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Abstract. How can we succinctly describe a large, dynamic graph over
time? Given a large dynamic graph, can we find “important” patterns
that evolve over time, so that we can easily summarize and visualize it?
In real life, these patterns signify interaction between nodes over time -
for example, how the network traffic of a bank changes during the day,
how calling patterns change season over season, or how people watch dif-
ferent genre of movies over different times of the year. Our work focuses
on the problem of how we find and rank these patterns. To this end, we
formalize this problem as minimizing the encoding cost in a data com-
pression paradigm and propose Mango, an effective heuristic for finding
evolving patterns in dynamic graphs. We then apply our method to syn-
thetic datasets and dblp and show that Mango is able to summarize
dynamic graphs by finding meaningful static and temporal patterns.

This work is currently in progress and we are evaluating performance
on real world datasets. We are sharing preliminary evaluation on a few
synthetic datasets and a popular real-world dataset, dblp.
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1 Introduction

Given a social network, such as Twitter, over time, how can we best describe its
structure and connectivity? Is it random, or are there a set of structures that exist
through multiple timesteps, evolving through time? When summarizing dynamic
graphs, it is important to not just generate succinct summaries for the present
timestep, but also understand its corresponding interactions and relationships
with the past and future instances. Our work aims to accomplish exactly this;
specifically, we focus on generating concise summaries of large dynamic graphs
to better understand their underlying characteristics.

Graph structures are among the most frequent and popular data structures
given their flexibility and dynamism. The world wide web, social networks,
databases, biological records, and knowledge graphs are all examples of large-
scale interconnected graphs. Dynamic graphs are extensively used to model re-
lationships over time: How does a LinkedIn user’s connections evolve over time?
Do certain authors always work together in certain conferences year over year?
These queries that can easily be modeled using dynamic graphs.
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Many approaches use community detection, clustering, or graph-cut algo-
rithms to summarize the graph in terms of its communities, but lack explicit
ordering [1–3]. These approaches also fail to characterize the subgraphs (e.g.,
clique, star) and do not align to our goal – we want to describe the structures in
a graph using an enriched set of “vocabulary” terms: cliques, stars, and bi-partite
cores. These vocabulary terms provide advantages over other characterizations:
(a) “cavemen” graphs can be detected using cliques (b) stars [4] and bi-partite
cores [3] are very common, and have semantic meaning (e.g., factions, bots) in
real networks we have seen in practice (e.g., IMDB movie-actor graph, Netflix
movie recommendations). Furthermore, these algorithms are only suitable for a
static context, and do not offer direct dynamic counterparts. Other algorithms,
like TimeCrunch [5], do work in a dynamic setting, but focus on finding static
patterns that appear over multiple timesteps. Our work aims to model how these
relationships between nodes evolves over time, i.e. we want to first find patterns,
and then explain how these patterns change over time.

In this work, we propose Mango, an efficient method to summarize and un-
derstand large dynamic graphs that extend beyond dense and isolated “cavemen”
networks. We formalize our goal as a lossless compression problem, i.e. the best
summary of a dynamic graph is a set of subgraphs and a set of dynamic nodes
that best describes the graph over time. To accomplish this, we define a vocabu-
lary to express the structures, its temporal presence, and its dynamic behavior.
Our method, Mango, then uses the Minimum Description Length (MDL) prin-
ciple to select the model that results in the best compression of the graph. By
finding subgraphs and corresponding dynamic nodes that compresses a dynamic
graph best, our approach helps a human understand the main graph character-
istics and its temporal connectivity behavior in a simple, non-redundant manner.

Our main contributions are as follows:
– We formulate the dynamic graph summarization problem in terms of Mini-

mum Description Length (MDL) principle.
– To efficiently discover the static and temporal patterns in dynamic graphs,

we propose Mango.
– We evaluate our algorithm on several synthetic and real-world graphs with

millions of edges, and show quantitative and qualitative results.

The remainder of this work is organized as follows. We cover related work in
Section 2. In Sections 3 and 4, we respectively present the problem formulation
and describe our method in detail. We evaluate Mango using synthetic and real
data in Section 5. In Section 6, we round up with conclusions and future work.

