
Mining Input Grammars from Dynamic Control Flow
Rahul Gopinath

rahul.gopinath@cispa.saarland

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

Björn Mathis

bjoern.mathis@cispa.saarland

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

Andreas Zeller

zeller@cispa.saarland

CISPA Helmholtz Center for

Information Security

Saarbrücken, Germany

ABSTRACT
One of the key properties of a program is its input specification.

Having a formal input specification can be critical in fields such as

vulnerability analysis, reverse engineering, software testing, clone

detection, or refactoring. Unfortunately, accurate input specifica-

tions for typical programs are often unavailable or out of date.

In this paper, we present a general algorithm that takes a program

and a small set of sample inputs and automatically infers a readable

context-free grammar capturing the input language of the program.

We infer the syntactic input structure only by observing access

of input characters at different locations of the input parser. This

works on all stack based recursive descent input parsers, including

parser combinators, and works entirely without program specific

heuristics. Our Mimid prototype produced accurate and readable

grammars for a variety of evaluation subjects, including complex

languages such as JSON, TinyC, and JavaScript.

CCS CONCEPTS
• Software and its engineering→ Software reverse engineer-
ing; Dynamic analysis; • Theory of computation→Grammars
and context-free languages.

KEYWORDS
context-free grammar, dynamic analysis, fuzzing, dataflow, control-

flow

ACM Reference Format:
Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input

Grammars from Dynamic Control Flow. In Proceedings of The 28th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2020). ACM, New York, NY, USA,

12 pages.

1 INTRODUCTION
One of the key properties of a program is its input specification.

Having a formal input specification is important in diverse fields

such as reverse engineering [18], program refactoring [29], and

program comprehension [23, 44]. To generate complex system in-

puts for testing, a specification for the input language is practically

mandatory [12, 27, 32]

However, formal input specifications are seldom available, and

when they are, they may be incomplete [14], obsolete, or inaccurate

with respect to the program [47]. Unfortunately, determining the

input language of a program is a non-trivial problem even when

the source code is available [27]. Therefore, obtaining input models
automatically bears great promise for software engineering.

ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States
2020.

⟨START ⟩ ::= ⟨json_raw⟩
⟨json_raw⟩ ::= ‘"’ ⟨json_string′⟩ | ‘[’ ⟨json_list′⟩ | ‘{’ ⟨json_dict′⟩
| ⟨json_number′⟩ | ‘true’ | ‘false’ | ‘null’

⟨json_number′⟩ ::= ⟨json_number⟩+
| ⟨json_number⟩+ ‘e’ ⟨json_number⟩+
⟨json_number⟩ ::= ‘+’ | ‘-’ | ‘.’ | ‘[0-9]’ | ‘E’ | ‘e’

⟨json_string′⟩ ::= ⟨json_string⟩∗ ‘"’
⟨json_list′⟩ ::= ‘]’
| ⟨json_raw⟩ (‘,’ ⟨json_raw⟩ )∗ ‘]’
| (‘,’ ⟨json_raw⟩ )+ (‘,’ ⟨json_raw⟩)∗ ‘]’
⟨json_dict′⟩ ::= ‘}’
| (‘"’ ⟨json_string′⟩ ‘:’ ⟨json_raw⟩ ‘,’ )∗

‘"’ ⟨json_string′⟩ ‘:’ ⟨json_raw⟩ ‘}’
⟨json_string⟩ ::= ‘ ’ | ‘!’ | ‘#’ | ‘$’ | ‘%’ | ‘&’ | ‘’’
| ‘*’ | ‘+’ | ‘-’ | ‘,’ | ‘.’ | ‘/’ | ‘:’ | ‘;’
| ‘<’ | ‘=’ | ‘>’ | ‘?’ | ‘@’ | ‘[’ | ‘]’ | ‘^’ | ’_’, ’‘’,
| ‘{’ | ‘|’ | ‘}’ | ‘~’
| ‘[A-Za-z0-9]’ | ‘\’ ⟨decode_escape⟩
⟨decode_escape⟩ ::= ‘"’ | ‘/’ | ‘b’ | ‘f’ | ‘n’ | ‘r’ | ‘t’

Figure 1: JSON grammar extracted frommicrojson.py.

While researchers have tried to tackle the problem of grammar

recovery using black-box approaches [14, 48], the seminal paper by

Angluin and Kharitonov [11] shows that a pure black-box approach

is doomed to failure as there cannot be a polynomial time algorithm in

terms of the number of queries needed for recovering a context-free

grammar from membership queries alone. Hence, only white-box
approaches that take program semantics into account can obtain

an accurate input specification.

The first white-box approach to extract input structures from

programs is the work by Lin et al. [39, 40], which recovers parse
trees from inputs using a combination of static and dynamic anal-

ysis. However, Lin et al. stop at recovering the parse trees with

limited labeling, and the recovery of a grammar from the parse

trees is non-trivial (as the authors recognize in the paper, and as

indicated by the limited number publications in this topic even

though recovering such a grammar is important in many areas of

software engineering).

The one approach so far that extracts human-readable input

grammars from programs is Autogram [33] by Höschele et al. Given

a program and a set of inputs, Autogram extracts an approximate

context-free grammar of the program’s input language. It does so by

tracking the dynamic data flow between variables at different loca-
tions: If a part of the input is assigned to a variable called protocol,
this substring forms a ⟨protocol⟩ nonterminal in the grammar.



ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States Gopinath, Mathis, Zeller

While dynamic data flows produce well-structured grammars

on a number of subjects, the approach depends on a number of

assumptions, the most important being that some data flow to a

unique variable has to be there in the first place. If a program accepts

a structured input where only part of the input is saved and used,

there is no data flow to learn from in the unsaved parts.

Second, learning from dynamic data flows requires special heuris-

tics to work around common parsing patterns identified; the data

flow induced by a parser lookahead, for instance, has to be ignored

as it would otherwise break the model [33]. Finally, common pat-

terns such as passing the complete input as an array with an index

indicating current parse status can break the subsumption model.

These shortcomings limit learning from data flows to a small class

of input processors.

In this paper, we describe a general algorithm to recover the input
grammar from a program without any of these limitations. Rather

than being based on data flows to unique variables, it recovers the

input grammar from dynamic control flow and how input characters

are accessed from different locations in the parser. Our algorithm

works regardless of whether and how the parsed data is stored

and requires no heuristics to identify parsing patterns. It works on

all program stack based recursive descent parsers, including mod-

ern techniques such as parser combinators. The recursive descent

family of parsers makes up 80% of the top programming language

parsers on GitHub [41].

The resulting grammars are well-structured and very readable.

As an example, consider the JSON grammar shown in Figure 1,

which our Mimid prototype extracted from microjson.py.1 Each

JSON element has its own production rule; ⟨json_number⟩, for in-
stance, lists a number as a string of digits. Rules capture the recur-

sive nature of the input: A ⟨json_list’⟩ contains ⟨json_raw⟩ elements,

which in turn are other JSON values. All identifiers of nonterminals

are derived from the names of the input functions that consume

them. All this makes for very readable grammars that can be easily

understood, adapted, and extended.

Why do we emphasize the readability of extracted grammars?

Recovering readable grammars is important in a number of areas

in software engineering [46].

• The recovered grammar represents the input specification of

the given program and provides an overview of how the pro-

gram processes its inputs. This can be used for understanding

the program and identifying where possible vulnerabilities

lie. The grammar recovered can be useful for identifying

the difference between differing implementations, and even

for identifying how the input specification changed across

revisions, and identifying compatibility issues.

• A large number of recent bugs have been caused by incor-

rectly implemented parsers for common specifications [43].

Recovering the actual grammar of the inputs accepted by the

program can help us identify the problematic parts easily.

