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Abstract—Photographs taken in public places often contain
bystanders – people who are not the main subject of a photo.
These photos, when shared online, can reach a large number of
viewers and potentially undermine the bystanders’ privacy. Fur-
thermore, recent developments in computer vision and machine
learning can be used by online platforms to identify and track
individuals. To combat this problem, researchers have proposed
technical solutions that require bystanders to be proactive and
use specific devices or applications to broadcast their privacy
policy and identifying information to locate them in an image.

We explore the prospect of a different approach – identifying
bystanders solely based on the visual information present in an
image. Through an online user study, we catalog the rationale
humans use to classify subjects and bystanders in an image,
and systematically validate a set of intuitive concepts (such as
intentionally posing for a photo) that can be used to automatically
identify bystanders. Using image data, we infer those concepts
and then use them to train several classifier models. We exten-
sively evaluate the models and compare them with human raters.
On our initial dataset, with a 10-fold cross validation, our best
model achieves a mean detection accuracy of 93% for images
when human raters have 100% agreement on the class label and
80% when the agreement is only 67%. We validate this model
on a completely different dataset and achieve similar results,
demonstrating that our model generalizes well.

Index Terms—privacy, computer vision, machine learning,
photos, bystanders

I. INTRODUCTION

The ubiquity of image capturing devices, such as traditional

cameras, smartphones, and life-logging (wearable) cameras,

has made it possible to produce vast amounts of image data

each day. Meanwhile, online social networks make it easy to

share digital photographs with a large population; e.g., more

than 350 million images are uploaded each day to Facebook

alone [1]. The quantity of uploaded photos is expected to

only rise as photo-sharing platforms such as Instagram and

Snapchat continue to grow [2], [3].

A large portion of the images shared online capture ‘by-

standers’ – people who were photographed incidentally with-

out actively participating in the photo shoot. Such inciden-

tal appearances in others’ photos can violate the privacy

of bystanders, especially since these images may reside in

cloud servers indefinitely and be viewed and (re-)shared by a

large number of people. This privacy problem is exacerbated

by computer vision and machine learning technologies that

can automatically recognize people, places, and objects, thus

making it possible to search for specific people in vast im-

age collections [4]–[6]. Indeed, scholars and privacy activists

called it the ‘end of privacy’ when it came to light that

Clearview – a facial recognition app trained with billions

of images scraped from millions of websites that can find

people with unprecedented accuracy and speed – was being

used by law enforcement agencies to find suspects [7]–[9].

Such capabilities can easily be abused for surveillance, tar-

geted advertising, and stalking that threaten peoples’ privacy,

autonomy, and even physical security.

Recent research has revealed peoples’ concerns about their

privacy and autonomy when they are captured in others’ pho-

tos [10]–[12]. Conflicts may arise when people have different

privacy expectations in the context of sharing photographs in

social media [13], [14], and social sanctioning may be applied

when individuals violate collective social norms regarding

privacy expectations [15], [16]. On the other hand, people

sharing photos may indeed be concerned about the privacy

of bystanders. Pu and Grossklags determined how much,

in terms of money, people value ‘other-regarding’ behaviors

such as protecting others’ information [17]. Indeed, some

photographers and users of life-logging devices report that they

delete photos that contain bystanders [18], [19], e.g., out of a

sense of “propriety” [19].

A variety of measures have been explored to address

privacy concerns in the context of cameras and bystanders.

Google Glass’s introduction sparked investigations around the

world, including by the U.S. Congressional Bi-Partisan Privacy

Caucus and Data Protection Commissioners from multiple

countries, concerning its risks to privacy, especially regarding

its impact on non-users (i.e., bystanders) [20], [21]. Some

jurisdictions have banned cameras in certain spaces to help

protect privacy, but this heavy-handed approach impinges on

the benefits of taking and sharing photos [22]–[25]. Requiring

that consent be obtained from all people captured in a photo is

another solution but one that is infeasible in crowded places.

Technical solutions to capture and share images without

infringing on other people’s privacy have also been explored,

typically by preventing pictures of bystanders from being taken

or obfuscating parts of images containing them. For example,

Google Street View [26] treats every person as a bystander
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and blurs their face, but this aggressive approach is not

appropriate for consumer photographs since it would destroy

the aesthetic and utility value of the photo [27], [28]. More

sophisticated techniques selectively obscure people based on

their privacy preferences [29]–[33], which are detected by

nearby photo-taking devices (e.g., with a smartphone app that

broadcasts preference using Bluetooth). Unfortunately, this

approach requires the bystanders – the victims of privacy

violations – to be proactive in keeping their visual data private.

Some proposed solutions require making privacy preferences

public (e.g., using visual markers [34] or hand gestures [33])

and visible to everyone, which in itself might be a privacy

violation. Finally, these tools are aimed at preventing privacy

violations as they happen and cannot handle the billions of

images already stored in devices or the cloud.

We explore a complementary technical approach: automat-

ically detecting bystanders in images using computer vision.

Our approach has the potential to enforce a privacy-by-default

policy in which bystanders’ privacy can be protected (e.g., by

obscuring them) without requiring bystanders to be proactive

and without obfuscating the people who were meant to play

an important role in the photo (i.e., the subjects). It can

also be applied to images that have already been taken. Of

course, detecting bystanders using visual features alone is

challenging because the difference between a subject and a

bystander is often subtle and subjective, depending on the

interactions among people appearing in a photo as well as the

context and the environment in which the photo was taken.

Even defining the concepts of ‘subject’ and ‘bystander’ is

challenging, and we could not find any precise definition in

the context of photography; the Merriam-Webster dictionary

defines ‘bystander’ in only a general sense as “one who is

present but not taking part in a situation or event: a chance

spectator,” leaving much open to context as well as social and

cultural norms.

We approach this challenging problem by first conducting

a user study to understand how people distinguish between

subjects and bystanders in images. We found that humans

label a person as ‘subject’ or ‘bystander’ based on social

norms, prior experience, and context, in addition to the visual

information available in the image (e.g., a person is a ‘subject’

because they were interacting with other subjects). To move

forward in solving the problem of automatically classifying

subjects and bystanders, we propose a set of high-level visual

characteristics of people in images (e.g., willingness to be

photographed) that intuitively appear to be relevant for the

classification task and can be inferred from features extracted

from images (e.g., facial expression [35]). Analyzing the

data from this study, we provide empirical evidence that

these visual characteristics are indeed associated with the

rationale people utilize in distinguishing between subjects

and bystanders. Interestingly, exploratory factor analysis on

this data revealed two underlying social constructs used in

distinguishing bystanders from subjects, which we interpret

as ‘visual appearance’ and ‘prominence’ of the person in a

photo.

We then experimented with two different approaches for

classifying bystanders and subjects. In the first approach, we

trained classifiers with various features extracted from image

data, such as body orientation [36] and facial expression [35].

In the second approach, we used the aforementioned features

to first predict the high-level, intuitive visual characteristics

and then trained a classifier on these estimated features. The

average classification accuracy obtained from the first ap-

proach was 76%, whereas the second approach, based on high-

level intuitive characteristics, yielded an accuracy of 85%.

This improvement suggests that the high-level characteristics

may contain information more pertinent to the classification

of ‘subject’ and ‘bystander’, and with less noise compared

to the lower-level features from which they were derived.

These results justify our selection of these intuitive features,

but more importantly, it yields an intuitively-explainable and

entirely automatic classifier model where the parameters can

be reasoned about in relation to the social constructs humans

use to distinguish bystanders from subjects.

II. RELATED WORK

Prior work on alleviating privacy risks of bystanders can

be broadly divided into two categories – techniques to handle

images i) stored in the photo-capturing device and ii) after

being uploaded to the cloud (Perez et al. provide a taxonomy

of proposed solutions to protect bystanders’ privacy [37]).