2 Related Work

We classify the related work into three categories: static graph mining, tempo-
ral graph mining, and graph compression and summarization. We discuss them
below.
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2.1 Static Graph Mining

Most works in static graph mining, like eigendecomposition [6], cross-associations
[7], and modularity-based optimization methods [8, 9], find specific, tightly-knit
structures, such as (near-) cliques and bipartite cores. Some information theory
based approaches, like Dhillon et al. [10], exist, but they have limited struc-
tural vocabularies. Other works, like cut-based partitioning [11, 12], or spectral
partitioning using multiple eigenvectors [13], require parameters and differ from
our objective of identifying communities by instead seeking hard clustering of
all nodes. Other approaches, like Subdue [14] and other fast frequent-subgraph
mining algorithms [15], focus on labeled graphs. Our work focuses on unlabeled
graphs and uses lossless compression.

2.2 Temporal Graph Mining

Most work on temporal graphs focuses on the evolution of specific properties,
change detection, or community detection. Aggarwal et al. [16] use projection
clustering to detect change in streaming graphs. GraphScope [17] finds dense
temporal cliques and bipartite cores by using graph search for hard-partitioning
of temporal graphs. Com2 [18] uses CP/PARAFAC decomposition with MDL
for the same. Other approaches have limited vocabulary and provide no inter-
pretability for dynamic graphs. Ferlez et al. [19] use incremental cross-association
for change detection in dense blocks, whereas Pei et al. [20] mine atemporal cross-
graph quasi-cliques. Dynamic clustering [21] finds stable clusters over time by
penalizing deviations from incremental static clustering. Our work differs from
these approaches as it focuses on interpretability and is based on a vocabulary,
and we mine subgraphs that may be present in one, some or all instances of the
dynamic graph. TimeCrunch [5] summarizes dynamic graphs and bears close re-
semblance to our work. TimeCrunch generates static subgraphs that are wholly
present in one or more snapshots in a dynamic graph. Our approach, however,
not only finds structures that are present in multiple snapshots, but also cap-
tures the evolution of these structures by giving it flexibility to change forms
(for example, clique to star), grow/shrink, and split/merge.

2.3 Graph Compression and Summarization

There is limited work in Graph Compression and Summarization, and the ap-
proaches generally apply only to static graph without an obvious extension to
dynamic graphs. SlashBurn [22] is a recursive node-reordering approach to lever-
age run-length encoding; weighted graph compression [23] simplifies graph rep-
resentation by using structural equivalence to collapse nodes/edges. VoG [24]
uses MDL to label subgraphs in terms of stars, (near) cliques, (near) bipartite
cores and chains. MeGS [25] also uses MDL to label cliques, bipartite, tree, hub
and sparse subgraphs. A direct extension of these algorithms to dynamic graphs
would lead to multiple disconnected descriptions and not solve our purpose of
interpretable, connected, and succinct summaries. These methods, however, are
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still relevant when summarizing individual snapshots of graphs. Our work builds
on the works of Koutra et al. [24], extending their vocabularies to model the dy-
namic structures over multiple timesteps.

3 Problem Formulation

In this section we formulate the dynamic graph summarization problem. We
analyze undirected dynamic graphs using fixed length, discretised time inter-
vals. We treat this problem as a series of individual snapshots of graphs over
T timesteps. We consider a dynamic graph G(V, E) with adjacency tensor A, n
= |V| nodes, m = |E| edges, and T timesteps. Given Gt and Et, the respective
graph and edge snapshots at tth timestep, we can write our dynamic graph as:

G =
⋃
t

Gt(V, Et) (1)

