Synthesizing functional reactive programs

Finkbeiner, Bernd and Klein, Felix and Piskac, Ruzica and Santolucito, Mark
(2019) Synthesizing functional reactive programs.
In: Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP.
Conference: HASKELL Haskell Workshop

[img]
Preview
Text
FKPS19b.pdf

Download (8MB) | Preview

Abstract

Functional Reactive Programming (FRP) is a paradigm that has simplified the construction of reactive programs. There are many libraries that implement incarnations of FRP, using abstractions such as Applicative, Monads, and Arrows. However, finding a good control flow, that correctly manages state and switches behaviors at the right times, still poses a major challenge to developers. An attractive alternative is specifying the behavior instead of programming it, as made possible by the recently developed logic: Temporal Stream Logic (TSL). However, it has not been explored so far how Control Flow Models (CFMs), resulting from TSL synthesis, are turned into executable code that is compatible with libraries building on FRP. We bridge this gap, by showing that CFMs are a suitable formalism to be turned into Applicative, Monadic, and Arrowized FRP. We demonstrate the effectiveness of our translations on a real-world kitchen timer application, which we translate to a desktop application using the Arrowized FRP library Yampa, a web application using the Monadic Threepenny-GUI library, and to hardware using the Applicative hardware description language ClaSH.

Actions

Actions (login required)

View Item View Item