
7

Quantifying the Information Leakage in Cache Attacks via

Symbolic Execution

SUDIPTA CHATTOPADHYAY, Singapore University of Technology and Design

MORITZ BECK, Saarland University

AHMED REZINE, Linköping University

ANDREAS ZELLER, Saarland University

Cache attacks allow attackers to infer the properties of a secret execution by observing cache hits and misses.

But how much information can actually leak through such attacks? For a given program, a cache model, and

an input, our CHALICE framework leverages symbolic execution to compute the amount of information that

can possibly leak through cache attacks. At the core of CHALICE is a novel approach to quantify information

leakage that can highlight critical cache side-channel leakage on arbitrary binary code. In our evaluation

on real-world programs from OpenSSL and Linux GDK libraries, CHALICE effectively quantifies information

leakage: For an AES-128 implementation on Linux, for instance, CHALICE finds that a cache attack can leak

as much as 127 out of 128 bits of the encryption key.

CCS Concepts: • Security and privacy → Software security engineering; • Computer systems orga-

nization → Embedded software;

Additional Key Words and Phrases: Side channel, security, cache, symbolic execution

ACM Reference format:

Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. 2019. Quantifying the Information

Leakage in Cache Attacks via Symbolic Execution. ACM Trans. Embed. Comput. Syst. 18, 1, Article 7 (January

2019), 27 pages.

https://doi.org/10.1145/3288758

1 INTRODUCTION

Cache attacks [11] are among the best known side-channel attacks [26] to determine secret fea-
tures of a program execution without knowing its input or output. Cache attacks can be timing-
based [11] or access-based [30]. The general idea of a timing attack is to observe, for a known
program, a timing of cache hits and misses, and then to use this timing to determine or constrain
features of the program execution, including secret data that is being processed. Similarly, for
access-based cache attacks, an observer monitors, for a known program, the specific cache lines
being accessed. Then, such information is used to determine the input processed by the respective

This work was partially supported by SUTD grant number SRIS17123 and Singapore Ministry of Education (MOE)

Academic Research Fund MOE2018-T2-1-098.

Authors’ addresses: S. Chattopadhyay, 8 Somapah Road, Singapore University of Technology and Design, Singapore

487372; email: sudipta_chattopadhyay@sutd.edu.sg; M. Beck, Geschwister-Scholl-Platz 1, 80539 München, Germany; email:

moritz@icloud.com; A. Rezine, Linköping University, 581 83 Linköping; email: ahmed.rezine@liu.se; A. Zeller, Campus E9

1 (CISPA), Room 2.07, 66123 Saarbrücken, Germany; email: zeller@cs.uni-saarland.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1539-9087/2019/01-ART7 $15.00

https://doi.org/10.1145/3288758

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

https://doi.org/10.1145/3288758
mailto:permissions@acm.org
https://doi.org/10.1145/3288758

7:2 S. Chattopadhyay et al.

Fig. 1. For a fixed input message, the plot shows the number of keys leading to a given number of cache

misses incurred by executing AES-128 encryption (sample size = 256,000 keys).

program. Recent cache attacks [33] show that access-based attacks are practical even in commodity
embedded processors, such as in ARM-based embedded systems.

The precise nature of the information that can leak through such attacks depends on the cache
and its features, as well as the program and its features. Consequently, given a model of the cache
and a program run, it is possible to analyze which and how much information would leak through
a cache attack. This is what we do in this article. Given a program execution and a cache model, our
CHALICE approach automatically determines which bits of the input would actually leak through
a potential cache attack.

As an example, consider an implementation of the popular AES encryption algorithm. Given an
input and an encryption key (say, 128 bits for AES-128), CHALICE can determine which and how
many of the bits of the key would leak if the execution were subject to a cache attack. To this end,
CHALICE uses a novel symbolic execution over the given concrete input. During symbolic execution,
CHALICE derives symbolic timings of cache hits and misses; these then again reveal under which
circumstances individual bits of encryption key may leak through timing attacks. For access-based
attacks, CHALICE symbolically computes the number of cache lines accessed in each cache set. This
is then used to derive which bits of encryption key may leak through an access-based cache attack.

The reason why CHALICE works is that the timings of cache hits and misses, as well as the
cache access patterns, are not uniformly distributed; and therefore, some specific timings and cache
access patterns may reveal more information than others. Figure 1 demonstrates the execution of
an AES-128 implementation [3] for a fixed input and 256,000 different keys, inducing between
213 and 279 cache misses. We see that the distribution of cache misses is essentially Gaussian; if
the number of cache misses is average, there are up to 13,850 keys which induce this very cache
timing. If we have an extreme cache timing with 213 misses (the minimum) or 279 misses (the
maximum), then there are only two keys that induce this very timing. CHALICE can determine that
for these keys, 90 of 128 bits would leak if the execution were subjected to a cache attack, which
in practice would mean that the remaining 38 bits could be guessed through brute force—whereas
other “average” keys would be much more robust. For each key and input, CHALICE can precisely

predict which bits would leak, allowing its users to determine and find the best alternative.
It is this precision of its symbolic analysis that sets CHALICE apart from the state of the art. Existing

works [23, 32] use static analysis alone to provide an upper bound on the potential number of
different observations that an attacker can make. This upper bound, however, does not suffice to
choose between alternatives, as it ignores the distribution of inputs: It is possible that certain inputs
may leak substantially more information than others. Not only that such an upper bound might
be imprecise, it is also incapable of identifying inputs that exhibit substantial information leakage
through side channels. Given a set of inputs (typically as part of a testing pipeline), CHALICE can
precisely quantify the leakage for each input, and thus provide a full spectrum that characterizes
inputs with respect to information leakage.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:3

Fig. 2. k is a sensitive input. (a)–(c) Three code fragments and respective partitions of the input space with

respect to cache hit/miss sequence (reд1, reд2 represent registers). (d) Mapping of program variables into a

512-byte direct-mapped cache (q[255] and p[0] conflict in the cache).

The remainder of this article is organized as follows. After giving an overview on CHALICE
(Section 2), we make the following contributions:

(1) We present CHALICE, a new approach to precisely quantify information leakage in execution

and its usage in software testing (Section 3).
(2) We introduce a symbolic cache model to handle various cache configurations and instan-

tiate CHALICE to detect cache side-channel leakage (Section 4). This is the first usage of
symbolic execution to quantify information leakage by relating cache and program states.

(3) We demonstrate generalizations across multiple observer models (Section 5).
(4) We provide an implementation based on LLVM and the KLEE symbolic virtual machine.

Source code of CHALICE and all experimental data is publicly available at https://bitbucket.
org/sudiptac/chalice.

(5) We evaluate our CHALICE approach (Section 6) to show how we quantify the information
leaked through execution in several libraries, including OpenSSL and Linux GDK libraries,
and show that the information leakage can be as high as 127 bits (out of 128 bits) for certain
implementations [3] of AES-128.

After discussing related work (Section 7), we close with a conclusion and consequences
(Section 8).

2 OVERVIEW

In this section, we convey the key insight behind our approach through examples. In particular,
we illustrate how CHALICE is used to quantify information leakage from the execution trace of a
program.

Motivating Example. Let us assume that our system contains a direct-mapped data cache of size
512 bytes. Figure 2(a)–(c) shows different code fragments executed in the system. For the sake of
clarity, we use source-level syntaxes. Also for clarity, we assume that conditional checks, in this
example, do not involve any access to the data cache (i.e., k is assigned to a register). However, it is
worthwhile to note that our framework CHALICE handles arbitrary execution traces and it handles
all instructions with arbitrary cache behaviors. The mapping of different variables into the cache
is shown in Figure 2(d). Let us assume that the code fragments of Figure 2(a)—(c) are executed
with some arbitrary (and unknown) value of k . Broadly, CHALICE answers the following question:
Provided only the cache performance (e.g., cache hit/miss sequence) from such executions, how much

information about the sensitive input k is leaked?

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

https://bitbucket.org/sudiptac/chalice.
https://bitbucket.org/sudiptac/chalice.

7:4 S. Chattopadhyay et al.

The cache performance induces a partition on the program input space. Let us capture the cache
performance via a sequence of hits (h) and misses (m). In Figure 2(a), for all values of k between
0 and 127, we observe two cache misses due to the first two memory accesses, p[k] and q[255 −
k], respectively. The second access to p[k] is a cache hit, for k ∈ [1, 127]. However, if k = 0, the
content ofp[k] will be replaced byq[255 − k], resulting in a cache miss at the second access ofp[k].
For k ∈ [128, 255], p[k] is never replaced once it is loaded into the cache. Therefore, the second
access to p[k] is a cache hit for k ∈ [128, 255]. In other words, we observe the sequence of cache
hits and misses to induce the following partition on the input space: k = 0 (hit/miss sequence
= 〈m,m,m〉) and k ∈ [1, 255] (hit/miss sequence = 〈m,m,h〉). A similar exercise for the code in
Figure 2(b) results in the following partition of the sensitive input space: k ∈ [0, 255] ∧ (k mod 2 =
0) (hit/miss sequence = 〈m,m,m〉) and k ∈ [0, 255] ∧ (k mod 2 � 0) (hit/miss sequence = 〈m,m,h〉).
Key observation. In this work, we stress the importance of quantifying information leakage from

execution traces and not from the static representation of a program. To illustrate this, consider the
input partitions created for code fragments in Figure 2(a) and (b). We emphasize that observing the
cache hit/miss sequence 〈m,m,m〉, from an execution of the code fragment in Figure 2(a), results in
complete disclosure of sensitive input k . On the contrary, observing the sequence 〈m,m,m〉, from
an execution of the code fragment in Figure 2(b), will only reveal the information thatk is odd. Such
information still demands a probability of 1/128 in order to correctly guess k at first attempt. This is
in contrast to accurately guessing the correct value of k at first attempt (as happened through the
sequence 〈m,m,m〉 for Figure 2(a)). In order to fix the cache side-channel leakage in Figure 2(a),
we can reorder the code as shown in Figure 2(c).

Limitations of static analysis. Existing works in static analysis [23, 32] correlate the number of
possible observations (by an attacker) with the number of bits leaked through a side channel. We
believe this view can be dangerous. Indeed, both code fragments in Figure 2(a) and (b) have exactly
two possible cache hit/miss sequences (hence, observations), for arbitrary values of k . Therefore,
approaches based on static analysis [23, 32] will consider these two code fragments equivalent in
terms of cache side-channel leakage. As a result, a crucial information leakage scenario, such as
the execution of code fragment in Figure 2(a) with k = 0, will go completely unnoticed. Techniques
based on verifying that programs execute in constant time typically check that memory accesses
do not depend on sensitive inputs [7, 9]. Yet, most implementations do not execute in constant time.
Besides, programs such as in Figure 2(c) have accesses that may depend on sensitive inputs without
leaking information about it to a cache-performance observer. Hence, we track the relationship
between input and cache performance through a symbolic model of the cache.

