
Membership Privacy for Fully Dynamic Group Signatures
Michael Backes

CISPA Helmholtz Center for

Information Security

Saarland Informatics Campus

Lucjan Hanzlik

CISPA Helmholtz Center for

Information Security

Saarland Informatics Campus

Stanford University

Jonas Schneider-Bensch

CISPA Helmholtz Center for

Information Security

Saarland Informatics Campus

ABSTRACT
Group signatures present a compromise between the traditional

goals of digital signatures and the need for signer privacy, allowing

for the creation of unforgeable signatures in the name of a group

which reveal nothing about the actual signer’s identity beyond their

group membership. An important consideration that is absent in

prevalent models is that group membership itself may be sensi-

tive information, especially if group membership is dynamic, i.e.

membership status may change over time.

We address this issue by introducing formal notions of mem-

bership privacy for fully dynamic group signature schemes, which

can be easily integrated into the most expressive models of group

signature security to date. We then propose a generic construction

for a fully dynamic group signature scheme with membership pri-

vacy that is based on signatures with flexible public key (SFPK) and
signatures on equivalence classes (SPS-EQ).

Finally, we devise novel techniques for SFPK to construct a highly

efficient standard model scheme (i.e. without random oracles) that

provides shorter signatures than even the non-private state-of-

the-art from standard assumptions. This shows that, although the

strictly stronger security notions we introduce have been com-

pletely unexplored in the study of fully dynamic group signatures

so far, they do not come at an additional cost in practice.

KEYWORDS
fully dynamic group signatures; membership privacy; signatures

on equivalence classes

ACM Reference Format:
Michael Backes, Lucjan Hanzlik, and Jonas Schneider-Bensch. 2019. Mem-

bership Privacy for Fully Dynamic Group Signatures. In 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19), November
11–15, 2019, London, United Kingdom. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3319535.3354257

1 INTRODUCTION
The concept of group signatures was introduced by Chaum and

van Heyst in [24]. It allows a group manager to delegate signing

rights to multiple signers. The group members may create publicly

verifiable signatures on behalf of the entire group, such that the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3354257

signature does not reveal the identity of the actual signer beyond

their membership in the group. A designated opening authority has

the ability to verifiably reveal the actual signer of a particular sig-

nature, in case of abuse. Ideal applications of group signatures are,

for instance, business processes, where responsibility for certain

actions should be shared among the members of one level of man-

agement by creating a signature, but accountability is preserved

via the possibility of after-the-fact opening of a signature through

a supervisory board.

In applications, which enforce public accountability of group

members via the signature mechanism, it is essential that the public

knows who is part of the group. We consider the idea that in some

applications it is equally essential that group membership is not

disclosed and cannot be associated with the user’s global identity

(e.g. represented by a public key), i.e. that the scheme provides

an additional property called: membership privacy. In some cases

leakage of membership information may have negative effects on

the users. In particular, membership in controversial groups may

lead to persecution, e.g. loss of job because of personal interests,

beliefs or affiliation. Membership privacy is also advantageous if

group signatures are used for access control to sensitive resources.

Imagine, e.g., cities that provide free access to charging stations for

electric cars to their inhabitants, but not to non-inhabitants. Group

signatures offer a simple, privacy-preserving solution for access

control in this case, since the charging station only has to verify

that the user is an inhabitant of the city, represented by a group

managed by the city government. However, using a non-private

group signature scheme to implement this incurs a privacy leak,

since cities would have to publish lists of their inhabitants and it

could easily be tracked if and where people are moving between

cities. In more involved scenarios, in the context of delegatable

anonymous credentials [8, 23, 26], a membership private group

signature scheme could be used to enforce confidentiality between

members at different levels of delegation. What is more, since users

can enroll the same public key in several groups—not all of which

necessarily having the same privacy requirements—membership

privacy reduces risk of identity disclosure by avoiding the overhead

of managing a distinct pseudonymous identities for groups where

privacy is required.
1

1.1 Formal Models of Group Signatures
The first formal security model, called the static model, was given
by Bellare, Micciancio and Warinschi (BMW) in [10], who also

provided a construction from general assumptions.

1
Provided users employ techniques such as anonymity networks to prevent disclosure

on channels other than the group membership information.

https://doi.org/10.1145/3319535.3354257
https://doi.org/10.1145/3319535.3354257

Later models, notably the ones due to Bellare, Shi, and Zhang

(BSZ) [11], as well as Kiayias, and Yung (KY) [40, 41], which will

be subsumed under the term (partially) dynamic models, general-
ize the static model in terms of functionality as well as security

considerations:

• The dynamic models split the group manager—previously

entrusted with user key generation and opening—in separate

issuing and opening authorities, allowing stronger security

notions, which consider malicious behaviour on the part of

either.

• The static model requires all potential group members to be

known at setup time, the dynamic models allow dynamic

enrollment after group creation via a join/issue protocol,

where users jointly generate their signing keys in interaction

with the authorities.

In the dynamic models, it has to be ensured that the opening

is performed honestly. Otherwise a malicious opener or a mali-

cious member of the group could produce a dishonest opening that

identifies a wrong signer, either to claim a specific signatures for

themselves, or blame a user for a signature which they did not cre-

ate. Sakai et al. [47] thus define a notion called opening soundness,

which, if achieved, ensures that it is infeasible to create an opening

which points to any but the actual signer of a valid signature.

A further extension of the dynamic models was recently pro-

posed by Bootle et al. [17]. Their model, which we subsequently

call the fully dynamic model, additionally addresses revocation of

group membership, incorporates opening soundness and considers

security even under maliciously generated keys. To model the dy-

namic nature of addition and revocation of members, the scheme’s

lifetime is divided into a series of epochs such that changes in the

group membership require advancing the scheme to the next epoch.

Since the issuing authority decides who may join the group and

who has to leave, the group’s public information is updated by the

issuing authority for each new epoch. The authors show that their

model is general enough to capture previous notions, making it the

most expressive model of the security of group signatures to date.

A related property to our membership privacy was conceived

for the partially dynamic setting by Kiayias and Zhou in Hidden

Identity-Based Signatures [42] and efficiently instantiated by Chow

et al. [25]. In these works, group membership lists are avoided

altogether, enabling to hide the identity of group members even

from the opening authority. We stress that in the fully dynamic

model some form group membership list is necessary to implement

membership revocation, separating these approaches from ours.

RelatedWork. Generic constructions of group signatures from [10]

and [11] established the widely used sign-and-encrypt-and-prove
paradigm (SEP) design paradigm: A signature consists of an encryp-

tion under the opener’s public key of both a members’s signature on

the message and the member’s identity, as well as a non-interactive

zero-knowledge proof that the encrypted identity—typically a sig-

nature issued by the group manager—is valid that of the signer of

the message. Thus, relying on the unforgeability of this signature,

such a group signature scheme achieves non-frameability and trace-

ability. Abdalla and Warinschi proved in [1] that group signatures

are actually equivalent to IND-CPA secure encryption schemes.

In [12], Bichsel et al. identify the SEP design paradigm as a

source of inefficiency in group signatures. They propose a new

approach based on re-randomizable signature schemes and provide

an efficient construction without encryption secure in the random

oracle model. In our paper we follow that idea, however we do not

rely on the random oracle model to prove security of our scheme.

Many group signature schemes were designed for both the static

and dynamic case in the random oracle model which utilize the

RSA cryptosystem [3, 21, 39, 48], discrete logarithm setting [4, 32],

and bilinear setting [13, 22].

One of the first standard model constructions, i.e. without ran-

dom oracles (cf. [45]), was introduced by Ateniese et al. [2] in the

bilinear setting. The scheme is highly efficient, with signature con-

sisting of only 8 group elements. However, it does not provide

full-anonymity in the BMWmodel [10]. In particular, the adversary

is not allowed to see the private keys of honest users.

Boyen and Waters [19, 20] proposed standard model schemes

that use composite order bilinear groups, but in contrast to [2]

allow key exposure attacks, albeit without allowing the adversary

to see any openings of signatures. This restricted version of full-

anonymity is also called CPA-anonymity.
The introduction of the Groth-Sahai (GS) proof system [36] al-

lowed for the design of new and efficient group signature schemes in

the standard model. Groth [35] was the first to introduce a standard

model group signature with constant size public key and signatures,

which preserve the full-anonymity property under a q-type assump-

tion. The GS proof system was also used by Libert et al. [43, 44],

who designed standard model group signatures with revocation

capabilities.

At Crypto’15 Libert, Peters and Yung [45] introduced two effi-

cient group signature schemes that rely on simple assumptions,

the first scheme secure in the static BMW model [10], the second

construction less efficient, but secure in the dynamic security model

from [41].

Bootle et al. [18] propose a generic construction of group signa-

tures from accountable ring signatures. They instantiate it using a

scheme based on a sigma protocol in the random oracle model. Later,

Bootle et al. [17] show that this construction is a fully dynamic

group signature scheme. The idea is to include the description of

the ring as part of the epoch information. This way only users in

the ring are member of the group in the current epoch. Security

follows directly from the security of accountable ring signatures.

Derler and Slamanig proposed a generic construction for dy-

namic group signatures based on structure preserving signatures

on equivalence classes (SPS-EQ) [28]. SPS-EQ define a relation R

that induces a partition on the message space. By signing one repre-

sentative of a partition, the signer in fact signs the whole partition.

Then, without knowledge of the secret key we can transform the

signature to a different representative of the partition. Their group

signatures make use of signatures of knowledge (as part of the

group signature) and non-interactive zero-knowledge proof sys-

tems (in the issuing procedure and to ensure opening soundness).

The authors present an efficient instantiation in the random oracle

model. There currently exists no standard model instantiation.

Recently, Backes et al. [5] introduced a new cryptographic primi-

tive called signatures with flexible public key. The idea is similar to

SPS-EQ , but instead of partitioning the message space, the partition

is on the public key space. In other words, signers can randomize

their public key and secret key to a different representative of the

same equivalence class and create a signature that is valid under

the new public key. The authors also show how to combine their

primitive with SPS-EQ to construct static group signatures, which

are secure in the BMW model [10].

Group signatures can also be constructed from lattice-based as-

sumptions [46] or symmetric primitives [14]. The former is the

only scheme secure under lattice-based assumptions for which the

signature size does not depend on the number of group members.

Unfortunately, it is only secure in the partially dynamic model [11]

and in the random oracle model. The latter scheme is also instanti-

ated in the random oracle model.

1.2 Our Contribution in Detail
In this paper we revisit the fully-dynamic group signature frame-

work by Bootle et al. [17]. We observe that the epoch information

published with each modification of the group (joining or leaving

of a member) may leak the identities of members. For instance in

the scheme proposed in [18], where the epoch information con-

tains a list of active members, this information is required to verify

a signature. This is a major issue that limits the applications of

group signatures and introduces real-world privacy risks that are

not captured by the security model. In particular, let us consider the

use of group signatures as part of a corporate/governmental access

control system to resources. In such a scenario group signatures

protect access patterns between mutually rival departments. On

the other hand, leaking a list of active members of the group can be

used potential adversaries to perform targetted attacks, e.g. bribery

attempts, phishing attacks on private emails or denial of service

attacks. An application that was impossible using previous defini-

tions are private groups that can be used to create an electronic

authentication method for private club members. Members of the

club are unknown to the public and other members of the club but

the group signatures allows a way to prove membership if required.

Therefore, as our first contribution, we propose a new security

notion for fully dynamic group signatures, namely membership
privacy. Informally, when a group signature scheme offers mem-

bership privacy it means that an external observer cannot tell who

joined or left the group in a given epoch, even if a subset of the

group’s members is controlled by the observer.
2
The possibility of

membership privacy changes the meaning of a group signature to

the external public compared to the previous models. The public

may still verify that the signature was created by a party which

received signing capabilities from the issuing authority, but not

only is there no indication who the signer was specifically, but

even the group of potential signers is hidden. As a consequence,

to an external observer, the group signature scheme is a way for

the issuing authority to dynamically delegate signing capabilities

to anonymous signers, who can be held privately accountable by
the opening authority. In extending the model of Bootle et al. [17]

we give formal definitions of join and leave privacy, which taken

2
A similar property was recently put forward by Baldimtsi et al. [7] for the security

of cryptographic accumulators, which are one of the building block of revocation

systems for anonymous credentials. Although based on similar real-world concerns,

their definition is specific to cryptographic accumulators and cannot be easily applied

to group signatures.

together constitute membership privacy in the most expressive

model of group signature security to date.

Our second contribution is a generic construction of fully-dynamic

group signatures with membership privacy. Our scheme is built

upon novel techniques in the area of signatures with flexible pub-

lic keys (SFPK) and their fruitful combination with signatures on

equivalence classes (SPS-EQ). The former primitive allows signing

keys to be re-randomized within a system of equivalence classes,

while the second allows the same for messages and signatures. We

build upon the idea, introduced in [5], of using the combination of

SFPK and SPS-EQ schemes with compatible systems of equivalence

classes to construct highly efficient privacy-preserving signature

schemes. Each epoch the group manager uses a fresh instance of

SPS-EQ to certify the public signing keys of members, which live

in SFPK equivalence classes. However, instead of certifying the

original keys in the epoch information, the group manager ran-

domizes the public signing key and encrypts the randomization

using the signer’s public encryption key. Members can decrypt the

randomization and use the SPS-EQ signature from the epoch infor-

mation. Additionally, the signer creates a proof of knowledge of a

unique representative of the equivalence class and the randomness

used by the signer. This unique representative can be extracted

by the tracing authority and used to identify the signer because

the unique representative is also used as the signer’s global public

key. Membership privacy is ensured because the group manager

randomizes the published public key list.

