
Debugging Inputs

Lukas Kirschner
CISPA – Helmholtz Center for

Information Security
Saarbrücken, Germany

s8lukirs@stud.uni-saarland.de

Ezekiel Soremekun
CISPA – Helmholtz Center for

Information Security
Saarbrücken, Germany

ezekiel.soremekun@cispa.saarland

Andreas Zeller
CISPA – Helmholtz Center for

Information Security
Saarbrücken, Germany
zeller@cispa.saarland

ABSTRACT

When a program fails to process an input, it need not be the pro-

gram code that is at fault. It can also be that the input data is faulty,

for instance as result of data corruption. To get the data processed,

one then has to debug the input data—that is, (1) identify which

parts of the input data prevent processing, and (2) recover as much

of the (valuable) input data as possible. In this paper, we present a

general-purpose algorithm called ddmax that addresses these prob-

lems automatically. Through experiments, ddmax maximizes the

subset of the input that can still be processed by the program, thus

recovering and repairing as much data as possible; the di�erence

between the original failing input and the “maximized” passing

input includes all input fragments that could not be processed. To

the best of our knowledge, ddmax is the �rst approach that �xes

faults in the input data without requiring program analysis. In our

evaluation, ddmax repaired about 69% of input �les and recovered

about 78% of data within one minute per input.

1 INTRODUCTION

In the last decade, techniques for automated debugging and repair

have seen great interest in research and practice. A recent sur-

vey [54] lists more than 100 papers on automatic fault localization

and repair. Recently, social networking giant Facebook provided de-

velopers with automatically generated repair suggestions for every

failure report of its apps [37]. Almost all of these techniques focus

on program code, attempting to identify possible fault locations in

the code and synthesizing �xes for this code. However, when a pro-

gram fails on some input, it need not be the program code that is at

fault. Hardware failures, hardware aging, transmission errors may

all cause data to get corrupted. In computer hardware, radiation can

impact memory cells, leading to bit �ips and again data corruption.

And �nally, data can be corrupted through software bugs, with the

processing software writing out malformed or incomplete data. If

data is corrupted, the easiest remedy is to use a backup. But if a

backup does not exist (or is too old, or fails to be processed), one

may want to recover as much data as possible from the existing

data—or in other words, debug the data.

Some programs come with application-speci�c means to recover

data. Input parsers can recover from syntactical errors by apply-

ing sophisticated recovery strategies; in a programming language,

this may involve skipping the current statement or function and

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or a�liate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380329

{ "item": "Apple", "price": **3.45 }

Figure 1: Failing JSON input

{

Figure 2: Failing input reduced with ddmin

{ "item": "Apple", "price": 3.45 }

Figure 3: Failing input repaired with ddmax

**

Figure 4: Di�erence between failing and repaired input

resuming with the next one [23]. When detecting a corrupted or

incomplete �le, Microsoft O�ce programs may attempt to recover

from the error, using a number of undisclosed approaches [52].

When a program does not implement a good recovery strategy,

though, users are left to their own devices, using general-purpose

editors to identify �le contents and possible corrupted parts.

As listed above, general-purpose automated debugging tech-

niques focus on faults in code and do not provide much help in

such situations, as they would regularly identify the input parser

and its error-handling code as being associated with the fault. The

delta debugging (ddmin) algorithm [56], however, focuses on iden-

tifying error causes in the input; in repeated runs with reduced

inputs, it simpli�es a failure-inducing input down to a minimum

that reproduces the error. Unfortunately, delta debugging is not a

good �t: applied to invalid inputs, it produces the smallest subset

of the input that also produces an input error—typically a single

character. As an example, consider Figure 1, a JSON input with a

syntax error; ddmin produces the reduced input in Figure 2, con-

sisting of a single { character, which also produces a syntax error.

This is neither helpful for diagnosis nor a basis for data recovery.

In this paper, we introduce a generic input repair method that

automatically (1) identi�es which parts of the input data prevent

processing, and (2) recovers as much of the (valuable) input data

as possible. Like ddmin, our approach runs the program under test

repeatedly with di�erent subsets of the input, assessing whether

the subset can be processed or not. Also, it does not need any

kind of program analysis and can thus be used in a wide range

of settings. Unlike ddmin, however, which aims at minimizing the

failure-inducing input, our ddmax algorithm aims at maximizing

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lukas Kirschner, Ezekiel Soremekun, and Andreas Zeller

the passing input. Its result is a subset of the input that (1) can be

successfully processed and (2) is 1-maximal: no further element

from the failing input can be added without causing the input to

become invalid again.

Applied on our example from Figure 1, ddmax produces the “re-

paired” (passing) input subset in Figure 3, in which the confounding

** characters (and nothing else) are removed. The di�erence be-

tween the original input (Figure 1) and the repaired input (Figure 3),

listed in Figure 4, actually makes a precise diagnosis of the failure

cause and can be given to developers for further debugging steps.

Note that while ddmax recovers a maximum of data, it does

not recover a maximum of information; in our example, we do not

know whether 3.45 actually is the correct price. However, the

repaired input can now be read and processed by the program

at hand, enabling humans to read and check their document and

engage into additional recovery steps.

Although, many applications produce error messages when pro-

cessing invalid inputs, most error mesages are vague. Often, applica-

tions simply report that an input is corrupted, without repairing the

input or providing the reason for the invalidity. However, ddmax

identi�es the invalid input fragment quickly (for debuggers) while

also preserving a maximum of content (for end users).

The remainder of this paper makes the following contributions:

An empirical study of invalid inputs in practice. Weevaluate

the prevalence of invalid input in the wild (Section 2). We

crawled thousands of input �les from github and determine

the set of valid and invalid �les. We �nd that invalid inputs

are common in practice, about four percent (295 �les) of all

input �les (7835 �les) crawled from github were invalid.

Generic input repair with minimal data loss. We introduce the

ddmax algorithm, automatically recovering a maximum of

data from a given failure-inducing input (Section 3). To the

best of our knowledge, ddmax is the �rst input repair tech-

nique that can be applied to arbitrary inputs and programs

without additional knowledge on input formats or program

code. In its evaluation on eight subjects and three input for-

mats, using real-world invalid inputs as well as synthetic

corruptions, we �nd that ddmax is e�ective: It repairs 69%

of corrupted inputs and recovers about 78% of data, within a

time budget of one minute per input.

An e�cient syntactical input repair technique. We introduce

a variant of ddmax that makes use of a grammar to parse in-

puts into derivation trees and to maximize inputs by pruning

parts of the tree that could not be read (Section 4); this vastly

speeds up input repair. In its evaluation, syntactic ddmax is

faster and more e�cient than the lexical variant.

Identifying faults in input data. The di�erence between the “re-

paired” input by ddmax and the original input contains all

parts of the input that prevented the data from being pro-

cessed in the �rst place. Section 5 shows that this di�erence

precisely characterizes the fault in the input.

After discussing limitations (Section 6), threats to validity (Sec-

tion 7) and related work (Section 8), we close with conclusion and

future work (Section 9).

Table 1: Subject Programs

Subject Input Prog. Size Maturity

Program Format Lang. (in KLOC) (1st Commit)

Blender OBJ C/C++ 1800 Jan. 1994

Assimp OBJ C++ 88.9 July 2002

Appleseed OBJ C++ 600.1 May 2009

JQ JSON C 20.2 July 2012

JSONSimple JSON Java 2.6 Nov. 2008

Minimal-JSON JSON Java 6.4 Feb. 2013

Graphviz DOT C 1140 Sep. 1991

Gephi DOT Java 166.1 July 2008

Table 2: Input Grammar Details

Grammar Size (LOC) #ParserRules #LexerRules

JSON 79 5 9

Wave. OBJ 271 13 42

DOT 181 14 15

2 PREVALENCE OF INVALID INPUTS

Before we start repairing inputs, let us �rst answer the question of

how relevant the problem is. Is it actually possible that some appli-

cation cannot open a data �le? And would there be �les claiming

to adhere to some format if in fact, they are not? To answer such

questions, let us go and catch some invalid inputs in the wild.