The usage of CHALICE. CHALICE is aimed to be used for validating security properties of soft-
ware. Given a test suite (i.e., a set of concrete test inputs) for the software, CHALICE is used to
quantify the information leaked for each possible observation obtained from this test suite. In our
earlier works [10, 17], we have shown how such an effective test suite can be generated automati-
cally. Since the observation by an attacker (e.g., number of cache misses) corresponds to a (set of)
test input(s), CHALICE presents how much can be deduced about such inputs from the respective
observation. In other words, our framework CHALICE fits the role of a test oracle in the software
validation process. For instance, if CHALICE reports substantial information leakage, the test inputs
leading to the respective observation should be avoided (e.g., avoiding a “weak” encryption key)
or the program needs to be restructured to avoid such information leakage.

How CHALICE works. Let us assume that we execute the code in Figure 2(a) with some input
I ∈ [0, 255] and observe the trace tI ≡ 〈m,m,m〉. Given only the observation tI , CHALICEquantifies

how much information about program input I is leaked. CHALICE symbolically executes the pro-
gram and it tracks all memory accesses dependent on the sensitive input k . Concretely, CHALICE

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:5

constructs Γ(0 ≤ k ≤ 127) and Γ(128 ≤ k ≤ 255), which encode all cache hit/miss sequences for
inputs satisfying 0 ≤ k ≤ 127 and 128 ≤ k ≤ 255, respectively. While exploring the path for inputs
k ∈ [0, 127], we record a sequence of symbolic memory addresses 〈&p[k],&q[255 − k],&p[k]〉,
where &x denotes the address of value x . Since we started execution with an empty cache, the
first access to p[k] inevitably incurs a cache miss, irrespective of the value of k . The subsequent
accesses can be cache hits, cold misses (first access to the respective cache line), or eviction misses
(non-first access to the respective cache line). For instance, we check whether the “store” instruc-
tion suffers a cold data-cache miss as follows:

(0 ≤ k ≤ 127) ∧ (set (&p[k]) � set (&q[255 − k])) ∧ (set (&p[k]) � set (&p[k])) , (1)

where set (&x) captures the cache line where memory address &x is mapped to. Intuitively, the
constraint checks whether access to p[k] (via the “store” instruction) touches a cache line for the
first time. Constraint (1) is clearly unsatisfiable, leading to the fact that the “store” instruction
does not access a cache line for the first time during execution.

Subsequently, we check whether the second access to p[k] can suffer an eviction miss. To this
end, we check whether q[255 − k] can evict p[k] from the cache as follows:

(0 ≤ k ≤ 127) ∧ (set (&p[k]) = set (&q[255 − k])) ∧ (taд(&p[k]) � taд(&q[255 − k])) , (2)

where taд(&x) captures the cache tag associated with the accessed memory block. Intuitively,
Constraint (2) is satisfied if and only if q[255 − k] accesses a different memory block as compared
to p[k], but q[255 − k] and p[k] access the same cache line (hence, causing an eviction before p[k]
was accessed for the second time). In this way, we collect Constraints (1) and (2) to formulate the
cache behavior of a memory access into Γ(0 ≤ k ≤ 127).

After constructing Γ(0 ≤ k ≤ 127), we explore the path for inputs k ∈ [128, 255] and record the
sequence of memory accesses p[k], q[k − 128], and p[k]. Performing a similar exercise, we can
show that the second access top[k] cannot be a cold miss along this path. In order to check whether
the second access to p[k] was an eviction miss along this path, we check whether q[k − 128] can
evict p[k] from the cache as follows:

(128 ≤ k ≤ 255) ∧ (set (&p[k]) = set (&q[k − 128])) ∧ (taд(&p[k]) � taд(&q[k − 128])). (3)

Constraint (3) is used to formulate Γ(128 ≤ k ≤ 255) and is unsatisfiable. This is because only
p[0] shares a cache line with q[255] (i.e., set (&p[0]) = set (&q[255])) and therefore, set (&p[k]) =
set (&q[k − 128]) is evaluated false for 128 ≤ k ≤ 255. As a result, the second access to p[k] is not
a cache miss for any input k ∈ [128, 255].

From the observation 〈m,m,m〉, we know that the second access to p[k] was a miss. From the
discussion in the preceding paragraph, we also know that this observation cannot occur for any in-
puts k ∈ [128, 255]. Therefore, the value of k must result in Constraint (2) satisfiable. Constraint (2)
is unsatisfiable if we restrict the value of k between 1 and 127. This happens based on the fact that
only p[0] is accessed from the same cache line as q[255] (cf. Figure 2(d)). As a result, CHALICE re-
ports 255 (127 for the if branch and 128 for the else branch in Figure 2(a)) values being leaked
for the observation 〈m,m,m〉. In other words, CHALICE accurately reports the information leakage
(i.e., k = 0) for the observation 〈m,m,m〉.
CHALICE for debugging. In the preceding discussion, we observed that CHALICE reported ac-
curate information leakage by checking the cache miss behavior of the store instruction only.
Consequently, a developer can invest more attention in fixing the leakage through the store in-
struction, such as forcing the store to be a cache hit for all inputs. As observed in Figure 4(c), such
a fix involves moving the first load instruction in Figure 4(a). We note, however, that CHALICE
does not provide capabilities to automatically fix cache side channels.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:6 S. Chattopadhyay et al.

Relation to entropy. In the preceding example, CHALICE computes the number of impossible
values of k , for a given observation. This, in turn, can be used to compute the uncertainty to guess
k , provided the respective observation occurred. For instance, if the attacker observes the sequence
〈m,m,m〉, then the uncertainty to guess k is 0 bits (as exactly one value of k is possible for this
observation). If we assume that k was uniformly distributed, the initial uncertainty to guess k was
8 bits (since k is an 8-bit input in the example). This leads to a reduced uncertainty of 8 bits when
the sequence 〈m,m,m〉 was observed by the attacker.

3 FRAMEWORK

In this section, we formally introduce the core capabilities implemented within CHALICE.

3.1 Foundation

3.1.1 Threat Model. Side-channel attacks are broadly classified into synchronous and asyn-
chronous attacks [41]. In a synchronous attack, an attacker can trigger the processing of known
inputs (e.g., a plain-text or a cipher-text for encryption routines), whereas such a possibility is not
available for asynchronous attacks. Synchronous attacks are clearly easier to perform, since the
attacker does not need to infer the start and end of the targeted routine under attack. For instance,
in a synchronous attack, the attacker can trigger encryption of known plain-text messages and
observe the encryption-timing [11]. Since CHALICE is a software validation tool with the aim of
producing side-channel resistant implementations, we assume the presence of a strong attacker in
this article. Therefore, we consider the attacker can request and observe the execution (e.g., num-
ber of cache misses) of the targeted routine. We also assume that the attacker can execute arbitrary
user-level code on the same processor running the targeted routine. This allows the attacker to
flush the cache before the targeted routine starts execution and therefore, reduce the external noise
in the observation. The attacker, however, is incapable of accessing the address space of the target
routine.

3.1.2 Notations. The execution of program P on input I results in an execution trace tI . tI is
a sequence over the alphabet Σ = {h,m} where h (m, respectively) represents a cache hit (cache
miss, respectively). Our proposed method in CHALICE quantifies the information leaked through
tI . We capture this quantification via L (tI). We assess the information leakage with respect to an
observer. An observer is a mappingO : Σ∗ → DwhereD is a countable set. For instance, an observer
O : Σ∗ → N can count the number of misses and will associate both sequences 〈m,h,m,h,h〉 and
〈m,m,h,h,h〉 to 2. It will therefore not differentiate them. The most precise observer would be the
identity mapping on Σ∗. However, an observer that tracks prefixes of length two would be capable
of differentiating 〈m,h,m,h,h〉 and 〈m,m,h,h,h〉.

We use the 0-1 variablemissi to capture the cache miss behavior of the i-th memory access. The
observation by an attacker, over the execution for an arbitrary input and according to the observer
model O, is considered via the observation constraint ΦO . ΦO is a symbolic constraint over vari-
ables {miss1,miss2, . . . ,missn }. For instance, ΦO ≡ (

∑n
i=1 missi = 100) accurately captures that the

attacker observes 100 cache misses in an execution manifesting n memory accesses. For the sake
of formulation, we use ΦO,e to mean the interpretation of an observation constraint ΦO along a
program path e . For example, ΦO,e ≡ (

∑300
i=1 missi = 100) if ΦO ≡ (

∑n
i=1 missi = 100) and the path

e has 300 memory accesses. ΦO,e amounts to f alse if ΦO requires a different number of memory
accesses than those provided by the path e . Given only ΦO to be observed by an attacker, CHALICE
quantifies how much information about the respective program input is leaked.

The central idea of our information leakage detection is to capture the cache behavior via sym-
bolic constraints. Let us consider a set of inputs I that exercise the same execution path with n

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:7

Fig. 3. The framework CHALICE.

memory accesses. We use Γ(I) to accurately encode all possible combinations of values of variables
{miss1,miss2, . . . ,missn }. Therefore, if Γ(I) ∧ ΦO is unsatisfiable, we can deduce that the respective
observation ΦO did not occur for any input I ∈ I. We now describe how L (tI) is computed.

3.2 Quantifying Information Leakage in Execution

Figure 3 provides an outline of our entire framework. We symbolically execute a program P
and compute the path condition [27] for each explored path. Such a path condition symbolically
encodes all program inputs for which the respective program path was followed. Our symbolic
execution-based framework tracks all memory accesses on a taken path and therefore, enables us
to characterize, for all symbolic arguments satisfying the path condition, the set of all associated
cache behaviors.

Recall that we use Γ(I) to capture possible cache hit/miss sequences in an execution path, which
was activated by a set of inputs I. In an abuse of notation, we capture the set of inputs I via path
conditions. For instance, in Figure 2(a), we use Γ(0 ≤ k ≤ 127) to encode all possible cache hit/miss
sequences for inputs activating the If branch. For an arbitrary execution path e , let pce be the path
condition. Along this path, we record each memory access and we consider its cache behavior via
variables missi . missi is set to 1 (0, respectively) if and only if the i-th memory access along the
path encounters a cache miss (hit, respectively). Givenn to be the total number of memory accesses
along the path e , we formulate Γ(pce) to bound the value of {miss1,miss2, . . . ,missn }. In particular,
any solution of Γ(pce) ∧ (missi = 1) captures a concrete input I |= pce and such an input I leads
to an execution where the i-th memory access is a cache miss. Therefore, if an observation ΦO
happens to be for input I |= pce , then Γ(pce) ∧ ΦO,e is always satisfiable. Conclusively, we capture
the information leakage through trace tI as follows:

L (tI) = 2N −
������

∨
e ∈Paths

(
Γ(pce) ∧ ΦO,e

) ������sol

, (4)

where N is the size of the program input (in bits), ΦO,e is the interpretation of the observation
constraint on path e , Paths is the set of all program paths, andpce is the path condition for program
path e . |X|sol captures the number of solutions satisfied by predicate X. It is worthwhile to note
that |∨e ∈Paths

(
Γ(pce) ∧ ΦO,e

) |sol accurately captures the number of program inputs that exhibit
the observation satisfied by ΦO . In other words, Equation (4) quantifies the number of program
inputs that do not exhibit the observation, as captured by ΦO . Hence, if the attacker observes ΦO ,
then she can deduce as many as L (tI) inputs were impossible for ΦO .

