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ABSTRACT
In this paper, we discuss the practical implementation of stealthy
attacks on industrial control systems. We start by reviewing the
attacks proposed in prior works. Then, we offer Zero-Residual
Attacks (ZeRA), which allow the attacker to launch stealthy attacks
leveraging estimation of the stateful anomaly detector andmatching
of residuals as a fraction of actual estimation residual. To perform
the zero residual attack, the attacker will require the use of two
state estimators each for the physical system state and the detector
system state, adding complexity that was so far not discussed. We
implement ZeRA and demonstrate its efficacy. Then, we propose
to use a Stateful Detector (SD) to precisely detect such stealthy
attacks. We design and implement the SD detector. The obtained
results from the performance evaluation demonstrate that we can
detect stealthy attacks such as the ZeRA, with precision above 99%,
sensitivity above 99%, and Matthews correlation coefficient above
0.98.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malwaremitigation; Systems security; •Computingmethod-
ologies → Machine learning; Modeling and simulation; • Com-
puter systems organization→ Embedded and cyber-physical sys-
tems; Sensors and actuators;
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1 INTRODUCTION
Modern Industrial Control Systems (ICS) can be connected to the
Internet for remote supervision and maintenance, and they are
using industrial protocols on top of IP and TCP protocols. Such
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connectivity raises security concerns of the ICS in both cyber and
physical levels. A modern advanced persistent threat (APT) has
compromised even systems that are ”air-gapped” (i.e., in an iso-
lated network) designed to control the ICS systems. For example,
Stuxnet [10] compromised programmable logic controllers (PLC)
over the industrial network, and the attacker eventually was able
to manipulate the industrial process state. Modern cryptographic
solutions often cannot be implemented in existing ICS for legacy
compliance and performance reasons.

In recent years, different approaches to detect such attacks were
proposed, among them (i) network-based attack detection (special-
ized on industrial protocols) similar to traditional IDS [1, 6, 19], and
(ii) stateful detection schemes that verify correct physical process
behavior and controls (focused on process models and control the-
ory) [3, 20–22]. The latter approach often uses stateful anomaly
detection techniques like CUmulative SUM (CUSUM), in the context
of water treatment systems, water distribution networks [20, 21],
and smart grids [7]. The CUSUM aggregates the residual of observed
system and estimated system state. The alarm will be raised once
the CUSUM crosses a threshold. In [5], the authors proposed a state-
aware detection scheme that considers process states in CUSUM
computation to provide a tighter bound for stealthy attackers.

To motivate our work, we discuss practical implementations of
stealthy attacks proposed in prior works. We demonstrate the feasi-
bility of performing attacks in a real ICS, forcing the process to enter
an unsafe state with zero residual of the stateful system state esti-
mation, and, without passing the detection threshold. This attack is
designed to perform the stealthy attack without any prior knowl-
edge of the stateful detection parameter settings, and of course,
without raising alarms from prior stealthy attack detection tech-
niques.

We propose Zero-Residual Attacks (ZeRA), which allow the at-
tacker to launch stealthy attacks even if such thresholds are un-
known by the attacker, leveraging estimation of the stateful anom-
aly detector and matching of residuals to noise levels. To achieve
that, the attacker leverages two system state estimators, one esti-
mator for the system state estimator at the detector side to prevent
the detection and a second system state estimator based on the
actual physical state of the ICS to estimate how close she is to her
physical goal of the attack. We implement the ZeRA attack, and
we demonstrate its efficacy. We consider additional noises to mea-
sure the effect of noise on both attacker performance and detector
performance.

As a second main contribution, we propose a defense-in-depth
countermeasure against such strong attackers who perform stealthy
attacks. We propose the Stateful Detector (SD) which uses stateful
features of the industrial control system in our detection scheme,
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which is a novel stealthy attack detection scheme with a machine-
learning based classifier that uses both stateless and stateful physi-
cal process features.

We evaluate the performance of the ZeRA attack, and its coun-
termeasure SD detector, by benchmarking the attack in a real water
treatment ICS. The implemented stealthy attack will cause an over-
flow of the water tank in a realistic water treatment system. Then,
we simulate additional noise to evaluate our proposal in a non-
deterministic case comprehensively.

We summarize the main contributions of this work as follows:

• We design and implement the ZeRA attack, which is a strong
stealthy attack and it will not trigger state-of-the-art stateful
detection techniques. We note that prior attacks require the
attacker to know the detection threshold precisely to avoid
detection. The ZeRA will keep the attacked residual at a
fraction of the actual residual.

• As a countermeasure to our new attack, we propose SD,
which is a stateful anomaly detection framework that ex-
tracts the required detection features directly from industrial
network packets.

• We evaluate the SD detector’s performance, leveraging the
ZeRA attack by a comprehensive set of realistic implemen-
tation and a simulation-based case study of the additional
noise.

Organization. The rest of this paper is organized as follows. Sec-
tion 2 provides the background of this paper. Section 3 discusses
practical implementation of stealthy attacks. In Section 4, we present
our proposed ZeRA attack. We propose the SD detector in Section 5,
and we present the evaluation and discussion in Section 6. We ex-
plore the related state-of-the-art in Section 8. Finally, the paper
concludes in Section 9.