2.1 Evaluation Setup

Subject Programs. In this paper, we use eight programs as test

subjects, namely Blender [17], Assimp [5], Appleseed [43], JQ [15],

JSON-Simple [30], Minimal-JSON [51], Graphviz [47], and �nally

Gephi [19]. Each input format was evaluated with three subjects,

except for DOT which was evaluated with two programs. All our

subject programs are open source C, C++ or Java programs. On

average, these programs have 478 KLOC and a maturity of over

14 years. Table 1 highlights the properties of our subject programs.

Grammars. We have collected the grammars for our subjects from

the ANTLR Grammar repository [20]. We chose complex and large

grammars for data-rich input formats used in two popular domains,

namely graphics domain (i.e. Wave. OBJ and DOT) and data ex-

change domain (i.e. JSON). To ensure the grammars were sound, we

tested them with 50 valid crawled �les for each input format. We

modi�ed the Wavefront OBJ grammar since its ANTLR grammar

was only a subset of the o�cial Wavefront OBJ speci�ciation [42].

The JSON and DOT were used unmodi�ed since they matched the of-

�cial speci�ciations [11, 31]. On average, the grammars are written

in 177 LOC, with 11 parser rules and 22 lexer rules (cf. Table 2).

Mining and Filtering Input Files. Table 3 highlights the details

of the input �les in our corpus. We crawled for a speci�c �le format

using the �le extension (e.g. “.json” for the JSON input format). In

total, we collected a corpus of 9544 input �les (cf. #Crawled Files in

Table 3) using the Github API for crawling [27]. Then, we deleted all

�les that are empty or duplicated, as well as the input �les that have

a di�erent input format despite having the intended �le name su�x

Debugging Inputs ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Mined Input Files

Input #Crawled #Unique #Valid #Invalid Cause of Invalidity (#�les rejected by) Mean Valid Mean Invalid

Format Files Files Files Files Grammar ≥ 1 subject All subjects Size (KiB) Size (KiB)

JSON 8654 7006 6948 222 164 58 52 12.84 0.78

Wave. OBJ 509 480 455 25 0 25 0 401.57 64.15

DOT 381 349 303 48 2 46 4 4.74 2.88

(e.g. a Wavefront OBJ �le has the same su�x “.obj” as a binary OBJ

�le that was created by a compiler). This resulted in 7835 unique

input �les (cf. #Unique �les). We also separated �les that contain

unsupported grammar extensions. In particular, for JSON and DOT,

we removed 166 input �les (cf. #Grammar Files) that only contain

literals like a number or a string (e.g. which are invalid JSON [11])

and JSON �les that contain multiple JSON �les appended to each

other, as written by some programs.

To determine actual invalid input �les (cf. #Invalid), we �lter

out the valid input �les from the set of unique �les by checking

that (1) the �le does not lead to a lexing/parsing error when parsed

by ANTLR and (2) the �le was successfully opened by all subject

programs (of the input format) without crashing (using the test

oracle in Section 2.1). In total, 7702 input �les (cf. #Valid Files) passed

the check of the �ltering process and the remaining 295 input

�les represent our set of real-world invalid �les (cf. #Invalid Files).

Exactly 166 inputs were rejected by ANTLR, this is shown in Table

3 (cf. Cause of Invalidity: Grammar).

Test Oracle. In our setup, the test oracle for ddmax is a crashing

oracle. An input is treated as invalid if it crashes the subject program,

or the result of the subject is empty, or the subject takes more than

10 seconds to process the input1. A program run is considered a

crash if the subject program returns a non-zero exit value. Even if a

subject reports an error, it is only considered a crash if it also returns

a non-zero exit value. Opening a valid �le, however, produces a

non-empty output after 10 seconds and does not crash the subject

program. The test oracle does not use ANTLR as an invalidity

criterium for (lexical) ddmax, because the goal is to repair an input

with feedback from a subject program, without the knowledge of

the input grammar. Although, syntactic ddmax employs ANTLR

to build its initial AST, it does not obtain feedback from ANTLR

during repair, i.e. when the AST is being modi�ed.

To automate tests, we ensure that all subject programs have a

full command-line interface (CLI) support or a Java/Python API.

The test oracle was implemented in 890 LOC of Java and 412 LOC

of Python code.

2.2 Evaluation

RQ1: How prevalent are invalid inputs in practice? Invalid

input �les are common. About four percent of all inputs in our

corpus (295 �les) were invalid (cf. Table 3); they were either rejected

by subject program(s) or the input grammar. Speci�cally, about two

percent of the input �les (129 �les) in our sample were rejected by

at least one subject program; however, less than 1% (56 �les) were

rejected by all subject programs in our evaluation setup.

1This execution time of 10 seconds was determined as a maximum opening time to
successfully process all valid input �les in our evaluation corpus.

A common cause of invalidity is wrong syntax, missing or non-

conforming elements. Many input �les were invalid because of

single character errors, such as a deleted character, a missing char-

acter or an extraneous character. For instance, some JSON inputs

were invalid due to deletions of characters such as quotes, paren-

theses and braces. These errors are di�cult to �nd because they are

often hidden in large documents. For example, our set of crawled

OBJ �les contained many �les of about 300KiB with one corrupted

line (e.g. an invalid character inside a “usemtl” statement). To �x

such an error by hand, one would have to scroll through thousands

of lines of code and �nd this single corrupted character. Other

sources of invalidity include the addition of elements that do not

conform with the input speci�cation. Some JSON �les contained

comments that begin with the "$" character. Comments are not

permitted in JSON, however, this was common practice in some

JSON �les and a few parsers support comments (e.g. Google Gson).

In our sample of GitHub �les, four percent could not be processed

either by the input grammar or at least one subject program.

3 LEXICAL REPAIR

Now that we have established that there are actually �les that

cannot be properly parsed or opened, let us introduce the ddmax

algorithm for recovering and repairing invalid input. ddmax works

on a character-by-character basis; we thus call it lexical ddmax.

3.1 Delta Debugging

Our ddmax technique can be seen as a variation on the minimizing

delta debugging algorithm, a technique for automatically reducing

failure-inducing inputs by means of systematic tests. The reduction

problem is modeled as follows: Con�gurations consisting of indi-

vidual (input) elements which may or may not be present. There

are two con�gurations: a passing con�guration c✔ and a failing

con�guration c✘. The passing con�guration c✔ typically stands for

an empty or trivial input (c✔ = ∅), and the failing con�guration

c✘ ⊃ c✔ stands for the failure-inducing input in question. In our

example from Section 1, the failing con�guration would be

c✘ = { "item": "Apple", "price": **3.45 } (1)

Zeller et al. [56] de�ne the ddmin algorithm as follows. ddmin

produces one set c ′
✘
with c✔ ⊂ c

′
✘
⊆ c✘, where c

′
✘
has a minimal size

overall. It works by testing sets c ′ that lie between c✔ and c✘ (i.e.,

c✔ ⊆ c
′ ⊆ c✘). A test involves running the original program on the

newly synthesized input c ′. The outcome test(c ′) of the test—either

✔ (passing), ✘ (failing), or (unresolved)—determines algorithm

progress: Whenever a subset c ′ ⊆ c✘ fails (test(c ′) = ✘), ddmin

further narrows down the di�erence between c
′ and c✔. In our

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lukas Kirschner, Ezekiel Soremekun, and Andreas Zeller

Maximizing Delta Debugging Algorithm

Let test and c✘ be given such that test(∅) = ✔ ∧ test(c✘) = ✘ hold.

The goal is to �nd c ′
✔
= ddmax(c✘) such that c ′

✔
⊂ c✘, test(c

′
✔
) = ✔, and ∆ = c✘ − c

′
✔
is 1-minimal.

The maximizing Delta Debugging algorithm ddmax(c) is

ddmax(c✘) = ddmax2(∅, 2) where

ddmax2(c
′
✔
,n) =




ddmax2(c✘ − ∆i , 2) if ∃i ∈ {1, . . . ,n} · test(c✘ − ∆i) = ✔ (“increase to complement”)

ddmax2
(
c
′
✔
∪ ∆i ,max(n − 1, 2)

)
else if ∃i ∈ {1, . . . ,n} · test(c ′

✔
∪ ∆i) = ✔ (“increase to subset”)

ddmax2
(
c
′
✔
,min(|c✘ |, 2n)

)
else if n < |c✘ − c

′
✔
| (“increase granularity”)

c
′
✔

otherwise (“done”).

where ∆ = c✘ − c
′
✔
= ∆1 ∪ ∆2 ∪ · · · ∪ ∆n , all ∆i are pairwise disjoint, and ∀∆i · |∆i | ≈ |c✘ − c

′
✔
|/n holds.