• Another important use of grammar is for debugging where

techniques such as hierarchical delta debugging [42] can

only be applied if one has the program input grammar. An

input grammar for a given program can also be of use if one

1
We removed rules pertaining to whitespace processing for clarity.

wants to repair damaged inputs [37]. In all these cases, the

inputs need to be decomposed into smaller fragments.

• When using a grammar as an input producer for testing,

readable grammars allow testers to refine the grammar with

specific inputs such as logins, passwords, or exploits. Given

such a grammar, one can contract the grammar such that

only specific subparts are generated if one is first able to un-

derstand what parts of the grammar correspond to the part

that one is interested in. If even a partial human readable

grammar is available, it can be expanded with human knowl-

edge on features where the miner may not have sufficient

inputs or identify vulnerabilities through human inspection

of the grammar (e.g. allowing special characters in user-

names). Fuzzers can only allow for such control if the model

is human-readable.

In the remainder of this paper, we first illustrate our approach

on a simple, self-contained example in Section 2. We then detail

our contributions:

(1) We provide a general algorithm for deriving the context-free

approximation of an input language from a recursive descent

parser. Our approach relies on tracking character accesses in
the input buffer (Section 3), which is easy to implement for

a variety of languages that support string wrappers, or the

source can be transformed to support such wrappers, or

dynamic taint information is available. From the tracked

accesses, we then infer parse trees (Section 4), which we

generalize by means of active learning2, before passing them
to our grammar inference (Section 5). Our approach distills

the developer supplied method names and input processing

structure to produce human-readable input grammars.

(2) We evaluate our approach using subjects in both Python
and C and recover complex grammars such as JavaScript
and TinyC. For the evaluation, we assess both precision and

recall (Section 6) of our grammars. When compared against

learning from dynamic data flows (so far the only approach

for inference of human-readable grammars), we found our

approach to be superior in both precision and recall.

(3) In our evaluation, we also show that our approach is ap-

plicable in contexts in which no usable data flow of input

fragments to variables exists such as modern parsing tech-

niques like parser combinators which make the state of the

art for writing secure parsers [17, 19].

After discussing limitations (Section 7) and related work (Sec-

tion 8), Section 9 closes with conclusion and future work. The

complete source code of our approach and evaluation is available.

2 OUR APPROACH IN A NUTSHELL
How does our approach work? We use lightweight instrumentation

to track dynamic control flow and lightweight string wrappers (or

dynamic taint information if available) to identify in which control

flow nodes specific input characters are accessed. The character

accesses as well as the corresponding control flow nodes are then

logged. A parse tree of the input string is extracted from that trace

using the following rules (which mostly follow Lin et al. [39]):

2
The term active learning was first used by Dana Angluin [10] for grammar learning.



Mining Input Grammars from Dynamic Control Flow ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States

1 def digit(i):
2 return i in "0123456789"
3

4 def parse_num(s,i):
5 n = ''
6 while i != len(s) and digit(s[i]):
7 n += s[i]
8 i = i +1
9 return i, n
10

11 def parse_paren(s, i):
12 assert s[i] == '('
13 i, v = parse_expr(s, i+1)
14 if i == len(s): raise Ex(s, i)
15 assert s[i] == ')'
16 return i+1, v
17

18 def parse_expr(s, i = 0):
19 expr , is_op = [], True
20 while i < len(s):
21 c = s[i]
22 if digit(c):
23 if not is_op: raise Ex(s,i)
24 i,num = parse_num(s,i)
25 expr.append(num)
26 is_op = False
27 elif c in ['+', '-', '*', '/']:
28 if is_op: raise Ex(s,i)
29 expr.append(c)
30 is_op , i = True , i + 1
31 elif c == '(':
32 if not is_op: raise Ex(s,i)
33 i, cexpr = parse_paren(s, i)
34 expr.append(cexpr)
35 is_op = False
36 elif c == ')': break
37 else: raise Ex(s,i)
38 if is_op: raise Ex(s,i)
39 return i, expr
40

41 def main(arg):
42 return parse_expr(arg)
43

Figure 2: A Python parser for math expressions

(1) A recursive descent parser tries alternatives rules until the

first successful parse, and a character is not accessed after

it was successfully parsed. Hence, the method call that ac-

cesses a particular input character last directly consumes that
character. E.g. if a call to digit() is the last to access the

digit 3, then 3 is consumed by that call to digit().
(2) A method call indirectly consumes a character if one of the

nested method calls consumes that character.
(3) A control flow node such as a conditional (e.g. if ) or loop

(e.g. while) is regarded as a pseudo method. The name for

the pseudo method is derived from the parent method name

and a unique identifier.

(4) Names of methods that consume some part of the input are

used as the nonterminal symbol for the corresponding node

in the parse tree for that part.

As an example, consider Figure 2 showing a complete Python

program that accepts mathematical expressions using a recursive

descent parser. Running it with an argument 9+3/4 yields the tenta-
tive parse tree shown in Figure 3. The method parse_num(), which
parses numeric elements, becomes the nonterminal ⟨parse_num⟩ in
the parse tree (Figure 3), representing input numeric elements.

⟨parse_expr⟩

⟨while(1)⟩

⟨if(1)⟩

⟨parse_num⟩

⟨digit⟩

’9’

⟨while(1)⟩

⟨if(1)⟩

’+’

⟨while(1)⟩

⟨if(1)⟩

⟨parse_num⟩

⟨digit⟩

’3’

⟨while(1)⟩

⟨if(1)⟩

’/’

⟨while(1)⟩

⟨if(1)⟩

⟨parse_num⟩

⟨digit⟩

’4’

Figure 3: Derivation tree for 9+3/4

⟨START ⟩ ::= (⟨parse_expr⟩[*+-/])∗ ⟨parse_expr⟩
⟨parse_expr⟩ ::= ⟨parse_num⟩ | ⟨parse_paren⟩
⟨parse_paren⟩ ::= ‘(’ ⟨parse_expr⟩ ‘)’
⟨parse_num⟩ ::= ⟨parse_digit⟩+
⟨digit⟩ ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Figure 4: A grammar derived from the parser in Figure 2

The parse tree is then processed further to correctly identify

compatible nonterminal nodes with the following steps:

(1) Collect and group nodes by the names of their nonterminal
symbols.

(2) Identify subdivisions within each nonterminal group by sub-

stituting nodes with each other in the corresponding parse

trees and verifying the validity of resulting parse trees.

(3) Generate unique nonterminal symbols for identified sub-

groups and update them in the corresponding nodes in the

parse trees. This gives us accurately labelled parse trees.

We then use this accurately labelled parse trees to infer a grammar:

(1) Each node in a parse tree is collected, and the nonterminal
symbol becomes a nonterminal in the generated grammar.

(2) Each sequence of terminal and nonterminal symbols from

child nodes of the nonterminal becomes a possible expansion

rule for that nonterminal.
(3) Apply the prefix-tree acceptor algorithm [25] to identify

regular right hand sides [36] due to loops and conditionals.

(4) Apply generalization of tokens such as converting a seen list

of integers to an expression that can generate any integer.

(5) Compact and cleanup the grammar.

We extract such parse trees for a number of given inputs. Next,

we traverse each tree and identify loop nodes that are similar as

we detail in Section 4.1. This results in parse trees where similar

nodes have similar names. Finally, we construct the grammar by

recursively traversing each parse tree and collecting the name and

children types and names for each node. The node names become

nonterminal symbols in the grammar, and each set of children

becomes one possible expansion in the grammar being constructed.

The child nodes that represent characters become terminal symbols

in the constructed grammar.

For our example, the final result is the grammar in Figure 4,

which exactly reflects the capabilities of the program in Figure 2.