A. Privacy protection in the moment of photo capture

1) Preventing image capture: Various methods have been

proposed to prevent capturing photographs to protect the pri-

vacy of nearby people. One such method is to temporarily dis-

able photo-capturing devices using specific commands which

are communicated by fixed devices (such as access points)

using Bluetooth and/or infrared light-based protocols [38]. One

limitation of this method is the photographers would have to

have compliant devices. To overcome this limitation, Truong et
al. proposed a ‘capture resistant environment’ [39] consisting

of two components: a camera detector that locates camera

lenses with charged coupled devices (CCD) and a camera

neutralizer that directs a localized beam of light to obstruct

its view of the scene. This solution is, however, effective only

for cameras using CCD sensors. A common drawback shared

by these location-based techniques [38], [39] is that it might

be infeasible to install them in every location.

Aditya et al. proposed I-Pic [29], a privacy enhanced

software platform where people can specify their privacy

policies regarding photo-taking (i.e., allowed or not to take

photo), and compliant cameras can apply these policies over

encrypted image features. Although this approach needs the

active participation of bystanders, Steil et al. proposed Pri-

vacEye [40], a prototype system to automatically detect and

prevent capturing images of people by automatically covering

the camera with a shutter. Although there is no action needed

from the bystanders to protect their privacy, PrivacEye [40]

considers every person appearing in an image, limiting its

applicability in more general settings of photography.

319



The main drawback with these approaches is that they seek

to completely prevent the capture of the image. In many cases,

this may be a heavy-handed approach where removing or

obscuring bystanders is more desirable.

2) Obscuring bystanders: Several works utilize image-

obfuscation techniques to obscure bystanders images, instead

of preventing image capture in the first place. Farinella et
al. developed FacePET [41] to protect facial-privacy by dis-

torting the region of an image containing a face. It makes

use of glasses to emit light patterns designed to distort the

Haar-like features used in some face detection algorithms.

Such systems, however, will not be effective for other face

detection algorithms such as deep learning-based approaches.

COIN [30] lets users broadcast privacy policies and identifying

information in much the same way as I-Pic [29] and obscure

identified bystanders. In the context of wearable devices,

Dimiccoli et al. developed deep-learning based algorithms to

recognize activities of people in egocentric images degraded

in quality to protect the privacy of the bystanders [42].

Another set of proposed solutions enable people to specify

privacy preferences in situ. Li et al. present PrivacyCam-

era [43], a mobile application that handles photos containing

at most two people (either one bystander, or one target

and one bystander). Upon detecting a face, the app sends

notifications to nearby bystanders who are registered users

of the application using short-range wireless communication.

The bystanders respond with their GPS coordinates, and the

app then decides if a given bystander is in the photo based

on the position and orientation of the camera. Once the

bystander is identified (e.g., the smaller of the two faces),

their face is blurred. Ra et al. proposed Do Not Capture

(DNC) [31], which tries to protect bystanders’ privacy in more

general situations. Bystanders broadcast their facial features

using a short-range radio interface. When a photo is taken,

the application computes motion trajectories of the people in

the photo, and this information is then combined with facial

features to identify bystanders, whose faces are then blurred.

Several other papers allow users to specify default privacy

policies that can be updated based on context using gestures

or visual markers. Using Cardea [32], users can state default

privacy preferences depending on location, time, and presence

of other users. These static policies can be updated dynami-

cally using hand gestures, giving users flexibility to tune their

preferences depending on the context. In a later work, Shu et
al. proposed an interactive visual privacy system that uses tags

instead of facial features to obtain the privacy preferences of a

given user [33]. This is an improvement over Cardea’s system

since facial features are no longer required to be uploaded.

Instead, different graphical tags (such as a logo or a template,

printed or stuck on clothes) are used to broadcast privacy

preferences, where each of the privacy tags refer to a specific

privacy policy, such as ‘blur my face’ or ‘remove my body’.

In addition to the unique limitations of each of the

aforementioned techniques, they also share several common

drawbacks. For example, solutions that require transmitting

bystanders’ identifying features and/or privacy policies over

wireless connections are prone to Denial of Service attacks

if an adversary broadcasts this data at a high rate. Further,

there might not enough time to exchange this information

when the bystander (or the photographer) is moving and goes

outside of the communication range. Location-based notifica-

tion systems might have limited functionality in indoor spaces.

Finally, requiring extra sensors, such as GPS for location and

Bluetooth for communication, may prevent some devices (such

as traditional cameras) from adopting them.

B. Protecting bystanders’ privacy in images in the cloud

Another set of proposed solutions attempts to reduce privacy

risks of the bystanders after their photos have been uploaded

to the cloud. Henne et al. proposed SnapMe [44], which

consists of two modules: a client where users register, and

a cloud-based watchdog which is implemented in the cloud

(e.g., online social network servers). Registered users can

mark locations as private, and any photo taken in such a

location (as inferred from image meta-data) triggers a warning

to all registered users who marked it as private. Users can

additionally let the system track their locations and send

warning messages when a photo is captured nearby their

current location. The users of this system have to make a

privacy trade-off, since increasing visual privacy will result in

a reduction in location privacy.

Bo et al. proposed a privacy-tag (a QR code) and an

accompanying privacy-preserving image sharing protocol [34]

which could be implemented in photo sharing platforms. The

preferences from the tag contain a policy stating whether or

not photos containing the wearer can be shared, and if so,

with whom (i.e. in which domains/PSPs). If sharing is not

permitted, then the face of the privacy tag wearer is replaced

by a random pattern generated using a public key from the

tag. Users can control dissemination by selectively distributing

their private keys to other people and/or systems to decrypt the

obfuscated regions. More recently, Li and colleagues proposed

HideMe [45], a plugin for social networking websites that

can be used to specify privacy policies. It blurs people who

indicated in their policies that they do not want to appear in

other peoples’ photos. The policies can be specified based on

scenario instead of for each image.

A major drawback of these cloud-based solutions is that

the server can be overwhelmed by uploading a large number

of fake facial images or features. Even worse, an adversary

can use someone else’s portrait or facial features and specify

an undesirable privacy policy. Another limitation is that they

do not provide privacy protection for the images that were

uploaded in the past and still stored in the cloud.

C. Effectively obscuring privacy-sensitive elements in a photo

After detecting bystanders, most of the work described

above obfuscate them using image filters (e.g., blurring [43])

or encrypting regions of an image [46], [47]. Prior research has

discovered that not all of these filters can effectively obscure

the intended content [27]. Masking and scrambling regions of

interest, while effective in protecting privacy, may result in
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a significant reduction of image utility such as ‘information

content’ and ‘visual aesthetics’ [27]. In the context of sharing

images online, privacy-protective mechanisms, in addition to

being effective, are required to preserve enough utility to en-

sure their wide adoption. Thus, recent work on image privacy

has attempted to maximize both the effectiveness and utility

of obfuscation methods [28], [48]. Another line of research

focuses solely on identifying and/or designing effective and

“satisfying” (to the viewer) image filters to obfuscate privacy-

sensitive attributes of people (e.g., identify, gender, and facial

expression) [27], [49]–[51]. Our work is complementary to

these efforts and can be used in combination with them to

first automatically identify what to obscure and then use the

appropriate obfuscation method.

III. STUDY METHOD

We begin with an attempt to define the notions of ‘by-

stander’ and ‘subject’ specific to the context of images.

According to general dictionary definitions,1,2,3 a bystander is

a person who is present and observing an event without taking
part in it. But we found these definitions to be insufficient to

cover all the cases that can emerge in photo-taking situations.

For example, sometimes a bystander may not even be aware of
being photographed and, hence, not observe the photo-taking

event. Other times, a person may be the subject of a photo

without actively participating (e.g., by posing) in the event or

even noticing being photographed, e.g., a performer on stage

being photographed by the audience. Hence, our definitions of

‘subject’ and ‘bystander’ are centered around how important
a person in a photo is and the intention of the photographer.

Below, we provide the definitions we used in our study.

Subject: A subject of a photo is a person who is important

for the meaning of the photo, e.g., the person was captured

intentionally by the photographer.

Bystander: A bystander is a person who is not a subject

of the photo and is thus not important for the meaning of

the photo, e.g., the person was captured in a photo only

because they were in the field of view and was not intentionally

captured by the photographer.

The task of the bystander detector (as an ‘observer’ of a

photo) is then to infer the importance of a person for the

meaning of the photo and the intention of the photographer.

But unlike human observers, who can make use of past

experience, the detector is constrained to use only the visual

data from the photo. Consequently, we turned to identifying

a set of visual characteristics or high-level concepts that can

be directly extracted or inferred from visual features and are

associated with human rationales and decision criteria.