Relation to Entropy. The secrecy of a sensitive input is usually measured as the uncertainty of
an attacker to guess its value. This uncertainty can be measured using entropies such as Shannon

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:8 S. Chattopadhyay et al.

entropy (H) or min-entropy (H∞) [20, 38]. Let I be the set of secret input values where each
input I ∈ I has an a priori probability p (I) to be used. The initial uncertainty is given by H =
−∑

I ∈I p (I) log2 (p (I)) for the Shannon entropy and byH∞ = − log2 (max {p (I) | I ∈ I}) for the min-
entropy. In the particular case where all sensitive inputs are equally probable (i.e., p (I) = 1/ |I | for
each I ∈ I), then both measures coincide (H = H∞ = log2 |I|).

Assume the observations are completely determined by the sensitive input. Suppose the at-
tacker makes an observation O. Let IO be the set of all sensitive inputs in I leading to the ob-
servation O. Let pO (I) be the probability that the sensitive input is I given the behavior O is
observed. Notice that pO (I) = 1/ |IO | in case sensitive inputs are equally probable. The remain-
ing uncertainty is given by H (O) = −∑

I ∈I pO (I) log2 (pO (I)) using the Shannon entropy and by
H∞ (O) = − log2 (max {pO (I) | I ∈ I}) using the min-entropy. These two measures coincide again
for equally probable sensitive inputs (H (O) = H∞ (O) = log2 |IO |). Observe that IO is the set of
all program inputs for which

∨
e ∈Paths

(
Γ(pce) ∧ ΦO,e

)
evaluates to true. Hence, if the attacker as-

sumes that all values of the sensitive input are equally probable for observation constraint ΦO , we
get

H (O) = log2

������
∨

e ∈Paths

(
Γ(pce) ∧ ΦO,e

) ������sol

. (5)

In summary, less the number of satisfying solutions for the formula
∨

e ∈Paths

(
Γ(pce) ∧ ΦO,e

)
,

less the uncertainty to guess the sensitive input I given O is observed.

Example 3.1. Assume a program that takes a 4-bits-long sensitive input. Suppose an attacker
can observe three possible values: O1 resulting from 12 input values IO1

, O2 resulting from 3 input
values IO2

, and O3 resulting from a single input value IO1
. Assuming all input values are equally

probable, the initial uncertainty is given byH = log2 (24) = 4 bits. The remaining uncertainty af-
ter an attacker observes O1 isH (O1) = log2 (|IO1

|) = log2 12 = 3.58, after observing O2 isH (O2) =
log2 (|IO2

|) = log2 (3) = 1.58, and after observing O3 is H (O3) = log2 (|IO3
|) = log2 1 = 0. The cor-

responding information leakage is therefore of 4 − 3.58 = 0.42 bits for O1, of 4 − 1.58 = 2.42 bits
for O2, and of 4 − 0 = 4 bits for O3.

Given an observation O, our analysis gives sound upper bounds to |IO | for a rich set of obser-
vations of cache behaviors. The longer we run the analysis, the tighter (i.e., smaller) upper bound
we obtain. The smaller the upper bounds, the more information is established to be leaked by the
given observation. Our analysis can, for example, be used to exclude adopting some sensitive inputs
resulting in an observation O with a particularly small |IO |, i.e., leaking too much information.

In the next section, we show how to compute the number of solutions of
∨

e ∈Paths (Γ(pce) ∧
ΦO,e) (i.e., |IO |) in an incremental fashion.

3.3 Cartesian Bounding of Information Leakage

We justify and describe in the following a simple technique to tackle the scalability challenges.
These challenges are faced by model counting for quantifying side-channel leakage.

3.3.1 Challenges to Compute L (tI). Computing the exact value of L (tI) can become infeasible
for the targeted problems in this article. For instance, the input domains of targeted programs are
as big as 2128 and the number of CNF clauses for an equivalent #SAT problem varies from 550K
to two million, with hundreds of thousands of variables. Such a problem scale is several orders
of magnitude higher than the programs evaluated by state-of-the-art model counting tools [13]
supporting non-linear constraints. Specifically, we evaluated a scalable, but approximate model
counter [16] and discovered it is incapable of dealing with the length and the number of clauses
generated for our subject programs.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:9

In order to solve the aforementioned scalability issues, we leverage the capability of our frame-
work to symbolically reason about partitions over input values. This has two crucial advantages:
(1) we have an anytime algorithm to quantify the cache side-channel leakage. This means the
longer time CHALICE runs, the more accurately it quantifies the information leakage. Intuitively,
while evaluating leakage through an observation, we check for each input byte (bit, respectively)
whether the byte can hold a specific value between 0 and 255 (0 or 1, respectively) via predicates
πbyte (πbit , respectively). This allows us to trade accuracy for the number of required solver calls.
The πbyte and πbit cases are clarified after Lemma 3.2 in Section 3.3.2. We formalize a general-
ization of this idea. This allows us to use arbitrary predicates (not only πbyte and πbit). Our for-
malization reflects on some valuable properties in terms of improving the accuracy of quantified
leakage while requiring fewer solver calls. In addition, our proposed approach is inherently paral-
lel, as each partition (resulting from predicate choices) can be checked independently. (2) CHALICE
not only quantifies the leakage, it also characterizes the equivalence class of secrets for a given
observation. This is critical to identify weak secrets, such as weak passwords in password checkers
or weak keys in encryption routines. Finally, our proposed scheme also provides strong guarantees

on the derived bound for L (tI).

3.3.2 Input Space Partitioning to Compute L (tI). Consider a set I of program inputs containing
all possible N -bit input values, i.e., |I| = 2N . A partition P of I is a set {P[j] | 1 ≤ j ≤ |P |} of disjoint
non-empty sets whose union coincides with I. Here, we write |P | to mean the size of P, i.e., the
number of subsets of I defined by the partition P. For example, a possible partition of size 2 is
the one that partitions program inputs into two sets depending on the value of their first bit.
Assume K partitions P1, . . . , PK of the input set I for which no (P1[i1] ∩ P2[i2] ∩ · · · ∩ PK [iK]) is
empty, for any i j : 1 ≤ i j ≤ |Pj |. A {P1, . . . , PK }-based Cartesian partitioning of I, written (P1 �
P2 � · · ·� PK), is the partition of I that corresponds to the intersection of all partitions P1, . . . , PK ,
i.e., whose elements are the sets (P1[i1] ∩ P2[i2] ∩ · · · ∩ PK [iK]) where i j : 1 ≤ i j ≤ |Pj |. For each
tuple (P1[i1], . . . , PK [iK]) of the cross product (P1 × · · · × PK), we write [[(P1[i1], . . . , PK [iK])]] to
mean the element (P1[i1] ∩ P2[i2] ∩ · · · ∩ PK [iK]) of the Cartesian partitioning (P1 � · · ·� PK).
For a subset T of the cross product (P1 × P2 × · · · × PK), we let [[T]] mean the union ∪t ∈T [[t]].
A Cartesian partitioning (P1 � · · ·� PK) is said to be complete if each [[(P1[i1], . . . , PK [iK])]] is
a singleton of I. Observe that this means |I| = 2N = |P1 | × · · · × |PK | holds. Given a subset S of
I and a Cartesian partitioning (P1 � · · ·� PK) of I, we write (S) |(P1�· · ·�PK) to mean the set of
elements of (P1 � · · ·� PK) whose denotations intersect S . Observe that S = [[(S) |(P1�· · ·�PK)]] in
case (P1 � · · ·� PK) is complete. The following lemma bounds information leakage by requiring
only Σi :1≤i≤K |Pi | solver calls (as opposed to 2N = Πi :1≤i≤K |Pi | when enumerating all inputs).

Lemma 3.2 (Cartesian Leakage Bound). Assume a complete Cartesian partitioning (P1 � · · ·�
PK) of I and a trace tI that results in the observation constraint ΦO . If UΦO

Pi
⊆ Pi is the set of Pi

elements for which ΦO is unfeasible, then L (tI) ≥ 2N −∏
1≤i≤K (|Pi | − |UΦO

Pi
|).

Proof. Recall L (tI) = 2N − |∨e ∈Paths

(
Γ(pce) ∧ ΦO,e

) |sol . Observe |∨e ∈Paths (Γ(pce) ∧
ΦO,e) |sol is the size of the set SΦO of all program inputs I that exhibit the observation
ΦO , i.e., satisfying some path condition pce where (Γ(I) ∧ ΦO,e) holds. Observe that SΦO ,
which coincides with the denotation of (SΦO) |(P1�· · ·�PK) , is included in the denotation of

((SΦO) |P1
× (SΦO) |P2

× · · · × (SΦO) |PK
). Hence, |SΦO | ≤ Πi :1≤i≤K |(SΦO) |Pi

|. We conclude by observ-

ing that (SΦO) |Pi
= Pi \ UΦO

Pi
since UΦO

Pi
is the subset of Pi for which ΦO is unfeasible. �

Lemma 3.2 holds for any complete partitioning of the set of inputs. In practice, we can generate
the K partitions by sampling the N -bit input into K equal segments. We then constrain the search

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:10 S. Chattopadhyay et al.

space of the solver by restricting the value of each such input segment. For instance, let us assume
k is the program input and ki captures the i-th input segment. The i-th partition is defined using

2
N
K predicates πi [v] ≡ (ki = v) for v ∈ lbrace0, 1, . . . , 2

N
K − 1}. For a segment i , the predicates in

{πi [v] | 0 ≤ v < 2
N
K } are pairwise unsatisfiable and partition all input values into 2

N
K elements.

The obtained Cartesian partitioning is complete. We use each πi [v] to guide the solver and search
for a solution only in the input space where the i-th input segment is v . Since we have K different

segments, we generate a total of (K · 2 N
K) different predicates, each characterizing an element of

some partition. An appealing feature of this process is that all K · 2 N
K predicates can be generated

independently and result in parallelizable unsatisfiability checks. Given a partition i , we compute

UΦO
Pi

as the number of predicates πi [v] for which the following is unsatisfiable:∨
e ∈Paths

(
Γ(pce) ∧ ΦO,e ∧ πi [v]

)
. (6)

It is worthwhile to note that settingK = 1 amounts to enumerating all solutions as in Equation (4).
This yields an exact but expensive measure of information leakage. In contrast, choosing K = N

amounts to checking information leakage at bit-level. This results in a scalable amount of solver
calls (only 2N) but yields a potentially much weaker bound on information leakage. Therefore,
K provides a tunable parameter for the detection of information leakage. We can formalize this
observation by introducing the notion of Cartesian refinement. Assume two Cartesian partitioning
of I, (P1 � · · ·� PK) and (Q1 � · · ·� QM). We say that (P1 � · · ·� PK) refines, or is more precise
than, (Q1 � · · ·� QM) if there is a surjective function h : {1, . . . ,M } → {1, . . . ,K } such that each
partition Pi , for i : 1 ≤ i ≤ K , coincides with the Cartesian partitioning (Qj1 � · · ·� Qj |h−1 (i) |

) where

{j1, . . . , j |h−1 (i) | } = h−1 (i).