Again, the grammar is readable with near-textbook quality and well

reflects the input structure.



ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States Gopinath, Mathis, Zeller

3 TRACKING CONTROL FLOW AND
COMPARISONS

Let us now start with describing the details of how we infer the

parse tree from dynamic control flow.

For tracking the control flow, we programmatically modify the

parser source. We insert a tracker for both a method entry and

an exit as well as trackers for control flow entry and exit for any

conditions and loops. For the purposes of our approach, we consider

these control structures as pseudo methods. Every such method call

(both true and pseudo method calls) gets a unique identifier from a

counter such that a child of the current method or a later method

call gets a larger new method identifier than the current one.

In Python, for tracking the character accesses being made, we

simply wrap the input string in a proxy object that log access to

characters. We annotate each character accessed with the current

method name. For C, the above information is recovered using a

lightweight dynamic taint framework.

What if one can not distinguish parsing functions? In such case,

one can simply conservatively instrument all functions. Given that

we only log access to the initial buffer, the non-parsing functions

will have no effect (except on performance) on the parse trees

generated. Another approachwould be tomake use of static analysis

to identify parsing functions that might access the initial buffer,
and insert trackers only on those functions.

In both languages, we stop tracking as soon as the input is trans-

formed or copied into a different data structure (if there is a lexer,

we continue the tracking into the parser stage)
3
.

We note that access to the source code is not a requirement. So

long as one can track access to the initial input string and identify

method calls (by their address if we are analysing a binary) one can

recover the required information.

4 FROM TRACES TO PARSE TREES
The previous section showed how to annotate the execution tree

with indexes of the input string accessed by each method call. At

this point, however, there can be multiple accesses by different

methods at the same input index. To assign specific indexes to

specific method calls, we follow a simple strategy informed from

the characteristics of recursive descent parsers: The last method
call that accessed a character directly consumes that character, and
its parent method calls indirectly consume that character

4
.

We now resolve the ownership of input index ranges between

nodes. Given any node, we obtain the starting and ending indexes

that were consumed by the node. If no other node has consumed
any character within that range, the current node directly owns that
range, and all its parent nodes indirectly own that range. If a range

overlap is found between a parent node and a child node, the tie is

decided in favor of the child, with the child node directly owning
the overlap, and the parent node indirectly owning the overlap. If

an overlap is found between two sibling nodes, the tie is decided

in favor of the sibling that accessed the part last (as the last access

3
This is one of the main differences of our technique from both Lin et al. [40] and

Höschele et al. [33] who track dynamic taints throughout the program.

4
We note that this is one of the major difference of our technique from Lin et al. [40]

who define parsing points as the last point the character was used before the parsing

point of its successor. The problem with such an approach is that real-world parsers

may access characters out of order. See Section 8.2 for details.

to the character defines the consumer method). The sibling that is

in the overlap is recursively scanned, and any descendent of that

node that are contained in the overlap are removed.

Once the indexes are associated with method call identifiers,

we generate a call tree with each method identifier arranged such

that methods called from a given method are its children. The

directly owned input indexes are added as the leaf nodes from the

corresponding method call node. As there is no overlap, such a tree

can be considered as a parse tree for the given input string.

The parse tree at this point is given in Figure 5a, which we call

the non-generalized parse tree of the input string. In Figure 5a, each

pseudo method has a list of values in parenthesis, in the following

format. The last value in the parenthesis is the identifier for the

control flow node taken. That is, given a node name as ⟨if(2:0, 3:1)⟩,
the identifier is 3:1. It indicates that the corresponding if statement

was the third conditional in the program, and the execution took

the first (if ) branch of the conditional. If the identifier was 3:2,
it would indicate that the execution took the else branch, and for

larger values, it indicates the corresponding branch of a cascading

if statement or a case statement. In the case of loops, there is only

a single branch that has child nodes, and hence this is indicated by

0. The values before the identifier correspond to the identifiers of

the pseudo-method parents of this node until the first method call.

That is, the ⟨if(2:0, 3:1)⟩ has a parent node that is a loop, and it is

the second loop in the program.

While we have produced a parse tree, it is not yet in a format

from which we can recover the context-free grammar. To be able

to do so, we need accurately labeled parse trees where any given

node can be replaced by a node of similar kind without affecting

the parse validity of the string. The problem here is that not all

iterations of loops are replaceable with each other. That is, loops can

be influenced by the previous iterations. For example, consider the

derivation tree in Figure 5a. If one considers each iteration of the

loop to be one alternate expansion to the corresponding nonterminal,
the rule recovered is:

⟨expr⟩ → num | + | /

However, this is incorrect as a single free-standing operator such

as + is not a valid value. The problem is that is_op encodes a link
between different iterations. Hence, we annotate each individual

iteration and leave recovering the actual repeating structure for the

next step. A similar problem occurs with method calls too. In the

produced parse tree we assume that any given nonterminal— say

⟨parse_num⟩ — can be replaced by another instance of ⟨parse_num⟩
without affecting the validity of the string. However, this assump-

tion may not hold true in every case. The behavior of a method

may be influenced by a number of factors including its parameters

and the global environment. We fix this in the next step.

4.1 Active Learning of Labeling
To determine the precise labeling of each node, we first collect

each node from each parse tree and group them by the name of the

nonterminal. That is, all ⟨parse_num⟩ nodes go together, so do all

⟨if(1:0, 1:1)⟩.
Next, the challenge is to identify the buckets under the grouped

nodes that are compatible with each other. We consider a node as

replaceable with another if the string produced from a parse tree



Mining Input Grammars from Dynamic Control Flow ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States

⟨parse_expr⟩

⟨while(1:0)⟩

⟨if(1:0,1:1)⟩

⟨parse_num⟩

⟨digit⟩

’9’

⟨while(1:0)⟩

⟨if(1:0,1:2)⟩

’+’

⟨while(1:0)⟩

⟨if(1:0,1:1)⟩

⟨parse_num⟩

⟨digit⟩

’3’

⟨while(1:0)⟩

⟨if(1:0,1:2)⟩

’/’

⟨while(1:0)⟩

⟨if(1:0,1:1)⟩

⟨parse_num⟩

⟨digit⟩

’4’

(a) Non-generalized parse tree. The number before colon indicates
the particular pseudo-method, and number after the colon identifies
the alternative if any. That is, if(... 5:2) is the fifth if whose else
branch was taken. The pseudo method stack is inside ‘()’.

⟨parse_expr⟩

⟨while(1:1)⟩

⟨if(1:1,1:1)⟩

⟨parse_num⟩

⟨digit⟩

’9’

⟨while(1:0)⟩

⟨if(1:0,1:2)⟩

’+’

.⟨while(1:1)⟩

⟨if(1:1,1:1)⟩

⟨parse_num⟩

⟨digit⟩

’3’

⟨while(1:0)⟩

⟨if(1:0,1:2)⟩

’/’

.⟨while(1:1)⟩

⟨if(1:1,1:1)⟩

⟨parse_num⟩

⟨digit⟩

’4’

(b) Generalized parse tree. The number in suffix after colon indicates
the generalized identifier after validating replacements. As before,
the pseudo method stack is contained in the parenthesis, which is
also updated when the parent is updated during generalization.

Figure 5: Parse trees for 9+3/4. The prefix before colon indicates the static identifier of the control structure in the method.
That is, the first if gets the prefix 1:. The suffix is explained above.

where the first node is replaced by the second is parsed correctly –

that is, the generated string is parsed without any errors, and the

parse tree generated from the new parse has the same structure as
the tree generated by replacing the node. A node is compatible with
another if both nodes are replaceable with each other.

