(2020) Normalizing Flows with Multi-scale Autoregressive Priors.
Abstract
Flow-based generative models are an important class of exact inference models that admit efficient inference and sampling for image synthesis. Owing to the efficiency constraints on the design of the flow layers, \eg~split coupling flow layers in which approximately half the pixels do not undergo further transformations, they have limited expressiveness for modeling long-range data dependencies compared to autoregressive models that rely on conditional pixel-wise generation. In this work, we improve the representational power of flow-based models by introducing channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR). Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data. The resulting model achieves state-of-the-art density estimation results on MNIST, CIFAR-10, and ImageNet. Furthermore, we show that mAR-SCF allows for improved image generation quality, with improvements in FID and Inception scores compared to state-of-the-art flow-based models.
Item Type: | Conference or Workshop Item (A Paper) (Paper) |
---|---|
Divisions: | Mario Fritz (MF) |
Conference: | CVPR IEEE Conference on Computer Vision and Pattern Recognition |
Depositing User: | Mario Fritz |
Date Deposited: | 26 Mar 2020 15:04 |
Last Modified: | 12 May 2021 12:51 |
Primary Research Area: | NRA1: Trustworthy Information Processing |
URI: | https://publications.cispa.saarland/id/eprint/3055 |
Actions
Actions (login required)
View Item |