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ABSTRACT

Modern fuzzing tools like AFL operate at a lexical level: They ex-
plore the input space of tested programs one byte after another. For
inputs with complex syntactical properties, this is very inefficient,
as keywords and other tokens have to be composed one character
at a time. Fuzzers thus allow to specify dictionaries listing possible
tokens the input can be composed from; such dictionaries speed up
fuzzers dramatically. Also, fuzzers make use of dynamic tainting to
track input tokens and infer values that are expected in the input
validation phase. Unfortunately, such tokens are usually implicitly
converted to program specific values which causes a loss of the
taints attached to the input data in the lexical phase.

In this paper, we present a technique to extend dynamic tainting
to not only track explicit data flows but also taint implicitly con-
verted data without suffering from taint explosion. This extension
makes it possible to augment existing techniques and automatically
infer a set of tokens and seed inputs for the input language of a pro-
gram given nothing but the source code. Specifically targeting the
lexical analysis of an input processor, our lFuzzer test generator
systematically explores branches of the lexical analysis, producing a
set of tokens that fully cover all decisions seen. The resulting set of
tokens can be directly used as a dictionary for fuzzing. Along with
the token extraction seed inputs are generated which give further
fuzzing processes a head start. In our experiments, the lFuzzer-AFL
combination achieves up to 17% more coverage on complex input
formats like json, lisp, tinyC, and JavaScript compared to AFL.
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1 INTRODUCTION

Fuzzing has emerged as one of the key test-generation technologies
in recent years. By automatically generating millions of tests in
a short time a fuzzer is able to reveal bugs in software that may
have stayed undetected by manually written tests. Fully automatic
state-of-the-art fuzzers like AFL [19] explore the input space byte-
wise and mostly randomly (with some coverage guidance). Thus,
when fuzzing a program with a complex input structure, most of
the generated inputs are invalid, and many features of the program
cannot be covered as a random fuzzer is in general not able to
produce keywords and complex structures: Generating a keyword
like while randomly from letters has a chance of 1 in 265. A pure
random fuzzer will need a long time to generate this keyword, let
alone the structures that follow it.

Several solutions have been introduced to circumvent this prob-
lem, the most important being coverage guidance. Maximizing code
coverage, a random fuzzer like AFL over time is able to generate
inputs consisting of different tokens, generating valid prefixes that
cover more and more code until a valid input is finally composed.
For constrained input languages, however, this is still not sufficient:
As fuzzers compose their inputs character by character, they have
to determine each and every keyword in the input again and again.

The problem of finding keywords and other lexical structures
can be dramatically alleviated by providing a dictionary of common
input fragments. This allows fuzzers to compose inputs from dic-
tionary entries—in other words, they can build inputs from tokens

rather than individual characters, which can be highly beneficial
for fuzzing, e.g. with AFL. Even though AFL puts tokens from its
dictionary randomly together, its coverage guidance can approxi-
mate the value of a generated input. This finally leads the random
generation to inputs that survive the input validation stage and
reach actual functionality—if a dictionary was supplied by the user.

In this paper, we propose a new approach that takes a program
and automatically and without seeds extracts the tokens of its input
language using dynamic tainting of implicit data transformations, to
produce a dictionary and seed inputs to speed up fuzzing. The key
idea of our approach, sketched in Fig. 1, is to systematically create
inputs that cover all branches of a tokenizer—that is, a program
part that composes characters into tokens. Our approach extends
our earlier work [12], especially our tool pFuzzer. To this end, we
dynamically track the comparisons made on input characters and
tokens. The comparisons on input characters are easy to satisfy, as a
tokenizer usually compares one or more input characters against a
predefined set of keywords or special characters. It returns or stores
a constant value (the token) based on those comparisons, which
is again used in comparisons against other tokens in the parser.
Hence, the dynamic tainting needs to be able to follow taints from

https://doi.org/10.1145/3395363.3397348
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Figure 1: How lFuzzerworks. In Phase 1, the learning phase, a dictionary and seed inputs are extracted. This is done as follows:

lFuzzer generates an input and runs the program on this input. The tokenizer creates a token stream from the input (or the

parser requests token after token from the tokenizer) and lFuzzer learns the mapping of each input character to the token it

is converted to. The parser uses the tokens to parse the input, lFuzzer extracts the token comparisons made to generate the

next input. If neither tokenizer nor parser reject the input, the program logic either outputs a result or crashes. In Phase 2,

the extracted dictionary and learned seed inputs are used by a fuzzer to fuzz the program under test.

the input characters to the returned tokens to make use of the
token comparisons in the parsing phase. Also, comparisons in the
tokenizer that make up tokens can be used in fuzzing dictionaries.

In addition, we can use the token comparisons from the parser
to create a valid input.We rely on the fact that a parser processes
tokens one after another, comparing each input token against all
valid tokens at this position before rejecting an input. We start with
a random token which is likely rejected, extract the comparisons
made on the token and replace it with one of the compared tokens,
passing the first token comparison. We append new tokens until all
token comparisons are passed. This input can be given as a seed to
a fuzzer. Now we can create another seed input or start a fuzzer like
AFL with the extracted dictionary and the generated seed inputs.

To the best of our knowledge, this is the first approach to system-

atically taint, track and extract input tokens from a program under

test for the purpose of making test generation more efficient and
more effective. Our token extraction approach solely relies on the
comparisons made on input characters and tokens, making it easy
to understand, implement, and extend for future research.