2 BACKGROUND
In this section, we will present the industrial control system, the
water treatment system used in our performance evaluation, and
the CUSUM change point detector.

2.1 Industrial Control System
The term "Industry 4.0" or "Smart Factory" refers to the connected
industrial control systems to support aspects including Cyber-
Physical Systems, Cloud Computing, and the Internet of Things [8].
The modern industrial control systems consist of three major levels:

• Supervisory Control And Data Acquisition (SCADA): this
level of the ICS mainly used for the control and monitoring
of the industrial process that may consist of large-scale geo-
graphical distributed computers. Five major components of
the SCADA are the human-machine interface (HMI), data ac-
quisition server, historian, engineer workstations and remote
workstation.

• Programmable Logic Controllers (PLC): The local control
component that is mostly designed for managing a single
process in ICS. PLCs are industrial computers that devel-
oped for handling the process level devices like sensors and
actuators.

• Fieldbus: The physical elements like sensors and actuators
are connected to the PLC at this level. Most of the recent
Fieldbus implementations use the Device Level Ring (DLR)

with two redundant PLCs and a ring topology between those
PLCs and physical elements.

This layered design of the industrial control systems provides a
better implementation and maintenance of the whole process.

2.2 The Water Treatment System
We used a real water treatment ICS to perform the proposed attack
and evaluate the performance of the proposed detection technique.
The SWaT water treatment system is a six-stage testbed designed
for security and safety analysis of water treatment industry [12].
The first stage is intended to control inflow water to the water
tank by opening and closing a valve. Stage P2 is responsible for
chemical dosing, and it pumps the water reserved in tank 1 to the
ultrafiltration feed water tank of stage 3. Stage 3 is responsible for
pumping the water from its tank to reverse osmosis feed water tank
of stage 4.

Stage 4 controlling the water pumping through the ultraviolet
dechlorination. Stage 5 is responsible for passing the water through
a reverse osmosis unit, and it will store in a permeate tank. The
backwash process will be done in stage 6, and the water will be
rejected to ultrafiltration. In stage 6, the ultrafiltration pump will
open and close to clean the membranes from the water.

2.3 CUSUM
The residual is the absolute difference between the system reading
and its estimation. The residual is defined as:

rk = |yk − ŷk | (1)
where yk is the sensor measurement and ŷk is the estimated sensor
measurement. CUmulative SUM (CUSUM) is one the most promis-
ing proposals for possible change detection in the ICS at an un-
known change point [3]. The non-parametric CUSUM statistic is
recursively computed as follows:

Sk =

{
0 where k = 0
(Sk−1 + rk − α)+ where k , 0

(2)

where (x)+ meansmax(0,x) and α is the tuning value that se-
lected to keep |rk | − α < 0 under a normal operation. Then, the
CUSUM test will restart after crossing the threshold at time k, i.e.,
Sk+1 = 0. The state-aware anomaly detector considers the physical
state in CUSUM computation and it will raise the alarm when the
computed CUSUM passes the threshold [5].

3 PRACTICAL IMPLEMENTATIONS OF
STEALTHY ATTACKS

In this section, we discuss the system and attacker model, the sys-
tem state, greedy stealthy attack, and practical implementations of
stealthy attacks. We demonstrate that an attacker needs two state
estimators to perform stealthy attacks without prior knowledge of
detectors configuration.

3.1 System and Attacker Model
We assume that the physical processes under attack can be modeled
with sufficient precision through a linear model, which is available
to the defender. The defender is monitoring the reported sensor
and actuator data (i.e., by monitoring Fieldbus or SCADA network
traffic), and uses that data and process-aware detection mechanisms
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such as the ones proposed in [21, 22] to detect ongoing attacks. At-
tacks on the monitoring system itself (i.e., remote compromise) are
out of the scope of this work. The attacker has either compromised
a device in the Fieldbus or obtained access to the plant network
through other means, and is able to perform the stealthy attack
by manipulating the flowing traffic. The attacker’s goal is to ma-
nipulate the physical process state, e.g., to damage the system. To
achieve that goal, the attacker can either manipulate data contained
in the network traffic, or compromise sensors or actuators to di-
rectly manipulate the sensing and actuation of the physical process
while she will remain undetected by other conventional network
security solutions, cyber anomaly detectors, or physical anomaly
detection systems. The attacker might remain undetected in the
system and be present in isolated networks such as the Fieldbus
network. The attacker knows the system and the cyber detection
strategies.

Figure 1 shows the attacker setup inside the control process to
perform the stealthy attack. The controller sends the controller com-
mands (uk ) via the Fieldbus to the actuators. The actuators would
perform the actuation commands (vk ) and send the controller com-
mands (uk ) via the Fieldbus to the sensors. The sensors measure the
physical parameters from the physical process (zk ) and send the
controller commands (uk ), and sensor readings (yk ) via the Field-
bus to the attacker. The attacker sends the controller commands
(uk ), and manipulated sensor readings (yak ) via the Fieldbus to the
controller. The detector is wiretapping the Fieldbus network traffic
and reads the controller commands (uk ), and manipulated sensor
readings (yak ). The controller will receive the controller commands
(uk ), and manipulated sensor readings (yak ) and perform the next
actuation commands (uk+1) and this process will continue.