A central concept in the definition of bystander is whether

a person is actively participating in an event. Hence, we look

for the visual characteristics indicating intentional posing for

a photo. Other related concepts to this are being aware of

1https://www.merriam-webster.com/dictionary/bystander
2https://dictionary.cambridge.org/us/dictionary/english/bystander
3https://www.urbandictionary.com/define.php?term=bystander

the photo shooting event and willingness to be a part of it.

Moreover, we expect someone to look comfortable while being

photographed if they are intentionally participating. Other

visual characteristics signal the importance of a person for
the semantics of the photo and whether they were captured
deliberately by the photographer. We hypothesize that humans

infer these characteristics from context and the environment,

location and size of a person, and interactions among people

in the photo. Finally, we are also interested to learn how the

photo’s environment (i.e., a public or a private space) affect

peoples’ perceptions of subjects and bystanders.

To empirically test the validity of this set of high-level

concepts and to identify a set of image features that are asso-

ciated with these concepts that would be useful as predictors

for automatic classification, we conducted a user study. In

the study, we asked participants to label people in images

as ‘bystanders’ or ‘subjects’ and to provide justification for

their labels. Participants also answered questions relating to

the high-level concepts described above. In the following

subsections, we describe the image set used in the study and

the survey questionnaire.

A. Survey design

1) Image set: We used images from the Google open
image dataset [52], which has nearly 9.2 million images of

people and other objects taken in unconstrained environments.

This image dataset has annotated bounding boxes for objects

and object parts along with associated class labels for object

categories (such as ‘person’, ‘human head’, and ‘door handle’).

Using these class labels, we identified a set of 91,118 images

that contain one to five people. Images in the Google dataset

were collected from Flickr without using any predefined list of

class names or tags [52]. Accordingly, we expect this dataset

to reflect natural class statistics about the number of people

per photo. Hence, we attempted to keep the distribution of

images containing a specific number of people the same as in

the original dataset. To use in our study, we randomly sampled

1,307, 615, 318, 206, and 137 images containing one to five

people, respectively, totaling to 2,583 images. A ‘stimulus’ in

our study is comprised of an image region containing a single

person. Hence, an image with one person contributed to one

stimulus, an image with two people contributed to two stimuli,

and so on, resulting in a total of 5,000 stimuli. If there are N
stimuli in an image, we made N copies of it and each copy was

pre-processed to draw a rectangular bounding box enclosing

one of the N stimuli as shown in Fig. 1. This resulted in 5,000

images corresponding to the 5,000 stimuli. From now on, we

use the terms ‘image’ and ‘stimulus’ interchangeably.

2) Measurements: In the survey, we asked participants to

classify each person in each image as either a ‘subject’ or

‘bystander,’ as well as to provide reasons for their choice.

In addition to these, we asked to rate each person according

to the ‘high-level concepts’ described above. Details of the

survey questions are provided below, where questions 2 to 8

are related to the high-level concepts.
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(a) Image with a single person. (b) Image with five people where the
stimulus is enclosed by a bounding box.

(c) An image where the annotated area
contains a sculpture.

Fig. 1. Example stimuli used in our survey.

1) Which of the following statements is true for the
person inside the green rectangle in the photo? with

answer options i) There is a person with some of the

major body parts visible (such as face, head, torso);

ii) There is a person but with no major body part visible

(e.g., only hands or feet are visible); iii) There is just a

depiction/representation of a person but not a real person

(e.g., a poster/photo/sculpture of a person); iv) There

is something else inside the box; and v) I don’t see

any box. This question helps to detect images that were

annotated with a ‘person’ label in the original Google

image dataset [52] but, in fact, contain some form of

depiction of a person, such as a portrait or a sculpture

(see Fig. 1). The following questions were asked only if

one of the first two options was selected.

2) How would you define the place where the photo was
taken? with answer options i) A public place; ii) A semi-

public place; iii) A semi-private place; iv) A private place;

and v) Not sure.

3) How strongly do you disagree or agree with the follow-
ing statement: The person inside the green rectangle
was aware that s/he was being photographed? with

a 7-point Likert item ranging from strongly disagree to

strongly agree.

4) How strongly do you disagree or agree with the
following statement: The person inside the green
rectangle was actively posing for the photo. with a

7-point Likert item ranging from strongly disagree to

strongly agree.

5) In your opinion, how comfortable was the person with
being photographed? with a 7-point Likert item ranging

from highly uncomfortable to highly comfortable.

6) In your opinion, to what extent was the person in
the green rectangle unwilling or willing to be in
the photo? with a 5-point Likert item ranging from

completely unwilling to completely willing.

7) How strongly do you agree or disagree with the
statement: The photographer deliberately intended to
capture the person in the green box in this photo? with

a 7-point Likert item ranging from strongly disagree to

strongly agree.

8) How strongly do you disagree or agree with the

following statement: The person in the green box
can be replaced by another random person (similar
looking) without changing the purpose of this photo.
with a 7-point Likert item ranging from strongly disagree
to strongly agree. Intuitively, this question asks to rate the

‘importance’ of a person for the semantic meaning of the

image. If a person can be replaced without altering the

meaning of the image, then s/he has less importance.

9) Do you think the person in the green box is a
‘subject’ or a ‘bystander’ in this photo? with answer

options i) Definitely a bystander; ii) Most probably a

bystander; iii) Not sure; iv) Most probably a subject; and

v) Definitely a subject. This question was accompanied

by our definitions of ‘subject’ and ‘bystander’.

10) Depending on the response to the previous question, we

asked one of the following three questions: i) Why do
you think the person in the green box is a subject
in this photo? ii) Why do you think the person in
the green box is a bystander in this photo? iii) Please
describe why do you think it is hard to decide whether
the person in the green box is a bystander or a subject
in this photo? Each of these questions could be answered

by selecting one or more options that were provided. We

curated these options from a previously conducted pilot

study where participants answered this question with free-

form text responses. The most frequent responses in each

case were then provided as options for the main survey

along with a text box to provide additional input in case

the provided options were not sufficient.

3) Survey implementation: The 5,000 stimuli selected for

use in the experiment were ordered and then divided into sets

of 50 images, resulting in 100 image sets. This was done

such that each set contained a proportionally equal number of

stimuli of images containing one to five people. Each survey

participant was randomly presented with one of the sets, and

each set was presented to at least three participants. The survey

was implemented in Qualtrics [53] and advertised on Amazon

Mechanical Turk (MTurk) [54]. It was restricted to MTurk

workers who spoke English, had been living in the USA for

at least five years (to help control for cultural variability [55]),

and were at least 18 years old. We further required that workers

have a high reputation (above a 95% approval rating on at least
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1,000 completed HITs) to ensure data quality [56]. Finally,

we used two attention-check questions to filter out inattentive

responses [57] (see Appendix F).

4) Survey flow: The user study flowed as follows:

1. Consent form with details of the experiment, expected

time to finish, and compensation.

2. Instructions on how to respond to the survey questions

with a sample image and appropriate responses to the

questions.

3. Questions related to the images as described in Sec-

tion III-A2 for fifty images.

4. Questions on social media usage and demographics.

B. Survey participants and dataset labels

1) Demographic characteristics of the participants: Before

performing any analysis, we removed data from 45 participants

who failed at least one of the attention-check questions. This

left us with responses from 387 participants. Of these, 221

(57.4%) identified themselves as male and 164 as female. One

hundred and eighty nine (48.8%) participants fell in the age

range of 30–49 years, followed by 154 (39.8%) aged 18–

29 years. A majority of the participants identified as White

(n=242, 62.5%) followed by 82 (21%) as Asian, and 20 (5%)

as African American. One hundred and ninety one (49.3%)

had earned a Bachelor’s degree, and 71 (18.3%) had some

college education. Most of the participants had at least one

social media account (n=345, 89.1%), among which only 7%

(n=30) indicated that they never share images on those media.