We use a similar notation and vocabulary as described in Shah et al. [5]
and Koutra et al. [24]. We consider a set of temporal phrases φ = ∆ × Ω × θ,
where ∆ corresponds to the set of temporal signatures, Ω corresponds to the set
of structure vocabulary, θ corresponds to the set of dynamic signatures, and ×
denotes the Cartesian set product. We choose four temporal signatures: oneshot
(o), periodic (p), sequential (sq) and sporadic (sp), and five commonly occurring
structures: stars (st), full and near cliques (fc, nc), and full and near bi-partite
cores (bc, nb). The key difference between our work and TimeCrunch [5] is how
flexible we let our structures be. Unlike TimeCrunch, structures in our work are
afforded one or more of five dynamic properties: consistent (c), grow/shrink (gs),
change pattern (cp), split (s), and merge (m). In particular, we define a set of
dynamic signatures, θ, to capture the dynamic behavior of each structure, with
θ = {c, gs, cp, s, m}. We elaborate these in detail in Section 3.2. To summarize,
we have temporal signatures ∆ = {o, p, sq, sp}, structure vocabulary Ω = {st,
fc, nc, bc, nb}, dynamic signatures θ = {c, gs, cp, s, m}, and temporal phrases
φ = ∆×Ω × θ.

Informally, our goal is to model parts of the adjacency tensor A by a set
of static and temporal patterns that are part of our vocabulary φ, and encode
the remaining unmodelled edges of A as noise/error. For example, a possible
summary for a tensor A over 3 timesteps could be – a set of static structures
(Oneshots) at t=1,2,3, a set of dynamic structures beginning at t=1,2, and an
error matrix consisting of edges not described by models but present in A.

We next formulate our problem in a compression setting, define our model
family M, and describe how a model M εM is encoded in bits.

3.1 MDL for Dynamic Graph Summarization

In general, the MDL principle [26] is a practical version of Kolmogorov Com-
plexity [27], and is often associated with the slogan Induction by Compression.
In this work, we use two-part or crude MDL, and encode the model and data
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separately. We choose two-part MDL as we are particularly interested in the
model: the structures that best describe the dynamic graph. The two-part MDL
can be described as follows. Given a model family M, the best model M ε M
minimizes:

L(M) + L(D|M), (2)

where

– L(M) is the length in bits to describe model M , and
– L(D|M) is the length, in bits, to describe data D when encoded using M .

We consider ordered lists of temporal graph structures with possible node
overlap as models M ε M. Given the adjacency tensor A, we describe edges
on a first-come-first-serve basis. At timestamp t, a structure s ε M describes a
region on the adjacency tensor A. We will use the area(s, M, A) to describe the
edges (i, j) induced by the structure s, and use area(s) whenever M and A are
known.

We now discuss the approach to transmit the adjacency tensor, A. We trans-
mit the adjacency tensor per timestep. For each timestep t, we transmit the
model at that timestep, Mt. Next, given model M, we iteratively consider each
dynamic structure s ε Mt. A dynamic structure s ε Mt, is one that starts at
timestep t, and can exist in subsequent timesteps. With each structure s, we
induce the edges in area(s) in the approximation of adjacency tensor M, and we
want M ≈ A. Given that M is a summary approximation of A, it is most likely
that M 6= A. To ensure fair comparison between models, MDL requires lossless
encoding. Hence, besides M, we also transmit the error E, which encodes the
error w.r.t. A. We obtain E by taking the exclusive OR between M and A, i.e.
E = M⊕A. Given M and E, we can reconstruct the original adjacency tensor
A without loss.

In the following subsections, we look at how to encode the model M. For
encoding the error tensor E, we use encodings provided by Koutra et al. [24].

3.2 Encoding the Model

We first describe how a model that first appears at timestep t, Mt ε M, is
encoded.

L(Mt) =
∑
Dε∆

[
log |D|︸ ︷︷ ︸

type of temporal
signature D

+LN (|Mt|+ 1) + log

(
|Mt|+ |Ω| − 1

|Ω| − 1

)
︸ ︷︷ ︸

total # of structures of type D beginning
at time t, per structure type

+
∑
sεMt

(− logPr(x(s)|M) + L(s) + L(t(s)) + L(d(s)))︸ ︷︷ ︸
per structure, in order, type, its details, future

timesteps, and dynamic nodes for future timesteps

] (3)
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For a given timestep t, we transmit all models of the same temporal structure
together. For example, we first transmit the Oneshots, then the Sequentials, fol-
lowed by the Periodics, and finally the Sporadics that begin at timestep t. So we
first transmit the type of temporal structure D and the total number of struc-
tures of type D beginning at timestep t, using LN , the MDL optimal encoding
for integers ≥ 1 [26]. Next, we optimally encode the number of structures of each
type xεΩ in model Mt. Then for each structure sεMt, we encode its type using
optimal prefix code [28], its ordered temporal presence, and the set of dynamic
nodes over those timesteps. The overall cost for all T timesteps can then be
calculated as:

L(M) = LN (|T |)︸ ︷︷ ︸
# of timesteps

+

T∑
t=1

[
log T︸ ︷︷ ︸

timestep id

+ L(Mt)︸ ︷︷ ︸
cost at timestep t

]
(4)

We next define the different encoding costs to compute the encoded length of
a model. For each graph structure type, L(s) corresponds to the encoding cost
of area(s) induced by s. Further, L(t(s)) and L(d(s)) correspond to the encoding
cost of the future timestamps that the structure s occurs in, and changes to it
over those timestamps, respectively. We next discuss these individual encoding
costs.

Encoding the structure: In this section we discuss the encoding cost for
a static structure belonging to our defined vocabulary Ω, L(s). Unless stated
specifically, we consider that we will pick nodes for structure s from all n = |V|
nodes in the graph, i.e. we write L(s) whenever we consider all n nodes in the
graph. We write L(s,m) whenever we pick structure s from m nodes, m 6= n.

Cliques : For a full clique, i.e. a set of fully-connected nodes, we first encode
the number of nodes, and then their ids

L(fc) = LN (|fc|)︸ ︷︷ ︸
# of nodes

+ log

(
n

|fc|

)
︸ ︷︷ ︸

node ids

(5)

Since M generalizes the graph, we do not require that fc is a full clique in Gt.
If only a few edges are missing, it may still be convenient to describe it as a
full clique. Every missing edge, however, adds to the cost of transmitting E.
Less dense or near-cliques are also interesting provided they stand out from the
background. We can encode near-cliques as follows:

L(nc) = LN (|nc|)︸ ︷︷ ︸
# of nodes

+ log

(
n

|nc|

)
︸ ︷︷ ︸

node ids

+ log(|area(nc)|)︸ ︷︷ ︸
# of edges

+ ||nc||l1 + ||nc||′l0︸ ︷︷ ︸
edges

(6)

We transmit the number and ids of nodes as in Equation 5. We identify the num-
ber of present and missing edges by using optimal prefix codes. We write ||nc||
and ||nc||′ for the number of present and missing edges in area(nc), respectively.
Then, l1 = log ||nc||/(||nc||+ ||nc||′), and l0 = − log ||nc||′/(||nc||+ ||nc||′), are
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the lengths of the optimal prefix codes for respectively present and missing edges.
Intuitively, the denser/sparser a near-clique is, the cheaper it is to encode. This
encoding is exact and no edges are added to E.

Bipartite Cores: Bipartite cores are non-empty, non-intersecting sets of
nodes, A and B, for which there are edges only between the sets A and B, and
not within. The encoded length of a full bipartite core bc is

L(bc) = LN (|A|) + LN (|B|)︸ ︷︷ ︸
# of nodes in A and B

+ log

(
n

|A|, |B|

)
︸ ︷︷ ︸

node ids in A and B

(7)

Here we first encode the size of A and B, and then their ids. Similar to cliques,
we also encode the near bipartite cores as

L(nb) = LN (|A|) + LN (|B|)︸ ︷︷ ︸
# of nodes in A and B

+ log

(
n

|A|, |B|

)
︸ ︷︷ ︸

node ids in A and B

+ log(|area(nb)|)︸ ︷︷ ︸
# of edges

+ ||nb||l1 + ||nb||′l0︸ ︷︷ ︸
edges

(8)

As with near-cliques, encoding of near-bipartite cores is exact and does not add
to E.

Stars : A star is characterized by a single “hub” node connected to a set of
2 or more “spoke” nodes. We can encode stars as:

L(st) = LN (|st| − 1)︸ ︷︷ ︸
# of spokes

+ log n︸︷︷︸
hub node id

+ log

(
n− 1

|st| − 1

)
︸ ︷︷ ︸
ids of spoke nodes

(9)

We first transmit the number of spokes of the star, followed by the id of the hub
node (out of n nodes) and then the spokes from remaining n-1 nodes.