The recursion invariant (and thus precondition) for ddmax2 is test(c
′
✔
) = ✔ ∧ n ≤ |∆|.

Figure 5: Maximizing Lexical Delta Debugging algorithm

example from Section 1, Figure 2 shows a typical ddmin output c ′
✘
:

The one character in the input su�ces to cause the (syntax) error.

When choosing a new candidate c ′, ddmin initially splits the sets

to be tested in half; as long as tests always pass or fail, this is as

e�cient as a binary search. If tests are unresolved (say, because

the input is invalid), ddmin resorts to cutting quarters, eighths, six-

teenths of the input (ddmin). Eventually, ddmin tests each remaining

element (character) for its relevance in producing the failure.

3.2 The ddmax Algorithm

Our de�nition of ddmax is shown in Figure 5. ddmax uses the

same setting as ddmin; however, rather thanminimizing the failure-

inducing input c✘, it starts with a passing input c ′
✔
= c✔; like ddmin,

it assumes for simplicity that c✔ = ∅ holds. It then maximizes c ′
✔
,

systematically minimizing the di�erence between c ′
✔
and c✘ using

the same techniques as ddmin (�rst progressing with large di�er-

ences, then smaller and smaller di�erences), until every remaining

di�erence would cause c ′
✔
to fail. This makes ddmax act in exact

symmetry to ddmin, and complements the original de�nitions of

dd and ddmin [56].

3.3 A ddmax Example

How does ddmax work? Let us illustrate it on the example from

Section 1. We have c✘ de�ned as in Equation (1), above, and evaluate

ddmax(c✘) to obtain c
′
✔
, the maximal subset of c✘ that passes the

test (i.e., that can be still be processed by our JSON application

at hand). We now invoke ddmax(c✘) and get ddmax2(∅, 2)—that is,

c
′
✔
= ∅ and n = 2. The set c ′

✔
will continually hold more and more

characters, and n will hold the current granularity.

ddmax2 determines ∆ = c✘ − c
′
✔
= c✘ − ∅ = c✘, and splits it into

two parts ∆1 ∪ ∆2 = ∆:

∆1 = "price": **3.45 }

∆2 = { "item": "Apple",

As part of “increase to complement”, ddmax2 �rst tests c✘ − ∆1

(which is ∆2) and then c✘ = ∆2 (which is ∆1). Neither of both is

a valid JSON input, hence the tests do not pass. In “increase to

subset”, the sets to be tested are c ′
✔
∪ ∆1 = (∅ ∪ ∆1) = ∆1 and

c
′
✔
∪ ∆2 = (∅ ∪ ∆2) = ∆2; we already know that these tests do not

pass. Hence, we “increase granularity” and double n to n = 4.

With n = 4, we now split ∆ into four parts ∆1 ∪ · · · ∪ ∆4 = ∆:

∆1 = { "item": ∆2 = "Apple",

∆3 = "price": ∆4 = **3.45 }

In “increase to complement”, the tests run on the failing set c✘

without the individual ∆i—that is:

c✘ − ∆1 = "Apple", "price": **3.45 }

c✘ − ∆2 = { "item": "price": **3.45 }

c✘ − ∆3 = { "item": "Apple", **3.45 }

c✘ − ∆4 = { "item": "Apple", "price":

None of these inputs is syntactically valid JSON, and no test

passes; so ddmax further increases granularity to n = 8. In this

round, again none of the ∆i pass; but one of the complements does:

c✘ − ∆6 = { "item": "Apple", "price":45 }

with ∆6 = **3.

The set c✘ − ∆6 is indeed a syntactically valid JSON input, and

test(c✘ − ∆6) passes (“increase to complement”). At this point, we

have recovered 31
36 = 86% of the input data already.

Canwe addmore characters? Following the ddmax de�nition, we

reinvoke ddmax2 with c
′
✔
= c✘ −∆6. Now, the remaining di�erence

between c
′
✔
and c✘ is ∆6 as above. We restart with n = 2 and

decompose the remaining ∆ = c✘ − c
′
✔
= ∆6 into ∆61 and ∆62 :

∆61 = ** ∆62 = 3.

Now, c✘ − ∆61 passes, yielding the syntactically correct input:

c✘ − ∆61 = { "item": "Apple", "price":3.45 }

A further iteration will also recover the space character before the

number, eventually yielding the repaired input in Figure 3 and the

remaining di�erence ∆ in Figure 4.

The example demonstrates two important properties of ddmax:

Debugging Inputs ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Corrupted

�les

syntactic

ddmax

lexical ddmax

Parse Tree

ANTLR

Grammar

Repaired

File

Subject

Program
✔
✘

Di�erencing Size Change

Levenshtein

P-Hash

Mutate

Valid

crawled Files

ddminReal-World

invalid �les
Size Change

Filter

All

crawled �les

Test Driver

Delta-Debugging

ANTLR

2

3

4 5

6

7

8

1

Figure 6: Work�ow of the ddmax evaluation

• ddmax is thorough. Its result c ′
✔
is 1-maximal—that is, adding

any further character from c✘ will no longer pass. Formally,

this means that ∀δi ∈ c✘ − c
′
✔
· test

(
c
′
✔
∪ {δi }

)
, ✔ holds.2

• ddmax can be slow. The complexity of ddmax is the same as

ddmin—in the worst case, the number of tests carried out

by ddmax(c✘) is |c✘ |
2
+ 3|c✘ |; and in the best case—if there is

only one failure-inducing change ∆i ∈ c✘, and all cases that

do not include ∆i pass, then the number of tests t is limited

by t ≤ 2 log2(|c✘ |).

In practice, as with ddmin, things will be somewhere be-

tween the two extremes; but keep in mind that at maximum

granularity, ddmax runs at least |c✘ − c
′
✔
| tests—that is, one

test for every character that possibly still could be restored.

With these properties, what we get with ddmax is an algorithm

that guarantees a maximum of data recovery, albeit at the price of

possibly running a large number of tests.

3.4 Evaluation Setup

Work�ow. Figure 6 shows the work�ow of our evaluation. First,

we collect real-world invalid input �les from the set of crawled �les,

according to Section 2. Those �les are then �ltered into a set of valid

�les and a set of invalid �les (Step. 1) and duplicates and �les with a

wrong format are deleted. Secondly, we select and mutate 50 valid

crawled �les to produce an additional set of corrupted input �les

(Step. 2). Then, we feed a invalid �le to each subject program, and

the ANTLR parser framework (Step. 3). ANTLR executes its default

error recovery strategy while generating a parse tree for the input.

Next, we feed the invalid �le to lexical ddmax (Step. 4). Lexical

ddmax tests the input under repair repeatedly using the feedback

from the subject program (Step. 5). Then, we feed the original

crawled �les and the resulting repaired �le from each technique to

the di�erencing framework (Step. 6), which computes the change in

�le size, Levenshtein distance and perceptive hash value for both �les.

We save the feedback from our subject program (Step. 7). Finally,

2Both maximality and complexity properties are proven in a way analogous to the
properties of ddmin in [56].

to ensure the quality of our approach, we also execute ddmin on

the real-world invalid inputs (Step. 8) and report the content and

size of the result.

Lexical ddmax was implemented in 595 LOC of Java code.ANTLR

also implements an inbuilt error recovery strategy which is de-

signed to recover from lexing or parsing errors (e.g. missing/wrong

tokens or incomplete parse trees) [28].

Mutations. In addition to the real-world invalid inputs (cf. Sec-

tion 2), we also simulate real-world data corruption by applying

byte-level mutations on valid input �les. These mutations were

chosen because they are similar to the corruptions observed in

real-world invalid �les (see Section 2 and Section 5). We perform the

following mutations at a random position in each valid input �le:

byte insertion, byte deletion and byte �ip. To simulate single data

corruption, we randomly choose one of these mutations and apply

it once on the valid input �le. For multiple data corruptions, we

perform up to 16 random mutations on each input �le. A mutation

is only successful (for an input format), if at least one of the subject

programs (that passes before) fails after the mutation. These criteria

is similar to how we collected invalid input �les in the wild.