Lastly we show how to optimize our generic construction and

efficiently instantiate it under standard assumptions without rely-

ing on the random oracle model. The resulting scheme has shorter

signatures than state-of-the-art schemes [36, 45] that are secure in

the same setting but only allow for partially-dynamic groups. To

achieve this efficiency we introduce a new SFPK scheme that has

an optimal public key size of 2 group elements in G1. The scheme is

secure under the bilinear decisional Diffie-Hellman assumption and

the decisional Diffie-Hellman assumption inG1. The technique that
makes our instantiation of group signatures possible is a notion

called canonical representative. Informally, we define a unique rep-

resentative for every equivalence class, which allows us to identify

the class without the use of any additional trapdoor. In the previous

definition by Backes et al. [5] the only way to identify a class was

by using a trapdoor created during key generation, which hinders

all applications where keys have to be secret but identifying classes

has to be done publicly. We summarize our results as follows:

(1) We extend the definitions of Bootle et al. [17] and show

that membership privacy can be seamlessly integrated in the

previous security models for fully dynamic group signatures.

(2) We devise a generic construction of fully dynamic group

signatures with membership privacy that can be instantiated

in the standard model.

(3) We devise a novel technique for the conjunction of SFPK
and SPS-EQ , allowing us to build a highly efficient standard

model group signature schemes along the lines of our generic

construction, but with shorter signature size than even state-

of-the-art non-private schemes with comparable assumption.

This underlines that membership privacy need not come at

additional cost.

2 PRELIMINARIES
Notation. We denote byy ←$ A(x) the execution of algorithmA

on input x and with output y. By r ←$ S we mean that r is chosen
uniformly at random over the set S . We will use 1G to denote the

identity element in group G, [n] to denote the set {1, . . . ,n}, and ®u

to denote a vector. Finally, by AO we denote an algorithm A that

has access to oracle O. When the number of oracles is large we will

also write A
{
O1, ...,
...,On

}
to denote access to oracles O1, . . . ,On .

We write Expϕ
A,Ψ(1

λ) ⇒ 1 for the event that the experiment Exp
returns 1, when instantiated with parameters ϕ, adversary A and

primitive Ψ, all of which possibly omitted. We define the adjusted
advantage of adversary A in this experiment as

Adv [x] Exp
ϕ

A,Ψ (1
λ) :=

���Pr [Expϕ
A,Ψ(1

λ) ⇒ 1

]
− x

���
If x = 0, we write instead AdvExp

ϕ

A,Ψ (1
λ) for its advantage.

2.1 Signatures on Equivalence Classes
We now recall the notion of signatures on equivalence classes

(SPS-EQ) introduced by Hanser and Slamanig [37]. The signing

algorithm SPS.Sign(skSPS, ®M) defines an equivalence relation R

that induces a partition on the message space. A signer can sim-

ply sign one representative of the class to create a signature for

the whole class. The signature can then be changed without the

knowledge of the secret key to a different representative using the

SPS.ChgRep(pkSPS,M,σSPS, r) algorithm. Existing instantiations

work in the bilinear group setting and allow to sign messages from

the space G∗ℓi , for ℓ > 1. The partition on the message space in

those schemes is induced by the relation Rexp : given two messages

®M, ®M ′ ∈ G∗ℓi , we say thatM andM ′ are from the same equivalence

class (denoted by [®M]R) if there exists a scalar r ∈ Z
∗
p , such that for

all i ∈ [ℓ] it holds Mr
i = M ′i . In terms of security, Hanser and Sla-

manig [37] define notions of unforgeability under chosen-message

attacks and class-hiding. Fuchsbauer and Gay [31] introduce a re-

laxed notion, unforgeability under chosen-open-message attacks,

which restricts the adversaries’ signing queries to messages of

which it knows all exponents.

Definition 2.1 (EUF-{CMA, CoMA}). For SPS-EQ scheme SPS =
(BGGen,KGen, Sign,ChgRep,Verify,VKey) on G∗ℓi we define the

following experiments, parameterized in the given signing oracle:

EUF−tℓ
A,SPS

BG← SPS.BGGen(λ);

(skSPS, pkSPS) ←
$ SPS.KGen(BG, ℓ);

(®M∗, σ ∗SPS) ←
$ AOt (skSPS, ·)(pkSPS)

return ∀M ∈ Q . [®M∗]R , [®M]R ∧

SPS.Verify(pkSPS, ®M
∗, σ ∗SPS) = 1

OCMA(skSPS, ®M ∈ G∗ℓi)

σSPS ← SPS.Sign(skSPS, ®M)

Q := Q ∪ ®M

return σSPS

OCoMA(skSPS, ®e ∈ Z∗ℓp)
®M := (дe1, . . . , дeℓ)

σSPS ← SPS.Sign(skSPS, ®M)

Q := Q ∪ ®M

return σSPS

A SPS-EQ is existentially unforgeable under chosen-message

attacks / chosen-open-message attacks, if for all PPT algorithmsA,

their advantageAdvEUF−t
ℓ

A,SPS (1
λ) is negligiblewhere t ∈ {CMA,CoMA}.

Fuchsbauer and Gay also propose a strengthened class hiding no-

tion, called perfect adaptation of signatures. Informally, this notion

states that signatures received by changing the representative of

the class and new signatures for the representative are identically

distributed.

Definition 2.2 (Perfect Adaption of Signatures). A SPS-EQ scheme

on G∗ℓi perfectly adapts signatures if for all (skSPS, pkSPS, ®M,σ , r),

where ®M ∈ G∗ℓ
1
, r ∈ Z∗p ,

SPS.VKey(skSPS, pkSPS) = 1, and SPS.Verify(pkSPS, ®M,σ) = 1,

the two distributions

(®Mr , SPS.Sign(skSPS, ®M
r)) and SPS.ChgRep(pkSPS, ®M,σ , r)

are identical.

2.2 Signatures with Flexible Public Key
In our group signature construction we use a primitive called signa-

tures with flexible public keys (SFPK), that was recently introduced
by Backes et al. [5] and which we extend by the notion of canonical
representatives (or canonical form).

In SFPK the public key space is partitioned into equivalence

classes induced by a relation R. A signer can efficiently gener-

ate (sk, pk) ←$ SFPK.KGen(1λ) and change her key pair to a dif-

ferent representative of the same class via two algorithms pk′ ←$

SFPK.ChgPK(pk, r) for the public key and sk′ ←$ SFPK.ChgSK(sk, r)
for the secret key, which take the same randomness r ←$ coin.
The randomized secret key can be used to sign a message Sig ←$

SFPK.Sign(sk′,m), such that the signature can be verified by run-

ning SFPK.Verify(pk′,m, Sig). Class-hiding ensures that, without

a trapdoor, it is hard to distinguish if two public keys are related,

i.e. in the same equivalence class. If a key pair has been gener-

ated along a trapdoor δ using (sk, pk,δ) ←$ SFPK.TKGen(1λ), then
given the trapdoor one can run 0/1 ← SFPK.ChkRep(δ , pk′) to
check if pk′ is in relation to pk. The original definition by Backes

et al. uses a strong corruption model, where the adversary is given

the random coins used to generate the challenged keys. We will

show that in our construction a slightly weaker model, where the

adversary gets only the secret keys, is sufficient. We will define

this scheme in the multi-user setting, i.e. with a setup algorithm

SFPK.CRSGen(1λ) that outputs a common reference string ρ. We

only consider a scenario in which this setup has to be executed

by a trusted party in order for the scheme to be unforgeable. Note

that this means that the secrets used to generate the CRS can be

used to forge signatures. This kind of trapdoor δρ was not specified

in [5], but we will use it in the security proof of our group signature

scheme. In other words, this means there is an alternative signing

algorithm SFPK.Sign(δρ , pk,m), which outputs valid signatures for

the relation class [pk]R , without knowledge of the corresponding
secret key sk.

Definition 2.3 (Signature with Flexible Public Keys). A signature

scheme with flexible public keys SFPK is a set of PPT algorithms

such that:

SFPK.CRSGen(1λ): on input a security parameter 1
λ
, outputs

a trapdoor δρ and a common reference string ρ, which is an

implicit input for all the algorithms.

SFPK.KGen(1λ ,ω): on input a security parameter 1
λ
and ran-

dom coins ω ∈ coin, outputs a pair (sk, pk) of secret and
public keys.

SFPK.TKGen(1λ ,ω): on input a security parameter 1
λ
and ran-

dom coins ω ∈ coin, outputs a pair (sk, pk) of secret and
public keys, and a trapdoor δ .

SFPK.Sign(sk,m): on input a messagem ∈ {0, 1}∗ and a sign-

ing key sk, outputs a signature Sig.
SFPK.ChkRep(δ , pk′): on input a trapdoor δ for some equiva-

lence class [pk]R and public key pk′, outputs 1 if pk′ ∈ [pk]R
and 0 otherwise.

SFPK.ChgPK(pk, r): on input a representative pk of equiva-

lence class [pk]R and random coins r , outputs a different

representative pk′, where pk′ ∈ [pk]R .
SFPK.ChgSK(sk, r): on input a secret key sk and random coins

r , outputs an updated secret key sk′.
SFPK.Verify(pk,m, Sig): on input a messagem, signature Sig

and public verification key pk, outputs 1 if the signature is
valid and 0 otherwise.

To simplify notationwewrite (sk′, pk′) ← SFPK.ChgKeys(sk, pk,
r) as shorthand for the joint randomization of secret and public

keys using the same r .

Definition 2.4 (Correctness). We say that a SFPK scheme is cor-
rect if for all 1λ ∈ N, all random coins ω, r ∈ coin the following

conditions hold:

(1) The key pairs output by SFPK.KGen and SFPK.TKGen are

identically distributed.

(2) For all key pairs (sk, pk) ←$ SFPK.KGen(1λ ,ω) and all mes-

sages m we have SFPK.Verify(pk,m, SFPK.Sign(sk,m)) =
1 and SFPK.Verify(pk′,m, SFPK.Sign(sk′,m)) = 1, where

(sk′, pk′) ← SFPK.ChgKeys(sk, pk, r).
(3) For all (sk, pk,δ) ←$ SFPK.TKGen(1λ ,ω) and all pk′ we have

SFPK.ChkRep(δ , pk′) = 1 if and only if pk′ ∈ [pk]R .

Definition 2.5 (Class-hiding with Key Corruption). For scheme

SFPK with relation R and adversary A we define the following

experiment:

C-HR
A,SFPK(λ)

ω0, ω1 ←
$ coin

(ski , pki) ←
$ SFPK.KGen(1λ, ωi) for i ∈ {0, 1}

b ←$ {0, 1}; r ←$ coin

(sk′, pk′) ← SFPK.ChgKeys(skb, pkb, r)

ˆb ←$ ASFPK.Sign(sk′, ·)((sk0, pk0), (sk1, pk1), pk
′)

return b = ˆb

A SFPK is class-hiding with key corruption if for all PPT adver-

saries A, their adjusted advantage Adv
[
1

2

] C-H
A,SFPK(1

λ) is negligi-

ble.

Definition 2.6 (Strong Existential Unforgeability under Flexible
Public Key). For scheme SFPK with relation R and adversary A

we define the following experiment:

sEUF − CMAR
A,SFPK(λ)

ω ←$ coin

(sk, pk, δ) ←$ SFPK.TKGen(1λ, ω);Q := ∅

(pk′,m∗, Sig∗) ←$ AO1(sk, ·),O2(sk, ·, ·)(pk, δ)

return (m∗, Sig∗) < Q ∧

SFPK.ChkRep(δ, pk′) = 1 ∧

SFPK.Verify(pk′,m∗, Sig∗) = 1

O1(sk,m)

Sig←$ SFPK.Sign(sk,m)

Q := Q ∪ {(m, Sig) }

return Sig

O2(sk,m, r)

sk′ ←$ SFPK.ChgSK(sk, r)

Sig←$ SFPK.Sign(sk′,m)

Q := Q ∪ {(m, Sig) }

return Sig

A SFPK is existentially unforgeable with flexible public key under
chosen message attacks if for all PPT adversariesA, their advantage

AdvsEUF−CMAR
A,SFPK (1λ) is negligible.

Canonical Representatives. It might be the case that every public

key equivalence class has a unique representative which can act as

a description of the class. We will call such objects the canonical
representatives of the given classes and further assume that if a

scheme has canonical representatives, there is an efficient predicate

IsCanonical which on input a public key will return 1 if and only if

the public key is canonical. We will use this type of public key and

representative later in the optimized variant of our scheme.

Definition 2.7 (SPS-EQ/SFPKCompatibility). An SPS-EQ scheme

and an SFPK scheme are compatible if the message space of the

former is the same as the key space of the latter and they share the

same equivalence relation.

2.3 Additional Preliminaries
In the following sections, we make use of a number of well-known

cryptographic primitives, including programmable hash functions,

digital signature schemes, key-private public key encryption, as

well as efficient non-interactive proof systems. The instantiations

of our constructions are in the bilinear setting, i.e. in the presence

of a bilinear group generation algorithm BG and we prove secu-

rity under the standard decisional Diffie-Hellman and and bilinear

decisional Diffie-Hellman assumptions, relative to BG respectively.

Definition 2.8 (Bilinear map). Let us consider cyclic groups G1,
G2, GT of prime order p. Let д1,д2 be generators of respectively G1
and G2. We call e : G1 × G2 → GT a bilinear map (pairing) if it is

efficiently computable and the following holds:

Bilinearity: ∀(S,T) ∈ G1 × G2, ∀a,b ∈ Zp , we have
e(Sa ,Tb) = e(S,T)a ·b ,

Non-degeneracy: e(д1,д2) , 1 is a generator of group GT ,

Depending on the choice of groups we say that map e is of type
1 if G1 = G2, of type 2 if G1 , G2 and there exists an efficiently

computable isomorphism ψ : G2 → G1, of type 3 if no such iso-

morphismψ is known.

Definition 2.9 (Bilinear-group generator). A bilinear-group gen-

erator is a deterministic polynomial-time algorithm BGGen that

on input a security parameter 1
λ
returns a bilinear group BG =

(p,G1,G2,GT , e,д1,д2) such that G1 = ⟨д1⟩, G2 = ⟨д2⟩ and GT are

groups of order p and e : G1 × G2 → GT is a bilinear map.