Each participant was paid $7, which was determined through

a pilot study where participants were also asked whether they

considered the compensation to be fair. Participants were able

to pause this survey and resume at a later time, as indicated

by the long completion time (> 10 hours) for many of the

participants. Therefore we analyzed the response times for the

top quartile, which completed the survey in an average of 41

minutes. Thus we estimated that our compensation was in the

range of $10/hour for the work on our survey.4

2) Final set of images and class labels: For each image, we

collected responses from at least three participants. Next, we

excluded data for any image for which at least two participants

indicated that there was no person in that image (by responding

with any one of the last three options for the first question

as described in Section III-A2). This resulted in the removal

of 920 images, and the remaining 4,080 images were used

in subsequent analyses.5 The class label of a person was

determined using the mean score for question 9: a positive

score was labeled as ‘subject’, a negative score was labeled as

‘bystander’, and zero was labeled as ‘neither’. In this way, we

found 2,287 (56.05%) images with the label ‘subject’, 1,515

(37.13%) with ‘bystander’, and 278 (6.8%) with ‘neither’. In

this paper, we concentrate on the binary classification task

(‘subject’ and ‘bystander’) and exclude the images with the

4A more conservative estimate yielded about $8/hour for the top 50%,
which took an average of 53 minutes.

5One of the authors manually checked these images and found that only
9 (0.9%) of them contained people.

‘neither’ label. In this final set of images, we have 2,287

(60.15%) ‘subjects’ and 1,515 (39.85%) ‘bystanders’.

3) Feature set: As described in section III-A2, we asked

survey participants to rate each image for several ‘high-level

concepts’ (questions 2–8). The responses were converted into

numerical values – the ‘neutral’ options (such as ‘neither

disagree nor agree’) were assigned a zero score, the left-

most options (such as ‘strongly disagree’) were assigned the

minimum score (-3 for a 7-point item), and the right-most

options (such as ‘strongly agree’) were assigned the maximum

score (3 for a 7-point item). Then, for each image, the final

value of each concept was determined by computing the mean

of the coded scores across the participants. In addition to these,

we calculated three other features using the annotation data

from the original Google image dataset [52]: size and distance

of a person and the total number of people in an image. We

estimated the size of a person by calculating the area of the

bounding box enclosing the person normalized by total area

of the image. The distance refers to the Euclidean distance

between the center of the bounding box and the center of the

image and can be treated as the ‘location’ of a person with

respect to the image center. Finally, by counting the number

of bounding boxes for each image, we calculated the total

number of people in that image. We combined these three

features with the set of high-level concepts and refer to this

combined set simply as ‘features’ in the subsequent sections.

IV. METHOD OF ANALYSIS

To understand how humans classify ‘subjects’ and ‘by-

standers’ in an image, first, we catalog the most frequently

used reasons for the classification (from responses to ques-

tion 10). Next, we quantify if and how much these reasons

are associated with the features as detailed in section III-B3.

Significant association would indicate the relevance of the

‘high-level concepts’ in distinguishing bystander and subject

by humans, and serve as a validation for incorporating those

concepts in the study. Then, we conducted regression analyses

to measure how effective each of the features individually are

in classifying subject and bystander. Finally, we conducted

exploratory factor analysis (EFA) on the whole feature set to

surface any underlying constructs that humans use in their

reasoning. EFA also helped to group correlated features under

a common factor (based on the absolute values of factor

loadings), facilitating the selection of a subset of uncorrelated

features. Informed by the regression and factor analyses, we

identified multiple subsets of features to use as predictors in

training classifiers. In the following subsections, we explain

each of these steps in more detail.

A. Quantifying association between human reasoning and
features

We employed Spearman’s ρ, which measures the monotonic

association between two variables as a correlation measure be-

tween the binarized reasons and the real-valued features [58].

Then, for each reason, we grouped the feature values based on

whether this reason was used for classification and measured
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the average of the feature-values in those two groups. We

computed Cohen’s d (i.e., the standardized mean difference or

‘effect-size’) between the two groups and conducted signifi-

cance tests. A significant difference between the means would

signal a feature is indicative of a particular reason.

B. Measuring predictive-power of individual feature and se-
lecting subset of uncorrelated features

We trained one logistic regression model for each feature (as

predictor) to classify ‘subject’ and ‘bystander’. The predictive

power of each feature, i.e., how well it alone can predict the

class label was assessed by interpreting the model parame-

ters. Our eventual goal is to find a subset of features with

(collectively) high predictive power but minimal correlation

among them since correlated features can render the model

unstable [58]. To find a subset of features that are minimally

correlated among themselves but retains maximum variance of

the outcome variable, we conducted exploratory factor analysis

(EFA) which attempts to discover underlying factors of a set

of variables. Below we outline the steps we followed while

conducting the factor analysis.

• Removing collinear variables. Multiple collinear vari-

ables can unduly inflate the variance of each other (i.e. in-

flate contribution of the variables toward a factor) and so

collinear variables should be removed before conducting

EFA [59]. First, we standardized the features to remove

structural multi-collinearity [60]. Then we tested for

multicollinearity using ‘variance inflation factor’ (VIF).

We removed features with VIF greater than five [58].

• Determining the number of factors to extract. We con-

ducted principal component analysis (PCA) to estimate

the amount of variance retained by each component. We

decided the number of factors to extract from EFA using

a scree plot [58], [59], [61].

• Extracting and rotating factors. After removing

collinear variables and deciding on the number of fac-

tors, we extracted the factors and estimated the factor

loading (i.e., correlation between a feature and a factor)

of each feature. Finally, we rotated the factors using

‘varimax’ rotation to obtain a simple structure of the

factor loadings [59], [61]. The factors become orthogonal

(i.e. completely uncorrelated) to each other after the

rotation, which makes interpretation easier. Moreover, it

helps to group and describe the features, since ideally

each feature has a high factor loading for only one factor

after the rotation.

Features that are highly correlated among themselves measure

the same underlying concept (i.e., factor) and would have

high correlation with that factor. Consequently, we grouped

the features having high correlation with a single factor

into categories describing ‘meaningful’ constructs. This would

facilitate in explaining the underlying constructs that are

important in the human reasoning process [59]. Additionally,

features belonging to one group ideally have low correlation

with features belonging to another group. Thus, we identified

a subset of minimally correlated features by taking one feature

from each group. The collective predictive power of this subset

is indicated by how much of the total variance in the full set

of variables is retained by the factors.

C. Developing classifiers using selected feature sets

So far, we have detailed the methods of validating our

feature set and identifying subsets of features to be used as

predictors. Now, we focus on developing machine learning

(ML) models and evaluating their performance. Although we

strive to achieve high classification accuracy, we are also inter-

ested in learning at what level of abstraction the features have

the most predictive power. Thus, we built several classifiers

using features at different levels of abstraction, spanning from

the raw image to the high-level concepts and evaluated these

models by conducting 10-fold cross-validations. Below, we

explain these different classifier models.

1) Baseline models: As a baseline model, we started with

directly using the cropped images as features to train the

classifier. All the cropped images were first resized (256 ×
256 pixels) and then fed into a logistic regression model.

This represents a model trained with the most concrete set

of features, i.e., the raw pixel values of the cropped images.

Our next classifier is another logistic regression model, trained

with higher-level but simple features – the number of people

in a photo and the size and the location of each person. This

would allow us to investigate if the classification problem can

be trivially solved using easily obtainable, simple features.

2) Fine-tuning pre-trained models: Fine-tuning a pre-

trained model allows us to transfer learned knowledge in one

task to perform some other (often related) task. The process

is analogous to how humans use knowledge learned in one

context to solve a new problem. Fine-tuning deep learning

models has shown great promise in many related problem

domains [62]–[65]. Here, we fine-tuned ResNet50 [66], which

was trained for object detection and recognition on the Ima-

geNet [67] dataset containing more than 14 million images to

classify ‘subject’ and ‘bystander’. We chose to use this model

since recognizing an object as a ‘person’ is a pre-requisite to

classify them as ‘subject’ or ‘bystander’. Hence, the model

parameters were pre-trained to optimize recognizing people

(and other objects), and we fine-tune it to classify detected

people as ‘subject’ or ‘bystander’. To fine-tune this model,

we replaced the final layer with a fully connected layer with

‘sigmoid’ activation function. This modified network was re-

trained using our (cropped) image dataset. In fine-tuning, we

only update the parameters of the last (i.e., newly added) layer,

keeping the parameters of all the other layers intact.