Unfortunately, compatibility is not transitive if one looks at parse
validity. For example, say, there are three words in a language — a,
b, and ac. Each word is composed of individual letters. In the case

of a, and b, the corresponding letter, and for ac, the letters a, and c.

⟨start⟩ ::= ⟨word1⟩ | ⟨word2⟩ | ⟨word3⟩

⟨word1⟩ ::= ⟨letter_a⟩

⟨word2⟩ ::= ⟨letter_b⟩

⟨word3⟩ ::= ⟨letter_a⟩⟨letter_c⟩

⟨letter_a⟩ ::= ‘a’

⟨letter_b⟩ ::= ‘b’

⟨letter_c⟩ ::= ‘c’

Now, consider the parse trees of a, b, and ac.
(⟨start⟩ (⟨word1⟩ (⟨letter_a⟩ ’a’)))
(⟨start⟩ (⟨word2⟩ (⟨letter_b⟩ ’b’)))
(⟨start⟩ (⟨word3⟩ (⟨letter_a⟩ ’a’) (⟨letter_c⟩ ’c’)))
Here, the nodes ⟨letter_a⟩ across parse trees are compatible because

the generated strings are exactly the same. Next, the ⟨letter_a⟩ under
⟨word1⟩ is compatible with ⟨letter_b⟩ under ⟨word2⟩. The gener-
ated strings are a and b. So, is the node ⟨letter_b⟩ under ⟨word2⟩
compatible with ⟨letter_a⟩ under ⟨word3⟩? Unfortunately not, as

the string generated from

(⟨start⟩ (⟨word3⟩ (⟨letter_b⟩ ’b’) (⟨letter_c⟩ ’c’)))
is bc which is not in the language.

This means that for the accurate identification of unique node

labels, each node has to be compared with all other nodes with

the same name, which gives us a complexity of O(n2) in the worst

case in terms of the number of nodes. However, we found that the

assumption of transitivity rarely breaks, and even then, the inac-

curacy induced affects less than 10% of inputs generated from the

grammar (See the evaluation ofmathexpr.py). Since the assumption

of transitivity allows us to reduce the computational effort, our

evaluation is implemented assuming transitivity of compatibility.
5

Oncewe have identified the compatibility buckets, we can update

the nodes in them with unique suffixes corresponding to each

bucket and update the node name of each one with the suffix. In

the case of loop nodes, we also update the stack name of this node

in all the descendent elements of this node — all descendent nodes

up to the next non-pseudo method call. The idea here is that if

there are two unique loop iterations that are incompatible with

each other, then any other control flow nodes inside that loops

such as conditionals should also be considered incompatible even

if the same alternative path is taken in the conditional during the

execution of both iterations.

Once the process is complete, all the nodes in all the parse trees

will be labeled with consistent and correct identifiers. These can

then be extracted to produce the correct grammar. The generalized

counterpart to Figure 3 is given in Figure 5b.

4.2 Active Learning of Nullability
Some of the loops may be skipped completely — e.g., an empty

object in JSON. These can be identified using active learning. The
idea is to replace all consecutive loop nodes that are the children
of a given node in a given parse tree. Then check the validity of

the string produced from that tree. If the parse structure of the new

string is correct, and this can be done on all parse trees and at all

points where this is possible, the loop is marked as nullable.

For conditional nodes, whether an if node can be skipped can be
determined statically without active learning, by simply checking

for the presence of an else branch. However, if conditionals may

be labeled incorrectly. For example, consider this set of statements:

1 if g_validate:
2 validate_header(header)

While the if does not have an else branch, we do not know

whether the body of the conditional can be skipped or not. In

particular, the g_validate may be a global configuration option

5
We note that a user of our technique does not need to rely on this assumption. One

can choose to do the complete O (n2) verification, or can choose anything in between

that and the faster but approximate version.



ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States Gopinath, Mathis, Zeller

which may mean that it is always enabled or always disabled for

specific kinds of parse trees. While we have not found such condi-

tionals in our subjects, if additional accuracy is desired, the optional

parts of conditionals may also be verified using active learning.

With this, our trees are accurately labeled and ready for inferring

grammars from them.

5 GRAMMAR INFERENCE
For constructing a grammar out of parse trees, we traverse each

parse tree starting from the top. Each node we see, if it is not a

character node, is marked as a nonterminal in the grammar. The

children are placed as the rule for expansion of the nonterminal in
the grammar. If the child is a non-character node, the token in the

expansion will be a reference to the corresponding nonterminal in
the grammar. There may be multiple alternate expansions to the

same nonterminal even from the same tree as the same method call

may be made recursively. This is detailed in Algorithm 1.

Algorithm 1 Extracting the basic grammar

function extract_grammar(node, grammar)

name, uid, children, stack⇐ node

a_name⇐ name + uid + stack

rule⇐ []

if a_name < дrammar then
grammar[a_name] ⇐ {rule}

else
grammar[a_name].add(rule)

if children = ∅ then
return terminal, a_name

else
for child← children do

kind, cname⇐ extract_grammar(child)

if kind = terminal then
rule + = to_terminal(cname)

else
rule + = to_nonterminal(cname)

return nonterminal, a_name

An additional challenge comes from identifying repeating pat-

terns. From the various solutions of this problem [25], we chose a

modification of the prefix tree acceptor algorithm6
. Once we run the

modified PTA algorithm, the previous grammar is transformed to:

⟨expr⟩ → while:1

⟨expr⟩ → (while:1 while:2)+ while:1

⟨while:1⟩ → if:1

⟨if:1⟩ → num

⟨while:2⟩ → +

The while:<n> can be replaced by the regular expression sum-

maries of the corresponding rules recursively. Here, this gives us

the regular expression:

⟨expr⟩ → num | (num [+])+ num

6
Unlike the original PTA, which considers only repeating patterns of single characters,

we first scan for and identify repeating patterns of any block size. We next scan the

inputs for any instances of the identified repeating patterns. These inputs are then

chunked and considered as the alphabets as in the original PTA algorithm.

While generalizing, we can replace any + with ∗ provided all the

items inside the group are nullable. Similarly, when merging regular

expressions corresponding to conditionals, one can add (...|) i.e. an ϵ
alternative, provided the corresponding if condition was nullable.

These steps generate the right hand side regular expressions in

Figure 4 for a simple program given in Figure 2. For details on

learning regular expressions from samples, see Higuera [22]. The

grammar derived from microjson.py after removing differences due

to white spaces is given in Figure 1.

5.1 Generalizing Tokens
The grammar we have generated so far is a faithful reproduction of

the parsing process. This grammar is however not complete with

respect to the generalization. The reason is that typical languages

rely on external libc calls such as strtod, strtof, and strstr. The internal
structure of the portions thus parsed are lost to our simple tracer.

Hence, we need to recover the structure of these items separately.

A similar problem also occurs in parsers that uses an initial scanner
that feeds tokens into parser. These result in nonterminal symbols

which simply contain a long list of tokens such as

⟨int⟩ ::= ‘786022139’ | ‘1101’ | ‘934’ | ‘898880’ | ‘1’

which need to be generalized. The solution here is a simple gener-

alization, with the following steps.

(1) Collect all terminal symbols in the grammar.

(2) Split each terminal symbol into individual characters.

(3) Widen the character into its parent group. E.g. Given a char-

acter ‘1’, widen it first to ‘⟨digit⟩’, then to ‘⟨alphanum⟩’, and
lastly to ‘⟨anychar⟩’, checking to make sure that each widen-

ing is accepted by the program, and is parsed in the same

manner.

(4) Deduplicate the resulting grammar

(5) Apply regular expression learning using the PTA algorithm

to obtain the fully generalized grammar.