2.4 Assumptions
Definition 2.10 (Decisional Diffie-Hellman Assumption in Gi).

Given BG and elements (дai ,д
b
i ,д

z
i)∈ G

3

i it is hard for all PPT ad-

versariesA to decide whether z = a ·b mod p or z ←$ Z∗p . We will

use Advddh
A
(λ) to denote the advantage of the adversary in solving

this problem.

If the instance were given in both groups, i.e. (дa
1
,дb

1
,дz

1
,дa

2
,

дb
2
,дz

2
) then the pairing would allow to efficiently check e(дa

1
,дb

2
) =

e(дz
1
,д2). An analogous problem, which is assumed difficult even

in the presence of a pairing is given by adding values дc
1
,дc

2
to the

challenge and asking whether z = a ·b ·c mod p. This was noted by
Boneh and Franklin [15] who defined a similar problem called Weil

decisional Diffie-Hellman problem in the type 1 setting. In their

later work [16] it was renamed to bilinear decisional Diffie-Hellman

assumption. We restate it for type 3 pairings as follows:

Definition 2.11 (Bilinear Decisional Diffie-Hellman Assumption).
Given BG and elements (дa

1
,дb

1
,дc

1
,дz

1
,дa

2
,дb

2
,дc

2
,дz

2
) ∈ G4

1
× G4

2
it

is hard for all PPT adversaries A to decide whether z = a · b · c
mod p or z ←$ Z∗p . We will use Advbddh

A
(λ) to denote the advantage

of the adversary in solving this problem.

Definition 2.12 (Collision-Resistance). We call a hash function H :

{0, 1}∗ → Z∗p collision-resistant if it is hard for all PPT adversaries

A to output two distinct messagem1,m2 for whichH(m1) = H(m2)

We will use Advcoll
A
(λ) to denote the advantage of the adversary in

finding a collision for this hash function.

2.5 Programmable Hash Functions
We now recall the definition of programmable hash functions in-

troduced by Hofheinz and Kiltz [38]. We first define a group hash
function for groupG and output length ℓ = ℓ(λ) as consisting of two
polynomial time algorithms PHF.Gen and PHF.Eval. For a security
parameter λ, the generation algorithm KPHF ←

$ PHF.Gen(1λ) out-
puts a key. This key can be used to deterministically evaluate the

hash function via y ∈ G← PHF.Eval(KPHF,X), where X ∈ {0, 1}
ℓ
.

Definition 2.13. A group hash function (PHF.Gen,PHF.Eval) is
an (m,n,γ ,δ)-programmable hash function if there are polynomial

time algorithms PHF.TrapGen and PHF.TrapEval such that:

• For any д,h ∈ G the (K ′PHF, td) ←
$ PHF.TrapGen(1λ ,д,h)

outputs a key K ′ and trapdoor td . Then, for every X ∈

{0, 1}ℓ we have (aX ,bX) ←
$ PHF.TrapEval(td,X), such that

PHF.Eval(K ′PHF,X) = д
aX hbX .

• For all д,h ∈ G and for (K ′PHF, td) ←
$ PHF.TrapGen(1λ ,д,h)

and KPHF ←
$ PHF.Gen(1λ), the keys KPHF and K ′PHF are

statistically γ -close.
• For all д,h ∈ G and all possible keys K ′PHF from the range

of PHF.TrapGen(1λ ,д,h), for all X1, . . . ,Xm ,Z1, . . . ,Zn ∈

{0, 1}ℓ such that Xi , Z j for any i, j and for the correspond-

ing (aXi ,bXi) ←
$ PHF.TrapEval(td,Xi) and (aZi ,bZi) ←

$

PHF.TrapEval(td,Zi) we have

Pr[aX1
= · · · = aXm = 0 ∧ aZ1

= · · · = aZn , 0] ≥ δ ,

where the probability is over the trapdoor td that was pro-

duced along with key K ′PHF.

Hofheinz and Kiltz show that the function introduced by Wa-

ters [49] is a programmable hash function. For a key KPHF =

(h0, . . . ,hℓ) ∈ G
ℓ+1

and message X = (x1, . . . ,xℓ) ∈ {0, 1}
ℓ
the

function is computed as h0 ·
∏ℓ

i=1 h
xi
i . In particular, they prove that

for any fixed q = q(λ) it is a (1,q, 0, 1/8 · (ℓ + 1) · q)-programmable

hash function.

2.6 Non-Interactive Proof Systems
LetR be an efficiently computable binary relation, where for (x ,w) ∈
R we call x a statement and w a witness. Moreover, we will de-

note by LR the language consisting of statements in R, i.e. LR =
{x | ∃w : (x ,w) ∈ R}.

Definition 2.14 (Non-Interactive Proof System). A non-interactive

proof system Π consists of the following three algorithms:

Setup(1λ): on input security parameter 1
λ
, outputs a common

reference string ρ.
Prove(ρ,x ,w): on input common reference string ρ, statement

x and witnessw , outputs a proof π .
Verify(ρ,x ,π): on input common reference string ρ, statement

x and proof π , outputs either accept(1) or reject(0).

Some proof systems do not need a common reference string. In

such a case, we omit the first argument to Π.Prove and Π.Verify.

Definition 2.15 (Soundness). A proof system Π is called sound,
if for all PPT algorithms A the following probability, denoted by

AdvsoundΠ,A (λ), is negligible in the security parameter 1
λ
:

Pr[ρ ←$ Setup(1λ); (x ,π) ←$ A(ρ) : Verify(ρ,x ,π) = accept∧x < LR].

where the probability is taken over the randomness used byΠ.Setup
and the adversaryA. We say that the proof system is perfectly sound
if AdvsoundΠ,A (λ) = 0.

Definition 2.16 (Witness Indistinguishability (WI)). A proof sys-

tem Π is witness indistinguishable, if for all PPT algorithms A we

have that the advantage AdvwiΠ,A (λ) computed as:

| Pr[
ρ←$ Setup(1λ);(x,w0,w1)←

$ A(1λ,ρ);
π←$ Prove(ρ,x,w0)

: A(π) = 1]−

Pr[
ρ←$ Setup(1λ);(x,w0,w1)←

$ A(1λ,ρ);
π←$ Prove(ρ,x,w1)

: A(π) = 1]|,

where (x ,w0), (x ,w1) ∈ R, is at most negligible in λ. We say that the

proof system if perfectly witness indistinguishable if AdvwiΠ,A (λ) =
0.

Definition 2.17 (Zero-Knowledge). A proof systemΠ is called zero-

knowledge, if there exists a PPT simulator S = (SimGen, Sim) such
that for all PPT algorithmsA the following probability, denoted by

AdvzkΠ,A (λ), is negligible in the security parameter 1
λ
:

|Pr[ρ ←$ Setup(1λ) : AProve(ρ, ·, ·)(ρ) = 1]−

Pr[(ρ,τ) ←$ SimGen(1λ) : AS (ρ,τ , ·, ·)(ρ) = 1]|,

where τ is a trapdoor information, oracle call S(ρ,τ ,x ,w) returns
the output of Sim(ρ,τ , x) for (x ,w) ∈ R and both oracles output ⊥

if (x ,w) < R.

Definition 2.18 (Simulation Sound Extractability). A proof system

Π is called simulation sound, if there exists a knowledge extractor

E = (ExtGen, Extract) and simulator S = Sim, such that for all

algorithms A

AdvsseΠ,A (λ) =

Pr

[
(ρ,τ ,ψ)←$ ExtGen(1λ);
(x,π)←$ ASim(ρ,τ , ·)(ρ,ψ);
w←$ Extract(ρ,ψ ,x,π)

:
(x,π)<Q ∧ (x,w)<R
∧ Verify(ρ,x,π)=1

]
is negligible in λ, where Q is a list of simulation queries and re-

sponses (xi ,πi) of Sim and (ρ,τ) is identical to the output of SimGen
from the definition of zero-knowledge.

2.7 Digital Signatures and Public Key
Encryption

In our group signature construction we also make use of stan-

dard digital signatures and public key encryption schemes. We use

(DS.KGen,DS.Sign,DS.Verify) to denote the algorithms that make

up the scheme DS and Adveuf−cma
A,DS (λ) to denote the adversaries’

advantage against existential unforgeability under chosen message

attacks of the signature scheme.

A public key encryption scheme PKE consists of three algorithms

(PKE.KeyGen,PKE.Enc,PKE.Dec). We use the standard notion of

indistinguishability of ciphertexts under chosen message attacks

(IND − CPA) as well as the notion of key privacy under chosen

message attacks (IK − CPA), which informally requires that it is

infeasible for an attacker to determine which key was used to create

a given ciphertext even if with access to both encryption keys. A full

formal definition of this property can be found in [9]. An example

of a scheme which achieves key privacy is the El Gamal encryption

scheme [33]. Finally, we will use⇌ to denote the relation between

the secret key and the corresponding public key. Note that for many

schemes, like e.g. El Gamal, this relation can be easily checked and

proven.

3 FULLY DYNAMIC GROUP SIGNATURES
We recall the framework of definitions for fully dynamic group

signatures established in [17].

Definition 3.1. A fully dynamic group signature (FDGS) scheme

GS is defined by the following set of efficient algorithms

GS.Setup(1λ): On input a security parameter, the setup algo-

rithm outputs public parameters param and initializes the

user registration table ®reд.
⟨GS.KGenM (param),GS.KGenT (param)⟩: Given the public pa-

rameters param the group managerM and tracing manager

T jointly execute a key generation protocol.

• The private output of the group manager is a secret man-

ager keymsk, its public output a manager public keympk
and the initial group information info.
• The private output of the tracing manager is a secret trac-

ing key tsk and a tracing manager public key tpk.
The public outputs together are referred to as the group

public key gpk := (param,mpk, tpk).
GS.KGenU (param): On input the public parameters, the user

key generation algorithm outputs a pair of user secret and

user public key

(
®usk[uid], ®upk[uid]

)
, bound to a fresh user

id uid.

⟨GS.Join(infoτ , gpk, uid, ®usk[uid]),
GS.Issue(infoτ ,msk, uid, ®upk[uid])⟩: A user who has

executed GS.KGenU , obtaining a user id uid and key pair(
®usk[uid], ®upk[uid]

)
may, given the group public key and

information regarding the current epoch infoτ engage the

group manager in a join-issue procedure to become a mem-

ber of the group. If successful, the output of the GS.Issue
algorithm is user registration information which is stored

in ®reд[uid]; the user group signing key
®дsk[uid] is updated

with the output of GS.Join.
GS.RevokeMember(gpk,msk, infoτcurrent ,S, ®reд): The group

manager may advance the current epoch τcurrent to the

next epoch τnew , at the same time revoking membership of

a subset S of the set of active group members. If any uid ∈ S
is not assigned to an active member of the group, i.e. was not

assigned in a run of the join-issue procedure, the algorithm

aborts. The output is the new group information infoτnew
and a possibly updated registration table ®reд. If the group
information does not change, the algorithm outputs ⊥.

GS.Sig(gpk, ®дsk[uid], infoτ ,m): Given their group signing key,

current group information and the group public key, a user

may sign a message, producing a signature Σ. If uid is not

assigned to an active group member in the current epoch

τcurrent , the algorithm outputs ⊥ instead.

GS.Vf(gpk, infoτ ,m, Σ): If the given signature Σ is valid for

messagem in epoch τ output accept, otherwise reject.
GS.Trace(gpk, tsk, infoτ , ®reд,m, Σ): Given a signature, message,

group information for epoch τ and a registration table, the

tracing manager may output a pair (uid,π) where uid > 0

identifies the user-ID of the group member who produced

the signature and π is a proof of this fact. If tracing is not

successful the algorithm will output a pair (0,π) indicating
the failure via the special user-ID 0, which is not assigned to

any regular user.

GS.Judge(gpk, uid, infoτ ,πTrace, ®upk[uid],m, Σ): Given a sig-

nature for epoch τ , the corresponding group information

and a tracing output (uid,π), anyone in possession of the

group public key can deterministically judge the validity of π

w.r.t. to the statement, that Σ was created using
®дsk[uid], in

which case the algorithm outputs accept, otherwise reject.

3.1 Security Definitions
We recall from [17] the correctness and security definitions for

FDGS (cf. Figure 1).

Correctness. Amalicious usermay not undermine the correctness

of the scheme. This includes unforgeability of the scheme.

Definition 3.2. A FDGS scheme GS is correct if for all PPT adver-

saries A, their advantage AdvCorrectness
A,GS (1λ) is negligible.

Anonymity. Given a signature, it is infeasible, without a secret

trapdoor information, to distinguish which signer created it.

Definition 3.3. A FDGS scheme GS achieves anonymity if for all

PPT adversariesA, their adjusted advantageAdv
[
1

2

] Anonymityb

A,GS (1λ)

over the additional uniform choice of b ∈ {0, 1} is negligible.