Our approach is effective. Our evaluation on six subjects rang-
ing from csv to JavaScript shows that the dictionaries and seed
inputs generated by our approach are more effective and more
efficient for fuzzing. Compared to AFL and pFuzzer without any
information, AFL with a dictionary of the string constants from the

program code and AFL with seed inputs generated by pFuzzer, AFL
given our seeds and dictionaries achieves at least comparable, but
in general higher coverage. As the benefits increase with growing
complexity of the input language, our work opens the door towards
highly efficient fuzzing of programs with complex input languages.

The remainder of the paper is organized as follows. Section 2
describes how we enable dynamic tainting of implicit data trans-
formations and systematically explore the lexical input space of
tokenizers, producing dictionaries and seeds for further fuzzing.
Section 3 details the evaluation, comparing our approach against
AFL and pFuzzer as described above. After discussing the related
work (Section 4) on token extraction and dictionary usage, we dis-
cuss limitations and future work in Section 5, before concluding
the paper in Section 6.

2 EXTRACTING INPUT TOKENS

Our goal is twofold: improving dynamic tainting by allowing im-
plicit data conversions and using this extension for improved magic
byte fuzz-blocking elimination.

First, we want to improve the precision of dynamic tainting by
tracking taints on implicit data transformations. Such transforma-
tions are extensively used in input validators, more specifically in
the tokenization phase of such a validator in which one or more
input characters are converted to a constant value, a so called token.
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Second, with this dynamic tainting extension we want to auto-
matically generate both a dictionary and a set of seed inputs which
can be used as a guidance for fuzzing using no more than the pro-
gram as initial information. The key idea is to generate inputs that
cover all branches of the tokenizer. Hence, we use a test generator for
tokenizers to extract knowledge for another, general test generator.

Generating tests that cover tokenizers is a difficult task. On the
one hand, random fuzzers like AFL fail in the presence of tokens,
even if guided by coverage. On the other hand, testing approaches
that solve path conditions to cover all branches are challenged
by the complex path conditions in input processors [5]. Using a
grammar or some other input model would dramatically increase
the efficiency of fuzzing. Still, for many input formats no suchmodel
is available.1 The technique of parser-directed fuzzing [12] aims to
strike a compromise between the two, specifically generating inputs
for parsers that process one element at a time. Thus, the key idea
of our work is to

(1) Extend dynamic tainting to implicit data transformations, us-
ing them to

(2) Apply parser-directed fuzzing specifically to tokenizers, cov-
ering all branches and, consequently, all lexical elements
(tokens) of the input language; and subsequently

(3) Extract these tokens as dictionaries for effective fuzzing.
We implemented this approach in a tool called lFuzzer, being able
to extract dictionaries and seed inputs from C programs.

2.1 Parser-Directed Fuzzing

As already mentioned, parsing makes an intensive use of implicit
data conversions while also being hard to test with state-of-the-art
fuzzers. Thus, we demonstrate the effectiveness of our approach
by improving parser-directed fuzzing [12]. We extend our open-
source implementation by Mathis et. al to also handle implicit data
conversions. Hence, we shortly sketch the general idea of pFuzzer.

Parser-directed fuzzing [12] assumes that a parser processes
inputs character by character, comparing each character against
all expected characters at this position. Our earlier tool pFuzzer
executes valid prefixes with random extensions and uses dynamic
tainting to collect the comparisons done on the input characters.
The collected comparisons are then used to find a valid substitution
for the random extension.

We detail the approach on the example of an arithmetic expres-
sion parser: pFuzzer starts with a random character, e.g. ’&’, given
to the program. This input is rejected but not before being checked
if it is a digit or an opening parenthesis—the values a valid input for
the expression parser can start with. In the next step pFuzzer re-
places the random character with one of the values it was compared
to, e.g. the character ’1’. The input “1” is accepted, but pFuzzer can
now decide to append another random character, looking for larger
inputs. It could append ’#’ to the prefix “1”, leading to “1#”. ’#’ is
compared against the characters that can follow a digit: ’+’ and ’−’
and replaced by one of them, leading to “1+” which is rejected. So
pFuzzer appends another character, runs the program, analyzes
1Of course, if one writes a generic parser for a well known format (like json), a
grammar would be available. Nonetheless, most of the time such formats are used
to transport more specific data, e.g. for json a specific set of key-value pairs might
be defined to exchange data between programs. With our approach it is possible to
automatically extract such specific data without the need to define it manually.

Algorithm 1 Token Taint Propagation Algorithm
1: lastTaint← None

2: procedure propagate(Ins)
3: if type(Ins) = Comp ∧ isTainted(Ins) then
4: lastTaint← getTaint(Inst)
5: else

6: if type(Ins) ∈ {Assign, Return, Expr} ∧ hasConstant(Ins) then

7: assignTokTaint(Ins.getConstant, lastTaint)
8: end if

9: end if

10: if type(Ins) = Return then

11: lastTaint← None

12: end if

13: end procedure

the comparisons made on this character (being again comparisons
against digits and an opening parenthesis), replaces the appended
character with one of them, resulting in the valid input “1+3”.