5.2 Producing a Compact Grammar
At this point, the mined grammar is readable but verbose. There

are a number of transformations that one can take to reduce its

verbosity without changing the language defined by the grammar.

These are as follows:

(1) If there is any nonterminal that is defined by a single rule

with a single token, delete the key from the grammar and

replace all references to that key with the token instead.

(2) If there are multiple keys with the same rule set, choose one,

delete the rest, and update the references to other keys with

the chosen one.

(3) If there are duplicate rules under the same key, remove the

redundant rules.

(4) Remove any rule that is the same as the key it defines.

(5) If there is any key that is referred to on a single rule on a

single token, and the key is defined by just one rule, delete

the key from the grammar and replace the reference to the

key with the rule.

We repeat these steps as long as the number of rules in the

grammar decreases in each cycle. This produces a smaller grammar

that defines the same language.



Mining Input Grammars from Dynamic Control Flow ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States

6 EVALUATION
We compare our approach of learning grammars from dynamic

control flow with the state of the art, namely learning grammars

from dynamic data flow, as embodied in the Autogram tool [33].

The original Autogram implementation extracts input grammars

from Java programs—in contrast to our Mimid prototype, which

works on Python and C programs. For our comparison, we therefore

relied on the code from Mining Input Grammars [51] from Zeller et

al., which embodies the Autogram approach by learning grammars

from dynamic data flow of Python programs. As we are interested in

comparing algorithms, rather than tools, for all differences in results,

we investigate how much they are due to conceptual differences.
We also note that the Python implementation of learning from

dynamic data flows does not implement generalization of character

sets to regular expressions (unlike the original Autogram tool [33]).

For a fair comparisons of Python subjects, we thus have disabled

Mimid generalization of character sets to larger regular expressions.

For C subjects, generalization of character sets is enabled.

Our research questions are as follows:

RQ 1. How accurate are the derived grammars as producers?
RQ 2. How accurate are the derived grammars as parsers?
RQ 3. Can one apply Mimid to modern parsing techniques such

as combinatory parsing?

6.1 Subjects
We focused on subjects that demonstrated different styles of writing

recursive descent parsers, with different levels of grammars, with

and without a lexing stage, and in different implementation lan-

guages. Our subjects were the following (the kind of the grammar

– regular or context free is indicated in parenthesis).

calc.py (CFG) – a simple recursive descent program written in

textbook style from the Codeproject[1], simplified and con-

verted to Python. It also forms the running example in Sec-

tion 2. We used self generated expressions to mine the gram-

mar and evaluate.

mathexpr.py (CFG) – a more advanced expression evaluator from

the Codeproject [5].It includes pre-defined constants, method

calls, and the ability to define variables. As in the case with

calc.py, we used self generated expressions and test cases to

mine the grammar and evaluate.

cgidecode.py (RG) – the cgidecode.py Python implementation

from the chapter on Code Coverage [49] from Zeller et al.

This is an example of a parser that is a simple state machine.

It is not recursive and hence does not use the stack. For

cgidecode.py, we used self generated expressions to mine

the grammar and evaluate.

urlparse.py (RG) – the URL parser part of the Python urllib library[9].
An example of an ad hoc parsing with little ordering between

how the parts are parsed. For initial mining and evaluation,

we used the URLs generated from passing tests using the

test_urllib.py in the Python distribution. We also used a hand-

written grammar to generate inputs as we detail later.

microjson.py (CFG) – aminimal JSON parser fromGithub [6]. We

fixed a few bugs in this project during the course of extract-

ing its grammar (merged upstream). Formining, we chose ten

simple samples that explored all code paths in the parser. For

Table 1: Inputs generated by inferred grammars that were
accepted by the program (1,000 inputs each)

from data flows from control flows

(state of the art) (our approach)

calc.py 36.5% 100.0%

mathexpr.py 30.3% 87.5%

cgidecode.py 47.8% 100.0%

urlparse.py 100.0% 100.0%

microjson.py 53.8% 98.7%

parseclisp.py 100.0% 99.3%

jsonparser.c n/a 100.0%

tiny.c n/a 100.0%

mjs.c n/a 95.4%

our evaluation, we used 100 samples of JSON generated from

the following JSON API end points: api.duckduckgo.com, de-
veloper.github.com, api.github.com, dictionaryapi.com, word-
sapi.com, tech.yandex.com. We also added sample JSON files

from json.org, json-schema.org, jsonlint, www.w3schools.com,

and opensource.adobe.com.

parseclisp.py (CFG) – The conversion of an s-expression Parser

using Parsec [4] to PyParsec. We used a golden grammar (a
given correct grammar) to generate inputs.

tiny.c (CFG) – a minimal C compiler implemented in C [8]. The

tinyc parser uses a separate lexing stage. We used a golden

grammar given in the tinyc source to generate the inputs.

mjs.c (CFG) – a minimal Javascript interpreter implemented in

C [7]. We used the ANTLR grammar for JavaScript from the

ANTLR project to generate inputs.

jsonparser.c (CFG) – a fast JSON parser implemented in C [3].

6.2 RQ 1. Grammar Accuracy as Producer
For our experiments, we used both learning from dynamic data
flows (Autogram; [33]) and learning from dynamic control flow
(Mimid; our approach) on the same set of samples and generated

a grammar from each approach for each program. This grammar

was then used to generate inputs to fuzz the program using the

GrammarFuzzer [50]. The number of inputs that were accepted by

the subject program is given in Table 1 .

Grammars inferred from dynamic control flow produce more
correct inputs than dynamic data flow.

To assess and understand the differences in results between

learning from data flow and control flow, we manually examined

the grammars produced where a large difference was visible. As

an implementation for learning from dynamic data flows was only

available for Python, we only look at these subjects in detail.

6.2.1 calc.py. A snippet of the grammar learned from dynamic

data flow for calc.py is given below.

⟨START ⟩ ::= ⟨init@884:self ⟩
⟨init@884:self ⟩ ::= ⟨expr@26:c⟩‘0’‘0’
| ⟨expr@26:c⟩‘3’⟨expr@26:c⟩⟨expr@29:num⟩
⟨expr@26:c⟩‘*’⟨expr@29:num⟩‘*’‘4’



ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States Gopinath, Mathis, Zeller

| ⟨expr@26:c⟩‘1’⟨expr@26:c⟩⟨expr@26:c⟩‘0’⟨expr@26:c⟩‘2’
| ⟨expr@26:c⟩‘1’‘0’‘0’) ...

The grammar from our approach (dynamic control flow) for the

same program using same mining sample is given in Figure 4. An

examination shows that the rules derived from dynamic data flow

were not as general as ours. That is, the grammar generated from

dynamic data flow is enumerative at the expense of generality.

Why does this happen? The reason is that parse_expr() and other
functions in calc.py accept a buffer of input characters, with an

index specifying the current parse location. learning from dynamic

data flow relies on fragmented values being passed into method

calls for successful extraction of parts and hence the derivation of

tree structure. Here, the first call creates a linear tree with each

nested method claiming the entirety of the buffer, and this defeats

the learning algorithm.

This is not a matter of better implementation. The original Auto-
gram implementation [33] relies on parameters to the method calls

to contain only parts of the input. While any algorithm learning

from dynamic data flows may choose to ignore the method param-

eters, any use of a similar buffer inside the method will cause the

algorithm to fail unless it is able to identify such spurious variables.