Correctness
A,GS(1

λ)
param←$ GS.Setup(1λ);H := ∅

(msk, mpk, info, tsk, tpk) ←$ ⟨GS.KGenM (param), GS.KGenT (param)⟩

gpk := (param, mpk, tpk)

(uid,m, τ) ←$ AAddU,ReadReg,Revoke(gpk, info)

if uid < H or
®дsk [uid] = ⊥ or infoτ = ⊥

or GS.IsActive(infoτ , ®r eд, uid) = 0

then return 0

Σ←$ GS.Sig(gpk, ®дsk[uid], infoτ ,m)

if GS.Vf(gpk, infoτ ,m, Σ) = reject

then return 1

(uid∗, π) ←$ GS.Trace(gpk, tsk, infoτ , ®r eд,m, Σ)

if uid , uid∗ then return 1

if GS.Judge(gpk, uid, infoτ , π , ®upk [uid],m, Σ) = 0

then return 0 else return 1

Traceability
A,GS(1

λ)
param←$ GS.Setup(1λ);H, C, B, Q := ∅

(st, tsk, tpk) ←$ A⟨GS.KGenM(param), ·⟩ (init : param)

if ⊥ ← GS.KGenM (param) or A’s output invalid

then return 0

(msk, mpk, info) ← GS.KGenM (param); gpk := (param, mpk, tpk)

(m, Σ, τ) ←$ A
{AddU, CrptU,
SndToM, RevealU,
Sign, ModifyReg,
Revoke

}
(play :, st, gpk, info)

if GS.Vf(gpk, infoτ ,m, Σ) = reject

then return 0

(uid, π) ←$ GS.Trace(gpk, tsk, infoτ , ®r eд,m, Σ)

if GS.IsActive(infoτ , ®r eд, uid) = 0 or uid = 0

or GS.Judge(gpk, uid, infoτ , π , ®upk [uid],m, Σ) = 0

then return 1 else return 0

Non − Frame
A,GS(1

λ)
param←$ GS.Setup(1λ);H, C, B, Q := ∅

(st, info, msk, mpk, tsk, tpk) ←$ A(init : param)

if msk = ⊥ or mpk = ⊥

then return 0

gpk := (param, mpk, tpk)

(m, Σ, uid, π , infoτ) ←$ A
{CrptU, Sign,
SndToU,RevealU,
ModifyReg

}
(play : st, gpk)

if GS.Vf(gpk, infoτ ,m, Σ) = 0

or GS.Judge(gpk, uid, infoτ , π , ®upk [uid],m, Σ) = 0

then return 0

if uid ∈ H \ B and (uid,m, Σ, τ) < Q

then return 1 else return 0

Anonymityb
A,GS(1

λ)
param←$ GS.Setup(1λ);H, C, B, Q, Q∗ := ∅

(st, msk, mpk, info) ←$ A⟨·,GS.KGenT (param)⟩ (init : param)

if ⊥ ← GS.KGenT (param) or A’s output invalid

then return 0

(tsk, tpk) ← GS.KGenT (param); gpk := (param, mpk, tpk)

d ←$ A
{AddU, CrptU,
SndToU, RevealU,
Trace, ModifyReg,
Challb

}
(play : st, gpk)

return d == b

Figure 1: Security experiments for fully dynamic group signatures, excluding Tracing Soundness.

Traceability. No coalition of group members and the opening

authority can produce a signature which opens to an invalid identity

or an identity that was not active in the signing epoch.

Definition 3.4. A FDGS scheme GS achieves traceability if for all

PPT adversariesA, their advantage AdvTraceability
A,GS (1λ) is negligible.

Non-Frameability. No coalition of malicious group members and

the issuing and opening authorities can produce a signature which

opens to an honest user identity.

Definition 3.5. A FDGS scheme GS achieves non-frameability
if for all PPT adversaries A, their advantage AdvNon−Frame

A,GS (1λ) is

negligible.

Functional Tracing Soundness. A further property defined in [17]

is tracing or opening soundness: Even if all parties in the group

collude, they cannot produce a valid signature that traces to two

different members.

A subtle point arises in the definition of tracing soundness,

namely how is the uniqueness of group members established? If the

adversary controls several users, they may share the same public

key, hence their signatures cannot be distinguished by an open-

ing which reveals the public key of the signer. Because of this, the

opening instead leads to a specific user identity, i.e. an entry in the

public registration table. This has two-fold consequences: 1) The

user registration table has to be public, otherwise the opening is

meaningless. 2) To verify an opening or a signature, it has to be

verified as well that the group at the time of the creation of the

signature was well-formed, i.e. every member occupies exactly one

slot in the registration table.

We propose a relaxation of this notion, which allows us to avoid

these implications. Our notion, functional tracing soundness distin-
guishes members by their public keys, i.e. it should not be possible,

even in a fully corrupted group to create a valid signature and two

openings for it which indicate conflicting public keys. The modifi-

cations to the tracing soundness experiment which implement this

change are highlighted .

We observe that the FDGS scheme based on accountable ring

signatures presented in [17] adheres to this definition already, since

its proof of tracing soundness relies on the tracing soundness of the

underlying accountable ring signature scheme. The property for

accountable ring signature schemes requires that the verification

keys provided in the two openings be different.

Note that the construction of FDGS presented later in this work

can be made to achieve the original version of tracing soundness,

albeit at the cost of the above mentioned group integrity checks

and any kind of group membership privacy.

Definition 3.6 (Functional Tracing Soundness). For a FDGS scheme

GS we define the following experiment:

Functional − Trace − Sound
A,GS(1

λ)
param←$ GS.Setup(1λ); C := ∅

(st, info, msk, mpk, tsk, tpk) ←$ A(init : param)

if msk = ⊥ or mpk = ⊥

then return 0

gpk := (param, mpk, tpk)

(m, Σ, {uidi , πi }2i=1 , infoτ) ←
$ ACrptU,ModifyReg(play : st, gpk)

if GS.Vf(gpk, infoτ ,m, Σ) = 0

then return 0

if ®upk [uid1] = ®upk [uid2] or ∃i ∈ {1, 2 } s.t. ®upk [uidi] = ⊥

or GS.Judge(gpk, uidi , infoτ , πi , ®upk [uidi],m, Σ) = 0

then return 0 else return 1

A FDGS scheme GS achieves functional tracing soundness if for all
PPT adversaries A, their advantage

AdvFunctional−Trace−Sound
A,GS (1λ)

is negligible.

3.1.1 Experiment State and Oracle Intuition. The experiments may

be stateful and keep lists of the attackers’ actions to subsequently

determine whether the attacker was successful or not. These lists

are the following:

H : Honest users added via AddU.
C: Users with maliciously generated keys, added via CrptU.
B: Users whose secret keys were revealed to the adversary via

RevealU.
Q: Signature Queries, populated by Sign.
Q∗: Signatures created by the challenge users, populated by

Chall.

The formal description of the given oracles can be found in

the full version of this paper. Informally, they serve the following

functions:

AddU(uid): If uid is new to the system, run GS.KGenU (1
λ) to

honestly generate the user’s keys (®usk[uid], ®upk[uid]) and
add uid toH . Afterwards the honest key generation is run

using GS.Join and GS.Issue. This determines the user group

secret key
®дsk[uid] and the contents of the registration table

®reд[uid]. Return new epoch information infoτ and the user’s

public key
®upk[uid].

CrptU(uid, pk): If uid is new to the system, set
®upk[uid] to

the supplied key pk and add uid to C. Initiates a join/issue

session for uid.
SndToM(uid,Min): Advance a currently running join/issue ses-

sion for corrupted user uid by running the group manager

side of the session with adversary provided input Min. If

the session concludes successfully, the challenger updates

®reд[uid] with the final group manager session state. Return

the group manager responseMout.

SndToU(uid,Min): Advance or initiate a join/issue session for

user uid by running the user side of the session with the

adversary provided inputMin. If the session concludes suc-

cessfully, the challenger updates
®дsk[uid] := stuidGS.Join ac-

cordingly with the final user session state. Return the user

responseMout.

ReadReg(uid): Return registration table entry ®reд[uid].
ModifyReg(uid, val): Set entry ®reд[uid] := val.
RevealU(uid): Return the user secret keys (®usk[uid], ®дsk[uid])

add uid to the set of bad users B.

Sign(uid,m,τ): If τ is a valid epoch, where uid is active, cre-

ate a signature Σ←$ GS.Sig(gpk, ®дsk[uid], infoτ ,m) and add
(uid,m, Σ,τ) to the set of queried signatures Q. Return Σ.

Trace(m, Σ, infoτ): If Σ is valid in epoch τ and is not part of the

challenge set Q∗, return GS.Trace(gpk, tsk, infoτ , ®reд,m, Σ).
Revoke(S): ReturnGS.RevokeMember(gpk,msk, infoτ ,S, ®reд).
Challb (infoτ , uid0, uid1,m): If uid0 and uid1 are both active

and honest in τ , run GS.Sig(gpk, ®дsk[uidb], infoτ ,m) to ob-
tain signature Σ, adding (m, Σ,τ) to the challenge signature

set Q∗ and returning the signature.

In addition, the challenger keeps track of the active members of

the group. We assume it has access to an algorithm GS.IsActive as
follows.

GS.IsActive(infoτ , ®reд, uid) : Given a group information for epoch

τ , a registration table ®reд and a user-ID uid, outputs 1 if uid
is a non-revoked member of the group in that epoch, 0 oth-

erwise.

3.2 Leave-Join Privacy for FDGS
Formal models of dynamic group signatures thus far implicitly

assumed that the public is aware who is a member of the group.

Usually, a registration table is published, such that the entries are

bound to public keys of the members. This is in line with one of the

main application of group signatures: authenticating messages with

the authority of a known group, certifying that an indeterminate

someone within the group has seen the signed message and taken

responsibility on behalf of the group.

In their seminal work Chaum and van Heyst [24], however, did

not specify this as an essential requirement. In fact, they point

out that group signatures can be used for access control, where

knowingmembers of the group is an obvious privacy leak that could

for instance lead to targeted DoS attacks on the group. Therefore

it seems natural that in some applications we want to hide the

identities of active group members.

To address this issue we discuss for the first time membership
privacy for fully dynamic group signatures. Informally, we will

say that a group signature scheme has membership privacy if it

protects the identity of users that join or leave the system. This

means that we consider a scenario in which some kind of public

identifier about users is known independently of the scheme (e.g.

public key) but it is unknown to a third party who is part of the

group. Moreover, we assume that some users can be corrupted or

can collude to infer information about the membership status of

other users.

To formally define this notion, we propose a pair of security ex-

periments which are expressed in the fully dynamic framework put

forth by [17]. However, one can easily specify similar experiments

Join − PrivacyA,GS(1
λ)

param←$ GS.Setup(1λ)

(msk, mpk, info, tsk, tpk) ←$ ⟨GS.KGenM (param), GS.KGenT (param)⟩

gpk := (param, mpk, tpk)

(st, uid0, uid1) ←
$ A0

{
AddU,RevealU,CrptU,SndToM,

Sign,Trace,Revoke

}
(gpk, info)

if {uid0, uid1 } ∩ C , ∅ then return 0

b ←$ {0, 1}; (info∗, ®upk [uidb]) ←
$ AddU(uidb);

(®usk [uid
1−b], ®upk [uid1−b]) ←

$ GS.KGenU (1
λ)

τ ∗ := τcurrent ; H∗ := {uid0, uid1 }

d ←$ A1

{
AddU,RevealU,CrptU,SndToM,

Sign,Trace,Revoke

}
(st, info∗, ®upk [uid0], ®upk [uid1])

return b = d

Leave − PrivacyA,GS(1
λ)

param←$ GS.Setup(1λ)

(msk, mpk, info, tsk, tpk) ←$ ⟨GS.KGenM (param), GS.KGenT (param)⟩

gpk := (param, mpk, tpk)

(st, uid0, uid1) ←
$ A0

{
AddU,RevealU,

Revoke,Sign,Trace

}
(gpk, info)

if {uid0, uid1 } ∩ H \ (C ∪ B) , {uid0, uid1 } then return 0

b ←$ {0, 1};H∗ := {uid0, uid1 }; decinv := true ; τ ∗ := τcurrent

info∗ ←$ GS.RevokeMember(gpk, msk, infoτ ∗ , {uidb }, ®r eд)

d ←$ A1

{
AddU,RevealU,

Revoke,Sign,Trace

}
(st, info∗)

return b = d

Figure 2: Security experiments for Join- and Leave-Privacy.

for the partially dynamic models [11, 40, 41]. The first one describes

join privacy, since it considers the case that two non-members are

known in one epoch and in the next epoch one of them joins the

system and the task is to distinguish who joined the group. The

second experiment describes leave privacy and models the case that

there are two known members in one epoch and in the next epoch

one of them leaves the group. Note that this assumes that the adver-

sary knows out of band that the two users had previously joined the

group.
3
In both cases we allow an adversary to corrupt members

of the group but we consider both authorities to be honest: The

issuing authority always knows who is part of the group and the

tracing authority can open all signatures to extract the identities of

members. In particular, this implies that the registration table ®reд
may not be public because one could easily infer current members

from it. Fortunately, this seems a fairly natural assumption. This

registration table is not necessary in any of the user-run algorithms

and it is easier to keep it local to the authorities than publishing it

online. An exception is the scheme [47] mentioned above, where

the registration table is part of the verification algorithm to ensure

that tracing soundness holds with respect to public user identities

rather than in the functional sense we describe.

We formally define join and leave privacy in terms of the two

experiments shown in Figure 2. Note, that we introduce a new set

of privacy challenge usersH∗. In the two experiments,H∗ is used

to restrict the function of oracles which would allow trivial success

for the adversary:

• The privacy challenge users may not be removed from the

group, i.e. Revoke returns ⊥ if S ∩H∗ , ∅. This is because
GS.RevokeMember is defined to return ⊥ if the group infor-

mation does not change as result of the revocation, which

would be the case if the user was already removed from the

group.

• The privacy challenge users may not be corrupted or have

their keys revealed. Note, that this also prevents an adversary

from re-enrolling a challenge user by initiating a join-issue

session for them.

3
Note that two users cannot join in the same epoch by the definition ofAddU. Schemes,

where batch additions in the same epoch are possible may, however, still achieve

membership hiding.

• The signing oracle treats signature requests for user IDs

in the privacy challenge set differently. In the case of join

privacy, a signature request for any privacy challenge user,

i.e. uid0 or uid1 will be treated like a signature request for

user uidb who joined the system. In the case of leave privacy,

it will be treated like a signature request for user uid(1−b)
who did not leave the group. Additionally, the queries will be

added to the set of challenge queries Q∗, which prevents the

adversary from using the Trace oracle to produce an opening
for them.

Definition 3.7. A FDGS scheme GS has join privacy if for all PPT
adversaries A, their adjusted advantage

Adv
[
1

2

]
Join−Privacy
A,GS (1λ)

is negligible.

