original implementation, Cujo also leverages an
enhanced version of ADSandbox [14], which executes the code
associated with a webpage within the JavaScript interpreter Spider-
Monkey [40]. We contacted Dewald et al., who informed us that
ADSandbox is neither maintained nor running anymore. Since we
specifically focus on static JavaScript detectors in this paper, we
consider only the static part of Cujo. Also, we assume that our
reimplementation is functionally equivalent to the original one,
and for reproducibility, we make this system publicly available at
https://github.com/Aurore54F/lexical-jsdetector.

Curtsinger et al. implemented Zozzle [12], which combines the
extraction of features from the AST, as well as their corresponding
node value, with a Bayesian classification system to detect malicious
JavaScript. We approached the authors and asked for their code
or inputs, but did not get any response. Thus, we reimplemented
the system with automatic features selection, 1-level features, and
naive Bayes, based on the information from the paper. Similarly
to Cujo, Zozzle also has a dynamic part, to first hook into the
JavaScript engine of a browser to get the deobfuscated version of
the code. As previously, we reimplemented the static part of the
tool and make it publicly available at https://github.com/Aurore54F/
syntactic-jsdetector.

Last but not least, with JaSt, Fass et al. [17] leveraged n-grams
from an AST traversal to detect malicious JavaScript. As the system
is open source [3], we directly used it for the comparisons.

3.3.2 Benefits of JStap’s Lexical and AST-Based Modules. Concep-
tually the ngrams module of JStap, working at the tokens level, is
identical to Cujo. In contrast, we rely on Esprima for tokenization,
use 4-grams instead of 3-grams, do not consider all features, but
select them with a χ2 test, and use a different classifier (random
forest). For Zozzle, the value module of JStap, working at the
AST level is conceptually equivalent. Still, we consider all nodes
from the AST (and not only expressions and variable declarations),
a different confidence for the χ2 test, and random forest instead of
naive Bayes. As for JaSt, it is conceptually identical to the ngrams
module of JStap, working at the AST level. Still, we do not simplify

Figure 6: Accuracy comparison between related work and

our improved corresponding implementations

the syntactic units returned by the parser but perform a χ2 test to
reduce the size of our feature space.

3.3.3 Comparison with Cujo, Zozzle and JaSt. Overall, the three
corresponding modules of JStap have a better detection rate com-
pared to Cujo, Zozzle, and JaSt (Figure 6). Specifically, JStap has
a higher TPR than Cujo (98.73% compared to 98.61%) and a higher
TNR (99.4% and 97.9%), meaning that we classify 2,051 files more
accurately than Cujo. Our implementation performs better due to
the differences in the implementation mentioned in Section 3.3.2.
In particular, 4-grams performed better than 3-grams and random
forest better than SVM during our hyper-parameters selection pro-
cess (Section 2.2.2, Section 2.3). Also, we hypothesize that Cujo
performed differently than in its original paper [45] (with a FPR of
2.0E-3% and 5.6% FNR) mainly due to our malicious dataset, com-
prising 131,448 samples from different sources, compared to 609 for
Cujo. This way, our reimplementation recognizes more malicious
JavaScript than initially, but to the detriment of benign samples.

We observe a similar trend for Zozzle, which has a significantly
lower TPR (94.27% and 98.44%) and TNR (97.35% to 99.54%) than
the corresponding JStap’s module. As before, we mentioned the
differences in the implementation in Section 3.3.2. We also assume
that Zozzle performs differently than in its original paper [12]
(with a FPR of 3.1E-4% and 9.2% FNR) due to our malicious dataset.
Specifically, they considered only 919 malicious samples and clearly
stated in 2011 that “relatively few identifier-renaming schemes
[were] being employed by attackers”, which is not the case anymore,
where malicious samples are heavily obfuscated (as observed during
the manual analysis from Section 3.1.1). While it might be unfair to
consider only the static parts of Cujo and Zozzle to compare them
with the corresponding JStap’s modules–as their accuracy might
also stem from their dynamic components–we are focussing here
on comparing several static analysis systems, working at different
abstract levels (and we did not have the original systems to check
the added value, or not, of their dynamic components).