3) Models with higher level features: In section IV-B,

we outlined the process of examining the predictive power

of the features and discovering a set of minimally correlated

features that best predicts the outcome variable. The feature set

includes the high-level concepts, which are not, unfortunately,

directly derivable from the image data with currently available

machine learning models. We attempt to overcome this barrier

by utilizing existing ML models to extract features that we

believe to be good proxies for the high level concepts. We then
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train two classifiers by – 1) training directly with these proxy

features and 2) following a two-step classification pipeline

by first training regression models with the proxy features to

predict the high-level concepts and then using the predicted
values of the high-level concepts to train the final classifier.

Below, we detail what proxy features we extracted and how.

• Human related features. The ResNet50 [66] model

was trained to categorize objects (including people) in

images. We feed the cropped images of people in our

dataset in the pre-trained model and extract the output

of the second-to-last layer of the network to be used as

features for our classifier. Since the original RestNet50

network uses these features in the last layer to assign

an object to the appropriate class, and the class in our

case is ‘person’, the features are presumably useful in

distinguishing people from other objects. In other words,

these features are useful in detecting people, which is

a prerequisite for classifying a person as a subject or

bystander.

• Body-pose related features. We used OpenPose [36]

to estimate body-pose of a person, which attempts to

detect 18 regions (or joints) of a human body (such

as nose, ears, and knees), and outputs detected joints

along with detection confidence. We used the confidence

scores, which indicate how clearly different body parts

of a person are visible in an image, as feature values.

Additionally, for each pair of neighboring joints (e.g.,

right shoulder and right elbow), we computed the angle

between a line connecting these joints and the horizontal

axis. Collectively, these angles suggest the pose and the

orientation of the body. These features were extracted

from OpenPose [36] using the cropped images of each

person. But in our dataset, some cropped images contain

body parts of more than one person (see Fig. 2), and

OpenPose attempts to detect all of them. Since in our case

a single stimulus (i.e. cropped image) is associated with

one person, we needed to single out the pose features for

that person only. For example, Fig. 2a shows a cropped

image where two people are visible, but the original

image was cropped according to the bounding box for the

person at the right side of the cropped image. Although

OpenPose detects body parts for both people, we need

this information only for the person with whom this

image is associated (in this case the person at the right

side), since the pose features will be used to classify

that person only. We use a simple heuristic to solve this

problem – a cropped image is associated with the most

centrally-located person. With this heuristic, when a body

part (such as nose) was detected more than once, we

retain information about the part that is closest to the

center of the cropped image. Fig. 2b shows the result of

body part detection using this mechanism.

• Emotion features estimated from facial expression.
We extracted scores for seven emotions: ‘angry’, ‘dis-

gusted’, ‘fearful’, ‘happy’, ‘sad’, ‘surprised’, and ‘neu-

(a) The colored dots show the body
joints of the two people originally
detected.

(b) Result of removing duplicate
body joints based on the distance
from image center.

Fig. 2. Detecting and refining body joints.

tral’. Intuitively, these features might be good proxies

for ‘awareness’, ‘comfort’, and ‘willingness’ of a person.

To obtain emotion features, we first extracted faces from

the cropped images using a face detection model [68]. If

two people appear in each other’s cropped images, each

of them will be positioned in a more central location

of the cropped image associated with them and will be

detected with higher accuracy and confidence by the face

detection algorithm. Hence, in cases where a cropped

image contains multiple people, we retained the face that

was detected with the highest confidence. After detection,

the faces were extracted and fed into a facial expression

recognition model [35]. Using facial features, this model

estimates the probabilities of each of the seven emotions.

We used these probability values as features.

D. Comparing ML models with humans

One way to investigate how well the ML models perform

compared to humans is to compare how much human an-

notators agree among themselves with the model accuracy.

Computing agreement statistics, however, require all annota-

tors to label the same set of images, which is infeasible in

this case. Hence, instead of agreement among the annotators,

we computed what percentage of annotators agreed with the

final class label of an image. Recall that the final class label

was decided by taking the mean of the scores for ‘subject’ and

‘bystander’ (provided by the survey participants). For example,

if two participants labeled someone as ‘most probably a

subject’ (coded value = 1), and a third participant labeled

that person as ‘most probably a bystander’ (coded value =

-1), then the mean score is 0.3. Hence, the final label of that

person would be ‘subject’, where 67% annotators agreed with

this label. We grouped the images based on what percentage of

the annotators agreed with its label. We then used these groups

individually to train classifiers and test their performance for

image sets with varying degrees of agreement.

E. Test dataset

We assessed the performance and robustness of the models

created with the above-mentioned steps with 10-fold cross-

validation using non-overlapping train-test splits of the Google
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dataset [52]. To evaluate how well our approach generalizes

to different datasets, we conducted additional analysis (using

the model trained on the Google dataset) on an independent

dataset consisting of 600 images sampled from the Common
Objects in COntext (COCO) dataset [69]. COCO contains a

total of 2.5 million labeled instances in 328,000 images of

complex everyday scenes containing common objects in their

natural context and has been used in numerous studies as a

benchmark for object recognition and scene understanding. We

randomly sampled roughly equal number of photos with one

to five people totalling to 600 samples of individual person.

Using this sample, survey data was collected and analyzed in

the same way as explained above, but participants from the

previous study were not allowed to take this survey. After

pre-processing the survey data, we found that 354 (59%) and

246 (41%) people in the images were labeled as ‘subject’ and

‘bystander’, respectively.

V. FINDINGS

A. How humans classify ‘subjects’ and ‘bystanders’?

The most frequently used reasons for labeling a person as a

‘subject’ or a ‘bystander’ by the survey participants are shown

in Tables I and II. For ‘subjects’, the top four reasons involve

visual characteristics of the individual person under consider-

ation (Table I). Intuitively, these reasons are related with the

visual features we extracted from the images and collected

using survey responses (we quantify these associations and

present the results in the next section). For example, ‘being

in focus’ with size and location of a person, ‘taking a large

space’ with size, and ‘being the only person’ and ‘activity

of the person being the subject matter of the image’ with

importance of the person for the semantic of the image or

if the person can be replaced without altering the semantic

content. The last three reasons consider overall image context

and visual similarities of the person in question with other

people in the same image (Table I).

Similarly, the most frequently selected reason for labeling

a person as a ‘bystander’ (Table II) is ‘not focusing on the

person’, which is associated with the size and location of

that person in the image. The second most frequent reason

is ‘caught by chance’, which again relates to if that person

is important for the image or can be replaced. Reasons 4 and

5 were chosen when participants thought no person was a

subject of the image or there was no specific subject at all.

The other reasons consider overall image content and visual

similarity and interactions of the person in question with other

people in the image (Table II). These results indicate that the

human decision process for this classification task considers

visual characteristics of the person in question (e.g. size) as

well as other people in the image (e.g. interaction among

people in the image). This process also involves understanding

the overall semantic meaning of the image (e.g., someone

was captured by chance and not relevant for the image) and

background knowledge (e.g., if two people have similar visual

features or are performing the same activity, then they should

belong to the same class). Such rich inferential knowledge is

TABLE I
MOST FREQUENT REASONS FOUND IN THE PILOT STUDY FOR

CLASSIFYING A PERSON AS A Subject AND HOW MANY TIMES EACH OF

THEM WAS SELECTED IN THE MAIN STUDY.

# Reason Frequency

1 This photo is focused on this person. 5091

2 This photo is about what this person was doing. 4700

3 This is the only person in the photo. 2740

4 This person is taking a large space in the photo. 2425

5 This person was doing the same activity as other
subject(s) in this photo.

2357

6 This person was interacting with other subject(s) in
this photo.

1715

7 The appearance of this person is similar to other
subject(s) of this photo.

1644

TABLE II
MOST FREQUENT REASONS FOUND IN THE PILOT STUDY FOR

CLASSIFYING A PERSON AS A Bystander AND HOW MANY TIMES EACH OF

THEM WAS SELECTED IN THE MAIN STUDY.