Definition 3.8. A FDGS scheme GS has leave privacy if for all

PPT adversaries A, their adjusted advantage

Adv
[
1

2

]
Leave−Privacy
A,GS (1λ)

is negligible.

Remark 1. Note that leave privacy as stated above only seems to
ensure privacy, when a single user leaves the group, however, the
GS.RevokeMember algorithm allows simultaneous membership re-
vocation for a whole set of usersS. However, a simple hybrid argument
should suffice to extend the property from one revocation to many
revocations.

4 OUR CONSTRUCTION
In this section we formalize the group signature proposed in the

introduction. We present the full algorithms in Figure 3. The idea

of our construction is as follows. The issuer uses signatures on

equivalence classes to certify group members’ SFPK public keys
4
.

As already noted by Backes et al. [5] this forms self-blindable cer-

tificates, i.e. each member can randomize the certificate and their

4
The definition by Hanser and Slamanig uses bilinear groups BG but this primitive is

not limited to the bilinear setting and BG can be seen as parameters.

public key which is computationally indistinguishable from the

original public key used during the issuing procedure. To add and

revoke members, each epoch the issuer generates a new SPS-EQ
keypair and puts the public key in the epoch information. To pre-

vent malicious epoch information, the issuer signs the SPS-EQ
public key using a standard digital signature scheme. To protect

the identities of members, the issuer does not directly publish the

new certificates but uses a randomization, i.e. certificates for public

keys that are in relation to keys of members. To allow the members

to restore the right certificate, the issuer encrypts the random coins

that can be used to restore the original certificate. The encryption is

done under the members encryption key.What is more, key-privacy

ensures that the ciphertexts do not leak the identities. Note, that

the join/issue session in our construction is non-interactive in the

sense that the group manager can add members to the group given

only their user public key, hence the GS.Join algorithm is trivial.

Statement xSign:

∃ (pkSFPK, r) s. t.
SFPK.ChgPK(pkSFPK, r) = pk′SFPK
∧ IsCanonical(pkSFPK)

∨ cSFPK = PKE.Enc(pkSFPK, tpk)

To enable tracing we use the

canonical representative of

SFPK, i.e. a signer encrypts

their canonical representative

under the tracing authority

public key and uses proof

system ΠGS.Trace to prove in

statement xSign that the ran-

domized SFPK public key is in

relation to this encrypted key.

The complete group signature is composed of a randomized

SPS-EQ certificate from the issuer on the randomized SFPK public

key of the member, a ciphertext of the canonical representative,

a proof that this ciphertext is sound and a SFPK signature on all

those values and the message.

Statement xTrace:

∃ (tsk) s. t.
(®upk [uid]) ←$ PKE.Dec(tsk, cSFPK)

∧ tsk⇌ tpk

Finally, the proof system

ΠGS.Judge is used by the

tracing authority to prove

in statement xTrace that the

decrypted public key corre-

sponds to public keys used

during the issuing procedure.

Theorem 1 (Join Privacy). Our construction has private joins if
the encryption scheme used by the signers is IND − CPA secure and
has IK − CPA key privacy and the SFPK scheme is adaptively class
hiding with key corruption.

Proof. We consider a series of games. In the following let uidb
be the challenge userwho is inserted into the group and let gpk[uidb] =
(pkSFPK, pkEnc) be their public key and ®дsk[uidb] = (skSFPK, skEnc)
be their secret key. Let Si denote the event that the adversary wins

in GAMEi .

GAME0 Is the original join privacy game, so Pr[S0] = Advjoin−privacyGS,A (λ).

GAME1 We modify how the challenge group information is cre-

ated. For this we generate a fresh public key encryption key pair

(sk, pk) ←$ PKE.KeyGen(1λ). After the challenge user uidb is added

using AddU, we replace his entry (c = PKE.Enc(pkb ,k),σSPS) in
the epoch information with (PKE.Enc(pk,k),σSPS), i.e. we replace
the encryption key of the randomness to a fresh key. It is easy to

see that, since the encryption scheme has key privacy we have

Pr[S1] ≤ Pr[S0] + Adv
ik−cpa
PKE,A (λ).

GAME2 In this game we further modify the ciphertext in the chal-

lenge user’s part of info∗ by encrypting the value 0 instead of

the randomness used to change the SFPK key signed in σSPS. Be-
cause the encryption scheme is IND − CPA secure it holds that

Pr[S2] ≤ Pr[S1] + Adv
ind−cpa
PKE,A (λ).

GAME3 Instead of changing the representative of user uidb ’s SFPK
public key, we generate a fresh public key and change its represen-

tative. The signature in info∗ will now be on this fresh represen-

atative. We will also use this fresh key to sign in the queries made

to PrivChall. We observe that Pr[S3] ≤ Pr[S2]+Advc-hSFPK,A (λ). Fur-

ther, we have Pr[S3] =
1

2
, since the updated epoch information

and the signatures received from the challenge signing oracle are

completely independent of the challenge users.

Putting it all together we thus have

Advjoin−privacyGS,A (λ) ≤ Advik−cpaPKE,A (λ)+Adv
ind−cpa
A

(λ)+Advc-hSFPK,A (λ).

□

Theorem 2 (Leave Privacy). Our construction has leave privacy
if the encryption scheme used by the signers is IND − CPA secure and
has IK − CPA key privacy and the SFPK scheme is adaptively class
hiding with key corruption.

Proof. This proof follows similar steps as the proof for join

privacy. We consider a series of games, where in the first game b
is fixed to 0 and in the last game, b is fixed to 1. Let Si denote the
event that A’s final output in GAMEi is 0.

GAME0 The Leave − Privacy game, where bit b is fixed to 0.

GAME1 We change the public key used to encrypt the epoch data

for user uid0 using the public key of user uid1. We have |Pr[S0] −

Pr[S1]| ≤ Advik−cpa
A,PKE(λ).

GAME2 We now change the randomness encrypted in this cipher-

text to the randomness for user uid1. Because of IND − CPA security

of the encryption schemewe have |Pr[S1]−Pr[S2]| ≤ Advind−cpa
A,PKE (λ).

GAME3 We change the SFPK public key to the public key of uid1,
also changing the signatures in PrivChall to this secret key. The

game is now the same as the Leave − Privacy gamewith the bit fixed

to 1. Because of adaptive class hiding we have |Pr[S2] − Pr[S3]| ≤

Advc-h
A,SFPK(λ).

□

Theorem 3 (Anonymity). Our construction is anonymous if the
SPS-EQ signature scheme perfectly adapts signatures, the SFPK scheme
is adaptively class-hiding with key corruption and strongly existential
unforgeable, the proof system used by signers is witness-indistinguishable
and the proof system used by the tracing authority is zero-knowledge.

GS.Setup(1λ)
(ρSFPK, ·) ←

$ SFPK.CRSGen(1λ)

BG←$ SPS.BGGen(1λ)

ρJ ←
$ ΠGS.Judge .Setup(1

λ)

ρT ←
$ ΠGS.Trace .Setup(1

λ); τ := 0

return param := (1λ, BG, ρSFPK, ρJ, ρT)

GS.Issue(infoτcurrent ,msk, uid, ®upk[uid])
msk = (skDS, skSPS), ®upk [uid] = (pkSFPK, pkEnc)

infoτcurrent [uid] = (pkSPS, σDS, Active)

abort if ¬IsCanonical(pkSFPK)

k ←$ coin; c ←$ PKE.Enc(pkEnc, k);

σSPS ←
$ SPS.Sign(SFPK.ChgPK(pkSFPK, k), skSPS)

Active′ := Active ∪ {(c, σSPS)}

infoτcurrent [uid] := (pkSPS, σDS, Active
′)

®r eд[uid] := ®upk [uid]

GS.RevokeMember(gpk,msk, infoτcurrent ,S, ®reд)
msk = (skDS, skSPS)

(sk′SPS, pk
′
SPS) ←

$ SPS.KGen(BG, 2)

msk := (skDS, sk
′
SPS)

infoτcurrent = (·, ·, Active); A := {i | user i is active}

foreach i ∈ A \ S

®r eд[uid] = (pkiSFPK, pk
i
Enc)

k ←$ coin; c ←$ Enc(pkiEnc, k);

σSPS ←
$ SPS.Sign(SFPK.ChgPK(pkiSFPK, k), skSPS)

Active′ := Active′ ∪ (c, σSPS)

return infoτnew = (pk
′
SPS, DS.Sign(skDS, pk

′
SPS), Active

′)

GS.KGenM (param)
(skDS, pkDS) ←

$ DS.KGen(1λ)

(skSPS, pkSPS) ←
$ SPS.KGen(BG, ℓ)

info := (pkSPS, DS.Sign(skDS, pkSPS), ∅)

return (msk := (skDS, skSPS),

mpk := pkDS, info)

GS.KGenT (param)
(tsk, tpk) ←$ PKE.KeyGen(1λ)

return (tsk, tpk)

GS.KGenU (1
λ)

(skSFPK, pkSFPK) ←
$ SFPK.KGen(1λ)

(skEnc, pkEnc) ←
$ PKE.KeyGen(1λ)

return (®usk [uid] := (skSFPK, skEnc),

®upk [uid] := (pkSFPK, pkEnc))

GS.Sig(gpk, ®дsk[uid], infoτ ,m)
infoτcurrent = (pkSPS, ·, Active)

®дsk [uid] = (skSFPK, skEnc); gpk[uid] = (pkSFPK, pkEnc)

abort if ¬∃ (c, σSPS) ∈ Active s. t.
k ← PKE.Dec(c, skEnc) and

SPS.Verify(SFPK.ChgPK(pkSFPK, k), σSPS, pkSPS) = 1

r ←$ coin; (sk′SFPK, pk
′
SFPK) ← SFPK.ChgKeys(skSFPK, pkSFPK, r)

σ ′SPS ←
$ SPS.ChgRep(pkSFPK, σSPS, r · k

−1, pkSPS)

cSFPK ←
$ PKE.Enc(pkSFPK, tpk)

ΠSFPK ←
$ ΠGS.Trace .Prove(ρT, xSign, w = (pkSFPK, r))

SigSFPK ←
$ SFPK.Sign(sk′SFPK,m | |τcurrent | |pk

′
SFPK | |σ

′
SPS | |ΠSFPK | |cSFPK)

return Σ := (pk′SFPK, σ
′
SPS, ΠSFPK, cSFPK, SigSFPK)

GS.Vf(gpk, infoτ ,m, Σ)
infoτ = (pkSPS, σDS, ·); mpk = pkDS
Σ = (pkSFPK, σSPS, ΠSFPK, cSFPK, SigSFPK)

// xSign is the same statement as in GS.Sig

reject if DS.Verify(pkDS, pkSPS, σDS) = reject or

ΠPPE .Verify(ρΠ, xSign, ΠSFPK) = reject or

SPS.Verify(pkSPS, pkSFPK, σSPS) = reject

M :=m | |τ | |pkSFPK | |σSPS | |ΠSFPK | |cSFPK
return SFPK.Verify(pkSFPK, M, SigSFPK)

GS.Trace(gpk, tsk, infoτ , ®reд,m, Σ)
Σ = (pkSFPK, σSPS, ΠSFPK, cSFPKSigSFPK)

(pkSFPK) ←
$ PKE.Dec(tsk, cSFPK)

abort if ¬∃uid s. t. ®r eд[uid] = (pkSFPK, ·)

π ←$ ΠGS.Judge .Prove(ρJ, xTrace, w = (tsk))

return (uid, π)

GS.Judge(gpk, uid, infoτ ,πTrace, ®upk[uid],m, Σ)
rejectif GS.Vf(gpk, infoτ ,m, Σ) = reject

Σ = (·, ·, ΠSFPK, cSFPK ·); ®upk [uid] = (pkSFPK, ·)

// Statement xTrace as in GS.Trace

return ΠGS.Judge .Verify(ρJ, xTrace, π)

Figure 3: Our generic construction of fully dynamic group signatures.

Proof. We will use the game base approach. Let us denote by

Si the event that the adversary wins the anonymity experiment

in GAMEi . Moreover, let n be the number of queries to the AddU
oracle made by the adversary and let (info∗τ , uid

∗
1
, uid∗

2
,m∗) be the

query made to the Challb oracle, which outputs

Σ∗ = (pk∗SFPK,σ
∗
SPS,Π

∗
SFPK, c

∗
SFPK, Sig

∗
SFPK).

GAME1: We simulate the proof generated in GS.Trace by the trac-

ing authority.

Obviously, we only lower the advantage of the adversary by a

negligible fraction because of the zero-knowledge property of this

proof. Thus, we have |Pr[S1] − Pr[S0]| ≤ Advzk
A,ΠGS.Judge

(λ).

GAME2: We change the way the Trace oracle works. Instead of us-

ing tsk to decrypt pkSFPK from cSFPK, we first extract the witness
(pkSFPK, r) and use pkSFPK instead. What is more, we simulate the

proof Π∗SFPK, which is part of the challenges signature.

Note that since the proof system ΠGS.Trace is simulation-sound

extractable it follows that |Pr[S2] − Pr[S1]| ≤ Advsse
A,ΠGS.Trace

(λ).

GAME3: We change the way the ciphertext c∗SFPK is computed. In-

stead of encrypting the canonical representative, we encrypt the

value 0.

Note that because of the changes made in the previous game,

the Trace oracle works as in GAME2. Thus, we have that |Pr[S3] −
Pr[S2]| ≤ Advind−cpaPKE,A (λ)

GAME4: We now change the way we compute σ ∗SPS . Instead of

using the SPS.ChgRep algorithm to change representation of an

old signature, we compute the SPS-EQ signature directly on pk∗SFPK.

Since the SPS-EQ signature scheme perfectly adapts signatures,

we have Pr[S4] = Pr[S3]
GAME5: Given the experiments bit b, we choose index i ←$ [n] and
abort if uidb does not correspond to the user created in the i-th
query of the adversary to AddU.

We have Pr[S4] = n · Pr[S5].