Metrics andMeasures. In order to determine the quality of ddmax

repair, we use the following metrics and tools:

(1) File Size: We measure the �le size of the inputs recovered

by ddmax and the di�erence in �le size between the original

valid input and the repaired �le. We use these measurements

to account for the amount of data recovered by ddmax as

well as the amount of data loss incurred.

(2) Levenshtein Distance: Additionally, we measure data loss

using the Levenshtein distance metric [34], measuring the

edit distance between valid input and repaired �le.

(3) Perceptive Image Di�erence: In order to measure the (se-

mantic) information loss incurred by ddmax, we calculate

the hash value of our 3D images, i.e. Wavefront OBJ format.

We compute the image distance of our 3D image �les by ren-

dering both the repaired image and the original valid image

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lukas Kirschner, Ezekiel Soremekun, and Andreas Zeller

into several 2D images from three di�erent camera angles

and three scales, then measuring the 2D image distance of

all nine images. We compare these images using the Python

ImageHash library [7] in order to obtain a good approxi-

mation of the real image di�erence between those two 3D

models as a perceptive image di�erence between both images.

In our setup, we use two rendering engines (Blender [17]

and Appleseed [43]) to render the images.

Research Protocol. For each input format, we collect real-world

invalid input �les. Secondly, we perform single and multiple mu-

tations on 50 valid input documents. Then, we execute all �les on

the di�erent subject programs, in order to determine the number

of input �les which fail for each subject program. We proceed to

run lexical ddmax on each invalid or mutated input �le. In particu-

lar, we are interested in determining the following: (1.) Baseline:

the number of invalid input �les which are accepted by a subject

program as valid inputs (i.e. non-failure-inducing inputs processed

by the program without leading to a crash), in order to measure the

e�ectiveness of the built-in error recovery feature of the program;

and (2.) ANTLR: the number of invalid inputs which are repaired

by ANTLR inbuilt error recovery strategy; (3) Lexical: the number

of invalid inputs which are repaired by lexical DDMax.

All experiments were conducted on a Lenovo Thinkpad with

four physical cores and 8GB of RAM, speci�cally an Intel(R) Core

i7 2720qm @ 2.20GHz, 8 virtual cores, running 64-bit Arch Linux.

All our prototypes are single-threaded.

3.5 Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

Baseline ANTLR Lex. ddmax Syn. ddmax

#
 R

e
p
a
ir
e
d
 I
n
p
u
t
F

ile
s

Techniques

Real-World Invalid Inputs
Single Mutations

Multiple Mutations

Figure 7: Number of Repaired Files for Each Technique

RQ2: How e�ective is lexical ddmax in repairing invalid in-

put documents within a time budget of one minute per �le?

Lexical ddmax repaired about two-thirds (66%) of all invalid inputs

(cf. Table 4). It also outperformed both the in-built repair strategy

of the subject programs (Baseline) and the ANTLR error recovery

strategy (ANTLR), both of which repaired 14% and 40% of all invalid

input �les respectively. Speci�cally, lexical ddmax repaired over

four times as many invalid input �les as the Baseline and 66% more

invalid input �les than ANTLR (cf. Figure 7). The performance of

lexical ddmax was signi�cantly better for both all mutations.

Table 4: ddmax E�ectiveness on All Invalid Inputs

Invalid. Format #Possible # repaired input �les

Type (#subjects) Repairs Base. ANTLR Lex. Syn.

Real
World

JSON (3) 167 0 40 38 62

OBJ (3) 33 1 8 24 25

DOT (2) 64 24 25 30 31

Single

Mut.

JSON (3) 150 4 80 115 127

OBJ (3) 150 34 82 146 144

DOT (2) 100 43 66 92 82

Multiple

Mut.

JSON (3) 150 4 45 79 112

OBJ (3) 150 3 29 127 126

DOT (2) 100 40 47 51 63

Total (3) 1064 153 422 702 772

 0

 50

 100

 150

 200

 250

real
single

m
ult.

real
single

m
ult.

real
single

m
ult.

real
single

m
ult.

F
ile

 S
iz

e
 (

K
B

)

Techniques

mean_data_recovered
mean_data_loss

Syn.ddmaxLex.ddmaxANTLRBaseline

Figure 8: Data Recovered and Data Loss for all Inputs

Lexical ddmax repaired about two-thirds of all invalid inputs and

signi�cantly outperforms both the basline and ANTLR.

RQ3: How much data is recovered by lexical ddmax and how

much is the data loss incurred by lexical ddmax? In terms

of recovery rate, lexical ddmax performs slightly worse than the

other techniques, with a recovery rate of 75% on real-world invalid

inputs, 86% on single data corruption, and about 43% on multiple

data corruption (see Figure 8). For both types of data invalidity, the

baseline and ANTLR maintain an almost perfect data recovery rate

(approximately 100%).

Lexical ddmax recovered most (75% and 65%) of the data in

real-world invalid inputs and mutated input �les respectively.

In theory, lexical ddmax is guaranteed to ensure minimal data

loss for all repairs. However, due to large �le sizes and timeout

constraints in our experimental setup, lexical ddmax often halts be-

fore the maximal valid data is recovered. In our experiment, lexical

ddmax had timed out for 163 input �les during repair. In order to

inspect the data recovery rate of each approach in a more balanced

setting, we examined the set of input �les that were repaired by

both ANTLR and lexical ddmax, before lexical ddmax timed out.

In total, 109 repairs were accomplished by both lexical ddmax and

Debugging Inputs ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 5: ddmax E�ciency onAll Invalid Inputs for each tech-

nique (A) Baseline, (B) ANTLR, (C) Lexical ddmax, (D) Syn-

tactic ddmax.

Invalid. Inp. Runtime (sec.) #Runs

Type Form A B C D C D

Real
World

JSON 2 2 1227 153 341525 6029

OBJ 44 47 2065 1279 6253 3164

DOT 48 166 3828 3018 2783 1162

Single

Mut.

JSON 4 4 1584 1065 45651 129659

OBJ 491 672 6151 4083 3809 1352

DOT 58 60 1239 1244 6077 4565

Multiple

Mut.

JSON 10 10 5903 2153 1194577 448801

OBJ 624 728 9938 8132 8577 5043

DOT 60 60 3365 2241 34876 11956

Mean 153 200 3981 2624 72296 70049

ANTLR, before a time out. The data loss of lexical ddmax is minimal

and comparable to ANTLR, this holds for both single and multiple

data corruption for the intersecting set before timeout. In fact, on

average, lexical ddmax recovered 1.724 KiB of data, and ANTLR

recovered 1.548 KiB.

Overall, lexical ddmax incurs minimal data loss during repair: It

recovers similar amount of data from invalid input �les, in

comparison to ANTLR.

RQ4: How e�cient is lexical ddmax in repairing invalid in-

put documents ? On average, it took less than two minutes (1.3

minutes) to repair a �le (cf. Figure 13). In comparison, both the Base-

line and ANTLR had an execution time of 3 and 4 seconds per input

�le respectively. This indicates that lexical ddmax is more time-

consuming than both the Baseline and ANTLR. This is expected

since ddmax requires multiple executions of the subject programs

(as indicated in lexical #Runs in Table 5).

Lexical ddmax is relatively fast in repairing an invalid input �le: it

takes less than two minutes (78 seconds) on average.

4 SYNTACTIC REPAIR

We have seen that ddmax is general, but also slow: If one wants to

recover a maximum of data, it runs a single test for every candidate

character that can be recovered. Is it possible to speed things up,

possibly by leveraging information on the input format? To this end,

we introduce the syntactic ddmax algorithm, which improves the

performance of ddmax using the knowledge of the input grammar.

The key insight is to execute ddmax on the parse tree of the

input, instead of the input characters. Here, we analyze the input

at the syntactical level, rather than the lexical level. This improves

the runtime and general performance of the ddmax algorithm. The

main bene�t of the approach is that it enables ddmax to reason at a

more coarse-grained level by testing on the input structure. Lexical

ddmax may take thousands of test runs, depending on the size of the

input, in fact its number of runs is bound to the number of characters

in the input. However, syntactic ddmax is bound to the number of

terminal nodes in the parse tree, which is typically smaller than the

number of characters in the input. Thus, syntactic ddmax can easily

exclude corrupted parse tree nodes or subtrees during test runs.