# Reason Frequency

1 This photo is not focused on this person. 3553

2 This person just happened to be there when the photo
was taken.

2480

3 The activity of this person is similar to other by-
stander(s) in this photo.

1758

4 Object(s) other than people are the subject(s) of this
photo.

1644

5 Appearance of this person is similar to other by-
standers in this photo.

1278

6 There is no specific subject in this photo. 849

7 This person is interacting with other bystander(s). 755

8 This person is blocked by other people/object. 567

9 Appearance of this person is different that other
subjects in this photo.

537

10 The activity of this person is different than other
subjects(s) in this photo.

466

not available in images. Since our ultimate goal is to build

classifiers that only use the images as input, we investigate

the relationships of the human rationale with visual features

that can be extracted from the image.

B. Association between human-reasoning and the features

1) How well are the ‘high-level concepts’ and the ‘features’
associated with the reasons humans used?: The correlations

between the features and the reasons for specific labels and the

standardized differences between the means in feature values

when a specific rationale was used or not used for labeling

are presented in Tables III and IV.6 Significant correlation

coefficients and differences in group means suggest an associ-

ation between the features and the rationales. As an example,

the positive correlation coefficient of 0.19 indicates that when

participants thought that the photo was focused on a person,

6Since the features are related to individual people and do not capture the
interactions among people or the overall contexts of the images, we present
results only for the reasons referring to individual persons.
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TABLE III
CORRELATION COEFFICIENTS AND EFFECT SIZES BETWEEN THE VISUAL

FEATURES AND THE REASONS FOR CLASSIFYING A PERSON AS A subject.
ALL COEFFICIENTS AND EFFECT-SIZES ARE SIGNIFICANT AT p < .001

LEVEL.

Feature Spearman ρ Cohen d

This photo is focused on this person.

Awareness 0.17 0.36

Pose 0.19 0.42

Comfort 0.15 0.30

Willingness 0.15 0.30

Replaceable -0.20 -0.39

Size 0.35 0.69

Distance -0.29 -0.63

Number of people -0.37 -0.82

This person is taking a large space in the photo.

Awareness 0.11 0.22

Comfort 0.11 0.24

Willingness 0.12 0.25

Replaceable -0.20 -0.43

Size 0.38 0.83

Distance -0.19 -0.43

Number of people -0.20 -0.44

This is the only person in this photo.

Awareness 0.11 0.21

Pose 0.10 0.21

Replaceable -0.12 -0.24

Size 0.27 0.65

Distance -0.23 -0.47

Number of people -0.61 -1.33

they also tended to agree more on the assertion that that

person was posing for the photo. Similarly, the (standardized)

difference between the means of the ‘Posing’ feature when

participants used the reason the photo was focused on that
person to label a person as a subject versus when they did not

used that reason is 0.42.7 This implies that being ‘in-focus’

of a photo is related to the concept of ‘posing’ for that photo.

Associations among the other reasons and high-level concepts

can be similarly interpreted.

2) Identifying subsets of uncorrelated features that are
effective in distinguishing ‘subject’ and ‘bystander’: First,

we trained separate classifier models for each feature as a

predictor to asses how well each of them can individually dis-

tinguish between a ‘subject’ and a ‘bystander’. We report the

detailed results in Appendix A. In summary, all of the features

(described in Section III-B3) were found to be significantly

associated with the outcome (i.e., subject and bystander), but

the magnitude of the predictive power varied across features.

We also found that almost all pairs of features have medium

to high correlations between them (Appendix B). Hence, we

conducted EFA to discover uncorrelated feature sets.

As outlined in Section IV, first we calculated VIF to detect

multicollinearity (Table IX). Among the features, ‘Awareness’

7Cohen’s d=0.2, 0.5, and 0.8 are considered to be a ‘small’, ‘medium’,
and ‘large’ effect size respectively [70].

TABLE IV
CORRELATION COEFFICIENTS AND EFFECT SIZES BETWEEN THE VISUAL

FEATURES AND THE REASONS FOR CLASSIFYING A PERSON AS A

bystander. ALL COEFFICIENTS AND EFFECT-SIZES ARE SIGNIFICANT AT

p < .001 LEVEL.

Feature Spearman ρ Cohen d

This photo is not focused on this person.

Awareness -0.25 -0.59

Pose -0.31 -0.77

Comfort -0.25 -0.49

Willingness -0.26 -0.52

Replaceable 0.16 0.31

Photo place -0.22 -0.52

Size -0.20 -0.44

Distance 0.21 0.46

This person just happened to be there when
the photo was taken.

Awareness -0.34 -0.70

Pose -0.36 -0.72

Comfort -0.19 -0.33

Willingness -0.22 -0.41

Replaceable 0.27 0.50

Photo place -0.24 -0.49

Size -0.23 -0.37

Distance 0.13 0.26

This person is blocked by other people or object.

Awareness -0.15 -0.46

Pose -0.17 -0.54

Comfort -0.11 -0.29

Willingness -0.12 -0.37

Replaceable 0.14 0.38

has the highest VIF of 5.8 (and a corresponding R2 > .8
in the regression model), indicating that this feature can be

predicted almost perfectly using a linear combination of other

features. This is also apparent in the pairwise correlations

among the features (see Appendix B), where ‘Awareness’ is

highly correlated with most of the other features, making it

redundant. Removal of this feature resulted in a drop of VIF

for every other feature below 5, suggesting a reduction in

multicollinearity in the system (re-calculated VIF are shown

in the second column of Table IX).

With the remaining features, we conducted PCA to find out

the appropriate number of factors to extract [59]. The point of

inflexion [59] in the Scree plot (Fig. 3) after the second factor

suggests the extraction of two factors, which jointly retain

approximately 60% of the total variance in the data. Fig. 4

exhibits the factor loadings of each feature after a ‘varimax’

rotation [58]. We omitted the features with factor loadings

less than 0.32 [61].8 A feature is associated with the factor

with which it has a higher loading than the other, and the

features associated with the same factor were grouped together

to form descriptive categories [59]. More specifically, ‘Pose’,

‘Comfort’, and ‘Willingness’ were grouped together under the

8The location of a person did not have high enough correlation with any
of the factors. Hence, it was not used in subsequent analysis.
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Fig. 3. Scree plot showing proportions of variance and cumulative proportion
of variance explained by each component extracted using PCA.

category ‘visual appearance’ of a person. This grouping makes

sense intuitively as well since all three variables refer to the

body orientation and facial expression of a person. Similarly,

‘Size’, ‘Distance’, and ‘Number of people’ collectively rep-

resent ‘how prominent’ the person is in the photo.9 Finally,

‘Replaceable’ has almost equal loadings on the two factors

and, hence, was not assigned to any group. Intuitively, it

suggests how ‘important’ a person is for the semantic meaning

of the image, which depends on both the ‘visual appearance’

and ‘prominence’ of a person.

Upon grouping the features that are highly correlated among

themselves, we now select a subset of features by picking

one feature from each group (‘Pose’ and ‘Size’, respectively)

and the two features (‘Replaceable’, and ‘Photographer’s in-

tention’) that do not belong to any group.10 ‘Replaceable’, and

‘Photographer’s intention’. Results from a linear regression

model trained with this feature set is shown in Table V. This

model has a better fit with the data (R2 = 0.53) than any of the

models trained with individual features (Table VII). But this

model utilizes ground truth data about ‘Pose’, ‘Replaceable’,

and ‘Photographer’s intention’ obtained from the user study,

which can not be extracted directly from the image data. In the

next section, we present classification results using different

feature sets produced from the images.

C. Machine learning models to predict ‘subject’ and ‘by-
stander’

Table VI shows means and standard-deviations for classi-

fication accuracy using different feature sets (including the

model using ground truth high-level concepts). Fig. 5 shows

the corresponding Receiver Operating Characteristic (ROC)

plots for each case generated from 10-fold cross-validation.

Using the cropped images as features has the lowest mean

accuracy of 66%. Using the simple features – ‘Size’, ‘Dis-

tance’, and ‘Number of people’ – yielded mean accuracy of

9Although ‘Size’ appears to be far from the others, this is because it has
positive association with ‘Factor2’, while the rest have negative association.
This is also intuitive, since as the ‘Number of people’ and ‘Distance’ increase,
size should decrease.