GAME6: Let pkSFPK be the SFPK public key of the user chosen in the

previous game. We now instead of using pkSFPK to create pk∗SFPK,
we use a fresh key generated using KGenSFPK.

We will now show that any adversary A that can distinguish

those games, can be used to brake the weak class-hiding of the

SFPK scheme. We will show how to build a reduction R that does

this. Let (sk0SFPK, pk
0

SFPK), (sk
1

SFPK, pk
1

SFPK) and pk′SFPK be the in-

puts given to R by the challenger in the adaptive class-hiding

experiment. The reduction then sets pk0SFPK as the i-th honest user

SFPK public key. All other key material for those users is con-

structed as described in the scheme. Now in order to answer the

query (info∗τ , uid
∗
1
, uid∗

2
,m∗) to theChallb oracle, the reduction: sets

pk∗SFPK = pk′SFPK, computes σ ∗SPS as inGAME3, computes Π∗SFPK as

in GAME2, computes c∗SFPK ←
$ PKE.Enc(pk′SFPK, tpk), asks its sign-

ing oracle for Sig∗SFPK undermessagem∗ | |τ ∗ | |pk∗SFPK | |σ
∗
SPS | |Π

∗
SFPK | |

c∗SFPK, and returns Σ
∗ = (pk∗SFPK,σ

∗
SPS,Π

∗
SFPK, c

∗
SFPK, Sig

∗
SFPK). Note

that since it knows sk0SFPK and sk1SFPK it can easily answer all cor-

ruption queries made by A. In the end A outputs a bit b, which
is also returned by R. It follow that we have |Pr[S6] − Pr[S5]| ≤

Advc-h
A,SFPK(λ).

We now argue that the only way the adversary A can break

anonymity is by creating a randomization

Σ′ = (pk′SFPK,σ
′
SPS,Π

′
SFPK, c

′
SFPK, Sig

′
SFPK)

of the signature Σ∗ = (pk∗SFPK,σ
∗
SPS,Π

∗
SFPK, c

∗
SFPK, Sig

∗
SFPK) and use

Σ′ in a query to the Trace oracle. Since in GAME5 we changed

the public key pk∗SFPK to a random one, this is the only part of the

simulation, where the adversary can notice something. Thus, for

this to work the adversary must use a valid signature Sig′SFPK for

pk′SFPK ∈ [pk
∗
SFPK]R . We distinguish two cases: Sig′SFPK = Sig∗SFPK

and Sig′SFPK , Sig∗SFPK. If Sig
′
SFPK = Sig∗SFPK this means that

pk′SFPK = pk∗SFPK and either σ ′SPS , σ
∗
SPS or Π

′
SFPK , Π∗SFPK. Since

pk∗SFPK is set to random public key in GAME6 we can use an ad-

versary that creates such a signature Σ′ to break strong existential

unforgeability of the SFPK scheme. In case Sig′SFPK , Sig∗SFPK, we
notice that in order for the adversary to see that this is a simulation

the public key pk′SFPK must be in relation to pk∗SFPK. Thus, we can
again use the adversary to break the strong existential unforgeabil-

ity of the SFPK scheme, even if σ ′SPS = σ
∗
SPS, Π

′
SFPK = Π∗SFPK and

pk′SFPK = pk∗SFPK.
In other words, the only way the adversary can randomize the

challenged signature is by randomizing the SFPK signature because

the other values are signed. However, since the scheme is strongly

unforgeable the adversary has negligible chances to do so. It follows

that Pr[S6] = Advseuf−cma
A,SFPK (λ). In the end we have:

Pr[S0] ≤n ·
(
Advc-h

A,SFPK(λ) + Adv
seuf−cma
A,SFPK (λ)

)
+ Advind−cpaPKE,A (λ) + Adv

sse
A,ΠGS.Trace

(λ) + Advzk
A,ΠGS.Judge

(λ).

□

Theorem 4 (Traceability). Our construction is traceable if the
SPS-EQ scheme is existential unforgeable under chosen-message at-
tacks, the SFPK scheme is existential unforgeable and the signature
scheme used by the Issuer is existential unforgeable under chosen-
message attacks.

Theorem 5 (Non-frameability). Our construction is non-frameable
if the SFPK scheme is existential unforgeable and the proof system
used by the tracing authority is sound.

Theorem 6 (Functional Tracing Soundness). Our construc-
tion has functional tracing soundness if the underlying SFPK scheme
has canonical representatives, the proof system used by the Judge is
sound and the proof system used by the signers is a proof of knowledge.

The full proofs for theorems 4, 5 and 6 can be found in [6].

5 DISCUSSION AND EFFICIENT
INSTANTIATION

The generic construction presented above can be easily instanti-

ated in the standard model, without random oracles, using known

schemes. In particular, we can use the standard model signatures

on equivalence classes by Fuchsbauer and Gay [31] and one of the

compatible SFPK signature schemes by Backes et al. [5]. For the

encryption scheme one can use El Gamal encryption and standard

model digital signatures. Finally, both proof systems can be instan-

tiated using the simulation-sound system by Groth [34]. However,

due to the simulation-sound proof system and the large public keys

of the SFPK schemes, the signature size is not competitive with

existing schemes. We will now show how to minimize the signature

size, while still using only building blocks that are secure under stan-

dard assumptions and without random oracles. The objective is to

instantiate our construction in a way that it has shorter signatures

than the current state-of-the-art scheme by Libert-Peters-Yung [45]

presented at Crypto’15, which is only secure in a weaker model.

Optimization. To decrease the signature size we have to solve

the following problems:

(1) The proof system ΠGS.Trace must allow the security reduc-

tion for the anonymity experiment to simulate the challenged

proof and at the same time extract witnesses to properly sim-

ulate the Trace oracle,

Scheme
Signature size

⋆

[bits]
Group public

⋆

key size

Membership Assumptions

Libert-Peters-Yung [45] 8 448 O(λ) static standard

Boyen-Waters [20]
‡

6 656 O(λ) static q-type
Boneh-Boyen-Shacham [13] 2 304 2048-bit static q-type

Bichsel et al. [12] 1 280 1024-bit partially dynamic
†

interactive

Groth [35] 13 056 O(1) partially dynamic q-type
Libert-Peters-Yung [45] 14 848 O(λ) partially dynamic standard

Bootle et al. [17] O(logN) O(1) fully dynamic
♣

standard

Our generic construction O(1) O(λ) fully dynamic + membership hiding
♣

standard

. . . instantiated with Scheme 5 13 056 O(λ) fully dynamic + membership hiding
♣

standard

⋆
At a 256-bit (resp. 512-bit) representation of Zq , G1 (resp. G2) for Type 3 pairings and at a 3072-bit factoring and DL modulus with 256-bit key

♣
The size of the epoch information isO (N)
†
The scheme defines additionally a join↔issue procedure

‡
Adapted from type 1 to type 3 pairings as in [45]

Figure 4: Comparison of Group Signature Schemes for N Active Members

(2) The public key of the SFPK signature must be short and

allow for a simple proof of canonical representation,

(3) If possible, simplification of the statement proven inΠGS.Trace.

First, we replace the simulation-sound system with a simple

NIWI proof system. In fact, we instantiate all building blocks such

that we can use the popular Groth-Sahai proofs for pairing product

equations. To do so, we introduce a trapdoor witness that can be

used by the reduction to simulate the proof, while still being able

to extract the witness. Of course, we have to prevent the adversary

from using this trapdoor to create valid proofs. We achieve this by

introducing a new element K2 = д
k
2
as part of the groups public key

that will be part of the statement. The trapdoor witness are then

two valuesw1 andw2, such that e(w1,K2) = e(w2,д2). It is easy to

see that any adversary that is able to compute such a witness can

be used to break the DDH assumption in G2.
To solve the second problem we propose an SFPK scheme that

works analogously to the schemes presented in [5], but allows us

to use canonical representatives by moving to our weaker class-

hiding definition. The scheme uses public keys in G1 × G1 with
the established projective equivalence relation, i.e. pk ∈ [pk′]R if

there is a µ ∈ Z∗p such that pkµ
1
= pk′

1
and pkµ

2
= pk′

2
. For such

classes of public keys, we define the canonical representative as

the public key for which the first element is just д1. We give a full

SFPK scheme based on this approach and secure under the bilinear

Diffie-Hellman assumption in Section 6.

To simplify the statement proven in ΠGS.Trace, we get rid of the

ciphertext cSFPK, that is used by the tracing authority to identify

signers. To preserve this functionality, we allow the tracing au-

thority to generate the parameters for the proof system ΠGS.Trace,

including an extraction trapdoor which allows to extract the used

witness and compute the corresponding canonical representative.

When applying all the above techniques the statement proven

by the signer will have the form:

∃ (pkSFPK, r ,w1,w2) s. t.

SFPK.ChgPK(pkSFPK, r) = pk′SFPK ∧ IsCanonical(pkSFPK)

∨ e(w1,K2) = e(w2,д2).

The construction and proofs can be found in the full paper [6].

Efficiency of the Instantiation. The signature itself is composed of

an SFPK public key pk′SFPK, an SFPK signature SigSFPK, an SPS-EQ
signature σ ′SPS and proof ΠSFPK. To instantiate SFPK signatures we

use Scheme 5, which means that pk′SFPK is 2 elements in G1 and

SigSFPK is 2 elements in G1, 1 in G2 and 1 in Z∗p . Similar to the

static group signature in [5], we will instantiate the SPS-EQ with

the scheme from [31]. This means that the SPS-EQ signature takes

10 elements in G1 and 4 elements in G2.
Taking into account that we will use Scheme 5, the above state-

ment can instantiated as follows. Let pk′SFPK = (pk
′
1
, pk′

2
) and

pkSFPK = (pk1, pk2), we can then express this proof by the pair-

ing product equations: e(w1,K2) = e(w2,д2) and e(pk′
1
,дr

−1

2
) =

e(д1,д2) · e(w1,д2). It is easy to see that the witness (r ,w1,w2) =

(0, (д1)
−1, (K1)

−1) is a trapdoor witness that can be used in the se-

curity proof to create a valid proof for an arbitrary pk′SFPK. The
canonical representative pkSFPK is only used by the tracing author-

ity to open signatures. However, by extracting the witness R = дr
−1

2

it can still do this because if pk′
2
= дx ·r

1
, then e(pk′

2
,R) = e(дx

1
,д2)

is a static value that is common for all public keys in relation with

pk′SFPK. Since the tracing authority has access to the registration

table that contains public keys in canonical form of active members

it can correctly open signatures.

Instantiating those equations using the fine-tuned Groth-Sahai

proofs presented in [30] (assuming decisional Diffie-Hellman), the

proof size is 10 elements in G1 and 8 elements in G2. This is con-
stituted by: 2 group elements in G2 for the first equation, which is

linear; 4 elements in G1 and G2 for the second equation; 6 elements

inG1 for the three witnesses inG1; 2 elements inG2 for the witness
r . Overall the group signature is composed of 28 elements in G1,
15 in G2 and 1 in Z∗p .

The digital signature scheme DS and the public key encryption

scheme PKE are standard components, an example of a key private

PKE scheme is ElGamal encryption. The proof systemΠGS.Judge can

also be instantiated using Groth-Sahai proofs for pairing product

equations [30]. Note that this means that the tracing authority has

to prove correct decryption of a ciphertext (witnesses are encoded in

form of El Gamal encryptions) and that its public key was generated

using a DDH tuple, which can easily be expressed as pairing product

equations.

We provide a comparison with existing group signature schemes

in Figure 4. We omit lattice-based schemes in our comparison,

because the only constant-size scheme was proposed by Ling et

al. [46] and as argued by the authors the size is impractical.

Comparison with Previous Constructions. Some of the techniques

used in our construction are similar to the static group signatures

by Backes et al. [5] and the dynamic group signatures presented by

Derler and Slamanig [29]. In particular, we use signatures on equiv-

alence classes as a certificate of membership. The latter uses signa-

tures of knowledge to allow for traceability and to have an actual

signature. Thus, their scheme can only be efficiently instantiated

in the random oracle model, since standard model instantiations

of proofs of knowledge of an exponent are logarithmic in the size

of the exponent. The construction of Backes et al. uses SFPK sig-

natures and standard proof systems like ours. In their scheme, the

tracing authority uses the SFPK trapdoor to distinguish public key

equivalence classes. Since their scheme is static, the issuer/tracing

authority can obtain this trapdoor during user key generation. In

the dynamic setting, where we want to achieve non-frameability,

the members generate their keys themselves in an interactive pro-

tocol with the issuer, preventing this approach. We address this by

introducing the canonical representative into the notion of SFPK
signature. We then allow the tracing authority to check the ran-

domized public key, given as part of the group signature, against

the canonical representative used during the joining procedure.

Group Update and Signing Complexity. We will first focus on

the computational complexity of the group manager in regards to

adding/removing members. To add a new member the manager

creates a SPS-EQ signature under the member’s public key that

acts as a kind of certificate. Furthermore it encrypts the random

coins used to blind the member’s public key. The signature and

ciphertext are then added to the current epoch information. It is

easy to see that the complexity of adding new users is constant

in the number of active group members. By contrast, removing

members requires an update of the whole epoch information, i.e.

the group manager generates a fresh SPS-EQ public key and issues

fresh certificates for each active member. From a practical point of

view this trade-off is acceptable. In particular, we note that adding

a new member is a process that requires the interaction between

the group manager and the user, at least for the group manager to

obtain the new member’s public key. On the other hand, to revoke

a member no interaction is required and the group manager can

perform the operation offline. What is more, this process can be

easily parallelized (each entry can be computed independently) and

changes can be batched (removing more users can be done at once).

It is worth noting that linear complexity in the number of active

members is not inherent for membership revocation, since one

could use cryptographic accumulators [27] to store information

about active members. In such a case the complexity of updates

for the group manager would be linear only in the number of

changes (additions/removes) and not in the number of active users.

Unfortunately, we are not aware of any construction that could uti-

lize this idea without violating the membership privacy properties.