Lemma 3.3 (Cartesian Bound Refinement). Assume two complete Cartesian partitioning of

I where (P1 � · · ·� PK) refines (Q1 � · · ·� QM). For any trace tI that results in the observation

constraint ΦO , the Cartesian leakage bound obtained with (P1 � · · ·� PK) is always larger or

equal than the one obtained with (Q1 � · · ·� QM), i.e., L (tI) ≥ 2N −∏
1≤i≤K (|Pi | − |UΦO

Pi
|) ≥ 2N −∏

1≤i≤M (|Qi | − |UΦO
Qi
|).

Proof. Let SΦO be the subset of program inputs I that exhibits the observation ΦO , i.e.,
containing all program inputs I satisfying some path condition pce where (Γ(I) ∧ ΦO,e) holds.
Observe that SΦO , which coincides with the denotation of (SΦO) |(P1�P2�· · ·�PK) , is a subset of

the denotation of ((SΦO) |P1
� (SΦO) |P2

� · · ·� (SΦO) |PK
) which is a subset of the denotation of

((SΦO) |Q1
× (SΦO) |Q2

× · · · × (SΦO) |QM
). This leads to the following crucial inequalities: |SΦO | ≤

Πi :1≤i≤K |(SΦO) |Pi
| ≤ Πi :1≤i≤M |(SΦO) |Qi

|. We conclude by observing that (SΦO) |Pi
= Pi \ UΦO

Pi
since

UΦO
Pi

is the subset of Pi for which ΦO is unfeasible and similarly (SΦO) |Qi
= Qi \ UΦO

Pi
. �

Due to the classic path explosion problem in symbolic execution, it is possible that only a subset
of execution paths E ⊆ Paths can be explored within a given time budget. In such cases, we can
quantify L (tI) as follows.

Lemma 3.4 (Anytime Information Leakage). Assume a complete Cartesian partitioning (P1 �
· · ·� PK) of I and a trace tI that results in the observation constraint ΦO . If E ⊆ Paths, let UΦO,E

Pi
⊆ Pi

be the set of Pi elements for which the observation constraint ΦO is impossible along the paths E. The

following holds:

L (tI) ≥
������
∨
e ∈E

pce

������sol

−
∏

1≤i≤K

(
|Pi | − |UΦO,E

Pi
|
)
. (7)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:11

Proof. Observe that the set of all path conditions defines a partition of the set of program
inputs. Hence, 2N coincides with the sum of |

∨
e ∈E pce |sol and |

∨
e ∈Paths\E pce |sol . Similarly, we ob-

serve that |
∨

e ∈Paths (Γ(pce) ∧ ΦO,e) |sol coincides with the sum of |
∨

e ∈E (Γ(pce) ∧ ΦO,e) |sol

and |
∨

e ∈Paths\E (Γ(pce) ∧ ΦO,e) |sol . Therefore, information leakage L (tI) coincides with
|
∨

e ∈E pce |sol + |
∨

e ∈Paths\E pce |sol − |
∨

e ∈E (Γ(pce) ∧ ΦO,e) |sol − |
∨

e ∈Paths\E (Γ(pce) ∧ ΦO,e) |sol .
The result follows from both |∨e ∈Paths\Epce |sol ≥ |∨e ∈Paths\E (Γ(pce) ∧ ΦO,e) |sol and∏

1≤i≤K (|Pi | − |UΦO,E
Pi
|) ≥ |∨e ∈E (Γ(pce) ∧ ΦO,e) |sol . �

For instance, using the segments defined before, UΦO,E
Pi

is the number of valuesv in 0 ≤ v < 2N /K

for which no Γ(pce) ∧ ΦO,e ∧ (ki = v) is satisfiable. Note the term |
∨

e ∈E pce |sol involves only path
conditions. |

∨
e ∈E pce |sol can often be computed via model counting [5] in practice.

In the next section, we will describe the construction of Γ (pce) for an arbitrary path condition
pce .

4 GENERATING SYMBOLIC CACHE MODEL

The technical contribution of our methodology is to establish a relation between a symbolic model
for the cache and our leakage metric introduced in Section 3.2. In this section, we propose and
formulate a novel symbolic model to encode the performance of direct-mapped caches and set-

associative LRU caches. To describe our model, we shall use the following notations:

—2S : The number of cache lines in the cache.
—2B : The size of a cache line (in bytes).
—A : Associativity of a set-associative cache.
—set (ri) : Cache line accessed by instruction ri .
—taд(ri) : The tag that would be stored in the cache for the memory access by ri .

Intercepting Memory Requests. We symbolically execute a program P . During symbolic execu-
tion, we track the path condition and the sequence of memory accesses for each explored path. For
instance, while symbolically exercising the If branch of Figure 2(a), we track the path condition
0 ≤ k ≤ 127 and the sequence of memory addresses 〈&p[k],&q[255 − k],&p[k]〉. It is worthwhile
to note that such memory addresses might capture symbolic expressions due to the dependency
from program inputs. Concretely, we compute the path condition pce and the execution trace Ψpce

for each explored path e as follows:

Ψpce
≡ 〈(r1,σ1), (r2,σ2), . . . , (rn−1,σn−1), (rn ,σn)〉, (8)

where ri captures the i-th memory-related instruction executed along the path and σi symbolically
captures the memory address accessed by ri .

Modeling Symbolic Cache Access. Following the basic design principle of caches, we compute
set (ri) and taд(ri) by manipulating the symbolic expression σi as follows:

set (ri) = (σi � B) & (2S − 1); taд(ri) = (σi � (B + S)). (9)

We note that set (ri) and taд(ri) might be symbolic expressions due to the symbolic nature of σi .

4.1 Modeling Cache Misses

We characterize cache misses into the following categories:

(1) Cold cache misses. Instruction ri suffers a cold miss if and only if the memory block ac-
cessed by ri has not been accessed by any previous instruction r ∈ {r1, r2, . . . , ri−1}.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:12 S. Chattopadhyay et al.

Fig. 4. r j induces a cache miss at ri if r j accesses the same cache set as ri and rk does not load the block

accessed by ri .

(2) Cache misses due to eviction. Instruction ri suffers such a cache miss if and only if the last
access to set (ri) was from an instruction r j ∈ {r1, r2, . . . , ri−1}, such that taд(r j) � taд(ri).

4.1.1 Constraints to Formulate Cold Cache Misses. If a memory block is accessed for the first

time, such an access will inevitably incur a cache miss. Let us consider that we want to check
whether instruction ri accesses a memory block for the first time during execution. In other words,
we can check none of the instructions r ∈ {r1, r2, . . . , ri−1} access the same memory block as ri .
Therefore,ri suffers a cold miss if and only if the following condition holds:

Θcold
i ≡

∧
p∈[1,i)

(set (rp) � set (ri)) ∨ (taд(rp) � taд(ri)). (10)

We note that the conditions for cold misses do not depend on the specifics of caches (e.g., direct-
mapped or set-associative). In the next section, we show the formulation of eviction misses for
direct-mapped and set-associative LRU caches.

4.1.2 Constraints to Formulate Cache Evictions. In the following, we formulate a set of con-
straints to encode cache misses due to the eviction of memory blocks from caches.

Direct-Mapped Caches. In direct-mapped caches, each cache set has exactly one cache line,
i.e., A = 1. Therefore, each memory address is mapped to exactly one cache line.

To illustrate different cache-miss scenarios clearly, let us consider the example shown in Figure 4.
Assume that we want to check whether ri will suffer a cache miss due to eviction. This might
happen only due to the instructions appearing before (in the program order) ri . Consider one such
instruction r j , for some j ∈ [1, i). Informally, r j is responsible for a cache miss at ri , only if the
following conditions hold:

(1)ψcnf (j, i): ri and r j access the same cache line,
(2)ψdif (j, i): ri , r j access different memory-block tags.ψcnf (j, i) andψdif (j, i) are formalized as

follows:

ψcnf (j, i) ≡ (set (r j) = set (ri)); ψdif (j, i) ≡ (taд(r j) � taд(ri)). (11)

(3) ψeqv (j, i): There does not exist any instruction rk where k ∈ [j + 1, i), such that rk accesses
the same memory block as ri . It is worthwhile to note that the existence of rk will load the memory
block accessed at ri . Since rk is executed after r j (in program order), r j is not responsible for a cache
miss at ri . We formulate the following constraint to capture this condition:

ψeqv (j, i) ≡
∧

k : j<k<i

(taд(rk) � taд(ri) ∨ set (rk) � set (ri)). (12)

Constraints (11) and (12) capture necessary and sufficient conditions for instruction r j to replace
the memory block accessed by ri (where j < i) and the respective block not being accessed be-
tween r j and ri . In order to check whether ri suffers a cache miss due to eviction, we need to
check Constraints (11) and (12) for any r ∈ {r1, r2, . . . , ri−1}. This can be captured via the following

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:13

constraint:

Θ
emp
i ≡ ���

∨
j : 1≤j<i

(
ψcnf (j, i) ∧ψdif (j, i) ∧ψeqv (j, i)

)��� . (13)

Instruction ri will not suffer a cache miss due to eviction when, for all prior instructions, at least
one of the Constraints (11) or (12) does not hold. This scenario is the negation of Constraint (13)

and therefore, it is captured via ¬Θ
emp
i .

We use the 0-1 variablemissi to capture the cache miss behavior of ri . As discussed in the preced-
ing paragraphs, ri suffers a cold miss (i.e., satisfying Constraint (10)) or the memory block accessed
by ri would be evicted due to the instructions executed before ri (i.e., satisfying Constraint (13)).
Using this notion, we formulate the value ofmissi as follows:

Θm,dir
i ≡

((
Θ

emp
i ∨ Θcold

i

)
⇒ (missi = 1)

)
,

Θh,dir
i ≡

((
¬Θ

emp
i ∧ ¬Θcold

i

)
⇒ (missi = 0)

)
.

(14)

Set-Associative LRU Caches. InA-way set-associative caches, each cache set containsA cache
lines. A memory block is mapped to a unique cache set, but it can be located at any of theA cache
lines of the respective set. If the cache set is full and a new memory block mapped to the same
cache set is accessed, then the least recently used memory block (LRU) is replaced from the set.