3.2 The System State
The system state will be determined by a set of variables modeling
the state of the system.We leverage approaches from control theory
where the next state of the system will be predicted by considering
the current state of the system. The process states are the specific
states determined by the discretization of the process over time. We
used the Linear Dynamical State-space (LDS) model to perform the
physical modeling of the processes:

xk+1 = Axk + Buk + ϵk
yk = Cxk + Duk + ek

(3)

where A, B, C, and D are the system matrices that determined
by system identification, k is the current state of the system and
k + 1 is the next state of the system, uk is control commands, xk is
the state of the estimated model, xk+1 is next state of the system,
and yk is sensor measurements.

ActuatorsPhysical 
Process

Sensors

Controller

Attacker

vk

yk

uk

ya
k

ya
k

DetectorSystem State 
Estimation

Detector State 
Estimation

zk

Figure 1: The stealthy attacker setup inside the Fieldbus net-
work with the detector.

3.3 Greedy Stealthy Attack
The stealthy attacker that knows the detection threshold will max-
imize the possible difference between reported sensor value and
actual sensor value while remaining undetected by stateful anomaly
detection techniques. We consider such an attacker that knows our
parameter settings and tries to avoid detection [21, 22]. An optimal
greedy attacker (ya∗) at time t will try to maximize the residual
while remaining below the threshold.

ya∗k+1 =

{
arg maxayk+1 |yk+1 − yak+1 |

arg minayk+1 |yk+1 − yak+1 |
(4)

The attacker goal in stateless detection techniques will be:

ya∗k+1 = ˆyk+1 ± τ (5)

As such, the attacker’s goal to avoid stateful detection techniques
will be:

ya∗k+1 = max{yk+1 : Sk+1 ≤ τ } (6)
The CUSUM is computed by Equation 2. A greedy optimal at-

tacker tries not to pass the threshold of CUSUM, i.e. Sk = τ . Hence,
the attacker goal will be:

ya∗k+1 = ˆyk+1 ± (τ + α − Sk ) (7)

3.4 Implementation of Stealthy Attacks
We note that to solve Equation 7 (i.e., to find values for y that will
allow a stealthy attack), the attacker requires knowledge of τ , a
precise estimate of the defender’s current CUSUM value SK , and
the residual that will be caused by the attacker signal ya∗k − ŷk
(which requires an estimate of the defender’s estimate ŷk ). In other
words, the attacker will have to run a estimation of the defender’s
process estimation, while the defender is trying to estimate the state
of a system based on the attacker’s signals. In particular, any noise
on the sensor signals that is unknown (and unpredictable) to the
attacker will diverge the attacker’s estimation of the defender’s
detection system state. We argue that this important requirement
for stealthy attacks was not sufficiently discussed so far in prior
work, and calls for a solution in which the attacker does not need
to precisely estimate SK , and ideally does not require knowledge
of τ at all.

4 PROPOSED ZERA ATTACK
In this section, we present the design of the Zero-Residual Attack
(ZeRA), a novel stealthy attack which will not trigger state-of-
the-art stateful detection techniques and it will keep the attacked
residual at a fraction of the actual residual. This new attack will
generate zero residual in control theoretical techniques such as
stateless and stateful detection techniques. In addition to zero resid-
ual characteristics of the attack, the ZeRA will generate a residual
as a fraction of the actual residual, which will harden the detection
of the stealthy attack.

4.1 Zero Residual Attack
The non-parametric CUSUM test will raise an alarm where the
computed Sk passes the detection threshold:

Sk > τ (8)
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Considering an arbitrary threshold of τ , the primary goal of the
ZeRA attack is to keep the computed CUSUM to be zero while she
is performing the attack. In this way, regardless of the value of the
τ , the attacker will execute the attack while remaining undetected.
We could rewrite the primary goal of the ZeRA attack as:

(rk − α)+ = 0 (9)
In other words, the attacker will maximize the residual in a way

that it will not pass the α in the residual computation at the detector.
The ZeRA attacker will perform the attack as follows:

yak+1 =
ˆyak+1 ± α (10)

where theyak+1 is the signal value reported to the detector by the
attacker, and ˆyak+1 is the detectors estimation of the system state
at state k + 1. Hence, the detector would compute the detection
residual as:

|rk | = |yak+1 −
ˆyak+1 | = α (11)

By performing the attack as proposed in Equation 10, the ZeRA
attacker will bypass the stateless and stateful detection techniques
introduced in [6, 22].