Note that cryptographic accumulators require auxiliary informa-

tion about the added/removed user to be published in order for

the other members to be able to generate membership proofs for

the new accumulator. This information could easily be used by an

adversary to break membership privacy.

The form of the epoch information influences the complexity of

the signing procedure. In our construction, the signer has to find

the entry that corresponds to its identity in the current epoch. To

simplify presentation we made this process linear in the number of

active members. However, it is easy to see that this process need

only be performed once per epoch, i.e. once a member updates their

certificate it can be used to create all subsequent signatures by this

member in the same epoch. In the current construction the epoch

information is represented as a set but it can easily be represented

as an ordered list. To facilitate this, the group manager can create

unique identifiers that can be used to sort the list and members can

find the correct entry using binary search. To preserve membership

privacy, during registration members generate an additional public

key for a key agreement scheme and store the private key securely.

Each epoch the group manager also generates a fresh public key

for the key agreement scheme and uses the shared key as a secret

to generate the unique and hidden identifier, e.g. using a pseudo-

random function. This identifier can easily be reconstructed by

the corresponding member but is indistinguishable from a random

value for all other members and third parties.

Hiding the Group Size. In this paper we do not consider the prob-

lem of hiding the group size but we show how it can be partially

solved using dummy members and a trade-off in the group update

complexity. Our current construction does not hide the size of the

group, since the epoch information size is linear in the number

of active group members. The simplest idea is to create the first

epoch information with dummy users and update it with every addi-

tion/removing. It is easy to see that the size of the epoch information

will be constant (during setup a maximal number of members has

to be chosen) if we replace dummy members by real ones and vice

versa. Unfortunately, this approach requires the whole epoch infor-

mation to be updated for both addition and revocation of members

and not only during the revocation of a member. It also leaks an

upper bound on the group size and requires an update complexity

that is at least linear in the number of active members. However,

we argue that from a practical point of view using dummy users

can be acceptable to protect the size of the group.

A different approach would be to again use cryptographic ac-

cumulators, since they can be constant size and independent of

the number of accumulated values. Unfortunately, this solution is

not better than the above one. To prove membership of a value

in a new accumulator the witness corresponding to the previous

state must be updated. Existing definitions and constructions of

accumulators [27] require that the added/removed value must be

used for this update. Thus, the epoch information must contain

this value is some form (e.g. encrypted). However, in the end since

this value must be part of the epoch information, an adversary can

easily backtrack all previous published information and calculate

the size of the group.

6 EFFICIENT SIGNATURES WITH FLEXIBLE
PUBLIC KEY

Here we propose our signatures with flexible public key. We pro-

pose a scheme that is closely related to the ones proposed in [5].

However, security relies on the bilinear decisional Diffie-Hellman

assumption instead of the decisional linear assumption. This allows

us to decrease the size of the public key by 1 group element in G1,
i.e. from 3 to 2. Unlike the schemes in [5], this scheme only has

class-hiding with key corruption but as already shown this is still

sufficient for group signature constructions.

We assume that both the SFPK.KGen and SFPK.TKGen output

a public key that is the canonical representative of its equivalence

class. Further we assume that every user has access to a collision

resistant hash function H, which we express by including it in

the output of SFPK.CRSGen. The SFPK.ChgPK and SFPK.ChgSK
algorithms work by drawing uniformly at random an exponent r ∈
Zp and raising every component of the public key, or respectively

the secret key to the power of r . More details can be found in

Scheme 5.

Theorem 7 (Unforgeability). Scheme 5 is strongly existential
unforgeable under flexible public key in the crs model, assuming the
bilinear decisional Diffie-Hellman assumption holds and that PHF is a
(1, poly(λ))-programmable hash function and H is collision-resistant.

Proof. Let (Sig∗SFPK,m
∗, pk∗SFPK) be the forgery returned by an

adversaryA, where Sig∗SFPK = (Sig
∗
1
, Sig∗

2
, Sig∗

3
, s∗). We distinguish

three types of strategies of the adversary:

Type 1 We call the adversary a type 1 adversary if there exists a

public key pkSFPK and signature SigSFPK = (Sig1, Sig2, Sig3, s)
on messagem generated by oracle O1 or O2, where

H(m∗ | |Sig∗
2
| |Sig∗

3
| |pk∗SFPK) = H(m | |Sig

2
| |Sig

3
| |pkSFPK)

It is easy to see that the adversary broke the collision-resistance

of function H and we can build a reduction R that uses A1

to break collision-resistance of function H by simulating the

system and returning

(m∗ | |Sig∗
2
| |Sig∗

3
| |pk∗SFPK,m | |Sig2 | |Sig3 | |pkSFPK)

as a valid collision.

Type 2 We call the adversary a type 2 adversary if there exists a

public key pkSFPK and signature SigSFPK = (Sig1, Sig2, Sig3, s)
on message m generated by oracle O1 or O2, where e∗ =
H(m∗ | |Sig∗

2
| |Sig∗

3
| |pk∗SFPK) , H(m | |Sig

2
| |Sig

3
| |pkSFPK) = e

butM∗ = дe
∗

1
· д̂s

∗

= дe
1
· д̂s = M .

In this case we show that a type 2 can be used to break

the discrete logarithm assumption. We can apply the same

reasoning as for Pedersen commitments, i.e. the reduction

can set д̂ as the element for which we want to compute

the discrete logarithm in respect to д1. The reduction can

then simply simulate the whole system for A2 and output

(e − e∗)/(s∗ − s).

Type 3 We call the adversary a type 3 adversary in all other

cases. In particular, we ensure that M∗ is distinct from all

M’s used in the oracles O1 and O2.

Let (BG,дa
1
,дa

2
,дb

1
,дb

2
,дc

1
,дc

2
,дd

1
,дd

2
) be an instance of the

bilinear decisional Diffie-Hellman problem. We will show

that we can use any efficient adversary A3 can be used to

break the above problem instance. To do so, we will build a

reduction algorithm R that uses A3 in a black box manner,

i.e. it plays the role of the challenger in the unforgeability

experiment.

First R prepares the common reference string ρ by setting

Y1 = дa
1
, Y2 = дa

2
, д̂ = дz

1
, for some z ←$ Z∗p and ex-

ecutes the trapdoor generation algorithm (KPHF,τPHF) ←
$

PHF.TrapGen(1λ ,дa
1
,д1). Note that δρ is not publicly known,

so R does not have to know the exponent a but still knows

z. Next R prepares the public key pkSFPK and the trapdoor

τSFPK. For this it uses the values д
b
1
and дb

2
from the problem

instance. It sets pkSFPK = (д1,д
b
1
) and τSFPK = (д

b
2
).

To answer A’s signing queries for messagem and random-

ness t1 (which is equal to 1 for oracle O1), the reduction R

follows the following steps:

(1) it chooses random values t2 ←
$ Z∗p ,

(2) it computesM = дe
′

1
· д̂s

′

for some e ′, s ′ ←$ Z∗p ,

(3) it computes (am ,bm) ←
$ PHF.TrapEval(τPHF,M) and aborts

if am = 0,

(4) it computes pk′SFPK ←
$ SFPK.ChgPK(pkSFPK, t1),

(5) it computes:

Sig1SFPK = (д
a
1
)t2 · ((дb

1
)(−a

−1
m ·t1) · дt2

1
))bm ,

Sig2SFPK = (д
b
1
)−a

−1
m ·t1 · дt2

1
,

Sig3SFPK = (д
b
2
)−a

−1
m ·t1 · дt2

2

e = H(m | |Sig2SFPK, Sig
3

SFPK, pk
′
SFPK),

s = ((e ′ − e) + s ′ · z)/z,

(6) set the signature

SigSFPK := (Sig1SFPK, Sig
2

SFPK, Sig
3

SFPK, s).

It is easy to see that this is a valid signature. Note that the a

valid signature is of the form (дa ·b ·t1
1

·((дa
1
)am ·дbm

1
)r ,дr

1
,дr

2
, s).

In this case, the reduction has set r = −a−1m ·b ·t1+t2 and this

means that the дa ·b ·t1
1

cancels out and the reduction does

not need to compute дa ·b
1

. Note that this only works because

am , 0. Otherwise, this would not work.

It follows that for the forgery (pk∗SFPK,m
∗, Sig∗SFPK, s

∗) ofA

we require that (am∗ ,bm∗) ←
$ PHF.TrapEval(τPHF,M∗) and

aM∗ = 0, where

M∗ = дe
∗

1
д̂s
∗

and e∗ = H(m∗ | |Sig2SFPK | |Sig
3

SFPK | |pk
∗
SFPK).

In such a case, the reduction works as follows:

(1) parse Sig∗SFPK as (Sig1SFPK, Sig
2

SFPK, Sig
3

SFPK, s
∗),

(2) compute

дa ·b ·t
∗

1
= Sig1SFPK · (Sig

2

SFPK)
−bm∗

=
(
дa ·b ·t

∗

1
· ((дa

1
)am∗ · д

bm∗
1
)r
∗
)
· (дr

∗

1
)−bm∗ ,

SFPK.CRSGen(1λ)
BG←$ BGGen(λ); y, z ←$ Z∗p

KPHF ←
$ PHF.Gen(1λ)

Y1 ← дy
1
; Y2 ← дy

2
; д̂ ← дz

1

return (ρ := (BG, Y1, Y2, KPHF, д̂, H),

δρ := (y, z))

SFPK.ChkRep(δSFPK, pkSFPK)
pkSFPK = (pk1, pk2); τSFPK = (τ)

if e(pk
1
, τ) = e(pk

2
, д2)

return 1 else 0

SFPK.KGen(1λ)
x ←$ Z∗p

return (pkSFPK := (д1, дx1),

skSFPK := (Y x
1
, pkSFPK))

SFPK.TKGen(1λ)
x ←$ Z∗p

return (pkSFPK := (д1, дx1),

skSFPK := (Y x
1
, pkSFPK),

τSFPK := (дx
2
))

SFPK.Sign(skSFPK,m)
skSFPK = (Z , pkSFPK);

r, s ←$ Z∗p ; Sig
2

SFPK ← дr
1
; Sig3SFPK ← дr

2

h ← H(m | |Sig2SFPK | |Sig
3

SFPK | |pkSFPK)

M ← дh
1
· д̂s

return (Z · (PHF.Eval(KPHF, M))
r , дr

1
, дr

2
, s)

SFPK.Verify(pkSFPK,m, SigSFPK)
pkSFPK = (·, X); SigSFPK = (Sig

1

SFPK, Sig
2

SFPK, Sig
3

SFPK, s)

h ← H(m | |Sig2SFPK | |Sig
3

SFPK | |pkSFPK);M ← дh
1
· д̂s

if e(Sig2SFPK, д2) = e(д1, Sig
3

SFPK) and

e(Sig1SFPK, д2) = e(X , Y2) · e(PHF.Eval(KPHF, M), Sig
3

SFPK)

return 1 else 0

Figure 5: Our Flexible Signatures.

(3) parse pk∗SFPK, and since for a valid forgerywe have pk
∗
SFPK ∈

[pkSFPK]R , we have pk
∗
SFPK = (д

t ∗
1
, (дb

1
)t
∗

) and R can use

дt
∗

1
,

(4) output 1 iff e(дa ·b ·t
∗

1
,дc

2
) = e(дt

∗

1
,дd

2
).

The probability that R successfully solves the bilinear deci-

sional Diffie-Hellman problem depends on the advantage of

A and the probability thatR’s simulation succeeds. Since the

programmable hash functionPHF is (1, poly(λ))-programmable

and because this is a type 3 adversary, we conclude that this

probability is non-negligible. Note that since in this case we

useA3,M
∗
is distinct from allM ’s used in O1 and O2, which

is not the case for type 1 and type 2 adversaries.

□

Theorem 8 (Class-Hiding with Key Corruption). Scheme 5
is class-hiding with key corruption in the crs model, assuming the
decisional Diffie-Hellman assumption holds.

Proof. We start with GAME0 which is the original class-hiding

experiment and let S0 be an event that the experiment evaluates to

1, i.e. the adversary wins. We will use Si to denote the event that
the adversary wins the class-hiding experiment in GAMEi .

Let pkSFPK = (A,B) be the public key given to the adversary,

pk
0
= (A0,B0) = (д1,д

x0
1
) and pk

1
= (A0,B1) = (д1,д

x1
1
) be the

public keys that are returned by SFPK.KGen, sk0 = (Y
x0
1
, pk

0
) and

sk1 = (Y
x1
1
, pk

1
) the corresponding secret keys and

ˆb be the bit

chosen by the challenger.

GAME1: In this game we do not use the SFPK.ChgSK algorithm

to compute skSFPK and pkSFPK but compute them as pkSFPK =
(Q,Qx ˆb), and skSFPK = ((Q

x ˆb)y , pkSFPK), where Y1 = д
y
1
is part of

the common reference string ρ generated by the challenger. In other
words, instead of using the exponent r to randomize the public key

and secret key, we use a group element Q to do it.

Since the distribution of the keys does not change, it follows

that Pr[S1] = Pr[S0]. Note that the oracle can still use skSFPK to

compute valid signatures.

GAME1: In this game instead of computing pkSFPK = (Q,Q
x ˆb) as

in GAME1, we sample B′ ←$ G1 and set pkSFPK = (Q,B
′).

We will show that this transition only lowers the adversaries ad-

vantage by a negligible fraction. This can be shown by construction

using a reduction R that uses an adversary A that can distinguish

between those two games to break the decisional Diffie-Hellman

assumption in G1.

Let (дα
1
,д
β
1
,д
γ
1
) be an instance of this problem in G1. R sam-

ples r0, r1 ←
$ Z∗p and sets B0 = (д

α
1
)r0 , B1 = (д

α
1
)r1 . Note that

in such a case, we also have to set sk0 = ((B0)y , pk0) and sk1 =

((B1)
y , pk

1
). Additionally, the reduction uses Q = д

β
1
and the pub-

lic key pkSFPK = (Q, (д
γ
1
)r ˆb). Note that the reduction can use the

secret key skSFPK = (((д
γ
1
)r ˆb)y , pkSFPK) to generate signatures and

answer signing queries. Now γ = α · β then pkSFPK has the same

distribution as in GAME1 and otherwise as in GAME2. Thus, it
follows that |Pr[S2] − Pr[S1]| ≤ Advddh

A
(λ).