Finally, JaSt has a slightly higher TPR than JStap (99.71% and
99.11%) but in compensation a significantly lower TNR (97.86% and
99.62%), meaning that we classify on average 1,592.8 files more
accurately than JaSt. We believe that JStap has a higher overall de-
tection accuracy than JaStmainly due to us not simplifying the syn-
tactic units returned by the parser. As Fass et al. grouped units with
the same abstract meaning they considered, e.g., ForStatement
and IfStatement as a Statement node, therefore losing context
information, as explained in Section 3.2.1. As we used the open
source JaSt version, we assume that our dataset, which is bigger

https://github.com/Aurore54F/lexical-jsdetector
https://github.com/Aurore54F/syntactic-jsdetector
https://github.com/Aurore54F/syntactic-jsdetector
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Table 5: Analysis of the detection accuracy when Cujo, JaSt

and Zozzle made different predictions

Approach TPR TNR Accuracy Approach TPR TNR Accuracy

ngrams_tokens 0.87 0.94 0.91 value_tokens 0.89 0.96 0.93
ngrams_ast 0.89 0.96 0.93 value_ast 0.84 0.96 0.9
ngrams_cfg 0.91 0.93 0.92 value_cfg 0.9 0.7 0.81
ngrams_pdg-dfg 0.9 0.92 0.91 value_pdg-dfg 0.88 0.88 0.89
ngrams_pdg 0.9 0.93 0.92 value_pdg 0.88 0.9 0.89

Cujo 0.78 0.64 0.71 Zozzle 0.14 0.66 0.42
JaSt 0.97 0.73 0.84

and contains more diverse JavaScript than in the original paper [17],
is responsible for the different rates we got compared to the paper’s
(5.2E-3 FPR and 5.4E-3 FNR), which is in line with the assumptions
we made for Cujo and Zozzle.

3.3.4 Combination of Related Work Predictions. Next, we studied
the detection accuracy of JStap’s different modules on samples for
which Cujo, Zozzle and JaSt made different predictions. Due to
their different classification results, these samples may be trying
to evade detection. Specifically, the three related work classifiers
considered made different predictions for 17,178.6 samples (6.78%
of our dataset7), 7,943.4 of which are malicious.

Table 5 presents the detection accuracy of all JStap’s modules,
and of Cujo, Zozzle and JaSt, on such samples. First, our ngrams
approach at the tokens level performs better than Cujo also in this
configuration, with both a significantly higher TPR (87% compared
to 78%) and TNR (94% and 64%). Similarly, we outperform Zozzle by
correctly classifying over twice asmany samples with JStap’s value
AST-based module (overall detection accuracy of 90% compared to
42%). Still, these results have to be taken with a grain of salt, as
we tested the classifiers on samples likely to try to evade detection.
As a matter of fact, in Section 3.3.3, Zozzle did not perform as
well as Cujo and JaSt. In particular, it reported almost 7,000 false-
negatives (FNR of 5.7%) compared to 348 for JaSt and 1,675 forCujo.
Therefore, and out of the 7,943.4 malicious samples considered here,
at least 5,300 are initial false negatives from Zozzle, meaning that
its TPR could not be over 33%. Finally, and as previously, JaSt has
a higher TPR than our ngrams AST-based approach (97% compared
to 89%), but at the same time significantly fewer true-negatives (73%
compared to 96%), meaning that JStap has a higher overall detection
accuracy, classifying 1,550 files more accurately than JaSt.

As for the remaining JStap’s modules, they are also impacted by
these samples likely to be evasive, with a mean accuracy between
81% (value CFG, otherwise from 89%) and 93% (value tokens),
compared to over 97.55% (value CFG) and up to 99.44% (value
tokens) in Section 3.2 on a standard dataset. Still, all JStap’s modules
significantly outperform Cujo, Zozzle and JaSt.

3.4 Combining Modules for a Higher Accuracy

JStap is a modular JavaScript static classification system for which
the user can choose the type of analysis (ngrams or value), as well
as its level (tokens, AST, CFG, PDG-DFG and PDG). Even though all
approaches (except value CFG) have an overall detection accuracy
between 98.9% and 99.44% (Section 3.2), thereby outperforming
7We consider here only the samples, which are not in the model, thus 253,216

related-work detectors trained and tested on the same datasets
(Section 3.3), they can still be combined for an even better detection
rate. In the following sections, we discuss the JStap’s modules
we combined, as well as the detection accuracy on the resulting
combination, using majority predictions voting, before focussing
on the detectors’ confidence for a given prediction.