In [12], we already mentioned tokenization as a strong limita-
tion to fuzzing parsers and hence our approach. In the presence
of a tokenization the character comparisons are shifted from the
parser into the tokenizer. The tokenizer though compares every
input character against all characters and keywords known to the
program while a parser only compares against valid characters for
the respective input position. In our example every input character
would be compared against digits, ’( ’, ’+’, ’−’, and ’)’. Thus, pFuzzer
may replace a randomly guessed character with an invalid value, e.g.
the ’&’ pFuzzer started with in our example might be replaced with
a ’)’. Hence, the chances for pFuzzer replacing a guessed character
with an incorrect value are higher, leading to more guesses until
a valid input is composed. We believe that an explicit knowledge
about a program’s input tokens makes fuzzing much more efficient.
Thus, we detail in the following how such tokens can be tainted,
extracted and used for fuzzing (e.g. in parser-directed fuzzing).

We need to solve the following problems before we can use
tokens in dictionaries and for seed input generation:

(1) Linking of input characters to tokens (i.e. tainting the tokens
with the taints of the originating characters).

(2) Linking tokens to their actualmeanings (e.g. a token T_WHILE
to the keyword while)2.

We will do this in three steps, sketching simple algorithms to
explain our core ideas:

(1) Detecting tokenization patterns and enable taint propagation
to generated tokens;

(2) Separating tokenizing and parsing code; and
(3) Correcting misclassified taints on tokens.
Finally, we will also detail how tokens can be used to efficiently

generate seed inputs for further fuzzing.

2.2 Propagating Token Taints

Adapting the dynamic tainting engine of pFuzzer means detect-
ing and tainting tokens with the taints of the characters they are

2A necessary feature to use the token comparisons in the parsing phase for seed input
generation equal to pFuzzer which relies on comparisons in the parsing phase.
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derived from. Because one can imagine an infinite amount of possi-
bilities to create a token from input characters, this detection can
only be an approximation. Still, there are some general patterns
that are used when tokenizing the input, which can be detected and
handled by the method presented in Algorithm 1. Every tokenizer
must compare one or more characters from the input explicitly
against predefined values to be able to decide if a character be-
longs to a predefined token. After this comparison, the tokenizer
should return or store a constant number – the token created from
the characters. To avoid large overapproximations we restrict the
"distance" between the comparison made and the generation of
the token, i.e. the generation should happen in the function the
character comparison is done or immediately after the function
returns. Algorithm 1 implements this token detection approach.

The function propagate in Line 2 is called on every instruction
that was executed during a run of the program under test. If a
comparison with a tainted value is done (Line 3), we store the taint
attached to the value (Line 4). The next time a constant is stored,
returned, or used in an arithmetic expression (Line 6), the stored
taint, flagged as a token taint, is attached to this constant (Line 7),
as we assume this to be a token assignment. Such token taints are
handled by the dynamic tainting engine as any other taint and are
thus propagated like normal taints. If they appear in comparisons
with other constants, a token comparison is reported and can then
be used for generating seed inputs (cf. Section 2.5). Line 10 and
Line 11 ensure that the taint stored in lastTaint is deleted on a
function return, as tokenization rarely happens over returns.

In the following we present two different tokenization patterns
and explain how they are handled by Algorithm 1:

Basic. The most basic conversion is a direct conversion, the
input is compared against some expected character or a keyword
and the respective token is assigned to some variable or returned:
void tokenize(char c) {

if (c == '{')
return L_BRACE;

}

In this case Algorithm 1 detects the comparison of c against ’{ ’
in Line 3, and will taint the constant L_BRACE in Line 7 as it is a
returned constant value which is detected by Line 6.

Comparison Function. Similarly to the basic conversion the
comparison may be implemented in a custom function. Here we
first taint the return value of the function and then taint the newly
created token:
bool isLBrace(char c) {

return c == '{';
}
int tokenize(char c) {

if (isLBrace(c))
return L_BRACE;

}

The comparison of c against ’{ ’ is done in the method isLBrace,
the return value of the method is tainted by the standard dynamic
tainting engine (c is tainted, thus the result of the comparison is
tainted). In the function tokenize, this returned value is implicitly
compared against the value false in the if-condition, triggering Line 3
and Line 4, storing the taint of the returned value for later usage

Algorithm 2 Tokenization Phase Detection Algorithm
1: procedure detectTokenization(CallGraph)
2: for node ∈ CallGraph do

3: if hasCharacterComparison(node) then
4: markTokenize(node)
5: end if

6: end for

7: while newNodeMarked(CallGraph) do
8: for node ∈ CallGraph do

9: if isParentTokenize(node) then
10: markTokenize(node)
11: end if

12: end for

13: end while

14: end procedure

in lastTaint. On the return of L_BRACE the condition in Line 6
evaluates to true, hence the stored taint in lastTaint is used to taint
the constant as in the basic case (Line 7).

2.3 Detecting the Tokenization Phase

The tainting engine may over-approximate and report wrong token
comparisons (e.g. due to tainting a constant that is no token which
is later used in comparisons). Algorithm 2 divides the program code
in tokenizing and non-tokenizing based on the comparisons on in-
put characters that are detected by the dynamic tainting engine. We
designed this algorithm under the assumptions that parsing func-
tions are never called by tokenizing functions and tokenization and
parsing is strictly divided (so no function can be both at the same
time). Thus, we can filter out token comparisons that are reported
in the tokenizer, reducing the set of invalid token comparisons.

Algorithm 2 starts with the dynamic CallGraph of the application
(Line 1) which is constructed during the program execution. The
nodes (= functions) are iterated (Line 2) and functions containing
input character comparisons (Line 3) are marked as tokenizing
(Line 4). After that, the nodes are iterated (Line 8), and for each
node it is checked if any of the parents (a caller of the function) is
marked as tokenizing (Line 9). If so the respective node is marked as
tokenizing as well (Line 10), finally approximating tokenizing and
parsing code. The result is an underapproximation of the tokenizing
code to avoid marking parser functions as tokenizing. This would
hinder the input generation that uses the comparisons in the parser.