We will now show that we have Pr[S2] =
1

2
. This follow from

the fact that we have pkSFPK = (Q,B
′) and signatures of the form

SigSFPK = ((B
′)y · (PHF.Eval(KPHF,m))

r ,дr
1
,дr

2
, s) for some r ∈ Z∗p

and Q,B′, which are independent from the bit
ˆb. Thus, we have

Advc-h
A,SFPK(λ) = Pr[S0] ≤ Advddh

A
(λ). □

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Ed-

ucation and Research (BMBF) through funding for CISPA and the

CISPA-Stanford Center for Cybersecurity (FKZ: 16KIS0762).

REFERENCES
[1] Michel Abdalla and Bogdan Warinschi. 2004. On the Minimal Assumptions of

Group Signature Schemes. In ICICS 2004. 1–13. https://doi.org/10.1007/978-3-

540-30191-2_1

https://doi.org/10.1007/978-3-540-30191-2_1
https://doi.org/10.1007/978-3-540-30191-2_1

[2] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.

2005. Practical Group Signatures without Random Oracles. Cryptology ePrint

Archive, Report 2005/385.

[3] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. 2000. A Practical

and Provably Secure Coalition-Resistant Group Signature Scheme. In CRYPTO
2000. 255–270. https://doi.org/10.1007/3-540-44598-6_16

[4] Giuseppe Ateniese and Breno de Medeiros. 2003. Efficient Group Signatures

without Trapdoors. In ASIACRYPT 2003. 246–268. https://doi.org/10.1007/978-3-

540-40061-5_15

[5] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. [n.d.].

Signatures with Flexible Public Key: Introducing Equivalence Classes for Public

Keys. In ASIACRYPT 2018. To appear.

[6] Michael Backes, Lucjan Hanzlik, and Jonas Schneider. 2018. Membership Privacy

for Fully Dynamic Group Signatures. IACR Cryptology ePrint Archive 2018 (2018),
641. https://eprint.iacr.org/2018/641

[7] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya,

Leonid Reyzin, Kai Samelin, and Sophia Yakoubov. 2017. Accumulators with Ap-

plications to Anonymity-Preserving Revocation. In EuroS&P 2017. IEEE, 301–315.
https://doi.org/10.1109/EuroSP.2017.13

[8] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-

skaya, and Hovav Shacham. 2009. Randomizable Proofs and Delegatable Anony-

mous Credentials. In Advances in Cryptology - CRYPTO 2009, 29th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.
Proceedings (Lecture Notes in Computer Science), Shai Halevi (Ed.), Vol. 5677.
Springer, 108–125. https://doi.org/10.1007/978-3-642-03356-8_7

[9] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. 2001.

Key-Privacy in Public-Key Encryption. In ASIACRYPT 2001. 566–582. https:

//doi.org/10.1007/3-540-45682-1_33

[10] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. 2003. Founda-

tions of Group Signatures: Formal Definitions, Simplified Requirements, and

a Construction Based on General Assumptions. In EUROCRYPT 2003. 614–629.
https://doi.org/10.1007/3-540-39200-9_38

[11] Mihir Bellare, Haixia Shi, and Chong Zhang. 2005. Foundations of Group

Signatures: The Case of Dynamic Groups. In CT-RSA 2005. 136–153. https:

//doi.org/10.1007/978-3-540-30574-3_11

[12] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan

Warinschi. 2010. Get Shorty via Group Signatures without Encryption. In SCN
2010. 381–398. https://doi.org/10.1007/978-3-642-15317-4_24

[13] Dan Boneh, Xavier Boyen, and Hovav Shacham. 2004. Short Group Signatures.

In CRYPTO 2004. 41–55. https://doi.org/10.1007/978-3-540-28628-8_3

[14] Dan Boneh, Saba Eskandarian, and Ben Fisch. 2018. Post-Quantum EPID Group

Signatures from Symmetric Primitives. Cryptology ePrint Archive, Report

2018/261. https://eprint.iacr.org/2018/261.

[15] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the

Weil Pairing. InCRYPTO 2001. 213–229. https://doi.org/10.1007/3-540-44647-8_13
[16] Dan Boneh and Matthew K. Franklin. 2003. Identity-Based Encryption from the

Weil Pairing. SIAM J. Comput. 32, 3 (2003), 586–615. https://doi.org/10.1137/

S0097539701398521

[17] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth.

2016. Foundations of Fully Dynamic Group Signatures. In ACNS 2016. 117–136.
https://doi.org/10.1007/978-3-319-39555-5_7

[18] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and

Christophe Petit. [n.d.]. Short Accountable Ring Signatures Based on DDH. In

ESORICS 2015.
[19] Xavier Boyen and Brent Waters. 2006. Compact Group Signatures Without Ran-

dom Oracles. In EUROCRYPT 2006. 427–444. https://doi.org/10.1007/11761679_26

[20] Xavier Boyen and Brent Waters. 2007. Full-Domain Subgroup Hiding and

Constant-Size Group Signatures. In PKC 2007. 1–15. https://doi.org/10.1007/978-

3-540-71677-8_1

[21] Jan Camenisch and Jens Groth. 2004. Group Signatures: Better Efficiency and

New Theoretical Aspects. In SCN 2004. 120–133. https://doi.org/10.1007/978-3-

540-30598-9_9

[22] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous

Credentials from Bilinear Maps. In CRYPTO 2004. 56–72. https://doi.org/10.1007/

978-3-540-28628-8_4

[23] Melissa Chase and Anna Lysyanskaya. 2006. On Signatures of Knowledge. In

Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings (Lec-
ture Notes in Computer Science), Cynthia Dwork (Ed.), Vol. 4117. Springer, 78–96.

https://doi.org/10.1007/11818175_5

[24] David Chaum and Eugène Van Heyst. 1991. Group Signatures. In EUROCRYPT’91
(LNCS), Donald W. Davies (Ed.), Vol. 547. Springer, Heidelberg, 257–265.

[25] Sherman S. M. Chow, Haibin Zhang, and Tao Zhang. 2017. Real Hidden Identity-

Based Signatures. In Financial Cryptography and Data Security - 21st International
Conference, FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers (Lecture
Notes in Computer Science), Aggelos Kiayias (Ed.), Vol. 10322. Springer, 21–38.
https://doi.org/10.1007/978-3-319-70972-7_2

[26] Elizabeth C. Crites and Anna Lysyanskaya. 2019. Delegatable Anonymous Cre-

dentials from Mercurial Signatures. In Topics in Cryptology - CT-RSA 2019 - The
Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA, USA, March
4-8, 2019, Proceedings (Lecture Notes in Computer Science), Mitsuru Matsui (Ed.),

Vol. 11405. Springer, 535–555. https://doi.org/10.1007/978-3-030-12612-4_27

[27] David Derler, Christian Hanser, and Daniel Slamanig. 2015. Revisiting Crypto-

graphic Accumulators, Additional Properties and Relations to Other Primitives.

In Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings (Lecture
Notes in Computer Science), Kaisa Nyberg (Ed.), Vol. 9048. Springer, 127–144.

https://doi.org/10.1007/978-3-319-16715-2_7

[28] David Derler and Daniel Slamanig. 2016. Fully-Anonymous Short Dynamic Group

Signatures Without Encryption. Cryptology ePrint Archive, Report 2016/154.

[29] David Derler and Daniel Slamanig. 2018. Highly-Efficient Fully-Anonymous

Dynamic Group Signatures. In AsiaCCS 2018, Jong Kim, Gail-Joon Ahn, Seungjoo

Kim, Yongdae Kim, Javier López, and Taesoo Kim (Eds.). ACM, 551–565. https:

//doi.org/10.1145/3196494.3196507

[30] Alex Escala and Jens Groth. 2014. Fine-Tuning Groth-Sahai Proofs. In PKC 2014.
630–649. https://doi.org/10.1007/978-3-642-54631-0_36

[31] Georg Fuchsbauer and Romain Gay. [n.d.]. Weakly Secure Equivalence-Class

Signatures from Standard Assumptions. In PKC 2018.
[32] Jun Furukawa and Shoko Yonezawa. 2004. Group Signatures with Separate and

Distributed Authorities. In SCN 2004. 77–90. https://doi.org/10.1007/978-3-540-

30598-9_6

[33] Taher El Gamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms. In CRYPTO 1984. 10–18. https://doi.org/10.1007/3-540-

39568-7_2

[34] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language and

Constant Size Group Signatures. In ASIACRYPT 2006 (Lecture Notes in Computer
Science), Xuejia Lai and Kefei Chen (Eds.), Vol. 4284. Springer, 444–459. https:

//doi.org/10.1007/11935230_29

[35] Jens Groth. 2007. Fully Anonymous Group Signatures Without Random Oracles.

In ASIACRYPT 2007. 164–180. https://doi.org/10.1007/978-3-540-76900-2_10

[36] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for

Bilinear Groups. In EUROCRYPT 2008. 415–432. https://doi.org/10.1007/978-3-

540-78967-3_24

[37] Christian Hanser and Daniel Slamanig. [n.d.]. Structure-Preserving Signatures

on Equivalence Classes and Their Application to Anonymous Credentials. In

ASIACRYPT 2014.
[38] Dennis Hofheinz and Eike Kiltz. 2008. Programmable Hash Functions and Their

Applications. In CRYPTO 2008. 21–38. https://doi.org/10.1007/978-3-540-85174-

5_2

[39] Aggelos Kiayias and Moti Yung. 2005. Efficient Secure Group Signatures with

Dynamic Joins and Keeping Anonymity Against Group Managers. In Mycrypt
2005. 151–170. https://doi.org/10.1007/11554868_11

[40] Aggelos Kiayias andMoti Yung. 2005. Group Signatures with Efficient Concurrent

Join. In EUROCRYPT 2005. 198–214. https://doi.org/10.1007/11426639_12

[41] Aggelos Kiayias and Moti Yung. 2006. Secure scalable group signature with

dynamic joins and separable authorities. IJSN 1, 1/2 (2006), 24–45. https:

//doi.org/10.1504/IJSN.2006.010821

[42] Aggelos Kiayias and Hong-Sheng Zhou. 2007. Hidden Identity-Based Signatures.

In Financial Cryptography and Data Security, 11th International Conference, FC
2007, and 1st International Workshop on Usable Security, USEC 2007, Scarborough,
Trinidad and Tobago, February 12-16, 2007. Revised Selected Papers (Lecture Notes in
Computer Science), Sven Dietrich and Rachna Dhamija (Eds.), Vol. 4886. Springer,

134–147. https://doi.org/10.1007/978-3-540-77366-5_14

[43] Benoît Libert, Thomas Peters, and Moti Yung. 2012. Group Signatures with

Almost-for-Free Revocation. In CRYPTO 2012. 571–589. https://doi.org/10.1007/

978-3-642-32009-5_34

[44] Benoît Libert, Thomas Peters, and Moti Yung. 2012. Scalable Group Signatures

with Revocation. In EUROCRYPT 2012. 609–627. https://doi.org/10.1007/978-3-

642-29011-4_36

[45] Benoît Libert, Thomas Peters, and Moti Yung. 2015. Short Group Signatures via

Structure-Preserving Signatures: Standard Model Security from Simple Assump-

tions. In CRYPTO 2015. 296–316. https://doi.org/10.1007/978-3-662-48000-7_15

[46] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. [n.d.]. Constant-Size

Group Signatures from Lattices. In PKC 2018.
[47] Yusuke Sakai, Jacob C. N. Schuldt, Keita Emura, Goichiro Hanaoka, and Kazuo

Ohta. 2012. On the Security of Dynamic Group Signatures: Preventing Signature

Hijacking. In PKC 2012. 715–732. https://doi.org/10.1007/978-3-642-30057-8_42

[48] Gene Tsudik and Shouhuai Xu. 2003. Accumulating Composites and Improved

Group Signing. In ASIACRYPT 2003. 269–286. https://doi.org/10.1007/978-3-540-

40061-5_16

[49] BrentWaters. 2005. Efficient Identity-Based EncryptionWithout RandomOracles.

In EUROCRYPT 2005. 114–127. https://doi.org/10.1007/11426639_7

https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/978-3-540-40061-5_15
https://doi.org/10.1007/978-3-540-40061-5_15
https://eprint.iacr.org/2018/641
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-540-28628-8_3
https://eprint.iacr.org/2018/261
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/978-3-540-30598-9_9
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-319-70972-7_2
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1145/3196494.3196507
https://doi.org/10.1145/3196494.3196507
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-540-30598-9_6
https://doi.org/10.1007/978-3-540-30598-9_6
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/11554868_11
https://doi.org/10.1007/11426639_12
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1007/978-3-540-77366-5_14
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-32009-5_34
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/978-3-642-30057-8_42
https://doi.org/10.1007/978-3-540-40061-5_16
https://doi.org/10.1007/978-3-540-40061-5_16
https://doi.org/10.1007/11426639_7

	Abstract
	1 Introduction
	1.1 Formal Models of Group Signatures
	1.2 Our Contribution in Detail

	2 Preliminaries
	2.1 Signatures on Equivalence Classes
	2.2 Signatures with Flexible Public Key
	2.3 Additional Preliminaries
	2.4 Assumptions
	2.5 Programmable Hash Functions
	2.6 Non-Interactive Proof Systems
	2.7 Digital Signatures and Public Key Encryption

	3 Fully Dynamic Group Signatures
	3.1 Security Definitions
	3.2 Leave-Join Privacy for FDGS

	4 Our Construction
	5 Discussion and Efficient Instantiation
	6 Efficient Signatures with Flexible Public Key
	Acknowledgments
	References