3.4.1 Selection of JStap’s Modules for Predictions Combination. For
the combination process, we chose the value token- and ngrams
AST-based approaches, which perform particularlywell (Section 3.2)
and use different features that do not overlap. As a matter of fact,
the former leverages the lexical structure of a JavaScript file and
combines each extracted token with its corresponding value, while
the latter rests upon the AST traversal and an n-gram combination
of the traversed nodes, for an accurate malicious JavaScript detec-
tion. As we need an odd detectors’ number to perform majority
voting, we selected a third one. The PDG value approach comple-
ments the previous two systems, as it also uses new features, which
do not overlap with the previous ones. On the contrary, choosing
the CFG, PDG-DFG or PDG ngrams option would have overlapped
with the AST ngrams approach, while the PDG value module has
different features, due to the consideration of the nodes’ value. Also,
we wanted to strengthen our system with both control and data
flow information, hence the choice for the PDG.

3.4.2 Predictions With Majority Voting. We perform a combination
of the three selected systems (ngramsAST, value tokens and value
PDG), by choosing the prediction with the most votes, for a given
JavaScript input. Such a combination presents both a high TPR
of 99.2% and a TNR of 99.7%, representing an accuracy of 99.46%.
Still, when we considered each module separately in Section 3.2, we
had an approaching accuracy for the value tokens approach (best
module) with a detection rate of 99.44%. This means that combining
modules leads to a detection of 36 additional samples (0.015% of
our dataset), which we do not see as a major improvement.

Nevertheless, we also leveraged the combination of these three
modules to classify the 17,178.6 samples for which Cujo, Zozzle
and JaSt made different predictions (Section 3.3.4). This time, we
retain an accuracy of 93.47%, which is, again, better than the ngrams
AST-based and value token-based approaches (Table 5), which per-
formed best in this configuration. In particular, we detect on average
47.9 extra samples with the combination of modules than with the
value tokens approach, which is 1.3 times more samples than in
our standard dataset, where we have almost 15 times more sam-
ples. Therefore, combining modules brings a real added value when
classifying samples likely to be evasive. Similarly, this combination
process also recognizes 121.9 more samples than the ngrams AST
approach. In particular, the value token-based approach correctly
classified 74 extra samples compared to the ngrams AST variant
(0.43% of our evasive dataset), while only classifying 0.07% more of
our standard dataset, meaning that the difference in terms of detec-
tion rate between these two modules tends to increase on evasive
samples. Therefore, combining JStap modules always perform bet-
ter than each module separately, in particular on evasive samples.
In the case of such evasive samples, some modules may struggle
to classify them correctly, while combining modules significantly
limits the proportion of samples evading our system.
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Table 6: JStap’s modules predictions combination

Approach TPR (%) TNR (%) Accuracy (%)

Same predictions from the 3 modules 99.55 99.9 99.73

Majority voting on remaining (likely evasive) 86.9 98.16 96.02

3.4.3 Confidence of the Combined Predictions. Last but not least,
we focus on the JavaScript samples for which all three of our com-
bined modules made the same predictions, and on the contrary,
those for which they had different classification results. On aver-
age, ngrams AST, value tokens and value PDG labeled 234,875.8
JavaScript inputs the same way (92.76%). On these samples specif-
ically, they have both an extremely high TPR of 99.55% and TNR
of 99.9% (standing for an overall detection accuracy of 99.73%, Ta-
ble 6), meaning that their predictions are more trustworthy than on
the whole dataset, which we expected since the modules perform
better combined than separately. Finally, we classified the remain-
ing 18,340.2 samples (over 80% of which are benign), which can
also be seen as samples that may try to evade detection (similarly
to Section 3.3.4). Still, we retain a high TNR of 98.16% with the
majority voting system (Table 6) on such samples, meaning that
we accurately detect malicious JavaScript over 98% of the time.
In turn, we have a TPR of 86.9%. All in all, we retain over 96%
accuracy on samples for which our combined detectors predict
conflicting labels, which we consider to still be relatively high.8
Nevertheless, the overall detection accuracy of JStap should not
be evaluated only on such samples, but on our whole dataset (also
containing these samples), where we retain an accuracy of almost
99.5% (Section 3.4.2).

