Canonical Representations of k-Safety Hyperproperties

Finkbeiner, Bernd and Haas, Lennart and Torfah, Hazem
(2019) Canonical Representations of k-Safety Hyperproperties.
In: IEEE Computer Security Foundations Symposium, CSF.
Conference: CSF IEEE Computer Security Foundations Symposium (was CSFW)

Full text not available from this repository.


yperproperties elevate the traditional view of trace properties form sets of traces to sets of sets of traces and provide a formalism for expressing information-flow policies. For trace properties, algorithms for verification, monitoring, and synthesis are typically based on a representation of the properties as omega-automata. For hyperproperties, a similar, canonical automata-theoretic representation is, so far, missing. This is a serious obstacle for the development of algorithms, because basic constructions, such as learning algorithms, cannot be applied. In this paper, we present a canonical representation for the widely used class of regular k-safety hyperproperties, which includes important polices such as noninterference. We show that a regular k-safety hyperproperty S can be represented by a finite automaton, where each word accepted by the automaton represents a violation of S. The representation provides an automata-theoretic approach to regular k-safety hyperproperties and allows us to compare regular k-safety hyperproperties, simplify them, and learn such hyperproperties. We investigate the problem of constructing automata for regular k-safety hyperproperties in general and from formulas in HyperLTL, and provide complexity bounds for the different translations. We also present a learning algorithm for regular k-safety hyperproperties based on the L* learning algorithm for deterministic finite automata.


Actions (login required)

View Item View Item