10We experimented with different combinations of features from these two
groups and obtained comparable results.

Fig. 4. Factor loadings of the features across the two extracted factors. The
numeric values of the loadings are displayed within braces with the legend.

TABLE V
EFFECTIVENESS OF THE SELECTED FEATURES TO CLASSIFY ‘SUBJECT’

AND ‘BYSTANDER’. THE COLUMNS SHOW ODDS-RATIOS AND THEIR 95%
CONFIDENCE INTERVALS FOR EACH FEATURE. ALL p < 0.0001.

Odds Ratio [95% CI]

Pose 2.50 [2.17, 2.88]

Replaceable 0.13 [0.11, 0.15]

Size 1.91 [1.64, 2.22]

Photographer’s
intention

0.56 [0.49, 0.63]

76%, a 15% increase than using raw image data. We see a

corresponding increase in the area under the curve (AUC)

measure in Fig. 5. Fine-tuning the pre-trained ResNet [66]

model did not improve the accuracy any further (Table VI).

Using ground truth values of the high-level concepts, com-

bined with the ‘Size’ feature increased the accuracy by more

than 12% (mean accuracy 86%± 0.04 and AUC 93%). Next,

we employ the proxy features of these high-level concepts as

detailed in Section IV-C3 and obtained a mean classification

accuracy of 78%, a small increase from the model using

simple features. Finally, we use the predicted values of the

high-level concepts using the proxy features and obtained a

mean accuracy of 85% and corresponding AUC of 93%, which
is similar to the results obtained using ground truth values
of the high-level concepts (details on prediction accuracy

are provided in Appendix C). We obtained similar results

using different subsets of predicted features, indicating that

predictors in the same set contain repeated information and

do not add any new predictive power, which again validates

our EFA analysis.

From these results, we see that features at a higher level
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(a) Cropped image (b) Size, Distance, and Number of people (c) Fine-tuned ResNet

(d) ResNet, OpenPose, Emotion (e) Ground truth Pose, Replaceable, Photogra-
pher’s intention, and Size

(f) Predicted Pose, Replaceable, Photographer’s
intention, and Size

Fig. 5. Receiver operating characteristic (ROC) plots for classifier models using different feature sets.

TABLE VI
MEAN AND STANDARD DEVIATION OF ACCURACY FOR CLASSIFICATION

USING DIFFERENT FEATURE SETS ACROSS 10-FOLD CROSS VALIDATION.

Accuracy
Features Mean SD

Cropped image 66% 0.03

Size, distance, and number of people 76% 0.01

Fine-tuning ResNet 77% 0.02

ResNet, Pose, and Facial expression features 78% 0.03

Size and ground truth Pose, Replaceable, Photogra-
pher’s intention

86% 0.04

Size and predicted Pose, Replaceable, Photogra-
pher’s intention

85% 0.02

of abstraction yield better classification accuracy. The raw

image, despite having all the information present in any feature

derived from it, performs noticeably worse than even the

simple feature set. Similarly, predicted values of the high-

level concepts performed better than the proxy features they

were predicted from. Although the proxy features presumably

contain more information than any feature predicted from

them, the high-level concepts are more likely to contain

information relevant for distinguishing subjects and bystanders

in a more concise manner and with less noise.

D. Comparing ML models with humans

The percentages of agreement among the annotators and

the number of images for each percentage are presented

in Appendix D. All annotators agreed on the final label

for only 1,309 (34%) images, and for 1,308 (34%) images

there were agreements among two-third of the annotators. For

these two groups of images, we train and evaluate classifiers

following the two-step procedure.11 For a 10-fold cross valida-

tion, the mean classification accuracy were 80%(±0.03) and

93%(±0.02), respectively for these two groups (The corre-

sponding ROC plots are shown in Appendix E). Considering

the fact that these two models were trained using much smaller

sets of images than before, they achieved remarkably high

accuracy even for the images with only 67% agreement among

human annotators.

11We did not perform similar analyses for images with lower than 67%
agreement because of insufficient training data. We had only 400 such images.
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E. Accuracy on the COCO dataset

For the 600 images sampled from COCO [69], our model

(trained on the Google data set) achieved an overall classi-

fication accuracy of 84.3%. To compare the accuracy with

humans, we again divided these images based on how many

of the annotators agreed with the final label. We found that 354

(59%) images had 100% agreement, while 168 (28%) images

had 67% agreement. For these two subsets, our model achieved

91.2% and 78.6% classification accuracy, respectively. The

results of this extended analysis are consistent with the results

with the Google dataset and provide strong evidence for the

generalization of our approach and trained models.

VI. LIMITATIONS AND DISCUSSION

Photography as art. We must note that just because by-

standers can be detected does not mean that they should
be removed or redacted from images, or that a particular

bystander should necessarily exert control over the image.

There are legitimate reasons for bystanders to be retained in

images, ranging from photo-journalism to art. The questions

of image ownership and the right to privacy of bystanders

are complicated and depend on contextual, cultural, and le-

gal factors. Nevertheless, in many circumstances, owners of

photos may voluntarily be willing to redact images out of

a sense of ‘propriety’ and concern about bystanders [19].

For example, Anthony et al. discuss how people routinely

engage in behaviors to respect the privacy of others [71]. Other

work seeks to make privacy ‘fun’ by encouraging owners of

photos to apply stickers or redactions on bystanders [27], [50].

Our work on detecting bystanders should thus be seen as a

necessary building block of larger automated frameworks that

consider further action on photos.

People detection. For the Google dataset [52], we used

manually annotated bounding boxes to locate people and ex-

tracted features from these cropped images. Results may differ

if people were instead detected automatically, but we do not

expect large deviations since computer vision can detect and

segment people with close to human-level performance [72].

Annotators. All of our survey participants were U.S. res-

idents (although the images used had no such restriction);

future work could consider cross-cultural studies. We used

three annotators per image under the assumption that unan-

imous agreement among three independent observers is a

strong signal that a given person is indeed a ‘bystander’ or

‘subject’. We expect that requiring agreement among more

annotators would slightly reduce the size of the dataset but

also increase the accuracy of our algorithm for that dataset,

as any ambiguity is further reduced. Overall, three annotators

struck a reasonable balance for such labeling.

Dataset. We considered images containing one to five peo-

ple for practical reasons. In our labeled data, we noticed that

as the number of people per image grows, fewer of them are

labeled as subjects. This indicates that, as one might expect,

images with large numbers of people typically contain crowds

in public places, with no particular subject. Including such

images would result in an imbalanced dataset and ultimately

a biased model.We hypothesize that classifying subjects and

bystanders in such images would be easier than in images with

fewer people since people usually have smaller size and are not

centrally located (size and location features have significant

positive and negative correlations with being a subject) in those

images. Finally, we observed that beyond some threshold,

people with smaller size are much harder to recognize. Thus,

we expect that our algorithm will not only scale to images with

larger crowds but will yield better classification accuracy.

Feature relationships. Another limitation of our work is that

we use features only from individual people as predictors.

However, as our user study uncovered, relationships and inter-

actions among people in an image also play important roles

in the categorization of subject vs. bystander. For example,

some participants labeled a person as a ‘bystander’ because

they “looked similar to” or “were doing the same activity as”

another bystander. Future work should investigate classifiers

that incorporate these inter-personal relationships.

Use of additional metadata. Our goal in this paper is to

propose a general-purpose bystander detector using visual

features alone, to make it as widely applicable as possible,

including on social media platforms, image-hosting cloud

servers, and photo-taking devices. We expect that accuracy

can be increased using contextual information available in any

specific domain, e.g., using image captions, one’s friend list

in a social network, and location of the photo. In the future,

we plan to explore the use of domain-specific information.

VII. CONCLUSION

Photographs often inadvertently contain bystanders whose

privacy can be put at risk by harming their social and pro-

fessional personas. Existing technical solutions to detect and

remove bystanders rely on people broadcasting their privacy

preferences as well as identifying information – an undue bur-

den on the victims of privacy violations. We attempt to tackle

the challenging problem of detecting bystanders automatically

so that they can be removed or obfuscated without proactive

action. Our user study to understand the nuanced concepts

of what makes a ‘subject’ vs. ‘bystander’ in a photo unveiled

intuitive high-level concepts that humans use to distinguish be-

tween the two. With extensive experimentation, we discovered

visual features that can be used to infer those concepts and

assessed their predictive power. Finally, we trained machine

learning models using selected subsets of those concepts as

features and evaluated their performance. Our best classifier

yields high accuracy even for the images in which the roles of

subjects and bystanders are not very clear to human annotators.