2.4 Correcting Misclassified Taints

It may happen that even after filtering token comparisons from to-
kenizing code, some reported token comparisons are still wrong to-
ken comparisons. This happens because of the over-approximation
in the tainting engine marking any constant after a comparison as
a token. Most of those constant values are only used within the
tokenizing code and are therefore filtered by Algorithm 2, but some
of them may also appear in the parsing code, leading to noise.

With Algorithm 3 we filter this noise by calculating which token
values are used in majority on a specific input index3. The algorithm
is based on the assumption that the noise, the wrongly reported

3Each character from the input has a fixed index that identifies the character. A taint
also has the index information to map the taint back to the characters it stems from.
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Algorithm 3Misclassified Taints Correction Algorithm
1: procedure correctTokens(tokComps)
2: majorityDict← majorityVote(tokComps)
3: filterByMajority(tokComps, majorityDict)
4: end procedure

5:
6: procedure majorityVote(tokComps)
7: tokCounter ← dictionary()
8: for cmp ∈ tokComps do

9: indexValue← tokCounter.get(cmp.idx)
10: indexValue.increase(cmp.val, 1)
11: end for

12: for el ∈ tokCounter do

13: el.Value()← max(el.Value())
14: end for

15: return tokCounter

16: end procedure

token comparisons, only appear in a small amount while the actual
token comparisons form the majority. Thus, in the procedure ma-
jorityVote (Line 6) we create a dictionary delivering for each index
the most used token value. Concretely, we first iterate over all token
comparisons (Line 8) and extract for each comparison the index
information as well as the actual token value used (Line 9). Then,
in Line 10 we count the number of token comparisons in which the
token was tainted with the given index-value combination.

After all comparisons are analyzed, the algorithm evaluates the
found numbers by iterating over all elements of the tokCounter

dictionary (Line 12). Each element now contains a mapping from
an index to the token values and their number of appearance during
the execution. For example, we have the following comparisons:
(index: 5, tokenvalue: 10)
(index: 5, tokenvalue: 10)
(index: 5, tokenvalue: 1234)
(index: 5, tokenvalue: 10)

There are four comparisons on index 5, threewith the token value 10
and one with the token value 1234—we assume the token value 10
to be correct. Hence, in Line 13 the index 5 is mapped to the token
value 10 and then all token value mappings are returned in Line 15.

Finally, in Line 3 the majority dictionary from the majorityVote
function is used to filter all token comparisons on every index that
have another token value than the one in the dictionary. In our
example, the comparison with the value 1234 would be filtered.

2.5 Using Tokens for Seed Input Generation

Knowing the token definitions as early as possible is a crucial fea-
ture for successfully generating syntactically valid inputs. Hence,
as soon as lFuzzer recognizes a new character or string in a com-
parison on an input character, it runs the program with the new
value. For example, the first time lFuzzer finds a string comparison
against while, it would run the program under test with the input
while to extract the information to which token it is converted to. As
the tokenizer is usually stateless, the keyword will be converted to
a token and compared against all possible tokens a valid input can
start with, giving us the wanted character-token mapping. With the
knowledge about token comparisons and definitions we can track

Table 1: The subjects used for the evaluation.

Name Accessed Lines of Code

csvparser 2018-10-25 297
inih 2018-10-25 293
cJson 2018-10-25 2,483
lisp 2019-03-19 2741
tinyC 2018-10-25 191
mjs 2018-06-21 10,920

the comparisons in the parsing phase and generate valid inputs as
efficient as pFuzzer, even if a tokenization phase is present.

3 EVALUATION

3.1 Setup

We stick to the test subjects used in [12]4; details are listed in Table 1.
The input languages range from simple formats as csv [9], ini [2],
and json [4] up to complex formats like lisp [10], C (tinyC) [11],
and JavaScript (mjs) [3]. As only two of the original subjects (mjs
and tinyC) use tokenization5 we decided to incorporate another
complex subject with tokenization: a lisp interpreter.

For the evaluation we run lFuzzer in combination with AFL, i.e.
we create a dictionary and a set of seed inputs with lFuzzer and
then let AFL fuzz the subjects with this information. As baseline
we compare against AFL6, run in two different modes. First, we run
AFL with no dictionary and one test containing one whitespace
as a seed input (since AFL requires a correct test to start fuzzing).
Second, we run AFL given the set of strings extracted from the
program under test, using the same seed as before. For getting
those strings we first compiled the subject into a human readable
bitcode format and then extracted the string literals by iterating
over the global values of the bitcode file and writing the global
strings to the AFL dictionary.7 This delivers all string literals from
the source code. Furthermore, to show that our changes made to
pFuzzer in lFuzzer actually improves its fuzzing capabilities, we
compare against pFuzzer in two different modes: first, pFuzzer is
run until timeout, second, pFuzzer is used to extract seed inputs,
then AFL is run until timeout with the extracted inputs. As pFuzzer
does not extract any tokens, AFL is run without a dictionary.