4.2 ZeRA with a Residual as a Fraction of
Actual Residual

The residual might be used as a fingerprinting countermeasure to
detect the stealthy attack. Hence, the ZeRA attacker wants to keep
the shape of the noises computed by LDS techniques at the detector
as a fraction of the actual estimation residual. The attacker would
report the yak+1 as:

yak+1 =

{
ˆyak+1 − β × rk if the signal is increasinд
ˆyak+1 + β × rk if the signal is decreasinд

(12)

where the β is the tuning value of the ZeRA attack and the
attacker computes the residual rk by the following equation:

rk = yk − ŷk (13)
Hence, the detector would compute the detection residual as:

|rk | = |yak+1 −
ˆyak+1 | = β × rk (14)

As discussed before, the attacker needs two state estimators:
• System State Estimation: the attacker would estimate the
current system state to find out how close she is to her phys-
ical goal and the attacker uses this estimation to compute ŷk
and to perform the ZeRA attack as a β fraction of the actual
residual (rk ).

• Detector State Estimation: the attacker needs to estimate the
detector’s system state to avoid being detected.

Figure 2 shows the two-state estimators that we have used in
the implementation of the ZeRA attack. The first system state es-
timator estimates the current state of the physical process based
on the actual sensor readings (yk ). The second system state esti-
mator is used to prevent the detection, and the attacker estimates
the detectors system state estimation and reports the manipulated
sensor readings (yak ). The ZeRA attacker will use the fraction of the
noise of the system to generate the attacked value (see Equation 12).
Then, the ZeRA attacker estimates the detector’s state to avoid the

detection while maintaining the noise (residual) of the performed
ZeRA attack as a fraction of actual noise (residual) of the system.
Finally, the ZeRA will examine whether the reported attacked value
will pass the α or not. If the attacked value does not pass the α ,
the ZeRA attacker will report the attacked value to the controller.
Otherwise, the attacker performs some tuning over the attacked
value and examines the tuned value again. As discussed before, by
performing such an attack, the conventional stateful detectors will
not be able to detect the ZeRA, cause the ZeRA will not pass the α .

5 SD DETECTOR
In the previous section, we introduced the ZeRA attack. The ZeRA
was designed to bypass the conventional detectors that are based
on stateful detection, while ZeRA can reach its physical goal. We
now propose the stateful (SD) that would be able to detect stealthy
attacks such including the ZeRA, by a novel feature sets that will
includes both stateless and stateful physical state estimation fea-
tures of the system to detect the ZeRA attack, in addition to other
previously proposed attacks.

5.1 Design Overview
Figure 3 shows the SD structure and its data processing module.
The data processing module consists of three phases:

• Training: The training phase will be done with the historical
record of the network packets that are labeled with normal
or attack label.

• Classification: The classification phase will be done during
the operational process of the ICS and reads the real-time
record of ICS network packets.

• Detection: At the detection phase, if the classifier reports an
anomaly.

The training phase will create the machine learning model, and
the historical record of the network packets will be pre-processed
to generate the desired cyber and physical records for the next
component which is the feature extraction. The features will be
extracted from the cyber and physical records and will be passed to
the training classifiers to generate the machine learning model (ML
model). We will store the ML model for real-time processing of the
real-time record of ICS network packets. During the classification
phase the same pre-processing and feature extraction components
will generate the stateless and stateful features and by using the
stored ML model the corresponding label to the real-time record of
ICS network packets will be generated.

5.2 Feature Sets
The feature sets of the SD detector will generate a machine learning
model that will be used during real-time anomaly detection. By
providing the right features to the SD detector, the SD will offer an
online detection framework for detection of strong stealthy attacks
such as the ZeRA attack. Table 1 provides the features used in
the proposed detection scheme. As we will see in Table 1, the SD
detector considers the ICS features including the actuator states,
the sensors reading, the estimation of the system state, and the
residual of that estimation.

The stateless features includes the actuation commands (process
states), the current sensor reading (or sensor signal), the estima-
tion of the sensor reading, and the residual of the estimation. We
also used stateful features over a window (κ) to have a windowed
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Figure 2: The structure of ZeRA attacker inside the Fieldbus
network.

CUSUM of the actuation commands, sensor reading, estimation of
the sensor reading, and the residual of the estimation. During the
training process, a machine learning hyper-plane will be generated
that includes the behavior of the system in normal operation by
provided features.

To generate those features, we will perform pre-processing over
the cyber and physical records. Here, our focus is on the CUSUM
that used in several stateful state estimation applications. We used a
window (κ) of the pre-processing to provide an upper bound ofκ for
the time-to-detect. The κ value is a system specific value and will be
computed in a way that the detector will detect the attack before the
attacker would enter the system to an unsafe state. The window of
actuation commands provides a window of the actuation commands
and the classifiers would classify the actuation commands based on
the history of actuation commands generated during the training
phase. The window of signal difference provides the CUSUM of
differences of the signal over thewindow. Thewindow of estimation
difference provides the CUSUM of differences of the estimation over
the window.

5.3 Implementation
We used Raspberry PI devices to perform deep packet inspection
in the Fieldbus and SCADA network by an ICS extension of the
Bro [16] intrusion detection system (IDS) and a central server to
records logs of those IDS components. These computing devices
provide detailed information about the process inside the PLC net-
work. We gather that information from all six stages in the central
server by an SSH channel. The central server receives the network
traffic from the network switch at the SCADA level. As a result, the
central server has complete information about the ICS traffic both
at Fieldbus and SCADA network level.