Encoding Temporal Signatures We now describe how to compute encoding
cost L(t(s)) for each temporal signature t(s)ε∆, where each temporal signature
t(s) consists of a set of ordered list of timesteps in which s occurs.

Oneshot: Oneshot structures appear in only one timestep. To encode them,
we only need to encode the timestep they occur in, and given Equation 4 already
incorporates this, we do not need any further encoding.

Sequential: A Sequential structure occurs in every timestep between tstart
and tend, and can be encoded as:

L(sq) = log

(
T

2

)
︸ ︷︷ ︸

choose tstart and tend

(10)
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Periodic: Periodic structures occur in not all, but at fixed intervals between
tstart and tend. We can identify the timesteps the structure occurs in using the
number of timesteps |p|, tstart, and tend. We can encode periodics as:

L(p) = LN (|p|)︸ ︷︷ ︸
# of timesteps

+ log

(
T

2

)
︸ ︷︷ ︸

choose tstart and tend

(11)

Sporadic: Sporadic structures occur in not all but in multiple timesteps
between tstart and tend, without following a periodic pattern. We can encode
Sporadic structures as:

L(sp) = LN (|sp|)︸ ︷︷ ︸
# of timesteps

+ log

(
T

|sp|

)
︸ ︷︷ ︸
timestep ids

(12)

Encoding Dynamic Structures We now discuss how we encode the dynamic
properties, L(d(s)), for our structures. As we briefly mentioned earlier, each of
the structures can occur in multiple timesteps, and is allowed to have these dy-
namic properties: consistent (c), grow/shrink (gs), change pattern (cp), split (s),
and merge (m). These properties help capture how a structure can evolve over
time. We now discuss each of these properties alongwith its encoding cost:

Consistent: A Consistent structure doesn’t change over multiple timesteps,
in type, or in number of nodes. Given no nodes are added/removed, we need not
add anything to L(d(s)) for Consistent graphs. Given the simple encoding for
such structures, it may be worthwhile to encode structures as Consistent even if
such a labelling is not precisely accurate. However, the excess edges caused by
Consistent structures adds to the cost of transmitting E.

Grow/Shrink: A structure Grows/Shrinks if nodes are added/removed from
it, and its type remains same. We first encode the base structure, and for each fu-
ture timestep, we encode the nodes added/removed during that timestep. Given
our base structure types, we have two different encoding costs, one for stars and
cliques, and the other for bipartite cores.

– Stars and Cliques: For stars and cliques, we need to keep the list of nodes
that are added or removed over different timesteps. The encoding cost is:

L(gs) =
∑
tεt(s)

LN (|n+t |)︸ ︷︷ ︸
# nodes added

at time t

+ LN (|n−t |)︸ ︷︷ ︸
# nodes removed

at time t

+ log

(
|n| − |S|
|n+t |

)
︸ ︷︷ ︸
node ids of nodes
added at time t

+ log

(
|S|
|n−t |

)
︸ ︷︷ ︸

node ids of nodes
removed at time t

(13)
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Let |S| be the size of base structure, we first encode the number of nodes
added/removed, and then respective ids of nodes that were added/removed.
When picking ids that were added, we do not consider ids that were already
part of the structure. Similarly, we only pick removed nodes from nodes
that were already in |S|. To identify growth type, i.e. whether a structure
grows or shrinks, we can check the sign of the difference |n+t | − |n−t |, a pos-
itive sign indicates a growing structure, while a negative sign indicates a
shrinking structure. At every timestep, we update the error E based on the
updated structure, i.e. considering the base structure, added nodes, and re-
moved nodes.

– Bipartite Cores: For bipartite cores, in addition to maintaining the nodes
that were added/removed, we also have to maintain in which core are these
nodes added or removed. The encoding cost is then given by:

L(gs) =
∑
tεt(s)

2∑
j=1︸︷︷︸

for both cores

[
log 2︸︷︷︸
core id

+ LN (|n+t |)︸ ︷︷ ︸
# nodes added

at time t

+ LN (|n−t |)︸ ︷︷ ︸
# nodes removed

at time t

+ log

(
|n| − |S|
|n+t |

)
︸ ︷︷ ︸
node ids of nodes
added at time t

+ log

(
|S|
|n−t |

)
︸ ︷︷ ︸

node ids of nodes
removed at time t

] (14)

The encoding is similar to the previous case, however, we now consider both
cores in the structure. To identify growth type, we now consider the sign of
the difference |n+t |−|n−t | for both cores, a positive sign on both cores indicates
that both cores are growing, while a positive sign on one and negative on the
other show that one core is growing while the other is shrinking. We update
the error E at every timestep considering both cores in the structure, and
the respective nodes added(removed) to(from) each.