Additionally, the knowledge of the input structure ensures that the

resulting recovered inputs are syntactically valid. This helps in the

case of syntax errors, large corrupted input region(s) and multiple

data corruptions on the input (structure).

{ "item": "Apple", "price" 3.45 }

Figure 9: Failing JSON input with missing colon

Speci�cally, the syntactic ddmax algorithm takes as input a parse

tree for the corrupted input �le (cf. Figure 11) and obtains a pre-

order list of terminals in the parse tree. For instance, consider the

corrupted JSON input in Figure 9. Repairing this input using the

lexical ddmax algorithm results in the JSON input in Figure 10,

which would take over 100 test runs. Even for this small example,

syntactic ddmax enhances the performance of ddmax with the input

grammar, reducing the number of test runs of ddmax to nine and

improving performance by ten fold.

{ "item": "Apple" }

Figure 10: Repaired JSON input by ddmax

To repair the input (cf. Figure 9), syntactic ddmax �rst parses the

input into a parse tree3, shown in Figure 11. Next, we run the ddmax

algorithm on the parse tree, removing terminal nodes (instead of

single characters) in each iteration of ddmax4. We de�ne c✘ as our

failing con�guration, which contains the terminal nodes of the

parse tree from Figure 11.

Let us run the ddmax algorithm on our example terminal nodes.

We invoke ddmax(c✘)which results in ddmax2(∅, 2), so inside ddmax2,

we have c ′
✔
= ∅ and n = 2. At �rst, our ∆ is split into two parts5:

∆1 = { "item" : "Apple"

∆2 = , Error }

Running test(c✘ −∆1) and test(c✘ −∆2) both fail (= ✘). We are at the

�rst run, so with c ′
✘
= ∅, c ′

✔
∪ ∆1 = c✘ − ∆2 and c

′
✔
∪ ∆2 = c✘ − ∆1

which also both fail in the “increase to subset” step. Next, we set

n = 4 and restart ddmax2(c
′
✔
,n).

With n = 4, in the “increase to complement” and “increase to

subset” steps, we get

∆1 = { "item" ∆2 = : "Apple"

∆3 = , Error ∆4 = }

3ANTLR is capable of generating a parse tree for corrupted input �les, it summarizes
syntactically wrong symbols or trees into error nodes (similar to Figure 11).
4Removing only the error node in the parse tree does not necessarily result in a
non-failure-inducing input.
5Note that checking for only syntactically valid subsets of the programs (e.g. using
the grammar only) is not su�cient to repair the input. We leverage the application,
since the semantics and intended use of the input �le are encoded in the logic of the
applcation.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lukas Kirschner, Ezekiel Soremekun, and Andreas Zeller

〈JSON〉

{ 〈dict〉

〈string〉

"item" : "Apple"

, Error

}

Figure 11: Parse tree of Figure 9

In the “increase to complement” step, we �nd that test(c✘ −∆3) =

✔, so we repeat our algorithm with c ′
✔
= c✘ −∆3 and n = 2, getting

∆1 = , ∆2 = Error

Since neither test(c✘ − ∆i) nor test(c
′
✔
∪ ∆i) passes for any i and

n = |c✘ −c
′
✔
| = 2, we are done and end up with the remaining input

seen in Figure 10. For this example, the syntactic ddmax run needed

only 9 test runs of the subject program to repair the faulty input.

Let us now take a look at the complexity of our algorithm. As

mentioned in Section 3, ddmax has a worst-case complexity of t =

|c✘ |
2
+ 3|c✘ | test runs and a best-case complexity of t ≤ 2 log2(|c✘ |).

Intuitively, the complexity of syntactic ddmax is similar to the

complexity of ddmax, except that it is bounded by the number of

terminal nodes instead of the number of characters. In the worst

case, an input’s parse tree has as many terminal nodes as characters.

However, real-world input formats have keywords, data types and

character classes to aggregrate group of characters into terminals

(e.g. string and integers). This reduces the number of terminal

nodes and the required number of test runs for syntactic ddmax. It

therefore speeds up ddmax by decreasing the number of elements

to maximize with ddmax. Consider the example in Figure 9, there

are 33 single characters to search with lexical ddmax, which are

parsed into 7 terminal nodes for syntactic ddmax. In general, we can

assume that with an average terminal node length of n characters,

we have a worst-case complexity of
(
|c✘ |
n

)2
+ 3

|c✘ |
n

test runs and a

best-case complexity of t ≤ 2 log2(
|c✘ |
n

) test runs.

4.1 Evaluation Setup

Implementation. Syntactic ddmax was implemented in 1084 LOC

of Java code, this implementation is built on top of the ANTLR 4.5

parser generator framework [44] for each input grammar. Overall,

the implementation of syntactic ddmax di�ers from that of lexical

ddmax in Section 3.4, because of its use of the input grammar and

parse tree. Speci�cally, Syntactic ddmax uses the ANTLR parse tree

(from Step. 3 in Figure 6) to repair invalid inputs. In our evaluation,

we feed the invalid real-world �les into our syntactic ddmax, we

proceed to run syntactic ddmax on each invalid input �le and evalu-

ate the change in �le size (i.e. the data loss on byte-level). Syntactic

ddmax tests the input under repair repeatedly using the feedback

from the subject program (Step. 5). In addition to the research pro-

tocol in Section 3.4, we feed all invalid input �les to syntactic ddmax

and measure the number of invalid �les which are repaired by our

syntactic DDMax using the input grammar, this measure is termed

Syntactic.

4.2 Evaluation

RQ5: How e�ective is syntactic ddmax in repairing invalid

input documents within a time budget of one minute per

�le? Syntactic ddmax repaired about three-quarters (73%) of all

invalid inputs in our evaluation (cf. Table 4). Overall, it is about

10% more e�ective than lexical ddmax (cf. Figure 7). It signi�cantly

outperformed both the built-in repair strategies of the subject pro-

grams and ANTLR, it repaired �ve times as many �les as the subject

programs, and almost twice as many �les as ANTLR (cf. Table 4).

This con�rms our hypothesis (in RQ2) that ddmax can bene�t from

the knowledge of the input grammar.

Syntactic ddmax repaired about three-quarters of all invalid inputs

and it is more e�ective than lexical ddmax, for all invalid inputs.

RQ6: How much data is recovered by syntactic ddmax and

howmuch is the data loss incurred by syntactic ddmax ? On

average, syntactic ddmax (89%) has a higher data recovery rate

in comparison to lexical ddmax (58%) for all invalid inputs. For

single data corruption, the data recovery rate of syntactic ddmax

is similar to that of ANTLR and the baseline, when using mean

�le size as a metric. On multiple data corruption, syntactic ddmax

recovered about 84% of the data in the input �les (cf. Figure 8). For all

invalid inputs, the baseline and ANTLR maintain an almost perfect

data recovery rate (approximately 100%). Evidently, the data loss

incurred by both ANTLR and the baseline is negligible.

Syntactic ddmax has a high data recovery rate, recovering most

(89%) of the data in invalid input �les.

The data loss incurred by ddmax is very low, in terms of the edit

distance between the recovered �le and the valid �le. Across all

mutations, it is less than 50% worse o� than ANTLR, as captured

by the Levenshtein distance (cf. Figure 12). In particular, the mean

edit distance of the repaired �le and the originally valid input

�le is less than four for the baseline and about 24 for ANTLR. As

expected, the Levenshtein distance is lower (21–28) for single data

corruptions for lexical and syntactical ddmax respectively, and

higher for multiple corruptions (76–77). On inspection, we found

that the high loss of ddmax is due to early timeouts for large input

�les, indeed, ddmax �nds a valid subset, but times out before the

maximal subset is reached. For Wavefront OBJ �les, the perceptive

image di�erence shows us similar scaling result as the Levenshtein

distance. While it shows small results for Baseline and ANTLR

(0.1 and 29.7, respectively), the results for lexical and syntactical

ddmax are higher (76.4 and 51.9), thus the di�erence between the

unmodi�ed image and the repaired image is larger.