The central server consists of five software components. The
packet parser is an ICS extension of the Bro IDS that can parse
industrial control network packets, in particular, Ethernet/IP pack-
ets and DLR packets. The packet parser will generate detailed log
files for network-based intrusion detection, cyber, and physical
features. The cyber features are the type of packets, timing of the
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Figure 3: The structure of the SD detector inside the Fieldbus
network.

packet, and information about the payload of packets. The physical
features are extracted from the payload of the packets, including ac-
tuator states, sensor reading, and control commands. The Logstash
will read the generated logs and interpret them to store them in
our triple-store database which is Elasticsearch. We compute the
residual at the Logstash. The processed logs will be stored in the
Elasticsearch, and we use its computation capabilities on upper
layers of the framework. Kibana is an interface for visualization
of the data and running the commands on Elasticsearch. We used
Kibana for real-time visualization of the traffic. Besides, we have
the data processing module, which will process the Elasticsearch
stored data and return the results of the SD detector to be stored
in Elasticsearch. The scripts of the anomaly detection are based on
the extracted machine learning model from the training phase. We
used the WEKA libraries to generate the machine learning model
from our stored data.

6 EVALUATION AND DISCUSSION
In this section, we will present the evaluation, and discussion of
the detection performance.

6.1 ICS Use-case
We used a water tank filling process in a water treatment system
to benchmark the ZeRA attacker, and the SD detector. The Linear
Dynamical State-space model of the water tank level based on the
input Qin and output Qout volume of water tank is:

Area
dh

dt
= Qin −Qout (15)

With time discretization over one second, the water level model
will be:

hk+1 = hk +
Qin
k −Qout

k
Area

(16)

Hence, the ZeRA attacker will report the sensor reading by:

hak+1 =

{
hak + β(hk − ĥk ) if the signal is increasinд
hak − β(hk − ĥk ) if the signal is decreasinд

(17)

where β(hk −ĥk ) ≤ α . In this way, the ZeRA attacker will remain
undetected without knowing the detection scheme of the stateful
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Table 1: The features classes in the proposed scheme to detect stealthy attacks.

Formula Stateless Stateful

Actuation Commands uk  #
Sensor Signal yk  #

Sensor Estimation ŷk  #
Residual yk − ŷk  #

Window of Actuation Commands
∑k
i=k−κ ui #  

Window of Signal Difference
∑k−1
i=k−κ |yi+1 − yi | #  

Window of Estimation Difference
∑k−1
i=k−κ | ˆyi+1 − ŷi | #  

Window of Residuals
∑k
i=k−κ |yi − ŷi | #  

anomaly detector. Our implemented ZeRA attack has a physical
goal of causing a water tank overflow in the water treatment system.

To evaluate the performance of the proposed detection frame-
work, we implemented the ZeRA attack with β = 0.7, and we used
this implementation to assess our proposed detection scheme. As a
countermeasure, we performed the SD detector with κ = 2minutes
to detect the ZeRA attack, before causing a water tank overflow.
We collect the data of normal operation and system under attack
of three days, and the overall size of the data is more than 120 GB
of historical data. This data includes both extracted Fieldbus and
SCADA network traffic features and physical features. To perform
a comprehensive evaluation of those machine learning techniques,
we executed ten-fold cross-validation to measure its performance
for randomized train and test sets during the training phase.

6.2 Extension of Datasets with Simulated
Additional Noise

We consider some noise after the attacker to measure the impact
of attacker noise on the detector. We simulated noises of 5%, 25%,
and 50% of the sensor reading precision at the reported sensor
reading of the attacker to the detector. We used three scenarios of
attack where the first scenario is the actual implementation with
real data obtained from the ICS, and second and third scenario have
a simulation of an attacker that induce the noise to the detector. In
the second scenario, the start of attack will cause additional noise,
and there is not any extra noise before the start of the physical
attack (see Fig. 4c). In the third scenario, the attacker itself has an
additional noise, and the extra noise is present before and after the
start of the stealthy attack (see Fig. 4e). These attacks are simulated
with MATLAB to evaluate the effect of the noise on attacker and
detection performance while they will keep the shape of the sys-
tem noise as a Gaussian distribution. Considering the mean of the
additional random noise of the attacker of na , we could rewrite
Equation 12 as:

yak+1 =

{
yk + β × rk − na if the goal is increasinд
yk − β × rk + na if the goal is decreasinд

(18)

where the β is the tuning value of the ZeRA attack and β×rk ≤ α .
We consider the following scenarios for the additional noise, and
we used these three data sets in our performance evaluation:

• Scenario I (Noiseless): There would be no additional noise
of the attacker or attack itself (see Fig. 4a, and Fig. 4b).

• Scenario II (Noisy Attacker): There is additional noise of the
attack and after the start of the stealthy attack, the manipu-
lated sensor reading will have 5%, 25%, and 50% of additional
noise (see Fig. 4c, and Fig. 4d).