Modeling set-associative caches involves some unique challenges. To illustrate this, let us con-
sider the following sequence of memory accesses in a two-way associative cache with the LRU
replacement policy: (r1 : m1) → (r2 : m2) → (r3 : m2) → (r4 : m1). We assume bothm1 andm2 are
accessed from the same cache set and the cache is empty before r1 starts execution. We observe
that r4 will still incur a cache hit. This is because r4 suffers only one cache conflict from the memory
block m2. To incorporate this into our symbolic cache model, we only count cache conflicts from
the closest access to a given memory block. Therefore, in our example, we count cache conflicts to
r4 from r3 and discard the cache conflict from r2. Formally, we introduce the following additional
condition for instruction r j to inflict a cache conflict to instruction ri .
ψunq (j, i): No instruction between r j and ri accesses the same memory block as r j . This is to

ensure that r j is the closest to ri in terms of accessing the memory block corresponding to the
memory address σj (cf. Equation (8)). We captureψunq (j, i) formally as follows:

ψunq (j, i) ≡
∧

k : j<k<i

(
taд(rk) � taд(r j) ∨ set (rk) � set (r j)

)
. (15)

Hence, r j inflicts a unique cache conflict to ri only if ψunq (j, i), ψeqv (j, i), ψcnf (j, i), and ψdif (j, i)
are all satisfiable. This is formally captured as follows:

Θ
emp
j,i ≡

���
∨

j : 1≤j<i

(
ψcnf (j, i) ∧ψdif (j, i) ∧ψeqv (j, i) ∧ψunq (j, i)

)���→
(
ηji = 1

)
,

Θ
ehp
j,i ≡

���
∧

j : 1≤j<i

(
¬ψcnf (j, i) ∨ ¬ψdif (j, i) ∨ ¬ψeqv (j, i) ∨ ¬ψunq (j, i)

)���→
(
ηji = 0

)
.

(16)

Concretely, ηji is set to 1 if r j creates a unique cache conflict to ri and ηji is set to 0 otherwise.
If the number of unique cache conflicts to ri exceeds the associativity (A) of the cache, then ri

suffers a cache miss due to eviction. Based on this intuition, we formalizemissi for set-associative

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:14 S. Chattopadhyay et al.

LRU caches as follows:

Θm,lru
i ≡ ���

∑
j ∈[1,i)

ηji ≥ A��� ∨ Θcold
i ⇒ (missi = 1),

Θh,lru
i ≡ ���

∑
j ∈[1,i)

ηji < A��� ∧ ¬Θcold
i ⇒ (missi = 0).

(17)

We note that
∑

j ∈[1,i) ηji accurately counts the number of unique cache conflicts to the instruc-

tion ri (cf. Constraint (16)). Hence, the condition
(∑

j ∈[1,i) ηji ≥ A
)

captures whether the memory

block accessed by ri was replaced from the cache before ri . If ri does not suffer a cold miss and(∑
j ∈[1,i) ηji < A

)
, then ri will be a cache hit when executed, as captured by the condition Θh,lru

i .

4.2 Putting it All Together

Recall that Γ(pce) captures the constraint system to encode the cache behavior for all inputs I |=
pce . In order to construct Γ(pce), we gather constraints, as derived in the preceding sections, and
the path condition. For direct-mapped caches, Γ(pce) can simply be formulated as follows:

Γ(pce) ≡ pce ∧
∧

i ∈[1,n]

(
Θm,dir

i ∧ Θh,dir
i

)
. (18)

For set-associative LRU caches, we need to additionally account for constraints capturing unique
cache conflicts (i.e., Constraint (16)). Hence, Γ(pce) is formalized via the following constraint:

Γ(pce) ≡ pce ∧
∧

i ∈[1,n]

���Θm,lru
i ∧ Θh,lru

i ∧
∧

j ∈[1,i)

Θ
emp
j,i ∧

∧
j ∈[1,i)

Θ
ehp
j,i

��� . (19)

4.3 Modeling Cache Access

In the preceding sections, we discuss our symbolic cache model Γ(pce) (cf. Constraints (18) and
(19)). Γ(pce) encodes the cache timing behavior for all inputs I |= pce . However, Γ(pce) does not
encode the cache access behavior. This means that Γ(pce) lacks the capability to compute the set of
cache lines accessed for any input I |= pce . Computing such information is crucial to investigate
the information leakage for access-based attacks [30]. The basic idea behind access-based attacks
is to first fill up the cache with some data D. Then, based on the knowledge of the cache
replacement policy, the attacker determines the cache line for each memory block in D. After the
victim process (e.g., an encryption routine) finishes execution, the attacker repeats the process of
accessing memory blocks in D and computes the cache lines accessed by the victim process. This
is possible, as some memory blocks in D were replaced by the victim and the attacker process
identifies that such memory blocks took a longer time than the rest to access. Recent cache attacks
[33] demonstrate the feasibility of access-based cache attacks in ARM-based embedded platforms.
Figure 5 outlines the process behind an access-based attack for an LRU cache. In summary, the
victim process leaks information if the set of cache lines being accessed is dependent on sensitive
inputs (e.g., the encryption key in cryptographic routines).

4.3.1 Modeling Access-Based Observers. An access-based observation can be modeled by count-
ing the unique memory blocks accessed from each cache set (cf. Figure 5(d)). For instance, consider
the first cache set in Figure 5(b). Since two memory blocks from the victim process are accessed
from the first cache set, an access-based observer will compute that data elements D1 and D2 took

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:15

Fig. 5. (a) Attacker fills up the cache with memory blocks D1 . . .D16 and constructs the state of each cache

line with the knowledge of LRU policy; (b) shaded cache lines capture the lines accessed by the victim

process; (c) the attacker resumes execution and accesses memory blocks in the order D4 → D3 → D2 → D1

for the first cache set, in the order D8 → D7 → D6 → D5 for the second cache set and so on. The attacker

observes that accessing D1, D2, D5 . . .D9 took longer than cache hits. From this, she can compute the cache

lines accessed by the victim process. (d) acci captures the number of memory blocks accessed by the victim

process from cache set i . We can accurately compute the cache lines accessed by the victim process via

acc1 . . . acc4.

longer to access than elements D3 and D4. However, if the number of memory blocks accessed
from the second cache set is at least the associativity of the cache, then the access-based observer
determines that accessing all elements between D5 . . .D8 took longer than a cache hit.

Based on the intuition mentioned in the preceding paragraph, we model an access-based ob-
server via the mapping O : Σ∗ → (S→ [0,A]), where Σ is an alphabet defined over cache hits (h)
and misses (m), S is the set of all cache sets, andA is the associativity of a cache. For direct-mapped
caches, A = 1. Intuitively, for a given execution trace, such an observer computes the number of
memory blocks accessed from each cache set. We note that given the number of memory blocks (of
a victim process) accessed from each cache set, an access-based observer can accurately compute
the set of cache lines accessed by the victim process (cf. Figure 5(d)). In the next sections, we formu-
late Γ(pce) to encode the number of memory blocks accessed from each cache set. Subsequently,
we show the usage of Γ(pce) to quantify the information leaked via access-based observers.

4.3.2 Direct-Mapped Caches. In direct-mapped caches, a given memory address can be mapped
to exactly one cache line (as shown in Figure 2(d)). We use the symbolic variable accs to capture
the number of cache lines accessed in cache set s . For direct-mapped caches, accs can either be one
or zero. Concretely, if any of the accessed memory blocks is accessed from cache set s , then accs

is set to one. Otherwise, accs is set to zero. This is formally captured as follows:

Θacc+

s ≡
∨

i ∈[1,n]

(set (ri) = s) ⇒ (accs = 1) ; Θacc−
s ≡

∧
i ∈[1,n]

(set (ri) � s) ⇒ (accs = 0) . (20)

Finally, we construct Γ(pce) by combining the constraints gathered for all cache sets as follows:

Γ(pce) ≡ pce ∧
∧

s ∈[1,2S]

(
Θacc+

s ∧ Θacc−
s

)
. (21)

4.3.3 Set-Associative Caches with LRU Policy. In LRU caches, each cache set can hold as many
memory blocks as the associativity (A) of the cache. Therefore, unlike direct-mapped caches, it
is necessary to count unique memory blocks accessed from a given cache set. To this end, we
introduce a symbolic variable accs,i for each cache set s and for each instruction ri . accs,i is set to
one if and only if the following conditions hold:

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:16 S. Chattopadhyay et al.

(1) Instruction ri accesses cache set s . Therefore, we have (set (ri) = s).
(2) Any instruction r j ∈ {r1, r2, . . . , ri−1} either does not access cache set s or each of r j and ri

access memory blocks with different tags. This is formally captured as follows:

ψacc (i) ≡
∧

j ∈[1,i)

(
set (r j) � s

)
∨

(
taд(r j) � taд(ri)

)
. (22)

Intuitively, if ψacc (i) is satisfiable, then it ensures that ri is the first instruction to read from
or write to the accessed memory block. Based on this intuition, accs,i is symbolically bounded as
follows:

Θacc+

s,i ≡ (set (ri) = s) ∧ψacc (i) ⇒ (
accs,i = 1

)
, (23)

Θacc−
s,i ≡ (set (ri) � s) ∨ ¬ψacc (i) ⇒ (

accs,i = 0
)
. (24)

Finally, we compute the number of unique memory blocks accessed from cache set s by summing
up the value of accs,i for all memory-related instructions. Let us assume accs captures the number
of unique memory blocks accessed from cache set s . Based on this notation, our symbolic cache
model Γ(pce) is formalized as follows:

Γ(pce) ≡ pce ∧
∧

s ∈[1,2S]

���
∧

i ∈[1,n]

(
Θacc+

s,i ∧ Θacc−
s,i

)
∧ ���accs =

∑
j ∈[1,n]

accs, j
���
��� . (25)

We note that the values of accs,i in Constraint (25) are dictated via the constraints Θacc+

s,i and Θacc−
s,i .

The variable accs captures the number of unique memory blocks accessed from cache set s .

4.4 Size of Constraints

The size of Γ(pce) in Constraints (18) and (19) is bounded byO (n3). Here, n is the number of mem-
ory accesses. The dominating factor in this constraint system is the set of constraints generated
from Constraint (13) and Constraint (16). In general, we generate constraints for each pair of mem-
ory accesses that may potentially conflict in the cache, leading toO (n2) pairs in total. For each such
pair, the constraint may have a size O (n), making the size of the overall constraint system to be
O (n3). For access-based observers, the size of Γ(pce) is bounded by O (n · 2S) for direct-mapped
caches (cf. Constraint (21)) and it is bounded by O (n2 · 2S) for set-associative caches (cf. Con-
straint (25)). For set-associative caches, additional constraints are required for checking unique
memory block accesses (cf. Constraint (22)).

5 CHECKING INFORMATION LEAKAGE

In this section, we instantiate CHALICE by formulating ΦO for three different observer models.
We assume that tI is the observed execution trace for input I and we wish to quantify how much
information about input I is leaked through tI .

Observation via Total Miss Count. In this scenario, an attacker can observe the number of cache
misses of executions [11]. The observer O : Σ∗ → N is a function, where a sequence of cache hits
and misses are mapped to a non-negative integer capturing the number of cache misses. Therefore,
for a trace tI ∈ Σ∗ associated to an input I , O (tI) captures the number of cache misses in tI .