3.5 Run-Time Performance

We tested JStap’s run-time performance on several CPUs, each
Intel(R) Xeon(R) Platinum 8160 CPU at 2.10GHz. Even though we
parallelized our implementation to generate the results for this
paper, the run-time of our system was tested on one CPU only.
Table 7 presents the average, median, minimum, and maximum
duration to generate each of our considered code representations.
The tokenizing and parsing with Esprima [23] are relatively fast,
with an average time of respectively 17 and 35ms per file. The most
time-consuming operation is the PDG generation, which highly
depends on the AST size, since we have to traverse it, pushing and
popping the variables encountered all the way down to the leaves.
Once we generated all the PDGs of all the files from our dataset,
we stored them so as not to have to produce them for each module
again. Therefore, we did not take into consideration the PDGs (and
tokens, for comparison purpose) generation time in Table 8.

This table presents the duration times to generate the features
considered by each module, for one file. The last two columns
stand for the run-time to leverage the previous features to build a
model (averaged for one file) and to classify one unknown input.
In overall, more complicated code representations (e.g., PDG, CFG
compared to tokens or AST) lead to a higher overhead, since we
follow more edges in the graphs and consider more features. The
value approach also is slower than the ngrams one, as we fetch
8We further discuss this point in Section 4.3

Table 7: Run-time to generate JStap’s code representations

Code representations Mean (ms) Median (ms) Min (ms) Max (s)

Tokenizer 16.894 9.0 0.0 0.175
Parser 34.921 19.0 1.0 0.311
AST from parser 97.711 11.487 0.038 4.103
CFG from AST 39.085 4.635 0.004 1.114
PDG from CFG 369.49 8.71 0.125 27.27

Table 8: JStap’s run-time per module

Modules Mean (ms) Median (ms) Min (ms) Max (s) Learner (ms) Classifier (ms)

ngrams_tokens 2.344 1.42 0.65 0.203 0.162 0.715
ngrams_ast 9.683 2.592 0.635 0.722 0.19 1.427
ngrams_cfg 18.288 3.781 0.762 0.778 0.252 1.667
ngrams_pdg-dfg 19.412 3.736 0.723 1.111 0.228 2.685
ngrams_pdg 34.745 5.544 0.799 1.243 0.241 2.763

value_tokens 13.251 3.743 0.947 1.397 0.187 1.127
value_ast 112.036 11.131 1.085 86.619 0.227 1.37
value_cfg 129.77 12.138 0.875 207.255 0.187 1.174
value_pdg-dfg 101.83 9.707 0.99 107.432 0.195 1.279
value_pdg 216.895 21.44 1.003 247.253 0.173 1.311

a value for each unit, thereby traversing sub-ASTs down to the
leaves.

Specifically, classifying a JavaScript sample with the ngrams
tokens module takes on average 19ms for the features generation
(including tokens production) and, 0.71ms for the classification. For
the value AST-based approach, it takes 112ms to produce features,
with an AST previously generated, and 1.4ms for the classification.
Based on the number of features each module considers (Table 2)
and an average size of 23 KB per file, we consider the overhead to be
reasonable. Also, JStap is fully parallelized to leverage all available
CPU cores for a faster analysis for a deployment in the wild.

4 DISCUSSION

In this section, we first analyze the limitations JStap might have,
focussing on the static analysis of JavaScript. We then discuss tech-
niques that might evade our system in theory but are not specifically
used in practice. Finally, we introduce new strategies to classify
more JavaScript instances accurately.

4.1 Limitations

JStap is based on a static analysis of JavaScript to build both the
control and data flow of a given script. Therefore, it provides a
complete code coverage based on the proportion of source code
analyzed. In turn, it is subject to the traditional flaws induced by the
high dynamic of the language [1, 19, 25, 26]. Specifically, JavaScript
models inheritance with prototype chaining [38], where properties
can be added or removed during the execution, and property names
may be dynamically computed. Also, JavaScript can generate code
at run-time, e.g., with the eval function, a dynamically constructed
string can be interpreted as a program fragment and executed in
the current scope. Still, to partially mitigate this limitation, we au-
tomatically (and statically) rewrote eval calls to a string into the
corresponding code that would have been generated dynamically.
This way, we increased JStap’s code coverage by not merely con-
sidering a CallExpression node anymore, but the actual content
of the string along with possible control/data flow (Section 3.1.1).
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Still, our approach would not work on eval calls with a variable
as parameter or nested evals. Nevertheless, JStap aims at working
directly at the code level to detect malicious JavaScript, by analyzing
the traces left in the syntax of malicious files, e.g., due to the specific
malicious obfuscation techniques used by attackers. As long as all
the code is not dynamically generated, which we encountered only
for conditional compilation and solved by automatically generating
the actual code (Section 3.1.1), JStap will leverage the existing code
to classify the JavaScript inputs considered.