The evaluation was run for 24 hours per subject (excluding
the static instrumentation and compilation time); the token learn-
ing and seed generation of lFuzzer is included in the 24 hours.
The experiments were repeated four times to adhere to the non-
determinism of all tools and were run on an Ubuntu 14.04.5 docker
container with 3.3 GHz Intel processors, no tool was set up to use
parallelization. Due to technical restrictions on our machine, AFL
was run with AFL_SKIP_CPUFREQ enabled. We do not provide

4As in [12], the subjects are set up to read from the standard input (such that AFL can
fuzz them), and to abort parsing on the first error with a non-zero exit code. mjs and
lisp are changed such that semantic failures do not lead to a non-zero exit code.
5We still use the other subjects in the evaluation to show that lFuzzer does not harm
the fuzzing process if no tokenization phase is available.
6As we assume nothing but the program as input to the fuzzer (no manual information
like seed inputs or a dictionary), we only use fuzzers that meet this requirement.
7lFuzzer only requires LLVM bitcode to perform its analysis, so we decided to give
AFL_Dict the same level of abstraction.
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Figure 2: The number of valid tokens extracted per method

and subject with error lines showing the minimal and max-

imal number of valid tokens extracted over all runs.

any seed inputs to any fuzzer as we want to evaluate the input
generation capabilities without additional knowledge.

To show the effectiveness of lFuzzer we evaluate the tools on
three aspects:
Token Extraction. First, we show that on programs with complex

input formats lFuzzer extracts tokens with higher precision
and recall compared to naive string extraction.

Code Coverage. Second, we prove that our dictionary and seed
generation improves coverage when fuzzing with AFL.

Tokens Used. Third, we look at how many tokens are actually
used in the test inputs produced by any of the tools.

During our experiments we found out that the instrumented
version of lisp produced byAFL has a bug resulting in segmentation
faults. Thus, we had to exclude seed tests produced by lFuzzer and
pFuzzer that start with “ ( # ” as otherwise AFL would not start.

3.2 Tokens Extracted

Fig. 2 shows how many valid tokens were found with the static
string extraction and the active token learning of lFuzzer. As
pFuzzer does not extract any tokens it will be omitted in this
section. At first, one might think all tokens of a subject can be
found with string extraction, but the results for cJson and tinyC
show another picture: lFuzzer finds more tokens than the string
extraction. The missing keywords are single character tokens, e.g. a
semicolon in tinyC as those are not present anymore in the bitcode.
They are character constants in the original source code and as
such compiled to integer constants in the bitcode.

For mjs and lisp, the picture changes: most of the existing tokens
are present as strings in the code. lFuzzer misses some of them
due to its dynamic token extraction—a token can only be found if
it is seen during the learning phase.

When looking at the wrongly extracted tokens in Fig. 3, we first
and foremost see that those subjects that do not have a tokenization
phase tend to cause lFuzzer to report wrong tokens. We assume
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Figure 3: The number of non-tokens (strings that are no

tokens) extracted per method and subject with error lines

showing the minimal and maximal number of non-tokens

extracted over all runs.

that some part of the code looks like a tokenization but accepts
any character combination from the input, causing false positives.
For tinyC, a lookahead causes a correctly detected token to be
appended by other characters that followed the tokenwhile lFuzzer
was running, resulting in some non-tokens being reported. Our
token recognizer is designed to combine all characters to a token
that were accessed between two token usages. In the case of tinyC
more characters where accessed between two token usages than
actually belonged to the token, hence this lookahead caused random
characters to be appended to the extracted token values. This mostly
happens for values with undefined length like variable identifiers
or numbers as they need to be parsed character by character until
an invalid character is detected (hence it is used in a comparison
but not part of the token).

For mjs and lisp, the number of wrong tokens is very low com-
pared to the string extraction method. The reason for this is twofold.
First, programs with a more complex input format usually also con-
tain a better error handling, trying to give the user a profound hint
on why an erroneous input is actually invalid. Thus, different error
messages have to be embedded in the code resulting in many differ-
ent strings that are no valid tokens of the input language. Second,
those subjects have a tokenization phase, hence lFuzzer is actually
able to find and extract tokens and differentiate between actual
tokenization code and the code that looks like such but is not.8

Table 2 shows the precision and recall of lFuzzer compared
to naive string extraction on subjects with a tokenization phase
(tinyC, lisp, mjs). The precision of lFuzzer is 27.7% higher com-
pared to the precision of plain string extraction as our approach
does not suffer from extracting strings that are not used as tokens
but for example for error handling and user communication. Sur-
prisingly though, the recall is 0.3% higher as well, coming from

8lFuzzer tries to find the tokenization part of the code which works well if there is a
tokenization phase but may lead to false positives if no tokenizing code is present.
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Figure 4: Average, min- and maximum coverage for csv.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.

single character tokens that are compiled to integer constants in
the LLVM bitcode and are thus not extracted.

lFuzzer has a 27.7% higher precision and 0.3% higher recall

regarding token extraction on subjects with a tokenization phase.

3.3 Coverage

In the following we use branch coverage achieved by the syntacti-
cally valid inputs each tool generated.

csv and ini. In Fig. 4 and Fig. 5 we can see that programs with
a simple input format can easily be covered by any tool. As all tools
are based on random mutations and csv as well as ini do not have
complex interdependent syntactic features, the whole feature space
can easily be covered. For csv, a comma and a line break is sufficient
to cover most of the code, ini’s most complex input feature is a
comment: arbitrary text surrounded by an opening and a closing
bracket. pFuzzer misses some features and feature combinations
leading to a lower coverage than AFL and lFuzzer can achieve. In
combination with AFL the same coverage can be reached mainly
because AFL on its own is able to achieve the coverage.

json. More interesting is the json subject which parses a much
more complex input format, hence we see a slower and diverse
increase in coverage over time for the different tools. The results
in Fig. 6 show that almost all tools perform similarly good, with
AFL_Dict having the most coverage (20.2%, compared to pFuzzer

Table 2: Precision and Recall on extracted strings regarding

their token validity on subjects with a tokenization phase

(tinyC, mjs, lisp).