Recall that we use the 0-1 variablemissi to capture the cache miss behavior of the i-th memory
access. We check the unsatisfiability of the following logical formula to record information leakage:

∨
e ∈Paths

���Γ(pce) ∧ ���
∑

i ∈[1,ne]

missi = O (tI)��� ∧ π
��� , (26)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:17

where ne is the number of memory accesses occurring along path e and π is a predicate defined on
program inputs. Concretely, if Constraint (26) is unsatisfiable, we can establish that the informa-
tion “¬π ≡ true” is leaked through tI . By performing such unsatisfiability checks over the entire
program input space, we quantify the information leakage L (tI) through execution trace tI (cf.
Section 3.3).

Observation via Hit/Miss Sequence. For an execution trace tI ∈ Σ∗, an observer can monitor
hit/miss sequences from tI [6]. Concretely, let us assume {o1,o2, . . . ,ok } is the set of positions
in trace tI where the observation occurs. If n is the total number of memory accesses in tI , we
have oi ∈ [1,n] for each i ∈ [1,k]. We define the observer O : Σ∗ → {0, 1}k as a projection from
the execution trace onto a bitvector of size k . Such a projection satisfies the following conditions:
O (tI)i = 1 if toi

=m and O (tI)i = 0 otherwise. O (tI)i captures the i-th bit of O (tI) and similarly,
toi

captures the oi -th element in the execution trace tI . Note that a strong observer could map the
entire execution trace to a bitvector of size n.

For such an observer, we check the unsatisfiability of the following to record information leak-
age:

∨
e ∈Paths

���Γ (pce) ∧
∧

i ∈{1,2, ...,k }

(
oi ≤ ne

∧missoi
= O (tI)i

)
∧ π��� , (27)

where π is a predicate on program inputs. By generating such predicates over the input space,
we quantify the information leaked about input I via L (tI) (cf. Section 3.3). In Constraint (27),
our general information leakage checker in Constraint (6) is instantiated with ΦO,e being set to∧

i ∈{1,2, ...,k }
(
missoi

= O (tI)i

)
.

Observation via Cache Accesses. An access-based observer [30] monitors the cache lines being
accessed by a victim process. As shown in Figure 5, this can be computed via the number of memory
blocks accessed from each cache set. Therefore, an access-based observer is modeled as follows.O :
Σ∗ → (S→ [0,A]). For an execution trace tI ∈ Σ∗, O (tI) (s) (written OtI

(s)) captures the number
of cache lines touched by the victim process within cache set s . It is worthwhile to note that
0 ≤ OtI

(s) ≤ A.
For access-based observers, the unsatisfiability of the following records information leakage:

∨
e ∈Paths

���Γ (pce) ∧
∧

s ∈[1,2S]

((OtI
(s) ≤ A − 1

) ⇒ (
accs = OtI

(s)
)

∧ (OtI
(s) = A) ⇒ (

accs ≥ OtI
(s)

)
)
∧ π��� , (28)

where π is a predicate on program inputs. By generating such predicates over the input space,
we quantify the information leaked about input I via L (tI) (cf. Section 3.3). In Constraint (28),
we abstract away all scenarios where the number of memory blocks accessed from a cache set
is at least the associativity of the cache (i.e., accs ≥ A). This is to align with the point of view
of observer O. Concretely, for any scenario satisfying accs ≥ A, the observer can only determine
that all cache lines of set s were touched by the victim process.

6 EVALUATION

Implementation Setup. We implemented CHALICE on top of the KLEE symbolic virtual ma-
chine [2] based on LLVM. We engineered KLEE to symbolically execute the PISA [8] binary code
(compiled with gcc 2.7.2.3)—a MIPS like architecture. This is because cache performance is cap-
tured accurately only in the executable binary code. To keep CHALICE modular and extensible for
other target binaries, we implemented a translator that converts PISA binary code to the LLVM
bitcode. Such a translator is unique in the sense that it focuses on preserving both the memory

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:18 S. Chattopadhyay et al.

Table 1. Salient Features of the Evaluated Subjects

Program
Lines of
C code

Lines of MIPS
code

(disassembled
version)

Input
size

Max.
#Memory

access

AES [3] 800 4,842 16 bytes 2,134

AES [4] 1,428 1,700 16 bytes 420

DES [4] 552 3,480 8 bytes 334

RC4 [4] 160 660 8 bytes 1,538

RC5 [4] 256 1,740 16 bytes 410

GDK library 2,650 2,700 4 bytes 126

Table 2. L (tI) Quantified w.r.t. πbit and πbyte

Program

Observation via
miss count

Observation via hit/miss of
an arbitrary access

L (tI)
πbit

L (tI)
πbyt e

L (tI)
πbit

L (tI)
πbyt e

AES 0 ≈2127 0 ≈2127

AES 0 ≈237 0 ≈28

DES 0 ≈262 0 ≈242

RC4 0 ≈26 0 ≈28

RC5 0 0 0 0

GDK 0 ≈231 0 ≈231

behavior and the functionality during the translation, whereas existing disassemblers only pre-
serve the functionality. Some salient features of our translation are as follows: First, we ensure that
each load/store instruction in the binary code has a functionally equivalent load/store instruction
in the translated bitcode. Secondly, we preserve the static-single-assignment (SSA) form of LLVM
bitcode by systematically inserting Phi functions. Thirdly, several instructions at the machine code,
e.g., LWL and LWR, may require multiple LLVM instructions to implement. Finally, LLVM bitcode
is strongly typed. As a result, LLVM bitcode uses different instructions for pointer arithmetic as
compared to general-purpose arithmetic. We use a lightweight type inference on the binary code
and compute the appropriate LLVM instruction for a given machine-level instruction.

Experimental Setup. To evaluate the effectiveness of CHALICE, we have chosen cryptographic
applications from the OpenSSL library [4] (OpenSSL 1.1.0-pre6-dev) and other software reposito-
ries [3], as well as applications from the Linux GDK (version 3.0) library (cf. Table 1). The choice
of our programs is motivated by the critical importance of validating security-related properties
in these applications. We have performed all experiments on an eight-core 4.00GHz i7-6700K CPU
with 8GB of RAM and running Debian 8.4 operating system.

Generating Predicates on Inputs. Using CHALICE, we can select an arbitrary number of bits in
the program input to be symbolic. These symbolic bits capture the high sensitivity of the input
subspace and our framework focuses to quantify the information leaked about this subspace. For
instance, in encryption routines, the bits of private input (e.g., a secret key) can be made symbolic.
Without loss of generality, in the following, we assume that the entire input is sensitive and we
make all input bits to be symbolic.

Let us assume an arbitrary N -byte program input k . We sample k into K equal segments and
use ki to capture the i-th segment. We generate the following predicates on inputs for quantifying
information leakage L (tI) (cf. Section 3.3):

πbit = {ki = v | i ∈ [1,N],v ∈ [0, 1]} ; πbyte =

{
ki = v | i ∈

[
1,
N

8

]
,v ∈ [0, 255]

}
.

It is worthwhile to mention that for a 16-byte sensitive input (e.g., in AES-128), πbit and πbyte lead
to 256 and 4,096 calls to the solver, respectively, to quantify L (tI).

6.1 Key Results

Table 2 outlines the key results obtained from CHALICE. For all evaluations in Table 2, we used
an 8KB direct-mapped cache with a line size of 32 bytes. For each subject program, we gener-
ated a set of executions by selecting a concrete value of the sensitive inputs (e.g., secret key in
AES-128) uniformly at random. All other inputs to the subject program (e.g., plaintext in AES-128)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:19

were fixed while generating these executions. For such a randomly generated execution, Table 2
demonstrates the quantified information leakage with respect to predicates πbit and πbyte . We
make the following observations from Table 2. For all scenarios, L (tI) is zero when predicate πbit

is used. Therefore, we can prove the absence of any dependency between the cache performance (i.e.,

the number of cache misses or hit/miss sequence) and the value of an arbitrary bit of the key, for all the

observations in Table 2. However, we observe the presence of substantial leakage with respect to
πbyte , when the number of cache misses were observed. For instance, we established that as many
as 251 values (out of 256) are leaked for each byte of the AES key (in the implementation [3]).
This means, there exist at least 25116 (≈2127) possible keys (out of a total 2128) that can be eliminated

just by observing the cache misses. Such an information gives the designer valuable insights when
designing embedded systems, both in terms of choosing an AES key and a cache architecture, in
order to avoid serious security breaches. In contrast to the basic AES implementation [3], we ob-
serve (cf. Table 2) that the OpenSSL version of AES exhibits substantially less information leakage.
DES exhibits severe information leakage when the adversaries observe cache misses, whereas RC4
exhibits lower leakage as compared to AES and DES, with respect to the respective observation.

We also investigated adversaries who can observe the sequence of cache hits and misses, instead
of just the overall number of cache misses. To simplify our evaluation, we focused on sequences
of length 1, and considered all the memory accesses. Our goal is to check the dependency between
the AES-key and the hit/miss characteristics of an arbitrary memory access. Both AES and DES
exhibit substantial leakage with respect to this adversary. RC4, in contrast, exhibits less leakage in
the respective observation, as shown in Table 2.

For RC5, CHALICE did not report any symbolic memory address or symbolic branch conditions.
Hence, the cache performance of RC5 is unrelated to input and we leverage this report to verify
the absence of cache side-channel leakage in RC5, with respect to the observer models studied.

Coverage. Except routines chosen from the GDK library, the subjects in our evaluation are single-
path programs. This is standard for cryptographic routines, as they aim to avoid input-dependent
branches. Consequently, CHALICE covers 100% of the statements for AES, DES, RC4, and RC5. For
routines involving multiple paths, e.g., routines from the GDK library, CHALICE should be used for
multiple test inputs. In our evaluation, these inputs were generated randomly and they obtained
80% statement coverage in the routines tested from the GDK library. We note that code coverage is
not a suitable metric to evaluate the information leakage. For instance, in AES, we obtained 100%
code coverage, yet the quantified information leakage was zero with respect to predicate πbit .
This only reflects that the observation is not influenced by values of an individual bit in isolation.
However, as observed with respect to predicate πbyte , the amount of information leakage can be
substantial, as the observation is heavily influenced by values of an individual byte in isolation.

Discussion. In our evaluation, we observe that CHALICE generally reports higher information
leakage when miss count was observed, as compared to observing the cache behavior of an arbi-
trary access. This is expected, as cache behavior of a single memory access, in general, also affects
the total miss count. However, if cache behaviors of a pair of memory accesses are inversely corre-
lated (e.g., one being a cache hit and another being a cache miss for any input), then such accesses
do not affect the total miss count. Yet, these accesses may leak information when their cache be-
haviors were observed individually. In our experiments, RC4 exhibits such behavior.

6.2 Sensitivity of Leakage w.r.t. Cache

In this section, we evaluate CHALICE for a variety of cache configurations. For each experiment, we
show the number of values leaked per input byte. Concretely, for a given observation, CHALICE de-
duces how many values per byte can be ruled out due to the dependency between input and cache

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:20 S. Chattopadhyay et al.

Fig. 6. Information leakage in AES [3, 4] w.r.t. different observers (only bytes leaking information are shown).

behavior. Therefore, a higher bar indicates higher leakage. In other words, the output generated
by CHALICE can be used to compute the set of potential inputs that led to the given observation.