4.2 Evasion Techniques

All learning-based malware detection systems will fail to detect
some attacks, e.g., if the considered malicious instances do not con-
tain any features present in the training set, given that machine
learning relies on statistical assumptions about the distribution of
the training data to classify unknown inputs [4]. Therefore, ad-
versaries could modify their malicious samples by adding benign
features (not to mention copy their malicious file into a signifi-
cantly bigger benign one), to statistically increase the proportion of
benign features in a malicious file and have a more benign-looking
structure [28]. This way, they would mislead our detector into clas-
sifying the considered sample as benign. Even though related work
effectively added, deleted or replaced specific features of a given
file [13, 22, 51, 55] and injected malicious content into bigger be-
nign samples [37], we observed very few such samples. Specifically
and out of the 19,942 malicious samples we manually analyzed, we
found such evasion techniques less than 50 times. For this reason,
we believe that malicious actors rather use obfuscation to hide their
attack. The rarity of such malicious samples could also be a limita-
tion of our dataset. In this case, it would mean that our malware
providers did not detect these samples, which should not happen
after a dynamic analysis.

Another class of attacks against JStap are samples with the
same structure but different ground truths. In particular, Fass et
al. showed with HideNoSeek [16] that malicious samples can be
rewritten, so that they have exactly the same AST as an existing
benign file. Yet, because their variables have different values, they
perform distinct actions after execution. While this attack would by
construction impact our token- and AST-based modules, we believe
that our PDG-DFGmodule might be able to recognize such samples,
because of the specific changes induced by the attack at the data
flow level.

Nevertheless, as presented in Section 3.4, our systemmakes more
accurate predictions when we combine the labels given by several
modules. This fact also holds for samples which might be trying
to evade detection (for example when several modules classified
them differently). In this specific case, we suggest to use JStap as a
pre-filtering system before sending samples for which the modules
predicted conflicting labels to more costly dynamic components
(Section 4.3). This way, JStap is more resilient to evasive samples
than any of its modules alone.

4.3 Improving the Detection With Pre-Filtering

Layers

To detect malicious JavaScript, we specifically chose a static ap-
proach, which is by construction fast, while still making accurate

predictions. Dynamic detectors may perform better, in particular, if
they visit all possible execution paths [30, 31], but at the same time,
they are more costly, e.g., they require specific instrumentations,
they introduce overhead inherently depending on the code’s exe-
cution, also the necessary amount of time to observe a malicious
behavior is not defined [51]. Besides, such analyses can be defeated
if the sample notices that it is running in a sandboxed environ-
ment [6, 7]. To this end and to maximize the detection accuracy
while at the same time minimizing the run-time performance, we
rather envision that JStap could be used to pre-filter JavaScript
samples, sending, e.g., only those with conflicting labels to much
slower dynamic components. In the context of Section 3.4.3, the
18,340.2 samples (on average) for which ngrams AST, value tokens
and value PDG made different predictions, could be sent to such
components. For this purpose, we could also consider a second
pre-filtering layer to limit the number of inputs to be executed in a
sandboxed environment. Similar to the combination of Cujo [45],
JaSt [17] and Zozzle [12], we combined ngrams tokens, ngrams
AST and valueAST to classify the previous 18,340.2 samples. These
three detectors predicted the same labels for 16,469.4 of them, with
an accuracy over 99%, meaning that only the resulting 1,870.8 could
be sent to dynamic components. Naturally, it depends on the reli-
ability a user would like to have. Still, out of our 253,216 sample
set, JStap correctly classified 234,875.8 instances (92.76%) with an
accuracy of 99.73% in a first pre-filtering step (Section 3.4.3). Then,
it correctly labeled 16,469.4 additional samples (6.5% of the ini-
tial dataset) with an accuracy over 99% in a second pre-filtering
step, meaning that only 0.74% of the original dataset would be
outsourced to more costly components, while having a detection
accuracy significantly over 99% for the majority of the considered
samples.

5 RELATEDWORK

JStap is a modular malicious JavaScript detector, which goes be-
yond leveraging purely lexical and syntactic information for an
accurate classification. As a matter of fact, we also consider seman-
tic information, such as control and/or data flow. Also, we envision
to combine the predictions of several JStap modules and send only
samples with conflicting labels to more costly dynamic components.