Change Pattern: To capture changing patterns, we only need to specify
the new structure at the next timestep. Let the initial structure be s1 and it
changes to a structure of different type s2 at the next timestep, we can then just
encode the new structure at the next timestep:

L(cp) = L(s2) (15)

It is important to note that while transmitting such structures, we need to spec-
ify to the receiver when exactly the pattern change is happening. As we will
discuss later in this section, keeping track of when a change is happening en-
ables us to use multiple different dynamic properties for the same structure.

Split: A split happens when a large structure splits into two or more smaller
structures. Encoding splits is similar to encoding changing patterns, we only
need to send bits of the new substructures. However, it is important to notify
the receiver that a split is happening at the current timestep. Let the base
structure s have |S| nodes. Given the nodes for substructures can only be from
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the base structure, we can then write a split of s into s1 and s2 as:

L(s) = log

(
|S|
|s1|

)
︸ ︷︷ ︸

ids in s1

+L(s1, |S|)︸ ︷︷ ︸
encoding s1

+ log

(
|S|
|s2|

)
︸ ︷︷ ︸

ids in s2

+L(s1, |S|)︸ ︷︷ ︸
encoding s2

(16)

Merge: Similar to split, we can encode a merge of two structures s1 and s2
into s by maintaining these nodes in the new structure. The encoding is:

L(m) = L(s, |s1|+ |s2|) (17)

Adding multiple dynamic properties to a structure: Structures are al-
lowed to have multiple dynamic properties across timesteps, for eg., a structure
may be consistent at one timestep, grow/shrink at the next timestep, and split
later on. To enable the same, we add a cost log |θ| for the structure at ev-
ery timestep, to indicate what is the behavior of the structure at the current
timestep (note |θ| = 5, given we have 5 dynamic properties).

We now have all the necessary ingredients to formally define the dynamic
graph summarization problem:

Problem 1. Minimum Dynamic Graph Description Problem
Given a dynamic graph G with adjacency tensor A and temporal phrases φ, we
want the smallest model M that minimizes the total encoding length

L(G,M) = L(M) + L(E) (18)

where E is the error tensor computed as E = M⊕A and M is the approxima-
tion of A given M. It can be noted that L(E) maps to L(D|M), introduced in
Equation 2.

Complexity of search spaceM: It is important to note that the search space
of M is combinatorial, it involves choosing the smallest encoding cost from all
possible subsets of temporal structures C, from all possible structures over the
vocabulary Ω, over all possible timesteps T. Additionally, it does not exhibit
trivial structures like modularity or (weak) (anti)monotonicity that could be
exploited for efficient search. Miettinen and Vreeken [29] showed that finding
the MDL optimal model of only full-cliques is NP-hard. Considering the com-
putationally challenging task at hand, we have to resort to heuristics. We now
propose Mango, a greedy heuristic to summarize dynamic graphs.

4 Proposed Algorithm: Mango

Mango is a greedy heuristic that combines static candidates to generate tem-
poral patterns in summaries. As a prerequisite, we generate static summaries
on individual snapshots using VoG [24], MeGS [25], or any other graph summa-
rization method that follows a similar vocabulary to ours. Mango then picks
candidates from these static summaries and forms a priority queue to evaluate
which candidates improve the MDL score for the dynamic graph using encodings
detailed in Section 3.2. A pseudo code of the algorithm is given in Algorithm 1.
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Broadly, the algorithm runs in four steps:

Step 1: Candidate Generation. First, we follow a one-vs-all approach to
generate candidates for one snapshot w.r.t. all other snapshots. Given static sum-
maries for graph snapshots V G1...V GT , for each snapshot Gi, we use edge inter-
section scores and MDL scores to find candidates from snapshots G1..Gj 6=i..GT
that are a good fit for Gi. This step also surfaces structures that were missed in
Gi but found in other snapshots by our static summarizer.