Experience with AES. In Figure 6(a)–(d), we outline the number of values leaked per byte of
the AES secret key. The horizontal axis in these figures capture the individual bytes of the AES
secret key. For instance, consider the evaluation shown in Figure 6 for two-way, 8KB cache. In
this scenario, the AES implementation [3] leaks 212 values per byte of the secret key, for certain
observations. This means, for the respective set of observations, a potential attacker can eliminate
the possibility of at least 21216 possible keys.

Increasing cache size (or associativity) may have two contrasting effects as follows. For a given
cache size, consider a subset of the input space I=C ⊆ I<C ∪ I=C ∪ I>C (where I<C ∪ I=C ∪ I>C is
the entire input space) which leads toC cache misses. Increasing cache size reduces cache conflict.
Therefore, it is possible that some input i ∈ I>C , which leads to more than C cache misses with
a smaller cache, produces C cache misses with the increased cache size. This tends to increase
the number of inputs leading to C cache misses, thus reducing the amount of information leaked
through observingC misses. Secondly, some input i ∈ I=C may have less thanC cache misses with
increased cache size. This reduces the number of inputs having C cache misses, thus increasing
the potential leakage through the observation of C cache misses. In Figure 6(a), L (tI) reduces for
cache sizes up to 16KB, while it increases for a four-way, 32KB cache due to the aforementioned
effects.

Experience with DES. Data Encryption standard (DES) [4] is a symmetric key algorithm for
electronic data. It encrypts 64 bit plaintext blocks with a 64 bit secret key (56 bits effective key with

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:21

Fig. 7. Information leakage in DES and GDK library with respect to different observers.

one bit assigned for each byte as a parity check). Using 8KB caches, for example, DES leaks more
than 120 values for several key bytes (cf. Figure 7(a) and (b)). Our results summarize the potentially
insecure nature of DES, even if we only consider security leaks through cache behavior.

Experience with RC4. We analyzed the OpenSSL version of RC4 (a stream cipher) implemen-
tation with 64 bit keys for several cache configurations (from 8KB to 64KB). CHALICE highlights
substantial information being leaked about the first byte (in certain cases 254 values out of a total
of 256). For bigger cache sizes (e.g., > 16KB), such information leakage disappears, as the execu-
tions of RC4 only suffer the minimum number of misses to load all the memory blocks into the
cache.

Experience with GDK Library. Figure 7(c) and (d) present the average information leakage dis-
covered in routines gdk_keyval_to_unicode and gdk_keyval_name from the Linux GDK library.
We observe several scenarios leading to a complete disclosure of information for the third and the
fourth input bytes (i.e., 255 out of 256 values are leaked). We discovered that the cache behavior
of gdk_keyval_to_unicode and gdk_keyval_name is primarily dominated by the number of cold
cache misses, which, in turn is heavily influenced by the path executed in the respective routine.
Since we include path condition pc within our symbolic cache model Γ(pc) (cf. Constraint (18)), we
can accurately quantify the information leakage even in the presence of multiple program paths.

Evaluating constant-time implementation. Constant-time programming is the current stan-
dard to counter timing-related leakage in cryptographic software. To evaluate this line of counter-
measures via CHALICE, we chose eight elliptic curve routines (total 12K lines of MIPS code) from

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:22 S. Chattopadhyay et al.

Table 3. T1 and Tbyte Capture the Average Time for One Solver Call and to Check

Information Leakage for One Input Byte, Respectively

Subject

program

Observation via total miss count Observation via hit/miss of an arbitrary access

Formula size Peak mem. T1 Tbyt e Tall Formula size Peak mem. T1 Tbyt e Tall

AES [3] 144,072 261M ≈20sec 1h 16h 1,580 105M <1sec ≈1min 16min

AES [4] 21,444 129M ≈18sec 77min 20h 265 90M <1sec ≈2min 45min

DES [4] 53,808 127M ≈10sec 50min 8h 1,809 35M <1sec ≈1min 12min

RC4 [4] 38,622 1.1G ≈4sec 15min 4h 490 32M <1sec ≈1min 16min

RC5 [4] 0 28.3M ≈15sec ≈15sec ≈15sec 0 29.2M ≈14sec ≈14sec ≈14sec

GDK 21 102M <1sec <1sec ≈2min 21 100M <1sec <1sec ≈1min

Tall captures the time taken to check information leakage via all predicates in Pbyte.

Table 4. Analysis Time w.r.t. Cache Configurations

Cache
Observation via total miss count Observation via hit/miss of an arbitrary access

Constraint size Peak mem. T1 Tbyt e Tall Constraint size Peak mem. T1 Tbyt e Tall

Two-way, 8KB 2,510,964 496M ≈2min 8h 127h 37,477 178M <1sec ≈6min 1h

Four-way, 8KB 2,507,608 570M ≈2min 8h 128h 27,548 999M <1sec ≈1min 19min

Two-way, 16KB 2,518,182 655M ≈21sec 1.5h 24h 28,533 618M <1sec ≈3min 53min

Four-way, 16KB 2,511,030 487M ≈33sec 2.3h 37h 74,060 475M <1sec ≈12min 3.2h

Two-way, 32KB 2,518,052 556M <1sec 3min 47min 76,304 485M <1sec ≈2min 30min

Four-way, 32KB 2,518,118 820M ≈45sec 3.2h 50h 78,689 349M <1sec ≈3min 41min

T1, Tbyt e , and Tall have the same interpretation as Table 3.

FourQLib [1]—namely, eccmadd, eccnorm, pt_setup, eccdouble, R1_to_R2, R1_to_R3, R2_to_R4,
and R5_to_R1. For all routines, CHALICE reported zero leakage within 5 minutes.

Analysis Time. Tables 3 and 4 outline the analysis time for timing-based observers. In most cases,
a single call to the solver, which reports information leakage via unsatisfiability checks (e.g., via
checking Constraint (6)), is efficient. Due to the repeated calls to the solver, checking the informa-
tion leakage, for the entire input space, takes significant time. For a given program, this time (i.e.,
Tall) is approximately the product ofTbyte and the number of bytes in the input space. This is be-
cause our analysis time mostly remains the same for any arbitrary input byte of a given program.
However, since CHALICE incorporates an anytime strategy, the bounds on the quantification of
L (tI) are valid for any explored subsets of the program paths and input space. Finally, the analysis
time can be improved if we assign independent threads to check information leaked about each
input byte.

6.3 Evaluation with Access-Based Observers

Figure 8(a) and (b) outline our evaluation for AES [3] and GDK library with access-based observers.
For 8KB direct-mapped caches, we observed that all cache lines are filled up irrespective of the
value of AES key. Hence, CHALICE did not discover any information leakage in AES for direct-
mapped 8KB caches (cf. Figure 8(a)). However, for set-associative caches, the occupied cache lines
are dependent on the AES key. This leads to significant information being leaked from certain
bytes, e.g., more than 200 values (out of 256) on average were leaked from bytes 12 . . . 15, with
a four-way, 16KB cache. For GDK-library routines, we observed that each program path often
has a unique cache-access behavior (in terms of which cache lines are accessed). As a result, pro-
vided only the accessed cache lines, an observer can accurately compute the executed program

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:23

Fig. 8. Information leakage w.r.t. access-based observers (only bytes leaking information are shown).

Table 5. Analysis Time for Access-Based Observers

Cache
Observation via cache line accesses

Constraint size Peak mem. T1 Tbyte Tall

One-way, 8KB 9,736 60M ≈2sec 8min 2.2h
Two-way, 8KB 423,213 67M ≈6sec 24min 6.1h
Four-way, 8KB 220,973 110M ≈7sec 30min 8.3h
Two-way, 16KB 827,693 59M ≈11sec 47min 12h
Four-way, 16KB 423,213 59M ≈7sec 28min 7.5h
Two-way, 3 KB 1,636,516 67M ≈6sec 25min 6.7h
Four-way, 32KB 827,556 59M ≈6sec 27min 7.1h

T1, Tbyt e , and Tall have the same interpretation as Table 3.

path. In our evaluation, CHALICE highlights substantial information leakage from all input bytes
of GDK-library routines (cf. Figure 8(b)). This set of evaluations highlight that the core capabilities
implemented within CHALICE are effective to quantify side-channel leakage for both timing-based
and access-based observer models. For RC4 and RC5, CHALICE does not report any leakage. For the
Openssl version of AES and DES, CHALICE reports a leakage (i.e.,L (tI)) of 211 and 239, respectively,
on average.

Analysis Time. Table 5 outlines the time taken by CHALICE for access-based observers. We use
AES [3] for this set of experiments, as it takes the maximum time. Since Γ(pce) depends on the
cache size for access-based observers, we note that the constraint size changes (cf. Table 5) with
respect to cache size. Nevertheless, the time taken for each solver call remains short. As a result,
due to the incremental nature of our computation, CHALICE effectively quantifies the information
leakage via access-based observation within reasonable time.

6.4 Analysis Sensitivity w.r.t. Observation

Since we quantify leakage from execution trace tI , the leakage L (tI) depends on the observed
cache behavior, e.g., observed miss count. Figure 9 captures the information leakage with respect
to observed miss count. Although we observe that L (tI) mostly decreases with increased miss
count, there is no direct correlation between the observed miss count and the computed leakage.
It is worthwhile to note that results reported in Figure 9 are consistent with the observation at the
tail of the essentially Gaussian distribution captured in Figure 1.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:24 S. Chattopadhyay et al.

Fig. 9. L (tI) in AES [3] w.r.t. observed miss count (one-way, 8KB cache).

7 RELATED WORK

In the following, we will position our work in the research area by reviewing the related literature.

Static Analysis of Caches. Static cache analysis [19, 40] has been an active research topic for
the last two decades. Compared to static cache analysis [19, 40], CHALICE has significant flavors
of testing and debugging. Concretely, CHALICE can highlight poor choices of secret keys in im-
plementing encryption standards. CHALICE also highlights memory accesses that leak substantial
information. This can be leveraged to drive security-related optimizations.

Analysis of Side Channel. The closest to our work are approaches based on static analysis [23,
31, 32]. However, these analyses fail to detect critical scenarios when a particular observation leaks
substantially more information than the rest [12]. CHALICE quantifies information leakage from
execution traces and it does not suffer from the aforementioned limitation. Moreover, CHALICE
targets arbitrary software binaries and it is not limited to the verification of constant-time cryp-
tographic software [7, 9]. However, due to the dynamic nature of the analysis embodied within
CHALICE, it only provides bounds on the information leakage for tested inputs. Existing work based
on symbolic execution [36] quantifies side-channel leakage via counting the number of observa-
tions [23, 32], and it ignores the effect of micro-architectural entities, such as caches. CHALICE
formulates cache side-channel leakage via logical constraints, in contrast to the probabilistic mod-
eling of cache and prefetching [37]. Consequently, CHALICE provides deterministic bounds on the
information being leaked through the cache. Besides, contrary to the existing work [37], CHALICE
targets arbitrary programs beyond block ciphers. Existing work on side-channel vulnerability met-
ric [22] quantifies how well an attacker can retrieve information from a system, but, does not high-

light the information leaked to the attacker. CHALICE is complementary to the proposed metric [22]
and CHALICE can be combined with such metrics to build more advanced metrics for measuring
side-channel leakage.