6.2.2 mathexpr.py. Formathexpr.py, the situation was again sim-

ilar. Learning from dynamic data flow was unable to abstract any

rules. The mathexpr.py program uses a variation of the strategy

used by calc.py for parsing. It stores the input in an internal buffer in
the class and stores the index to the buffer as the location being cur-

rently parsed. For similar reasons as before, learning from dynamic

data flows fails to extract the parts of the buffer. Our approach of

learning from dynamic control flow, on the other hand, produced

an almost correct grammar, correctly identifying constants and

external variables. The single mistake found (which was the cause

of multiple invalid outputs) was instructive. The mathexpr.py pro-

gram pre-defines letters from a to z as constants. Further, it also

defines functions such as exp(). The function names are checked

in the same place as the constants are parsed. Mimid found that

the function names are composed of letters, and some of the let-

ters in the function names are compatible with the single letter

variables—they can be exchanged and still produce correct values.

Since we assumed transitivity, Mimid assumed that all letters in

function names are compatible with single letter constants. This

assumption produced function names such as eep(), which failed

the input validation.

6.2.3 microjson.py. The microjson.py grammar inferred from

dynamic data flow produces more than 50% valid inputs when com-

pared to 98.2% from Mimid. Further, we note that the 50% valid

inputs paints a more robust picture than the actual situation. That

is, the grammar recovered from dynamic data flows for microj-
son.py is mostly an enumeration of the values seen during min-

ing. The reason is that microjson.py uses a data structure JStream
which internally contains a StringIO buffer of data. This data

structure is passed as method parameters for all method calls, e.g.

_from_json_string(stm). Hence, every call to the data structure

gets the complete buffer with no chance of breaking it apart. We

note that it is possible to work around this problem by essentially

ignoring method parameters and focusing more on return values.

The problem with the data structure can also be worked around

by modifying the data structure to hold only the remaining data to

be parsed. This however, requires some specific knowledge of the

program being analyzed. Learning from dynamic control flow with

Mimid, on the other hand, is not affected by the problem of buffers

at all and recovers a complete grammar.

6.2.4 urlparse.py. For urlparse.py, neither grammars learned from

data flow nor those learned from control flows performed well (the

inferred grammar could recognize less than 10% of the samples) due

to the inability to generalize strings. Since we were interested in

comparing the capabilities of both algorithms in detecting a struc-

ture, we restricted our mining sample to only contain a specific

set of strings. The urlparse.py program splits the given input to

⟨scheme⟩, ⟨netloc⟩, ⟨query⟩, and ⟨fragment⟩ based on delimiters.

In particular, the internal structure of ⟨netloc⟩ and ⟨query⟩ were
ignored by the urlparse.py.

Hence, we wrote a grammar for urlparse.py which contained a

list of specific strings for each part. Next, we generated 100 inputs

each using the Grammar Fuzzer and validated each by checking the

string with the program. We then used these strings as a mining set.

With this mining set, the grammars learned from both data flow

and control flow could produce 100% correct inputs.

6.2.5 parseclisp.py. Similar to other subjects, the grammar gen-

erated by Autogram was enumerative which resulted in 100% gen-

erated inputs accepted by the program (only previously seen inputs

could be generated) while resulting in much lower inputs produced

by the golden grammar being accepted by the recovered grammar.

The grammar recovered by Mimid on the other hand could parse

80.6% of the inputs produced by the golden grammar.

6.2.6 jsonparser.c. The program jsonparser.c is in C, and hence

there is no evaluation using Autogram. However, we note that

grammar recovered using Mimid had 100% accuracy in producing

valid inputs when used for fuzzing.

6.2.7 tiny.c. The program tiny.c is also in C, and hence there is

no evaluation using Autogram. However, like for jsonparser.c, the
grammar recovered using Mimid could produce 100% valid inputs

when fuzzing.

6.2.8 mjs.c. The program tiny.c is also a C subject with no evalu-

ation possible using Autogram. We found that the inputs produced

by the grammar recovered using Mimid were almost always valid

(95.4%).

6.3 RQ 2. Grammar Accuracy as Parser
For our second question, we want to assess whether correct inputs

would also be accepted by our inferred grammars. In order to obtain

correct inputs, we used various approaches as available for different

grammars. For calc.py and mathexpr.py, we wrote a grammar by

hand. Next, we used this grammar to generate a set of inputs that

were then run through the subject programs to check whether the

inputs were valid. We collected 1,000 such inputs for both programs.

Next, these inputs were fed into parsers using grammarsmined from

dynamic control flow (Mimid) and dynamic data flow (Autogram).

We used the Iterative Earley Parser from [52] for verifying that the

inputs were parsed by the given grammar.



Mining Input Grammars from Dynamic Control Flow ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States

Table 2: Inputs generated by a golden grammar that were
accepted by the inferred grammar parser (1,000 inputs each
exceptmicrojson.py which used 100 external inputs)

from data flows from control flows

(state of the art) (our approach)

calc.py 0.0% 100.0%

mathexpr.py 0.0% 92.7%

cgidecode.py 35.1% 100.0%

urlparse.py 100.0% 96.4%

microjson.py 0.0% 93.0%

parseclisp.py 37.6% 80.6%

jsonparser.c n/a 83.8%

tiny.c n/a 92.8%

mjs.c n/a 95.9%

For urlparse.py, we used the same grammar for parsing that we

already had used to generate mining inputs. We again collected a

set of valid inputs and verified that the inferred grammar is able to

parse these inputs. For microjson.py, we used the collected JSON

documents as described above. The largest document was 2,840

lines long. We then verified whether the grammar inferred by each

algorithm could parse these inputs. Our results are given in Table 2.

As one would expect, grammars from data flow cannot parse the ex-

pressions from calc.py andmathexpr.py grammars. For cgidecode.py,
grammars from data flow performed poorly, while grammars from

dynamic control flow (Mimid) achieved 100% accuracy. As we ex-

pected, grammars from dynamic control flow performed better for

microjson.py too, with more than 90% of the input samples recog-

nized by the inferred grammar.

Grammars inferred from dynamic control flow accept more
correct inputs than those from dynamic data flow.

The outlier is urlparse.py, for which grammars from dynamic

data flow achieved 100% while grammars from dynamic control

flow (Mimid) performed slightly worse (but still more than 90%

input strings recognized by the inferred grammar). An inspection

of the source code of the subject program reveals that it violated

one of the assumptions of Mimid. Namely, urlparse.py searches for

character strings in the entirety of its input rather than restricting

searches to unparsed parts of the program. For example, it searches

for URL fragments (delimited by #) starting from the first location

in the input. When this happens, Mimid has no way to tell these

spurious accesses apart from the true parsing.

We have no comparisons fromAutogram for the C subjects. How-

ever, the grammar recovered by Mimid for each of the C subjects

could parse almost all inputs produced by the golden grammar —

jsonparser.c (83.8%), tiny.c (92.8%), and mjs.c (95.9%).

6.4 RQ 3. Modern Parsing Techniques
While the large majority of parsers is written by hand in the tradi-

tional recursive descent approach [41], another parsing technique

has become popular recently. Parser combinators [19] are recom-

mended over parser generators due to the various inflexibilities such

as handling ambiguities, context-sensitive features [38], and bad

error messages [35]
7
when using parser generators. Indeed, parser

combinators are often recommended [17] as recognizers where no

usable dataflow to unique variables exist. Combinatory parsers are

parsers that are built from small primitive parsers that recognize a

single literal at a time. These are combined using two operations —

sequencing (AndThen), and alternation (OrElse). Given that these

parsers follow a fixed recipe for combinations, recovering the gram-

mar from a representative combinatory parser that uses primitive

parsers as well as the two operations is sufficient to show that

Mimid can recover grammars from any such combinatory parsers

however complex. Hence, to verify that our technique can indeed

recover the grammar from parsers written using the combinatory
parsing approach, we include a representative combinatory parsing

recognizer (parseclisp.py) in our subjects.

As our results in Table 1 and Table 2 show, our technique is not

challenged by this kind of parsers.