• Scenario III (Noisy Channel): There is additional noise of the
attacker and during the operational process the manipulated
sensor reading will have 5%, 25%, and 50% of additional noise
(see Fig. 4e, and Fig. 4f).

Figures 4a, and 4b show the effect of implemented ZeRA attack
on water level reading, and estimation residuals with real data
extracted from the water treatment system (Scenario I). As we will
see in 4a, the reported water level to the controller and detector is
less than what the actual sensor is reporting, and the effect of the
ZeRA attack is shown on Fig. 4b where the actual residual of the
physical process estimation is a fraction of the attacker estimation
of the system state, while the ZeRA attack manipulates the detector
residual and it is different from the actual water height estimation
of the reported sensor value. We can see the effect of attacker noise
(Scenario II) at Fig. 4c, and Fig. 4d after the start of the attack. We
can see some distortion of reported sensor reading after the start
of the attack. Also, we can observe that the attacker’s residual is
still close to the residual of the system state estimation based on
actual reported sensor value. Figures 4e and 4f show the effect of
the additional noise of the channel (Scenario III) to the system state
estimation. We can see the distortion of the reported sensor reading
after the attacker. Still, the attacker can successfully perform the
ZeRA attack, and there is a divergence of the detectors estimated
system state and the actual system state.

7 PERFORMANCE METRICS
To evaluate the performance of the proposed method we used eight
performance metrics. The true positive (TP) is the number of re-
trieved relevant instances. The false positive (FP) is the number of
retrieved non-relevant instances. The true negative (TN) is the num-
ber of not retrieved non-relevant instances. The false negative (FN)
is the number of not retrieved relevant instances. The Sensitivity
rate (Recall, eq. 19) presents the rate of retrieved relevant instances
(TP) in overall relevant instances (TP + FN). The Precision rate
(specificity, eq. 20) demonstrate the fraction of relevant instances
(TP) in overall retrieved instances (TP + FP).

Sensitivity rate =
TP

TP + FN
(19)

Precision rate =
TP

TP + FP
(20)
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(a) Water tank level reading and estimation (Scenario I).
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(b) Estimation residual (Scenario I).
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(c) Water tank level reading and estimation (Scenario II).
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(d) Estimation residual (Scenario II).
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(e) Water tank level reading and estimation (Scenario III).
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(f) Estimation residual (Scenario III).

Figure 4: Sensor readings estimation, and residuals of system state estimation.

Table 2: Performance comparison of the classifiers with data set of Scenario I with real data obtained from the control process.
The classifiers: Random Forests (RF), Naive-Bayes Tree (NBTree), Logistic Model Tree (LMT), J48, PART,Multilayer Perceptron
(MLP), Hoeffding Trees (HTree), Logistic Function (LogF), and Support Vector Machine (SVM).
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CC

RF 0.9935 0.9956 0.0004 0.0044 0.0065 0.9945 0.9942
NBTree 0.9908 0.9903 0.0006 0.0097 0.0092 0.9905 0.9899

LMT 0.9682 0.9754 0.0020 0.0246 0.0318 0.9718 0.9700
J48 0.9623 0.9680 0.0024 0.0320 0.0377 0.9651 0.9629

PART 0.9375 0.8933 0.0037 0.1067 0.0625 0.9149 0.9100
MLP 0.7556 0.7883 0.0160 0.2117 0.2444 0.7716 0.7571

HTree 0.6950 0.7132 0.0196 0.2868 0.3050 0.7040 0.6852
LogF 0.6886 0.6656 0.0189 0.3344 0.3114 0.6769 0.6571
SVM 0.5270 0.1474 0.0083 0.8526 0.4730 0.2304 0.2573
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The false positive rate (eq. 21) is the rate of retrieved non-relevant
instances (FP) in overall non-relevant instances (FP + TN). The false
negative rate (eq. 22) is the rate of not retrieved relevant instances
(FN) in overall relevant instances (FN + TP). The false discovery
rate (eq. 23) is the rate of retrieved non-relevant instances (FP) in
overall retrieved instances (FP + TP).

False positive rate =
FP

FP +TN
(21)

False negative rate =
FN

FN +TP
(22)

False discovery rate =
FP

FP +TP
(23)

The F1-score (eq. 24) is a metric for the test’s accuracy. The
F1-score (also F-score or F-measure) is defined as follows:

F1-score =
2 × Sensitivity × Precision
Sensitivity + Precision

(24)

The Matthews correlation coefficient (MCC, (eq. 25)) is a metric for
the quality of two-class classification. The MCC metric is one of the
most interesting metrics in anomaly detection where the physical
feature will be classified to normal and abnormal classes. The MCC
is defined as follows:

MCC =
TP ×TN − FP × FN√

(TP + FP) × (TP + FN ) × (TN + FP) × (TN + FN )
(25)