We conduct our evaluation of minimal data loss similarly to

the setting in RQ3 (cf. Section 3.4). As expected, syntactic ddmax

recovered slightly less data, exactly 1.720 KiB on average. This is

because syntactic ddmax removes terminal nodes, a terminal node

may contain more characters than the number of mutated charac-

ters in the node. In summary, with a high enough timeout lexical

ddmax is guaranteed to achieve minimal data loss, this guarantee

Debugging Inputs ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

 0

 50

 100

 150

 200

Baseline ANTLR Lex. ddmax Syn. ddmax

D
a
ta

 L
o
s
s

Techniques

Mean Difference in File Size (KB)
Mean Levenshtein Distance

Mean Perceptive Image Difference (PHASH)

Figure 12: Data Loss Incurred for All Mutations

does not hold for syntactic ddmax, since it operates at the parse

tree level rather than the byte level.

Overall, syntactic ddmax incurs comparatively similar data loss

during repair as lexical ddmax.

RQ7: How e�cient is syntactic ddmax in repairing invalid

input documents? Syntactic ddmax improves over the runtime

performance of lexical ddmax (cf. RQ4 Section 3.4). It improves

over lexical ddmax by 34%, its execution time is about two-third

of the running time of lexical ddmax. Speci�cally, syntactic ddmax

is quicker, it took approximately one minute to repair a single �le,

but requires a grammar and a parse tree6.

Syntactic ddmax is faster in repairing an invalid input �le: it takes

less than one minute to repair a �le on average.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

Baseline ANTLR Lex. ddmax Syn. ddmax

R
u
n
ti
m

e
 (

m
s
)

Techniques

Mean runtime per repaired input file

1443.5 1882.7

37997.8
25153.9

Figure 13: Mean Runtime per Input File for Each Technique

6Depending on the grammar and on the input �le size, generating a parse tree should
take less than a second.

5 DIAGNOSTIC QUALITY

Even though ddmax is primarily meant for repairing data, its maxi-

mized input can also be useful for diagnostics and debugging. In

particular, ddmax diagnosis is the di�erence ∆ between the failing

and maximal passing input. This is a minimal failure cause, which

is necessary to debug the input. Most notably, the ∆ from ddmax

includes all input characters that are failure-inducing, whereas

ddmin include only a minimal subset.

5.1 Evaluation Setup

To comparatively evaluate the diagnostic utility of ddmax, we co-

pare ddmax diagnoses to the established state of the art input diag-

nosis approach ddmin. In our evaluation, we compare the ddmax

diagnosis to ddmin, we do not compare to the general delta debug-

ging (DD) algorithm. This is because DD is not suited for repairing

inputs. Although, DD would produce a passing and a failing input

with a minimal di�erence between them. This DD di�erence could

be as small as the ddmax di�erence between the maximal passing

input and the original failing input, and have similar diagnostic

quality; also, DD would likely be faster. However, DD does not

have the goal of minimizing data loss, and thus the passing input

resulting from general DD may actually be close to a minimal input

cutting away all the original context.

By construction, DD (and ddmin) can minimize (and thus lose)

all the context of the original failure. For instance, if there is a

�ag in the input that activates the faulty function, and DD (and

ddmin) will remove that �ag, causing the program to pass, then

this single �ag will end up as failure-inducing input. On the other

hand, ddmax would preserve as much of the original context as

possible by construction. It is these experiences that have driven

us to experiment with DD alternatives such as ddmax and ddmin.

We implemented a ddmin algorithm following the delta debug-

ging algorithm in [56] in 450 LOC of Java code. Our ddmin imple-

mentation uses both the subject program and ANTLR as oracles to

minimize an invalid input, in order to ensure that ddmin diagno-

sis is syntactically valid. This ensures that ddmin does not report

a valid subset that may trigger a failure due to syntactic invalid-

ity (e.g. in cf. Figure 2 in Section 1), since ANTLR can parse the

ddmin diagnosis, but the subject program crashes. Then, we feed

the real-world invalid �les into our ddmin implementation (as seen

in Figure 6 Step. 8) and compare the diagnosis generated by ddmin

to that of ddmax.

We are interested in evaluating the soundness and completeness

of both ddmin, using ddmax diagnoses as the “ground truth”. To

be fair to both approaches, we consider the intersection of the

diagnoses for both ddmin and ddmax that �nished execution before

a time-out, this a set of 66 input �les in total (cf. Table 6).

5.2 Evaluation

RQ8: How e�ective is ddmax in diagnosing the root cause

of invalid inputs, especially in comparison to ddmin? Given

that ddmax was completely executed without a timeout, the repair

of ddmax is the maximal passing input and ddmax diagnosis is the

minimal failure cause. As expected ddmin diagnosis is signi�cantly

larger (21 times more) than the ddmax diagnosis, hence, it contains

a signi�cant amount (33%) of the maximal passing input, which

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lukas Kirschner, Ezekiel Soremekun, and Andreas Zeller

Table 6: Diagnostic Quality on Real-World Invalid Inputs for
A© ddmin and B© ddmax diagnoses, and C© ddmax repair.

Format Diagnosis (B) Repair (B) Intersection (%)

(#inputs) A B C A ∩ B A ∩ C

JSON (21) 2.909 19.095 103.476 13.88 23.18

OBJ (18) 2.722 1.000 189.000 18.03 11.46

DOT (27) 376.654 1.115 675.346 5.76 54.64

Mean 155.754 6.804 360.747 11.69 32.85

is considered noise in the diagnosis (cf. A ∩ C in Table 6). Ad-

ditionally, ddmin diagnosis only contains a small portion (12%) of

the minimal failure cause required to diagnose the input invalidity

(cf. A ∩ B in Table 6). This result shows that ddmax diagnosis is

more e�ective for input debugging in comparison to the state of

the art, ddmin.

On average, only one-eighth (12%) of a ddmin diagnosis contains

the minimal failure cause and about one-third (33%) of ddmin

diagnosis contains the maximal passing input.

6 LIMITATIONS

Both ddmax variants are limited in the following ways:

Repair to subsets only. Both ddmax variants will return a strict

lexical or syntactical subset of the original failure-inducing

input. The assumption is that only data should be restored

that already is there (rather than synthesizing new data, for

instance). If the input format has several context-sensitive

dependencies, such as checksums, hashes, encryption, or

references, a strict lexical or syntactical subset might be

small to the point of being useless.

Data repair, not information repair. Both ddmax variants are

set to recover as much data as possible, but not necessarily

information. Even though the repaired input may be lexically

or syntactically close to the (presumed) original input, it can

have very di�erent semantics. Users therefore are advised

to thoroughly check the repaired input for inconsistencies;

the goal of this work is to enable users to load the input into

their program such that they can engage in this task.

Input Semantics. Although, ddmax obtains some “semantic” in-

formation from the feedback of the subject program itself,

this feedback is limited to failure characteristics, i.e. “pass”

or “fail”. However, it is possible to extend ddmax to include

(domain-speci�c) semantic checks, which could either be de-

�ned as the execution of speci�c program artifacts such as a

speci�c branch, or programmatically de�ned by a developer

(e.g. as an expected program output).

Multiple errors and multiple repairs. If there are multiple er-

rors in an input, ddmax will produce a maximum input that

repairs all of them. However, if there are multiple ways to

repair the input, ddmax will produce only one of them. This

property is shared with delta debugging and its variants,

which also pick a local minimum rather than searching for a

global one. However, it would be easy to modify ddmax to

assess all alternative repairs rather than the �rst repair.

7 THREATS TO VALIDITY

Our evaluation is limited to the following threats to validity:

External validity refers to the generalizability of our approach

and results. We have evaluated our approach on a small set

of applications and input grammars. There is a threat that

ddmax does not generalize to other applications and gram-

mars. However, we have mitigated this threat by evaluating

ddmax using mature subject programs with varying input

sizes. Our subjects have 478 KLOC and 14 years maturity, on

average, making us con�dent that our approach will work

on a large variety of applications and invalid inputs.

Internal validity is threatened by incorrectness of our implemen-

tation, speci�cally whether we have correctly adapted ddmin

to ddmax for input repair. We mitigate this threat by testing

our implementation on smaller inputs and simpler grammars,

in order to ensure our implementation works as expected.

Construct validity is threatened by our test oracle, and conse-

quently the error-handling implementation of the subject.