Step 2: Form Similar Candidate Combinations. Next, given the can-
didate list from the previous step, we form combinations of candidates that
would be a good fit for the current snapshot. This step is crucial for determining
candidates for split and merge scenarios.

Step 3: Generate Priority Queue. Then, given a combination of candi-
dates from other snapshots, we find if there are competing similar structures
in the current snapshot. Lack of competing structures implies our summarizer
failed to detect the structures in the current snapshot, and the structures should
be added to the current snapshot’s summary. We add the candidate combina-
tions and their corresponding competing candidates to a priority queue based
on the MDL scores of the candidates.

Step 4: Generate summary assembly from Priority Queue. Finally,
for all candidate combinations and its corresponding competing structures, we
check if adding candidates in a dynamic fashion (using scores defined in section
3.2) improves the MDL score for the dynamic graph. This comparison validates
if we should keep individual static structures or replace them with a dynamic
one. This also verifies if the competing model is a better fit or the candidate
does a better job of explaining the snapshot.

We now evaluate the performance of Mango on large dynamic graphs.

Algorithm 1: Greedy Dynamic Summarization

Input: Graph snapshots G1, ..., GT , respective static summaries V G1, ..., V GT

Step 1: Candidate Generation. For each snapshot Gi, generate list of
candidates C1, C2, ..., Cn from all other snapshots.

Step 2: Generate Candidate Combination. Given list of candidates
C1, C2, ..., Cn, generate combinations Cj ...Ck, Cm...Cn, .... that are a good fit
for the current snapshot.

Step 3: Form Priority Queue. Given combinations Cj ...Ck, Cm...Cn, .... and
current snapshot summary V Gi, for each candidate combination generate
competing models from V Gi. Add to priority queue based on MDL score fit.

Step 4: Summary Assembly. For each candidate combination and its
corresponding competing model, determine if the combination forms a good
dynamic summary w.r.t. baseline, if yes add to summary.

return updated dynamic graph summaries V G1, ..., V GT
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5 Experiments

In this section, we aim to answer the following questions: Are dynamic graphs
well structured, or random and noisy? What structures exist in the dynamic
graphs, how do they change over time, and can Mango detect them? We first
run Mango on synthetic data to evaluate if Mango can find structures that
exhibit dynamic behavior over multiple snapshots. We then run Mango on dblp,
a large real world dataset providing bibliographic information on major computer
science journals and proceedings, to identify if temporal patterns exist in real
world graphs and whether Mango can find them.

For all our experiments, we use SlashBurn [22] for generating candidate static
structures. It is scalable, and designed to extract structures from real-world
non-cavemen graphs. We use VoG [24] for generating summary for individual
snapshots, and pick GREEDY’NFORGET model selection heuristic which greedily
selects upto 10000 models. We ignore small structures of <5 nodes.

5.1 Synthetic Experiments

To understand if Mango can detect the presence of structures over multiple
snapshots and capture their evolution through time, we first consider data with
known ground truth. We create two synthetic datasets. In the first setting, we
create a dynamic graph with 10 timesteps, with each timestep having n = 10000
nodes. We randomly populate the snapshots so that they have an edge density
of 0.1% (∼50000 edges). We then create 25 structures (5 of each type in our
vocabularyΩ), and randomly put each structure in 5 different timesteps. Mango
identifies all 25 structures, and also identifies the 5 timesteps each of them is
present in.

When finding Consistent graphs over multiple timesteps, one important ad-
vantage our method has over TimeCrunch [5] is that Mango can populate
missing structures in all other timesteps provided it finds them in at least one
timestep. As we use VoG [24] as our static summarizer, we have observed that
VoG often misses very small patterns (between 5-7 nodes). If VoG, however, fails
to report even one instance of the pattern, our algorithm cannot show it as well.

Our second setting captures the dynamic behavior of structures. We use a
similar setting as above, but now specifically plant four structures to capture
their dynamic behavior. We first plant a clique that shrinks initially and then
grows. We then plant a clique that splits into two smaller cliques. We also do a
reverse of the previous case and merge two smaller cliques into a larger clique. We
use cliques for split/merge for a more understandable behavior. Finally, we plant
a bipartite-core that changes into a clique in the next timestep. Our algorithm
is able to detect all four scenarios, as shown in Fig. 2.