Tool Precision Recall

String Extraction 40.7% 88.5%
lFuzzer 68.4% 88.8%
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Figure 5: Average, min- and maximum coverage for ini.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.
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Figure 6: Average, min- and maximum coverage for cJson.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.

+ AFL having 20.1%, lFuzzer having 19.9%, AFL having 18.4%, and
pFuzzer having 14.6%). The similar results can be explained as
follows: AFL_Dict has knowledge about the few existing keywords
in cJson, thus it is able to cover the code handling those, while
also covering all the code AFL covers anyway. As cJson does not
have a tokenization phase, lFuzzer’s token learning cannot come
into play, resulting in falling back to using character comparisons.
pFuzzer on the other hand is designed to work well on subjects
with a parsing but no tokenization phase and thus covers some code
very fast, in the long run though AFL is needed to cover code that
pFuzzer cannot cover on its own. The low coverage all tools achieve
is explained by the fact that cJson contains generator code (code
that creates a json string from a json object). In our experiments
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Figure 7: Average, min- and maximum coverage for lisp.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.

we focus on the parsing part of the program, hence the generator
code is not triggered by the tools. As all tools cannot cover this part
of the code, the comparison is still fair.

The missing tokenization phase also causes lFuzzer to incor-
rectly detect arbitrary character combinations as tokens which
seemingly confuses AFL, resulting in a slower increase in coverage
but ultimately leading to similar coverage as AFL_Dict achieves.

lisp. lisp, still having a simple syntax but a tokenization phase,
shows how the generated dictionary and seed inputs of lFuzzer
increase the performance of AFL. In Fig. 7 we can see that the
lFuzzer-AFL combination achieves similar coverage as AFL_Dict,
having around 20% more coverage than AFL alone. For lisp, the
seed inputs generated by lFuzzer are small and only cover a small
part of the input space, still they are an efficient guidance for AFL
to generate more complex inputs. lisp has a semantic phase which
handles most of the keywords, “hiding” the actual token compar-
isons, making it impossible for lFuzzer to generate complex inputs.
Many keywords are mapped to the same token and the token is then
semantically analyzed, making it possible to extract the keywords
but impossible to generate seed inputs (as the token comparisons
used to generate those inputs are missing). This shows the great
opportunities of our symbiotic approach—even if one of the tools
alone fails to achieve coverage, the other tool is still able to address
this flaw. Hence, pFuzzer alone is not able to produce a diverse set
of inputs and thus achieves the worst coverage. AFL on the other
hand profits from the seed inputs pFuzzer generates and covers
more code compared to running alone.

tinyC. On tinyC on the other hand we can see the power of
lFuzzer on its own. As shown in Fig. 8, the coverage our approach
achieves is almost the maximum coverage reached throughout the
fuzzing run, finally resulting in 17% more coverage than AFL_Dict.
lFuzzer successfully generates inputs that cover almost all the
language features of tinyC, leaving out only a few keywords or
feature combinations that are then filled by AFL shortly after it
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Figure 8: Average, min- and maximum coverage for tinyC.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.
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Figure 9: Average, min- and maximum coverage for mjs.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.

started fuzzing. pFuzzer on the other hand struggles with the tok-
enization phase of tinyC (as mentioned in Section 2.1) resulting
in a lower coverage than the one lFuzzer achieves. In combina-
tion with AFL the coverage is better than for AFL alone, but still
worse compared to lFuzzer as the tokens are missing to support
the AFL mutations. Those results can be explained by the structure
of tinyC: every keyword has only a small feature space, i.e. each
keyword is handled by a few lines of code. In contrast to that, mjs
for instance has many internal functions, meaning that even if a
successful call to the function is generated, the code coverage is
highly dependent on the function arguments.
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Figure 10: The number of valid tokens with size greater

than 3 used per tool and subject with minimum and max-

imum number of tokens used over several runs.

mjs. On our most complex subject implementing an interpreter
for a subset of JavaScript we can see the interplay of all compo-
nents of lFuzzer in its full form. First, a precise set of tokens is
learned and later given to AFL. Second, a diverse set of seed inputs
is generated giving AFL a good starting point for further fuzzing.
Hence, the lFuzzer-AFL combination outperforms AFL_Dict, be-
ing faster in generating coverage and achieving 3% more coverage.
pFuzzer again is blocked by the tokenization phase of mjs resulting
in a low overall coverage. Together with AFL the coverage gets sig-
nificantly better, still the tokens provided by lFuzzer improve the
AFL fuzzing process even more. In contrast to cJson, the low cov-
erage of mjs results from the complex input format of this subject,
making it hard for any approach to fully cover the subject.

On subjects with complex input structures,

lFuzzer achieves on weighted average 2.3% and

up to 17% more coverage than AFL_Dict.