5.1 Lexical Analysis

In the literature, several approaches have been proposed to detect
malicious JavaScript inputs by means of lexical analysis. Specif-
ically, Rieck et al. developed Cujo [45], which combines n-gram
features from JavaScript lexical units with dynamic code features,
before using an SVM classifier for an accurate malware detection.
Similarly, Laskov et al. implemented PJScan [34], which combines
n-grams built upon lexical features with a model of normality to
detect malicious PDF documents. Stock et al. also used tokens to
implement Kizzle [49], a malware signature compiler focussing on
exploit kits. Beyond JavaScript detection, Kar et al. [29] leveraged a
lexical analysis to detect SQL injections.

5.2 Syntactic Units Extracted From the AST

To analyze JavaScript inputs, other systems leverage the AST. In
particular, Curtsinger et al. implemented Zozzle [12], combining
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the extraction of features from the AST and their corresponding
node value, with a Bayesian classifier to detect malicious JavaScript.
For this purpose, Fass et al. [17] proposed JaSt, which leverages
n-gram features from an AST traversal. Beyond a purely static
analysis, Kapravelos et al. [28] presented Revolver, which uses the
AST to identify similarities between JavaScript inputs. If its dynamic
detector labels similar files differently, they are reported as evasive.

5.3 PDG for Security Analysis

JStap can also be compared to systems using ASTs or PDGs for
vulnerability detections. For example, Yamaguchi et al. extrapolated
known vulnerabilities using structural patterns from the AST to
find similar flaws in other projects [58]. They also leveraged the
combination of AST, CFG, and PDG to mine more source code [57].
This combination was also used by Backes et al. to identify different
types of web application vulnerabilities [5].

5.4 Dynamic Detectors

Lexical and syntactic analyses aside, additional approaches may
be effective to detect malicious JavaScript. With JSAND, Cova et
al. [11] combine anomaly detection with emulation to identify ma-
licious JavaScript by emulating its behavior and comparing it to be-
nign established profiles. Kolbitsch et al. implemented Rozzle [31],
which imitates multiple browser and environment configurations
to explore various execution paths to detect malicious JavaScript
dynamically. Similarly, J-Force [30] also forces the JavaScript exe-
cution engine to test all execution paths systematically. We envi-
sion that JStap could be combined with such dynamic detectors to
classify samples that have a conflicting label. Regarding filtering
systems, EvilSeed from Invernizzi et al. [24] searches the web for
pages likely to be malicious, by similarity detection and relation
to an initial set of malicious seeds. Canali et al. [9] also worked on
a faster collection of malicious web pages with Prophiler, which
discards benign pages based on HTML-derived lexical features, the
JavaScript AST, and an URL-based analysis.

6 CONCLUSION

Attackers tend to obfuscate malicious JavaScript to hinder the anal-
ysis and the creation of signatures. Still, these specific evasion tech-
niques tend to leave recurrent traces in the source code of malware,
thus contributing to their detection by systems leveraging features
from the source code (at a lexical or syntactic level). Also, and
due to their usage of static features, such systems cannot be foiled
by malware variants whose behavior are time- or environment-
dependent. In this paper, we proposed and built JStap, a modular
system that can work at a lexical level, but also on the AST, CFG
and PDG representations, to automatically, statically and accurately
detect malicious JavaScript. In particular, we leverage random for-
est classifiers, in combination with different semantic and syntactic
representations of the JavaScript samples, to classify them.

We evaluated our system on an extensive, up-to-date, and bal-
anced JavaScript dataset of both benign and malicious samples,
totaling over 270,000 unique scripts. In practice, our different mod-
ules are all, and independently, very accurate, the best one yielding
accurate predictions 99.44% of the time, with a low false-positive
rate of 0.33% and 0.8% false-negatives. For JStap to make more

accurate predictions, we combined the predictions of three modules
working at different levels, to leverage different aspects of the sam-
ples for classification. To this end, we envision that this combination
of modules could be used as a pre-filtering step, before sending
samples with conflicting labels to more costly follow-up analysis.
In this scenario, we could classify almost 93% of our dataset with
a detection accuracy of 99.73% and 6.5% of our dataset with an
accuracy still over 99%, meaning that less than 1% of our samples
would require additional scrutiny.
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