For instance, an application which silently handles excep-

tions would not provide ddmax with useful feedback during

test runs. We checked that the rendered input produced by

the subject is non-empty, after a 10 second timeout, which

was su�cient to identify failure-inducing inputs.

8 RELATED WORK

There is a large body of work concerning the interplay of program,

inputs, and faults. We discuss the most important related works.

Document Recovery has the goal to �x broken input documents.

Docovery [33] uses symbolic execution to manipulate cor-

rupted input documents in a manner that forces the program

to follow an alternative error-free path. In contrast to ddmax,

this is a white-box approach that analyzes the program paths

executed by the failure-inducing inputs. S-DAGS [49] is a

semi-automatic technique that enforces formal (semantic)

consistency constraints on inputs documents in a collabo-

rative document editing scenario. Both of these approaches

require program analysis.

Input Recti�cation aims at transforming invalid inputs into in-

puts that behave acceptably. Input recti�ers [35, 48] address

this problem by learning a set of constraints from typical

inputs, then transforming a malicious input into a benign in-

put that satis�es the learned constraints. In contrast, ddmax

does not learn constraints but rather employs the feedback

from the program’s execution (and a grammar) to determine

an acceptable subset of the input. In comparison to security-

critical recti�cation, its goal is maximal data recovery.

Input Debugging. Numerous researchers have examined the prob-

lem of simplifying failure-inducing inputs [10, 39, 50, 56]. In

particular, [39] (HDD) and [50] are closely related to ddmax.

Both approaches use the input structure to simplify inputs,

albeit without an input grammar. Unlike ddmax, these ap-

proaches do not recover maximal valid data from the failure-

inducing input, but rather minimize the input like ddmin.

Data Diversity [2] transforms an invalid input into a valid input

that generates an equivalent result, in order to improve soft-

ware reliability. This is achieved by �nding the regions of the

Debugging Inputs ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

input space that causes a fault, and re-expressing a failing

input to avoid the faulty input regions. In contrast, ddmax

does not require program analysis; it only needs a means to

assess whether the program can process the input or not.

Data Structure Repair iteratively �xes corrupted data structures

by enforcing they conform to consistency constraints [12–

14, 26]. These constraints can be extracted, speci�ed and en-

forced with predicates [16], model-based systems [13], goal-

directed reasoning [14], dynamic symbolic execution [26] or

invariants [12]. On the one hand, the goal of data structure

repair is to ensure a program executes safely and acceptably,

despite data structure corruption. On the other hand, the

goal of ddmax is to repair the input in order to avoid the

corruption of the program’s internal data structure.

Syntactic Error Recovery. Parsers and compilers implement nu-

merous syntax error recovery schemes [6, 23]. Most ap-

proaches involve a plethora of operations including inser-

tion, deletion and replacement of symbols [3, 4, 9], extending

forward or backwards from a parser error [8, 38], or more

general methods of recovery and diagnosis [1, 32]. Unlike

ddmax, these schemes ensure the compiler does not halt

while parsing; the input still would not automatically �xed.

Data Cleaning and Repair. Several researchers have addressed

the problem of data cleaning of database systems. Most ap-

proaches automatically analyse the database to remove noisy

data or �ll in missing data [24, 55]. Other approaches al-

low developers to write and apply logical rules on the data-

base [18, 21, 29, 36, 45, 46]. In contrast to ddmax, all of these

approaches repair database systems, not raw user inputs.

Data Testing and Debugging aims to identify system errors caused

by well-formed but incorrect data while a user modi�es a

database [40]. For instance, continuous data testing (CDT) [41]

ident�es likely data errors by continuously executing domain-

spec�c test queries, in order to warn users of test failures.

DATAXRAY [53] also investigates the underlying conditions

that cause data bugs, it reveals hidden connections and com-

mon properties among data errors. In contrast to ddmax,

these approaches aim to guard data from new errors by de-

tecting data errors in database systems during modi�cation.

9 CONCLUSION AND FUTUREWORK

With ddmax, we have presented the �rst generic technique for au-

tomatically repairing failure-inducing inputs—that is, recovering

a maximal subset of the input that can still be processed by the

program at hand. ddmax is a variant of delta debugging that max-

imizes the passing input, both at a lexical and a syntactical level;

it requires nothing more than the ability to automatically run the

program with a given input. In our evaluation, we �nd that ddmax

fully repairs 79% of invalid input �les. Both variants of ddmax can

be easily implemented and deployed in a large variety of contexts.

as they do not require any kind of program analysis.

Our work opens the door for a number of exciting research

opportunities. Our future work will focus on the following issues:

Synthesizing input structures. Going for a strict lexical or syn-

tactical subset of the failure-inducing input is a conserva-

tive strategy; yet, there can be cases where adding a small

amount of lexical or syntactical elements can help to recover

even more information. We are investigating appropriate

grammar-based production strategies as well as hybrid strate-

gies that leverage both syntactical and lexical progression.

Learned grammars. Right now, our syntactical variant of ddmax

requires an input grammar to start with. We are investigat-

ing whether such a grammar can also be inferred from the

program at hand [22, 25], thus freeing users or developers

from having to provide a grammar.

From input repair to code repair. A minimal di�erence ∆ be-

tween a maximized passing and a full failure-inducing input

also brings great opportunities for fault localization and

repair. For instance, what is the code executed by the failure-

inducing input, but not by the maximized passing input?

What are the di�erences in variable values? Such di�erences

in execution can help developers to further narrow down

failure causes as well as synthesizing code repairs.

End-user debugging. Our input repair technique needs no spe-

ci�c knowledge on program code, and could thus also be

applied by end users. We are investigating appropriate strate-

gies to communicate the results of our repair and information

about con�icting document parts to end users, such that they

can �x the problem without having to �x the program.

Hybrid repair. Lexical and syntactic ddmax can be combined such

that after syntactic ddmax is executed on the parse tree,

lexical ddmax further repairs the text in the faulty nodes.

This combination reduces the number of iterations and the

execution time, in comparison to lexical ddmax. Moreover,

it improves on the e�ectiveness of syntactic ddmax.

Semantic Input Repair. It is possible to extend the ddmax test

oracle to include checks for desirable “semantic” proper-

ties other than failure characteristics (i.e. pass or fail). For

instance, the test oracle can be extedned to check if some

function is triggered or some speci�c output is produced,

such “semantic” checks would ensure that the resulting max-

imized passing input is semantically similar to the original

input and avoids the failure.

Fuzzing. Both variants of ddmax can be applied to improve soft-

ware fuzzing. For instance, mutational fuzzing techniques

often modify seed inputs to �nd bugs in the program. Often,

these inputs become malformed after mutation, ddmax can

be applied to repair such inputs, in order to ensure that they

are valid, and consequently, cover program logic.

Our implementations of ddmax as well as all experimental data

is available as a replication package at

https://tinyurl.com/debugging-inputs-icse-2020

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments. Spe-

cial thanks go to Sascha Just for discussions on paper and ideas. This

work was (partially) funded by Deutsche Forschungsgemeinschaft,

Project “Extracting and Mining of Probabilistic Event Structures

from Software Systems (EMPRESS)”.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lukas Kirschner, Ezekiel Soremekun, and Andreas Zeller

REFERENCES
[1] Alfred VAho and Thomas G Peterson. 1972. Aminimumdistance error-correcting

parser for context-free languages. SIAM J. Comput. 1, 4 (1972), 305–312.
[2] Paul Eric Ammann and John C Knight. 1988. Data diversity: An approach to

software fault tolerance. Ieee transactions on computers 4 (1988), 418–425.
[3] S. O. Anderson and Roland Carl Backhouse. 1981. Locally least-cost error recovery

in Earley’s algorithm. ACM Transactions on Programming Languages and Systems
(TOPLAS) 3, 3 (1981), 318–347.

[4] S. O. Anderson, Roland Carl Backhouse, E. H. Bugge, and CP Stirling. 1983. An
assessment of locally least-cost error recovery. Comput. J. 26, 1 (1983), 15–24.

[5] assimp team. 2018. The Open-Asset-Importer-Lib. http://www.assimp.org
[6] Roland C Backhouse. 1979. Syntax of programming languages: theory and practice.