3.4 Tokens Used

Finally, in Fig. 10 we look at the tokens with more than three
characters used in the syntactically valid inputs generated by each
tool. Except for tinyC, AFL_Dict uses a similar number of tokens.
tinyC has only a small set of valid tokens, but those are used in
complex structures, thus making it hard for a random approach like
AFL to use them properly. On mjs and lisp AFL_Dict and lFuzzer
use almost the same number of tokens correctly in valid inputs, a
result that is also reflected in the coverage graphs: on both subjects
they achieve similar results. pFuzzer, also in combination with
AFL, is not able to use a large set of diverse tokens in its generated
inputs, being worse on almost all subjects, only for cJson it is able
to perform better than lFuzzer and equally well as AFL_Dict. On
mjs the pFuzzer-AFL combination uses fewer tokens than pFuzzer
alone because AFL does not generate a large diverse set of tokens
on its own and pFuzzer runs shorter compared to the solo run.

As we have already seen in Section 3.2, the input dictionary for
both approaches has similarly many valid tokens. Even though
the number of invalid tokens in the dictionary might deviate, AFL
generates such a huge number of inputs in 24 hours that eventually
the right tokens are used at the correct positions, achieving new
coverage and thus guiding AFL towards a valid input.

lFuzzer and AFL_Dict are both able to use a large

number of tokens (weighted average of 78%

and 81% of all tokens) in valid inputs.

In summary, the evaluation shows that (1) dictionaries are of
great benefit for fuzzing, nomatter if they are consisting of statically
extracted strings or dynamically extracted tokens and (2) the com-
bination of a precise dictionary and a set of diverse and valid seed
inputs improves fuzzing on languages with complex input formats

significantly, something only lFuzzer can achieve.

In general, the more complex the input language, the greater the

benefits of automatic dictionary extraction and seed input

generation as done by lFuzzer.

4 RELATEDWORK

To the best of our knowledge, we are the first to dynamically taint,
track and extract tokens from a program under test for more ef-
ficient fuzzing. Therefore, we will look into the research done on
dictionaries and their optimization and usage for fuzzing.

4.1 pFuzzer

First and foremost, we have to mention our own work pFuzzer [12],
as this work builds on the approach and research results. In pFuzzer,
we were targeting parsers and generate inputs that survive the pars-
ing stage and are able to test the program logic. This is done by
tracking the comparisons done on the input characters and using
them to systematically build a valid input. Each time a character is
rejected it gets replaced by one of the values it was compared to, iter-
atively creating an input that survives more and more comparisons
in the parser until it is finally accepted by the parser. We extended
the pFuzzer work by improving the dynamic tainting technique
to not only track character comparisons but also taint tokens that
are implicitly composed from input characters; enabling the usage
of token comparisons9. Using the extended dynamic tainting tech-
nique, lFuzzer automatically identifies and extracts tokens from
the source code, using them (1) for generating a dictionary that can
be used for further fuzzing and (2) for generating seed inputs by
adapting their iterative input creation technique but lifting it to the
token comparison level.

4.2 Learning Input Structure

Maybe the closest approach to ours is the one by Shastry et al. [16],
statically inferring a dictionary from the source code. They apply
backward slicing and control-flow graph analysis to find tokens
and token conjunctions that can be used in a dictionary to improve
fuzzing. In contrast to their approachwe are using dynamic program
analysis which is more robust to unusual code patterns. While
9In [12], we explicitly mentioned token conversions as a limitation, saying that this
prevents pFuzzer from testing complex input processors efficiently.
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Shastry et al. need heuristics to find the comparisons and values
for their analysis, we can simply observe all comparisons in the
program with dynamic tainting and report the comparison values.
Static code analysis may miss dynamic code features (like an array
which is filled with keywords in a loop), which may lead to omitted
tokens. A keyword detection algorithm might be implemented as
follows:
// tokenorder: T_WHILE, T_IF, T_UNDEF
char* kwds[] = {"while", "if", null};
bool isKeyword(char* c) {

int sym = 0;
while (kwds[sym] != 0

&& strcmp(c, kw[sym]) != 0) {
sym++;

}
return sym;

}

The keywords array could also be filled dynamically. For a static
approach it is very hard to extract the keywords from the array.
For a dynamic approach, no matter how the array is initialized, the
strcmp() function will be called with all values in the array (assum-
ing no comparison matches), thus making it easy to extract the
keywords for a dictionary construction. Furthermore, our approach
also provides a set of seed inputs that is used to give the fuzzer a head

start for fuzzing by providing a set of valid syntactic structures of
the input format that can be used for recombination and mutation.

Different approaches have been used to learn inputs or their
structure and improve fuzzingwith the gained knowledge. Höschele
et al. [8] presented an approach to learn the input format in form
of a context-free grammar from the program under test. They use a
set of valid seed inputs to explore the program execution and infer
a grammar based on the program structure and the consumption of
input characters during parsing. Similar to our approach they are
using the structural information of a program to gain input format
knowledge; but first, we are not relying on seed inputs, we generate

them and second, we do not extract the full input format but only
the tokens used by the program. A combination of both approaches
might be beneficial though, as detailed in Section 5.3.

Godefroid et al. [6] apply recurrent neural networks to learn
the statistical distribution of input elements from a large corpus of
valid inputs and then generate new inputs with the neural network.
In contrast to our approach, they do not extract the input elements
explicitly but encode the knowledge in a neural network, making
it not accessible out of the box for existing fuzzing techniques.
Furthermore, the corpus of inputs to learn from needs to be large
to train the neural network while our approach extracts tokens and

seed inputs with having nothing more than the program under test.