5.2 Experiments on dblp

The synthetic datasets were ideally suited for our algorithm. We now explore if
Mango fares well on a large real-world dynamic graph. We run Mango on the
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(a) A full clique shrinking and then growing
(b) A full clique splits into two smaller
cliques

(c) Two cliques merge into a single large clique (d) A bipartite-core changes into a clique

Fig. 2: Results of Mango on synthetic data: Each dot signifies an edge in the
adjacency tensor. In Fig. a) Mango detects a sequential growing/shrinking clique over
5 timesteps. In Fig. b) Mango detects a split of a clique into two cliques. In Fig. c)
Mango detects a merge of two smaller cliques into a large clique. In Fig. d) Mango
detects a change from a bipartite-core to a clique.

dblp dataset, a publicly available computer science bibliography showing which
author has published with whom. We used Inproceedings data from 2001 to 2018,
with 1.25 million authors and 7.7 million unique author-author collaborations.
We now discuss a few of our findings.

Corresponding to many single instances of joint publications, Mango finds
a lot of Oneshots in dblp. Mango also finds a large number of structures that
stretch over multiple timesteps. Mango found over 450 structures that exist in
5 or more timesteps, and over 900 structures that exist in 4 or more timesteps.
Mango found one structure, a sporadic growing/shrinking clique encompass-
ing over 60 authors in biomedical engineering, including Wolfgang Birkfellner,
Helmar Bergmann and Michael Figl, spanning over 14 timesteps. Mango also
found a sporadic growing/shrinking clique centered around Vincenza Carchiolo,
Michele Malgeri, Giuseppe Mangioni and Alessandro Longheu, authors in Em-
bedded Systems, spanning over 13 timesteps. As you can see in Fig. 3a and Fig.
3b, not all edges are relevant in the structure, and our model grows/shrinks the
structure to encode the non-relevant edges as errors.
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Fig. 3: Results of Mango on dblp: We show some results of Mango on dblp and its
ability to capture dynamic behavior across timesteps. Each dot signifies presence of an
edge in the adjacency matrix, which has been truncated to show only relevant nodes.

(a) A group of authors in Embedded Systems publishing together across 13 timesteps, the group
grows from a small clique in 2003.

(b) A group of authors in Biomedical Engineering publishing together across 14 timesteps, the group
grows from a small clique in 2001, and shrinks around 2006, before growing again.

(c)A large clique splits into 2 smaller cliques.
(d) A large clique splits into 2 overlapping cliques.

(e) Structure changes type from star to clique
(f) Structure changes encoding from clique to star.
Note that rest of the nodes are encoded as errors
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We also observe many instances of dynamic changes to structures which
confirms our intuition that not all structures are consistent, but they change
over time. While the growing/shrinking of structures is fairly common, we often
see structures changing types, see Fig. 3c and Fig. 3d, and some instances of
structures splitting/merging, see Fig. 3e and Fig. 3f. It’s important to note that
given we are not altering any of the candidates found by our static summarizer
VoG [24], and letting MDL pick a combination of these candidates that work
best, not all edges fit well. In future, we can look into stitching candidates
together so as to better fit the adjacency tensor.

6 Conclusion

We studied the problem of dynamic graph summarization. Specifically, we for-
malized the problem of how patterns in dynamic graphs evolve over time as min-
imizing the encoding cost of a dynamic graph from a compression standpoint.
We proposed a heuristic, Mango, that identifies candidates and generates a dy-
namic summary over time. Finally, we shared preliminary results on synthetic
graphs and real world data.

It is important to note that this is an in-progress work and we are working
on numerous facets of the problem. We have started formal evaluation and com-
parison with similar methods on other real-world datasets like dblp, Enron and
Honeynet. While the method is designed to be parallelizable, we haven’t per-
formed a detailed performance study, and the algorithm might undergo further
finetuning based on our analysis. We are also working on other aspects like de-
termining similarity between graphs, and looking at other extensions like finding
anomalous snapshots.
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