Information Leakage Quantification. We note that existing techniques [15, 35] aim to quantify
information leakage via satisfiability checking and counting. These works are not targeted toward
micro-architectural side channels and they do not provide an anytime strategy to quantify the
information leakage. In contrast, CHALICE provides an anytime algorithm based on input space
partitioning and the refinement of these partitions. The refinement strategy guarantees to improve
the accuracy of computed cache side-channel leakage.

Software Testing. In contrast to testing side-channel leakage [10, 17], our goal is to quantify the
leakage of information for a given cache behavior. The overarching goal of CHALICE is to com-
bine its capability with the approaches based on software testing [10, 17]. To this end, CHALICE

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:25

quantifies the cache side-channel leakage for test cases generated via such approaches. In contrast
to a preliminary version of CHALICE [18], which only considers timing-based observers, our cur-
rent work accounts for both timing-based [6, 11] and access-based observers [30]. Moreover, we
perform a detailed analysis to show the sensitivity of cache side-channel leakage and analysis time
with respect to different cache configurations and for three different observer models.

Cache Side-Channel Attacks. Over the last few decades, cache-based side-channel attacks have
emerged to be a prevalent class of security breaches for many systems [26]. The observer models
used in this article are based on existing cache attacks [6, 11, 30]. However, in contrast to these
approaches, CHALICE does not aim to engineer new cache attacks. Based on a configurable observer
model, CHALICE aims to quantify the information leakage for a given cache attack. We believe that
CHALICE is generic to incorporate advanced attack scenarios [14, 28, 29, 34, 43, 44] that are currently
not handled in this article. In general, as long as cache attacks are expressed via the intuition given
in Section 5, we can instantiate CHALICE to quantify the information leakage via such attacks.

Countermeasures Against Side-Channel Attacks. CHALICE is orthogonal to approaches
proposing countermeasures [21, 39, 42] via hardware [42], compiler [39], or runtime environ-
ment [21]. Of course, CHALICE can validate the proposed countermeasures mitigating cache side
channels.

In summary, we propose a new approach to quantify cache side-channel leakage from execution
traces and demonstrate that such an approach can highlight critical information leakage scenarios
that are impossible to discover by competitive static or logical analysis.

8 CONCLUDING REMARKS

Threats to Validity. In CHALICE, we assume an attacker model where the cache architecture (i.e.,
the number of cache sets, line size, associativity, and replacement policy) is known to the adver-
sary. We also assume that the adversary can clearly distinguish the execution profile of victim
software. In practice, however, an adversary may not accurately know the cache architecture or
the execution profile of the victim software. Hence, she may not be able to retrieve as much in-
formation as computed via CHALICE. Since CHALICE is aimed for security testing, we believe that
involving a strong attacker model is justified. However, we note that CHALICE should be used to-
gether with a test generation tool [17] that obtains sufficient coverage of observations made by
the attacker. This is because CHALICE quantifies leakage from a given observation. In its current
state, CHALICE does not provide capabilities to fix cache side channels. Potential debugging strate-
gies will be to restructure the code, selectively bypassing the cache or using software-controlled
memory for certain memory accesses. Finally, the effectiveness and efficiency of CHALICE depends
on the granularity of checking (i.e., πbit or πbyte in Table 2). We observed that for realistic pro-
grams, the choice πbyte provides valuable insight on the information leakage. In the future release
of CHALICE, the granularity of checks can be incrementally refined.

Attack Models. CHALICE currently does not handle active adversaries that aim to retrieve in-
formation by manipulating cache states on-the-fly [44] or target shared last-level caches [34].
Moreover, as CHALICE does not incorporate the capabilities for out-of-order and speculative exe-
cution, currently, CHALICE does not quantify the information leakage for recently discovered Melt-
down [24] and Spectre [25]. Nevertheless, our powerful symbolic reasoning framework allows us
to consider additional micro-architectural features (e.g., shared caches, out-of-order execution, and
speculation) while formulating Γ(pce) (cf. Section 4.1). We note that the central idea behind our
information leakage quantification, as described in Section 3.2 and Section 3.3, is oblivious to such
extension.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

7:26 S. Chattopadhyay et al.

Perspective. In this article, we have shown that the mechanism of CHALICE is essential for quan-
tifying the amount of information that can leak through memory performance and cache-access
statistics. Besides security testing, CHALICE can be used to discover bugs while writing constant-
time cryptographic applications. We demonstrate the usage of CHALICE to highlight critical infor-
mation leakage scenarios in OpenSSL and Linux GDK libraries, among others. In future work, we
will explore the synergy between our input partitioning scheme and model counting to reduce the
number of calls to solvers and speed up the quantification process.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their insightful feedback.

REFERENCES

[1] [n. d.]. FourQLib Library. Retrieved October 20, 2017 from https://github.com/Microsoft/FourQlib/.

[2] 2008. KLEE LLVM Execution Engine. Retrieved on December 24, 2018 from https://klee.github.io/.

[3] 2015. AES Implementation. Retrieved on December 24, 2018 from https://github.com/B-Con/crypto-algorithms.

[4] 2016. OpenSSL Library. Retrieved on December 24, 2018 from https://github.com/openssl/openssl/tree/master/crypto.

[5] 2016. UC Davis, Mathematics. Latte integrale. Retrieved on December 24, 2018 from https://www.math.ucdavis.edu/∼
latte/.

[6] Onur Acıiçmez and Çetin Kaya Koç. 2006. Trace-driven cache attacks on AES. In Information and Communications

Security. 112–121.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. 2016. Verifying

constant-time implementations. In USENIX. 53–70.

[8] Todd Austin, Eric Larson, and Dan Ernst. 2002. SimpleScalar: An infrastructure for computer system modeling. Com-

puter 35, 2 (2002).

[9] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David Pichardie. 2014. System-level

non-interference for constant-time cryptography. In CCS. 1267–1279.

[10] Tiyash Basu and Sudipta Chattopadhyay. 2017. Testing cache side-channel leakage. In ICST Workshops. 51–60.

[11] Daniel J. Bernstein. 2005. Cache-timing attacks on AES.

[12] Nataliia Bielova. 2016. Dynamic leakage: A need for a new quantitative information flow measure. In PLAS. 83–88.

[13] Mateus Borges, Quoc-Sang Phan, Antonio Filieri, and Corina S. Pasareanu. 2017. Model-counting approaches for

nonlinear numerical constraints. In NFM. 131–138.

[14] Billy Bob Brumley and Risto M. Hakala. 2009. Cache-timing template attacks. In ASIACRYPT. 667–684.

[15] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. 2008. Better bug reporting with better privacy. In ASPLOS.

319–328.

[16] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2016. Algorithmic improvements in approximate count-

ing for probabilistic inference: From linear to logarithmic SAT calls. In IJCAI. 3569–3576.

[17] Sudipta Chattopadhyay. 2017. Directed automated memory performance testing. In TACAS. 38–55.

[18] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. 2017. Quantifying the information leak in

cache attacks via symbolic execution. In MEMOCODE. 25–35.

[19] Sudipta Chattopadhyay and Abhik Roychoudhury. 2013. Scalable and precise refinement of cache timing analysis via

path-sensitive verification. Real-Time Systems 49, 4 (2013), 517–562.

[20] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (Wiley Series in Telecommunications and

Signal Processing).

[21] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. 2015. Thwarting cache side-

channel attacks through dynamic software diversity. In NDSS.

[22] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012. Side-channel vulnerability factor:

A metric for measuring information leakage. In ISCA. 106–117.

[23] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2015. CacheAudit: A tool for the static analysis of

cache side channels. TISSEC 18, 1 (2015), 4.

[24] Moritz Lipp et al. 2018. Meltdown: Reading kernel memory from user space. In 27th USENIX Security Symposium

(USENIX Security’18).

[25] Paul Kocher et al. 2019. Spectre attacks: Exploiting speculative execution. In 40th IEEE Symposium on Security and

Privacy (S&P’19).

[26] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of microarchitectural timing attacks and

countermeasures on contemporary hardware. Journal of Cryptographic Engineering 8, 1 (2018), 1–27.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

https://github.com/Microsoft/FourQlib/
https://klee.github.io/
https://github.com/B-Con/crypto-algorithms
https://github.com/openssl/openssl/tree/master/crypto
https://www.math.ucdavis.edu/~latte/
https://www.math.ucdavis.edu/~latte/

Quantifying the Information Leakage in Cache Attacks via Symbolic Execution 7:27

[27] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In PLDI. 213–

223.

[28] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache template attacks: Automating attacks on inclusive

last-level caches. In USENIX Security. 897–912.

[29] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. 2016. Cache storage channels: Alias-driven

attacks and verified countermeasures. In IEEE Symposium on Security and Privacy. 38–55.

[30] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache games—Bringing access-based cache attacks on

AES to practice. In IEEE Symposium on Security and Privacy. 490–505.

[31] Boris Köpf and David A. Basin. 2007. An information-theoretic model for adaptive side-channel attacks. In CCS.

286–296.

[32] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. 2012. Automatic quantification of cache side-channels. In CAV.

564–580.

[33] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard. 2016. ARMageddon: Cache

attacks on mobile devices. In USENIX Security Symposium. 549–564.

[34] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-level cache side-channel attacks are

practical. In IEEE Symposium on Security and Privacy. 605–622.

[35] Ziyuan Meng and Geoffrey Smith. 2011. Calculating bounds on information leakage using two-bit patterns. In

PLAS. 1.

[36] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run side-channel analysis using symbolic

execution and max-SMT. In CSF. 387–400.

[37] Chester Rebeiro and Debdeep Mukhopadhyay. 2015. A formal analysis of prefetching in profiled cache-timing attacks

on block ciphers. IACR Cryptology ePrint Archive 2015 (2015), 1191.

[38] Geoffrey Smith. 2009. On the Foundations of Quantitative Information Flow. Springer, Berlin, 288–302. DOI:https://

doi.org/10.1007/978-3-642-00596-1_21

[39] Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei, Alejandro Russo, and David Mazières. 2013.

Eliminating cache-based timing attacks with instruction-based scheduling. In ESORICS. 718–735.

[40] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. 2000. Fast and precise WCET prediction by separated

cache and path analyses. Real-Time Systems 18, 2–3 (2000).

[41] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks on AES, and countermeasures. Journal

of Cryptology 23, 1 (2010), 37–71.

[42] Zhenghong Wang and Ruby B. Lee. 2007. New cache designs for thwarting software cache-based side channel attacks.

In ISCA. 494–505.

[43] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack.

In USENIX Security Symposium. 719–732.

[44] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: A timing attack on OpenSSL constant-time

RSA. Journal of Cryptographic Engineering 7, 2 (2017), 99–112.

Received December 2017; revised June 2018; accepted October 2018

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 1, Article 7. Publication date: January 2019.

https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-642-00596-1_21