4.3 Selecting and Using Seeds

With Redqeen, Aschermann et al. [1] presented an approach
which made it possible to circumvent different fuzzing roadblocks,
among others magic bytes. In general they rely on a similar ap-
proach as the authors of Vuzzer [14], observing the control and
data flow of an application and finding parts of the input that belong
to branching conditions. Hence, these tools which rely on dynamic
tainting can make use of our improved tainting framework to also

observe token comparisons. We lift the token comparisons back to
the character comparisons they represent enabling the magic byte
solving to also work beyond the tokenizer. With a feedback loop
portions of the input are gradually replaced with different charac-
ters until the branching condition switches and a new branch is
taken. This is similar to our seed generation technique, but we are
explicitly tracking the data flow, even beyond tokenization, and
are replacing rejected input values with the values they were com-
pared to, even if the comparison was done on the token level. Our
approach systematically constructs diverse inputs that survive the
parsing stage and test the program logic.

Several works focus on the problem of seed input selection.Wang
et al. [18] generate seeds via analyzing the corpus to learn a proba-
bilistic context-sensitive grammar and using this grammar together
with mutations to create a set of seeds that cover the least used
features from the original seed set. Rebert et al. [15] looked at dif-
ferent seed selection strategies and evaluated them on different
subjects to find out how seed selection influences the result of the
fuzzing session. They found out that seed selection can actually
help improving the fuzzing performance. In any case, seed selection
assumes seeds to be present to select from. In contrast, our approach
creates a set of seed files, not needing any starting input. Still, the
seeds we currently generate are not optimized in any way, hence
seed selection might further increase the fuzzing performance.

5 LIMITATIONS AND FUTUREWORK

As shown in the evaluation, our approach is able to taint and track
tokens during program execution which improves fuzzing signifi-
cantly on subjects with complex input structures. Still, some lim-
itations remain to be solved in future work; we list them in the
following and provide ideas for solutions:

5.1 Parsing Style

Similar to [12], our technique is limited to recursive-descent parsers,
relying on some assumptions: First, the program under test needs to
have a tokenization phase, meaning that there is a part in the code
which consecutively compares slices of the input against predefined
characters and keywords and forwards the resulting tokens one
after another to the parser. As this is the textbook approach to
writing input processors for complex input formats, we believe
that most of the handwritten parsers are designed like this. Second,
we rely on dynamic tainting to track the input characters and the
comparisons made on them throughout the program execution.

Other parsing styles like table-driven parsing, the common alter-
native to recursive-descent parsing, have a fundamentally different
structure which we are not able to analyze at the moment. It might
be possible to adapt the techniques presented in this paper to other
parsing styles. Still, it is questionable if this is beneficial for the
following reasons: First, 80% of the top 17 programming languages
on Github are recursive-descent parsers [12] (with Clang [17] and
GCC [13] being the most famous ones), hence only 20% are im-
plemented differently. Second, table driven parsers are usually not
manually written but generated from a machine readable gram-
mar. Hence, one can apply grammar-based fuzzing which will be
superior to character-based fuzzing.
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5.2 Detecting Patterns

C is a language that is known for its freedom. A programmer can
solve a problem in many different ways, some of them might be
considered as straight-forward while others might be more special-
ized. The creation of a tokenizer is not excluded from this. While
we are confident that we covered the typical tokenization patterns
it might happen that we miss the generation of specific tokens or
even the generation of all tokens. Our evaluation has shown that
most input parsers are implemented close to the textbook approach,
making it possible for us to extract the tokens we want.

5.3 Extracting Input Models

Tokens are not only valuable to our previous work pFuzzer [12],
they can also be beneficial when combined with grammar learning

techniques. AutoGram [8] andMimid [7] implement approaches
to infer context-free grammars from a program under test, tracking
how individual input characters are processed within the program;
AutoGram focuses on data flows, whereasMimid uses control flow
instead. The extracted tokens might serve as a great base for both
approaches to construct terminals in the grammar. We would lift
the minimal building blocks for the grammar from single characters
to full tokens, making it easier to construct a grammar.

6 CONCLUSION

Fuzzing is one of the key technologies for software testing, currently
experiencing a renaissance in research and industry. Improved
methods made it possible to automatically test a wide variety of
programs. Testing the actual functionality of programs with com-
plex input formats though is a challenge that remains to be solved
until today; state-of-the-art fuzzers mostly test the input rejection
capabilities of the software under test rather than the actual func-
tionality.With our implicit-data-transformation tainting, dictionary
extraction, and seed input generation methods we make it possible
to help fuzzers go beyond the input validation stage and test the
actual program functionality.

Our approach is based on the observation that tokenizers are in
general implemented by the book: one or more input characters
are compared against predefined values and if one value matches
the respective token is forwarded to the parser. We can find those
patterns in the program execution using them for an enhanced taint

tracking, extract the values to generate a dictionary, and also build

valid and diverse seed inputs token by token. Thus, we are able
to produce a foundation for fuzzing, outperforming AFL without
any information and AFL given the strings from the program as
dictionary while still being fully automatic, using nothing more
than the source code of the program.

Even though our results are very promising, this approach just
serves as a foundation to show the potential of token extraction for
fuzzing. Future combinations with more sophisticated techniques
like grammar learning and following grammar-based fuzzing may
result in even more efficient and effective testing. With this work
we want to set one more milestone on the road towards efficient,
effective, and fully automatic fuzzing of programs with complex
input structures.

We are determined to making our research public and repro-
ducible. lFuzzer and all evaluation data is available as open source
at the project page:

https://github.com/uds-se/lFuzzer
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