Mimid is not challenged by combinatory parsers.

7 LIMITATIONS
Our work is subject to the following important limitations.

Approximation. An interpreter for a programming language or

a data format for specific applications often have additional

restrictions beyond the initial parsing stage. We only try to

recover the grammar from the initial parser, and hence, the

grammar recovered is an approximation and captures only

the syntactic part not the semantic rules. We assume that

input is parsed as long as it is subject to “syntactic” character

and string comparisons and storage only; and processed as

other “semantic” operations such as arithmetics are being

applied.

Table-driven parsers. In table-driven parsers, control flow and

stack are not explicitly encoded into the program, but an

implicit part of the parser state. We do not attempt grammar

recovery from table driven parsers with Mimid.
Sample inputs. The features of grammars produced by Mimid re-

flect the features of the inputs it is provided with: If a feature

is not present in the input set, it will not be present in the

resulting grammar either. New test generators specifically

targeting input processors [41] could be able to create such

input sets automatically.

Reparsing. Since Mimid tracks only the last access of a character,
it can get confused if an ad hoc parser reparses a previously

parsed input. This problem can be addressed by exploring

multiple candidates for consumption and comparing the

resulting grammar structure.

8 RELATEDWORK
Learning the input language of a given program is an established

line of research. There is a large body of work [22, 30, 31] and a

community [2] devoted to learning grammars through black-box

7
In the words of a commenter (https://news.ycombinator.com/item?id=18400717)

“getting a reasonable error message out of YACC style parser generators is as fun as

poking yourself in the eye with a sharp stick”. GCC (http://gcc.gnu.org/wiki/New_C_

Parser), and CLANG (http://clang.llvm.org/features.html#unifiedparser) use handwrit-

ten parsers for the same reason.

https://news.ycombinator.com/item?id=18400717
http://gcc.gnu.org/wiki/New_C_Parser
http://gcc.gnu.org/wiki/New_C_Parser
http://clang.llvm.org/features.html#unifiedparser


ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States Gopinath, Mathis, Zeller

approaches. However, as noted in Section 1, there are fundamen-

tal limits [11] to this technique, which also apply to statistical

approaches such as Learn&Fuzz [28], PULSAR [26], Neural byte
sieve [45], and NEUZZ [24]. We thus focus on gray and white-box

techniques.

8.1 Learning Context-Free Grammars
Autogram [33] is the approach closest to ours. Autogram uses the

program code in a dynamic, white-box fashion. Given a program

and a set of inputs, Autogram uses dynamic taints to identify the

data flow from the input to string fragments found during execution.

These entities are associated with corresponding method calls in

the call tree, and each entity is assigned an input interval that
specifies start and end indices of the string found in that entity

during execution. Using a subsumption relation, these intervals are

collated into a parse tree; the grammar for that parse tree can be

recovered by recursively descending into the tree. While learning

from dynamic data flows can produce very readable and usable

grammars, its success depends on having a data flow to track. If

parts of the input are not stored in some variable, there is no data

flow to learn from. If the parser skips parts of the input (say, to scan

over a comment), this will not result in a data flow. Conversely, data

can flow into multiple variables, causing another set of problems.

If a parser uses multiple functions, whose parameters are a buffer

pointer and an index into the buffer, then each of these functions

gets the entire buffer as a data flow. Such programming idioms

may be less frequent in Java (the subjects Autogram aims at), but in

general would require expensive and difficult disambiguation.

In contrast, our approach tracks all accesses of individual char-
acters, no matter whether they would be stored. Our assumption

that the last function accessing a character is the consumer of this
character (and hence parsing a nonterminal) still produces very
readable and accurate grammars.

8.2 Recovering Parse Trees
Lin et al. [39, 40] show how to recover parse trees from inputs

using a combination of static and dynamic analysis. They observe

that the structure of the input is induced by the way its parts are

used during execution, and provide two approaches for recovering

bottom-up and top-down parse trees. Similar to our approach, they

construct a call tree which contains the method calls, and crucially,

the conditionals and individual loop iterations. Next, they identify

which nodes in the call tree consume which characters in the input

string. Their key idea is a parsing point where they consider a

particular character to have been consumed. The parsing point of a

character is the last point that the character was used before the

parsing point of its successor. A character is used when a value

derived from it is accessed — that is, the input labels are propagated

through variable assignments much like taints.

A problem with this approach is that it only considers well writ-

ten parsers in the text book style that consumes characters one

by one before the next character is parsed. Unfortunately, in real

world handwritten parsers, one cannot always have this guarantee.

For example, the Python URL parser first checks if a given URL

contains any fragment (indicated by the delimiter #), and if there

is, the fragment is split from the URL. Next, in the remaining prefix,

the query string is checked, which is indicated by the delimiter ?,
which is then separated out from the path. Finally, the parameters

that are encoded in the path using ; are parsed from the path left

over from the above steps. This kind of processing is by no means

rare. A common pattern is to split the input string into fields using

delimiters such as commas and then parse the individual fields. All

this means that the parsing points by Lin et al. will occur much

before the actual parse. Lin et al. note that one cannot simply use

the last use of a label as its parsing point because the values derived
from it may be accessed after the parsing phase.

Mimid uses the same last use strategy, but gets around this prob-

lem by only tracking access to the original input buffer. Mimid
stops tracking as soon as the input is transformed, which makes

the Mimid instrumentation lightweight, and grammars accurate.

Finally, Lin et al. stop at parse trees. While they show how the

function names can form the nonterminal symbols, their approach

stops at identifying control flow nodes and makes no attempt to

either identify compatible nodes or the iteration order, or to recover

a grammar which needs something similar to the prefix tree acceptor
algorithm to generalize over multiple trees, each of which is needed

to accurately label the parse tree.

8.3 Testing with Grammar-Like Structures
GRIMOIRE by Blazytko et al. [15] is an end-to-end grey-box fuzzer

that uses the new coverage obtained by inputs to synthesize a gram-
mar like structure while fuzzing. There are two major shortcomings

with the grammar like structures generated by GRIMOIRE. First, ac-
cording to the authors [15, Section 3, last paragraph], the grammar

like structure contains a flat hierarchy and contains a single non-
terminal denoted by □. This nonterminal can be expanded to any

of the “production rules” which are input fragments with the same

nonterminal □ inserted in them, producing gaps that can be filled

in. Real world applications, however, often have multiple nestings,

where only a particular kind of items can be inserted—e.g numbers,

strings, etc. These kinds of structures cannot be represented by the

grammar like structure without loss of accuracy. Second, as the

grammar structure derived by GRIMOIRE is essentially a long list of

templates, the grammar is likely to be uninterpretable by humans.

Other tools that infer grammar like structures during test gen-

eration include GLADE [14] and REINAM [48] (which is based

on GLADE), both of which are black-box approaches, and thus

subject to the constraints of black-box approaches. Bastani et al.

provide a proof that a parenthesis (Dyck) language can be inferred

by the GLADE algorithm in O(n4) time in terms of the seed length.

This, however, can not be generalized to the general context-free

class [11].

Neither GRIMOIRE, GLADE, or REINAM allow to export the

inferred input structures, as they focus on test generation rather

than grammar extraction.

8.4 Learning Finite State Models
The idea of using dynamic traces for inferring models of the un-

derlying software goes back to Hungar et al.[34], learning a finite

state model representation of a program; Walkingshaw et al. [47]

later refined this approach using queries. Such models represent

legal sequences of (input) events and thus correspond to the input



Mining Input Grammars from Dynamic Control Flow ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States

language of the program. While our approach could also be applied

to event sequences rather than character sequences, it focuses on

recovering syntactic (context-free) input structures. Another re-

lated work by Bafante et al. [16] uses a method similar to ours to

group similar nodes during automata approximation.