7.1 Evaluated Classifiers
We reviewed themost recent related papers, andwe choose themost
promising classifiers used in the related works like [2, 18]. Then, we
evaluated classifiers with ten-fold cross-validation to find the best
three classifiers for our comprehensive evaluation. The data-sets
was extracted from a database of normal operation and system
under attack of three days, and the overall size of the database
was more than 120 GB of historical data. We performed 900 ten-
fold cross-validation with a random seed in each run. Our results
showed that the LMT, Naive Bayesian Tree, and Random Forests
are suitable classifiers to be implemented inside of the framework
due to their high precision, sensitivity, and MCC. Table 2 shows
the performance evaluation of nine classifiers that we used in our
experimental evaluation process. The Random Forests (RF) shows
the best performance in comparison to other classifiers, and it could
detect ZeRA with precision above 99%, sensitivity above 99%, and
Matthews correlation coefficient above 0.99. In ICS security, we are
interested in classifiers that will provide zero false positives. In our
experiments, the Random Forests and NBTree classifiers provided
a false positive rate of maximum 0.0006. The performances of LMT
and NBTree are close to the Random Forests, and their MCC is
higher than 0.97. The other classifiers like J48 and Part are still good
candidates for stealthy attack detection in the ICS. The performance
of Hoeffding Tree (HTree), Multilayer Perceptron (MLP), Logistic
Functions (LogF), and SVM was insufficient to be considered in our
evaluation against the additional simulated noise of the attacker.

7.2 Evaluation of Noise Effect on the Detection
Performance:

In our next experiment, we evaluated the performance of the three
selected classifiers from our previous experiments against some
additional simulated noise of the attacker. The selected classifiers
are Random Forests, NBTree, and LMT. During the training phase,
we used ten runs of ten key-folds cross-validation for each classifier
to have a comprehensive evaluation of that classifier, and in total,
we had 2100 ten-fold cross-validation with a random seed in each
run. We will see in Figures 5a, 5b, and 5c that the Random Forests
works better than NBTree, and LMT. Also, the NBTree performs
better than the LMT.

Figure 5 shows the comparison between the different noise level
of the channel or the attacker. Figure 5a and 5d show the 1-Precision
ROC curve of Random Forest classifier in the presence of the noise
of the attacker and channel, respectively. By comparing the ROC
curve of Random Forest classifier with the different noise level in
both Figure 5a and Figure 5d, we would conclude that the noise will
decrease the overall performance of the classifier in the detection
of the ZeRA attack. Also, we could compare the Figure 5a and Fig-
ure 5d directly, and we would conclude that the knowledge of the
attacker about the detection mechanism would improve the over-
all performance of the attack. This is the case in Figure 5a where
the additional noise is deterministic and the attacker estimates the
channel noise. As we see in 5d, the extra noise of the attacker would
not help the attacker to reduce the classifier performance during
the detection process. We see the same behavior by comparing
Figures 5b and 5e for NBTree, and Figures 5c and 5f for LMT clas-
sifier. Table 3 shows the performance evaluation of three selected
classifiers that we used in our experimental evaluation of noise
effect. The Random Forests classifier detects the ZeRA attack with
precision above 99%, sensitivity above 99%, and Matthews correla-
tion coefficient above 0.98 with presence of the noise in Scenario II
and it detects the ZeRA attack with precision above 99%, sensitivity
above 99%, and Matthews correlation coefficient above 0.96 with
presence of the noise in Scenario III. We would conclude that the
additional noise in both Scenario II and Scenario III will reduce the
detection performance of the SD detector.

7.3 Discussion
The Random Forests learning techniques are providing the best
performance comparing to other classifiers. As discussed in the liter-
ature, the random forest is a suitable tree-based learning technique
for process modeling in cyber-physical systems. Ths industrial con-
trol systems are a subclass of the cyber-physical systems, and as
we see in this paper, random forests showed the best performance
to be used as a machine learning model inside the SD detector.

Based on the performance evaluation of the classifiers, we used
Random Forests together with the stateless, and stateful features.
We performed ten-fold cross-validation during the training phase,
and we measured several learning algorithms with seven metrics.
The results show that we could accurately detect the attacks with
the accuracy above 99%. In addition, the random forests learning
algorithms have 0.0003 false positive rate, which is a significant
metric for ICS. To measure the normal and abnormal classification,
we measure the performance by the MCC, and we can reach the 0.99
of MCC. In our experiments, the implementation of our proposed
framework had a false negative rate of 0.4%. However, we can
reliably detect the attack once it causes enough differentiate from
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(a) The Random Forest classifier
evaluation with Scenario II.
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(b) The Naive Bayes Tree classifier
evaluation with Scenario II.
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(c) The Logistic Model Tree classi-
fier evaluation with Scenario II.
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(d) The Random Forest classifier
evaluation with Scenario III.
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(e) The Naive Bayes Tree classifier
evaluation with Scenario III.
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(f) The Logistic Model Tree classi-
fier evaluation with Scenario III.

Figure 5: ROC curve of true positive rate (sensitivity) against false positive rate (1-precision).

Table 3: Performance comparison of different tested detection techniques in the three data sets of Scenario I, Scenario II, and
Scenario III. The classifiers: Random Forests (RF), Naive-Bayes Tree (NBTree), and Logistic Model Tree (LMT).