Prentice-Hall, Inc.
[7] Johannes Buchner. 2017. ImageHash 4.0. https://pypi.org/project/ImageHash/
[8] Michael Burke and Gerald A. Fisher Jr. 1982. A practical method for syntactic

error diagnosis and recovery. Vol. 17. ACM.
[9] Carl Cerecke. 2003. Locally least-cost error repair in LR parsers. (2003).
[10] James Clause and Alessandro Orso. 2009. Penumbra: Automatically identifying

failure-relevant inputs using dynamic tainting. In Proceedings of the eighteenth
international symposium on Software testing and analysis. ACM, 249–260.

[11] Douglas Crockford. 2017. ECMA-404 The JSON Data Interchange Standard.
https://www.json.org/

[12] Brian Demsky, Michael D. Ernst, Philip J. Guo, StephenMcCamant, Je� H. Perkins,
and Martin Rinard. 2006. Inference and Enforcement of Data Structure Con-
sistency Speci�cations. In Proceedings of the 2006 International Symposium on
Software Testing and Analysis (ISSTA ’06). ACM, New York, NY, USA, 233–244.
https://doi.org/10.1145/1146238.1146266

[13] Brian Demsky and Martin Rinard. 2003. Automatic Detection and Repair of
Errors in Data Structures. SIGPLAN Not. 38, 11 (Oct. 2003), 78–95. https://doi.
org/10.1145/949343.949314

[14] B. Demsky and M. Rinard. 2005. Data structure repair using goal-directed reason-
ing. In Proceedings. 27th International Conference on Software Engineering, 2005.
ICSE 2005. 176–185. https://doi.org/10.1109/ICSE.2005.1553560

[15] Stephen Dolan. 2018. Command-line JSON processor. https://stedolan.github.
io/jq/

[16] Bassem Elkarablieh and Sarfraz Khurshid. 2008. Juzi: A tool for repairing complex
data structures. In Proceedings of the 30th international conference on Software
engineering. ACM, 855–858.

[17] Blender Foundation. 2018. blender.org - Home of the Blender project - Free and
Open 3D Creation Software. https://www.blender.org

[18] Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. 2000. AJAX:
An extensible data cleaning tool. ACM Sigmod Record 29, 2 (2000), 590.

[19] Gephi. 2018. The Open Graph Viz Platform. https://gephi.org/
[20] GitHub. 2018. Grammars written for ANTLR v4. https://github.com/antlr/

grammars-v4
[21] Lukasz Golab, Howard Karlo�, Flip Korn, and Divesh Srivastava. 2010. Data

auditor: Exploring data quality and semantics using pattern tableaux. Proceedings
of the VLDB Endowment 3, 1-2 (2010), 1641–1644.

[22] Rahul Gopinath, Björn Mathis, Mathias Höschele, Alexander Kampmann, and An-
dreas Zeller. 2018. Sample-Free Learning of Input Grammars for Comprehensive
Software Fuzzing. arXiv preprint arXiv:1810.08289 (2018).

[23] K Hammond and Victor J. Rayward-Smith. 1984. A survey on syntactic error
recovery and repair. Computer Languages 9, 1 (1984), 51–67.

[24] Mauricio A Hernández and Salvatore J Stolfo. 1995. The merge/purge problem
for large databases. ACM Sigmod Record 24, 2 (1995), 127–138.

[25] Matthias Höschele and Andreas Zeller. 2017. Mining input grammars with
AUTOGRAM. In Proceedings of the 39th International Conference on Software
Engineering Companion. IEEE Press, 31–34.

[26] Ishtiaque Hussain and Christoph Csallner. 2010. Dynamic symbolic data structure
repair. In Software Engineering, 2010 ACM/IEEE 32nd International Conference on,
Vol. 2. IEEE, 215–218.

[27] GitHub Inc. 2018. REST API v3. https://developer.github.com/v3/
[28] ANTLR 4.7.1 API JavaDocs. 2018. Class DefaultErrorStrategy. https://www.

antlr.org/api/Java/org/antlr/v4/runtime/DefaultErrorStrategy.html
[29] Shawn R Je�ery, Gustavo Alonso, Michael J Franklin, Wei Hong, and Jennifer

Widom. 2006. A pipelined framework for online cleaning of sensor data streams.
In 22nd International Conference on Data Engineering (ICDE’06). IEEE, 140–140.

[30] json simple. 2018. A simple Java toolkit for JSON. https://github.com/fangyidong/
json-simple

[31] Eleftherios Koutso�os, Stephen North, et al. 1991. Drawing graphs with dot.
Technical Report. Technical Report 910904-59113-08TM, AT&T Bell Laboratories,
Murray Hill, NJ.

[32] Tomasz Krawczyk. 1980. Error correction by mutational grammars. Inform.
Process. Lett. 11, 1 (1980), 9–15.

[33] Tomasz Kuchta, Cristian Cadar,Miguel Castro, andManuel Costa. 2014. Docovery:
Toward Generic Automatic Document Recovery. In International Conference on
Automated Software Engineering (ASE 2014). 563–574.

[34] Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.

[35] Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou, and Martin Rinard.
2012. Automatic Input Recti�cation. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA,
80–90. http://dl.acm.org/citation.cfm?id=2337223.2337233

[36] Dominik Luebbers, Udo Grimmer, and Matthias Jarke. 2003. Systematic de-
velopment of data mining-based data quality tools. In Proceedings 2003 VLDB
Conference. Elsevier, 548–559.

[37] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. Sap�x: Automated end-to-end
repair at scale. In Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice. IEEE Press, 269–278.

[38] Jon Mauney and Charles N. Fischer. 1982. A forward move algorithm for LL and
LR parsers. ACM SIGPLAN Notices 17, 6 (1982), 79–87.

[39] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.
In Proceedings of the 28th international conference on Software engineering. ACM,
142–151.

[40] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2013. Data debugging with
continuous testing. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. 631–634.

[41] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2015. Preventing data errors
with continuous testing. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis. 373–384.

[42] University of Utah. 2003. Wavefront OBJ Speci�cation. https://www.cs.utah.
edu/~boulos/cs3505/obj_spec.pdf

[43] The appleseedHQ Organization. 2018. appleseed - A modern, open-source pro-
duction renderer. https://appleseedhq.net

[44] Terence Parr. 2018. ANTLR. http://www.antlr.org
[45] Ravali Pochampally, Anish Das Sarma, Xin Luna Dong, Alexandra Meliou, and

Divesh Srivastava. 2014. Fusing data with correlations. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 433–444.

[46] Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An interac-
tive data cleaning system. In VLDB, Vol. 1. 381–390.

[47] AT&T Labs Research. 2018. Graphviz - Graph Visualization Software. https:
//www.graphviz.org/

[48] Martin C. Rinard. 2007. Living in the Comfort Zone. In Proceedings of the 22Nd
Annual ACM SIGPLAN Conference on Object-oriented Programming Systems and
Applications (OOPSLA ’07). ACM, New York, NY, USA, 611–622. https://doi.org/
10.1145/1297027.1297072

[49] Jan Sche�czyk, Uwe M Borgho�, Peter Rödig, and Lothar Schmitz. 2004. S-DAGs:
Towards e�cient document repair generation. In Proc. of the 2nd Int. Conf. on
Computing, Communications and Control Technologies, Vol. 2. 308–313.

[50] Chad D. Sterling and Ronald A. Olsson. 2007. Automated bug isolation via
program chipping. Software: Practice and Experience 37, 10 (2007), 1061–1086.

[51] Ralf Sternberg. 2018. minimal-json - A fast and small JSON parser and writer for
Java. https://github.com/ralfstx/minimal-json

[52] Microsoft Support. 2018. How to recover a lost Word document. https://support.
microsoft.com/en-us/help/316951

[53] Xiaolan Wang, Mary Feng, Yue Wang, Xin Luna Dong, and Alexandra Meliou.
2015. Error diagnosis and data pro�ling with data x-ray. Proceedings of the VLDB
Endowment 8, 12 (2015), 1984–1987.

[54] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[55] Hui Xiong, Gaurav Pandey, Michael Steinbach, and Vipin Kumar. 2006. Enhancing
data analysis with noise removal. IEEE Transactions on Knowledge and Data
Engineering 18, 3 (2006), 304–319.

[56] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.
org/10.1109/32.988498