Since our system is fully automated, and solely based on image

data, it does not require any additional setup and can be used

for any past, present, and future images, we believe that it has

the potential to protect bystanders’ privacy at scale.
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APPENDIX

A. Predictive power of each feature

In section V-B, we saw that the features are associated with

the classification rationales (Table III and Table IV). Next, we

want to investigate how effectively the features can distinguish

between subject and bystander. Results of logistic regression

analyses using each of the features individually as predictors

are reported in Table VII. The χ2 statistic indicates how well

the data fit the model, where higher values indicate better fit.

The value of the R2 statistic refers to the amount of variance

of the outcome variable that was explained by the predictor
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TABLE VII
EFFECTIVENESS OF VISUAL FEATURES USED INDIVIDUALLY AS

PREDICTORS TO CLASSIFY subject AND bystander. ALL χ2 STATISTICS ARE

SIGNIFICANT AT p < 0.0001 LEVEL.

Predictor Odds ratio [2.5% 97.5%] χ2 R2

Replaceable 0.09 0.07 0.10 2254.41 0.44

Awareness 5.19 4.66 5.78 1476.37 0.29

Willingness 4.38 3.96 4.86 1247.30 0.24

Pose 4.48 4.01 5.00 1146.42 0.22

Comfort 4.05 3.66 4.48 1121.78 0.22

Size 5.23 4.52 6.05 960.15 0.19

Distance 0.31 0.29 0.34 930.95 0.18

Number
of people

0.50 0.46 0.54 410.43 0.08

Photographer
intention

0.53 0.49 0.57 330.39 0.06

Photo
place

1.41 1.32 1.51 101.60 0.02

variable. Note that Replaceable has the largest values for both

of the statistics, which is intuitive since it is almost a synonym

for being a bystander. For each predictor, the Odds ratio with

95% confidence interval is also presented in Table VII. Odds
ratio refers to the effect of increasing a predictor’s variable

by one unit to the outcome variable in a multiplicative scale.

For example, increasing the value for Pose by one unit will

increase the odds of a person of being classified as a subject by

4.48 times than before. On the other hand, increasing the value

for Replaceable by one unit will decrease the odds of a person

of being classified as a subject by 11.11 times than before.

When used as individual predictors, the features Replaceable,

Awareness, Willingness, Pose, and Comfort all have reasonably

high effects on the outcome variable and the data fit the model

well enough. But Photo place is not a very effective predictor

(OR=1.41, χ2=101.6). The Size feature has large effect on the

outcome, but using this as an individual predictor it may be

noisy as suggested by the lower χ2 value.

B. Correlation among pairs of features

Table VIII shows Pearson’s product moment correlation

coefficients (r) between pairs of features. Almost all pairs of

features have medium to high correlations between them [70].

In particular, Awareness is highly correlated with most of the

other features, suggesting that they collectively contain the

same information as the ‘Awareness’ feature.

Table IX shows the VIF for each feature before and after

removing the highly correlated ‘Awareness’ feature.

C. Predicting high-level concepts from the proxy features

As detailed in the Section IV-C3, we infer the high-level
concepts using the proxy features – human related features,

body-pose features, and emotion – using linear regression

models. For each of the high-level concepts, the mean and

standard deviations for training loss, mean squared error
(MSE), and mean absolute error (MAE) across a 10-fold cross-

validation of the regression models are shown in Table X.

The error values are interpreted in relation to the range of

TABLE VIII
CORRELATION COEFFICIENTS BETWEEN PAIRS OF VISUAL FEATURES.

EACH COEFFICIENT IS SIGNIFICANT AT p < .001 LEVEL.

Correlation coefficient (r)

Feature1 Feature2

Awareness Pose 0.88

Comfort 0.75

Willingness 0.79

Replacable -0.57

Size 0.45

Distance -0.37

Pose Comfort 0.73

Willingness 0.76

Replacable -0.48

Size 0.42

Distance -0.34

Comfort Willingness 0.86

Replacable -0.49

Size 0.37

Distance -0.32

Willingness Replacable -0.52

Size 0.39

Distance -0.33

Replacable Size -0.44

Distance 0.42

Number of people 0.31

Size Distance -0.48

Number of people -0.43

TABLE IX
VARIANCE INFLATION FACTOR (VIF) OF PREDICTOR VARIABLES WHEN

ALL PREDICTORS WERE USED (INITIAL VIF) AND AFTER Awareness WAS

REMOVED (UPDATED VIF).

Variable Initial VIF Updated VIF

Awareness 5.80 -

Pose 4.67 2.62

Comfort 4.24 4.23

Willingness 5.01 4.72

Photographer intention 1.11 1.1

Replaceable 1.77 1.73

Photo place 1.14 1.13

Size 1.71 1.7

Distance 1.42 1.42

Number of people 1.27 1.27

scores of the outcome variable, since the same error score

would indicate a good or bad model depending on whether

the range is large or small, respectively. In our case, all the

concepts except Willingness have the same range of possible

values (-3 to 3), and so the prediction errors for them can

be compared. Photographer’s intention has the highest loss

and prediction errors. This was expected given that it is more

nuanced than the other concepts, and highly depends on the

overall context of the image and interactions among people in

it. Since we only used features from the cropped portion of

the image containing a single person for prediction, the loss

and errors go higher. On average Comfort could be predicted

with the highest accuracy. All the other concepts have about

the same losses and prediction errors. Finally, Willingness has
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TABLE X
RESULTS OF PREDICTING high-level concepts USING IMAGE DATA.

COLUMNS SHOW MEANS AND STANDARD DEVIATIONS OF loss, mean
absolute error (MAE), AND mean squared error (MSE) OF A 10-FOLD

CROSS-VALIDATION.

Outcome Loss MAE MSE

Mean SD Mean SD Mean SD

Awareness 1.79 0.07 1.04 0.02 1.65 0.06

Photographer’s
intention

2.65 0.15 1.30 0.04 2.47 0.15

Replaceable 1.60 0.08 0.98 0.03 1.46 0.07

Pose 1.99 0.14 1.08 0.05 1.81 0.14

Comfort 0.81 0.05 0.67 0.03 0.72 0.05

Willingness 0.45 0.02 0.50 0.02 0.40 0.02

TABLE XI
PERCENTAGE OF PARTICIPANTS AGREED WITH THE FINAL

CLASSIFICATION LABEL AND NUMBER OF PHOTOS WITH THAT

AGREEMENT VALUES.

Agreement Number of photos

33% 256

50% 208

67% 1308

75% 300

100% 1309

a smaller range of possible values (-2 to 2), and accordingly,

smaller loss and error values.

D. Agreement among the annotators

Table XI presents the percentages of agreement among

the study participants and the number of images for each

percentage. We included percentages for which the number

of photos are greater than 100.

E. Comparing with human annotators

Figure 6 shows Receiver Operating Characteristic (ROC)

plots for classifiers trained and tested on images with 67%

and 100% agreements among the survey participants.

F. Attention check questions

The two images shown in Fig. 7 were used for attention

check questions. We asked Which of the following state-
ments is true for the person inside the green rectangle in
the photo? with answer options i) There is a person with

some of the major body parts visible (such as face, head,

torso); ii) There is a person but with no major body part

visible (e.g., only hands or feet are visible); iii) There is just a

depiction/representation of a person but not a real person (e.g.,

a poster/photo/sculpture of a person); iv) There is something

else inside the box; and v) I don’t see any box. Since the

persons in the bounding boxes are clearly visible, if any survey

participant responded with any option other than the first one,

we marked it as wrong.
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(a) 67% agreement (b) 100% agreement

Fig. 6. Receiver operating characteristic (ROC) plots for classifiers trained and tested on images with (a) 67% agreement and (b) 100% agreement among
the survey participants.

Fig. 7. Images used for attention check questions.
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