Algorithm Scenario Noise Precision Sensitivity FP FN F1-score MCC

RF Scenario I 0% 0.9997 0.9996 0.0003 0.0041 0.9996 0.9943
RF Scenario II 5% 0.9995 0.9995 0.0004 0.0078 0.9995 0.9921
RF Scenario II 25% 0.9987 0.9995 0.0004 0.0201 0.9991 0.9852
RF Scenario II 50% 0.9983 0.9995 0.0004 0.0269 0.9989 0.9818
RF Scenario III 5% 0.9994 0.9994 0.0005 0.0088 0.9994 0.9905
RF Scenario III 25% 0.9980 0.9986 0.0013 0.03040 0.9983 0.9725
RF Scenario III 50% 0.9971 0.9982 0.0017 0.0447 0.9977 0.9608

NBTree Scenario I 0% 0.9984 0.9979 0.0020 0.0242 0.9945 0.9942
NBTree Scenario II 5% 0.9984 0.9979 0.0020 0.0242 0.9945 0.9942
NBTree Scenario II 25% 0.9984 0.9979 0.0020 0.0242 0.9945 0.9942
NBTree Scenario II 50% 0.9984 0.9979 0.0020 0.0242 0.9945 0.9942
NBTree Scenario III 5% 0.9984 0.9979 0.0020 0.0242 0.9945 0.9942
NBTree Scenario III 25% 0.9984 0.9979 0.0020 0.0242 0.9945 0.9942
NBTree Scenario III 50% 0.9984 0.9979 0.0020 0.0242 0.9945 0.9942

LMT Scenario I 0% 0.9984 0.9979 0.0020 0.0242 0.9982 0.9699
LMT Scenario II 5% 0.9986 0.9983 0.0016 0.0211 0.9985 0.9749
LMT Scenario II 25% 0.9976 0.9983 0.0016 0.0379 0.9979 0.9659
LMT Scenario II 50% 0.9968 0.9981 0.0018 0.0508 0.9975 0.9573
LMT Scenario III 5% 0.9988 0.9984 0.0015 0.0184 0.9986 0.9774
LMT Scenario III 25% 0.9977 0.9977 0.0022 0.0355 0.9977 0.9617
LMT Scenario III 50% 0.9977 0.9977 0.0022 0.0356 0.9977 0.9616
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the trained noise. We generated the machine learning model with
the decision tree made from the random forest learning technique,
and the SD detector could detect the anomalies by online parsing
the Fieldbus network packets.

8 RELATEDWORK
The stateful detection techniques and machine learning based tech-
niques were discussed in the literature. However, in this paper, we
presented an online anomaly detection based on the machine learn-
ing technique that uses stateful computation as detection features.
The rest of this section explores the related state-of-the-art works.
Stateful Anomaly Detection. The authors of [20] discussed the
impact of the attacking Fieldbus communication. In [22] the authors
proposed stateful CUSUM to limit the impact of Fieldbus attacks. In
this paper, we used the strong attack against sensor reading variables
that the attacker tries to change the sensor reading of the tank level
with a constant value to remain undetected by changing the sensor
measurement slowly.
Process State-aware Anomaly Detection. State-aware anomaly
detection techniques designed to model the systems that randomly
transit between state over a discretized time. The authors of [5] pre-
sented an anomaly detection technique that considers the process-
states of the industrial control system over a discretized time. As
shown in the [5], the overall performance of stateful anomaly de-
tection techniques will drastically improve by considering the fact
of states in ICS processes.
Machine Learning basedAnomalyDetection.The authors of [13]
discussed the machine learning proposals for anomaly detection
in the ICS. Also, the authors of [9] proposed to use convolutional
neural networks to detecting the cyber attacks in industrial control
systems. Machine learning techniques for anomaly detection in
industrial arm applications is discussed in [14]. The authors of [11]
used the k-mean clustering to detect traffic phase shifts inside the
SCADA automatically. The authors of [15] proposed a hybrid IDS
that learns temporal state-based specifications of the power system,
and they used data mining techniques to classify the scenarios of
disturbances, normal control operations, and cyber-attacks. In [4],
the authors discussed the data mining and machine learning tech-
niques for cybersecurity. There are many successful applications of
machine learning in cyber-physical system security. The authors
of [17] proposed the measurement and verification of transmit-
ted network data. They used telemetry based intrusion detection
by machine learning techniques like REPTree, NaiveBayes, and
Logistic.

9 CONCLUSIONS
In this paper, we discussed the practical implementations of stealthy
attacks on industrial control systems proposed in prior works.
We introduced ZeRA attack, which allows the attacker to launch
stealthy attacks, leveraging estimation of the stateful anomaly de-
tector and matching of residuals as a fraction of actual estimation
residual. We implemented the ZeRA attack in a realistic water treat-
ment ICS, and we demonstrate the effect of additional noise on
the executed ZeRA attack. Then we presented the SD detector that
leverages the stateless, and stateful features of the ICS during the
detection process. We performed and verified our proposal in a
realistic water treatment ICS. The obtained results from the perfor-
mance evaluation showed that we could detect ZeRAwith precision

above 99%, sensitivity above 99%, and Matthews correlation coeffi-
cient above 0.98.
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