8.5 Domain-Specific Approaches
Polyglot [18] and Prospex [20] reverse engineer network proto-

cols. They track how the program under test accesses its input

data, recovering fixed-length fields, direction fields, and separa-

tors. Tupni [21] from Cui et al. uses similar techniques to reverse

engineer binary file formats; for instance, element sequences are

identified from loops that process an unbounded sequence of ele-

ments. AuthScan [13] from Bai et al. uses source code analysis to

extract web authentication protocols from implementations. None

of these generalizes to recursive input structures.

9 CONCLUSION AND FUTUREWORK
Many activities of software engineering benefit from formal input

models for a program. However, formal input models are seldom

available, and even then, the model can be incomplete, obsolete,

or inaccurate with respect to the actual implementation. Inferring

input grammars from dynamic control flow, as introduced in this

paper, produces readable grammars that accurately describe input

syntax. Improving over the state of the art, which uses data flow to

identify grammars, our approach can infer grammars even in the

absence of data flow and does not require heuristics for common

parsing patterns. As we show in our evaluation, our approach is

superior to the state of the art both in precision and recall and is

applicable to a wide range of parsers, up to input languages such

as JSON, JavaScript, or TinyC whose complexity far exceeds the

previous state of the art.

The complete code of our approach, including subjects and ex-

perimental data, is available as a self-contained Jupyter notebook:

https://github.com/vrthra/mimid

REFERENCES
[1] [n.d.]. The Codeproject. https://www.codeproject.com/Articles/88435/Simple-

Guide-to-Mathematical-Expression-Parsing.

[2] [n.d.]. Home of the International Community interested in Grammatical Inference.

https://grammarlearning.org.

[3] [n.d.]. JSON Parser. https://github.com/HarryDC/JsonParser.

[4] [n.d.]. Lisp Parser. https://hackage.haskell.org/package/lispparser.

[5] [n.d.]. Mathematical Expressions Parser. https://github.com/louisfisch/

mathematical-expressions-parser.

[6] [n.d.]. Microjson – a minimal JSON parser. https://github.com/phensley/

microjson.

[7] [n.d.]. MJS. https://github.com/cesanta/mjs.

[8] [n.d.]. TinyC. https://github.com/TinyCC/TinyCC.

[9] [n.d.]. URL Lib Parser. https://github.com/python/cpython/blob/3.6/Lib/urllib/

parse.py.

[10] Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples.

Inf. Comput. 75, 2 (Nov. 1987), 87–106. https://doi.org/10.1016/0890-5401(87)

90052-6

[11] Dana Angluin and Michael Kharitonov. 1995. When Won’t Membership Queries

Help? J. Comput. System Sci. 50, 2 (1995), 336–355.
[12] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep

Bugs with Grammars. In The Network and Distributed System Security Symposium.

[13] Guangdong Bai, Jike Lei, GuozhuMeng, Sai Sathyanarayan Venkatraman, Prateek

Saxena, Jun Sun, Yang Liu, and Jin Song Dong. 2013. AUTHSCAN: Automatic Ex-

traction of Web Authentication Protocols from Implementations. In The Network
and Distributed System Security Symposium. The Internet Society.

[14] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesiz-

ing Program Input Grammars. In ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, New York, NY, USA, 95–110.

[15] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schu-

milo, Simon Wörner, and Thorsten Holz. 2019. GRIMOIRE: Synthesizing

Structure while Fuzzing. In 28th USENIX Security Symposium (USENIX Secu-
rity 19). 1985–2002. https://www.syssec.ruhr-uni-bochum.de/media/emma/

veroeffentlichungen/2019/06/03/grimoire.pdf

[16] Guillaume Bonfante, Jean-Yves Marion, and Thanh Dinh Ta. 2014. Malware

Message Classification by Dynamic Analysis. In Foundations and Practice of
Security - 7th International Symposium, FPS 2014, Montreal, QC, Canada, November
3-5, 2014. Revised Selected Papers (Lecture Notes in Computer Science), Frédéric
Cuppens, Joaquín García-Alfaro, A. Nur Zincir-Heywood, and Philip W. L. Fong

(Eds.), Vol. 8930. Springer, 112–128. https://doi.org/10.1007/978-3-319-17040-4_8

[17] Sergey Bratus, Lars Hermerschmidt, Sven M. Hallberg, Michael E. Locasto, Falcon

Momot, Meredith L. Patterson, and Anna Shubina. 2017. Curing the Vulnerable

Parser: Design Patterns for Secure Input Handling. ;login: 42 (2017).
[18] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Polyglot: Auto-

matic Extraction of Protocol Message Format Using Dynamic Binary Analysis.

In ACM Conference on Computer and Communications Security. ACM, New York,

NY, USA, 317–329. https://doi.org/10.1145/1315245.1315286

[19] Pierre Chifflier and Geoffroy Couprie. 2017. Writing parsers like it is 2017. In

2017 IEEE Security and Privacy Workshops (SPW). IEEE, 80–92.
[20] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin

Kirda. 2009. Prospex: Protocol Specification Extraction. In IEEE Symposium on
Security and Privacy. IEEE Computer Society, Washington, DC, USA, 110–125.

https://doi.org/10.1109/SP.2009.14

[21] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irun-Briz. 2008.

Tupni: Automatic Reverse Engineering of Input Formats. In ACM Conference on
Computer and Communications Security. ACM, New York, NY, USA, 391–402.

[22] Colin De la Higuera. 2010. Grammatical inference: learning automata and gram-
mars. Cambridge University Press.

[23] Jean-Christophe Deprez and Arun Lakhotia. 2000. A Formalism to Automate

Mapping from Program Features to Code.. In IWPC. 69–78.
[24] Kexin Pei Dongdong Shi. 2019. NEUZZ: Efficient Fuzzing with Neural Program

Smoothing. IEEE S&P (Jan. 2019). http://par.nsf.gov/biblio/10097303

[25] Henning Fernau. 2009. Algorithms for learning regular expressions from positive

data. Information and Computation 207, 4 (2009), 521–541.

[26] Hugo Gascon, ChristianWressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad

Rieck. 2015. Pulsar: Stateful black-box fuzzing of proprietary network protocols.

In International Conference on Security and Privacy in Communication Systems.
Springer, 330–347.

[27] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based

Whitebox Fuzzing. InACMSIGPLANConference on Programming Language Design
and Implementation. ACM, New York, NY, USA, 206–215.

[28] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine

Learning for Input Fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2017). IEEE Press, Piscataway,

NJ, USA, 50–59. http://dl.acm.org/citation.cfm?id=3155562.3155573

[29] Benedikt Hauptmann, Elmar Juergens, and Volkmar Woinke. 2015. Generating

refactoring proposals to remove clones from automated system tests. In Proceed-
ings of the 2015 IEEE 23rd International Conference on Program Comprehension.
IEEE Press, 115–124.

[30] Jeffrey Heinz, Colin De la Higuera, and Menno Van Zaanen. 2015. Grammatical

inference for computational linguistics. Synthesis Lectures on Human Language
Technologies 8, 4 (2015), 1–139.

[31] Jeffrey Heinz and José M Sempere. 2016. Topics in grammatical inference. Vol. 465.
Springer.

[32] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code

Fragments. In Proceedings of the 21st USENIX Conference on Security Symposium
(Security’12). USENIX Association, Berkeley, CA, USA, 38–38. https://www.

usenix.org/system/files/conference/usenixsecurity12/sec12-final73.pdf

[33] Matthias Höschele and Andreas Zeller. 2016. Mining Input Grammars from

Dynamic Taints. In IEEE/ACM International Conference on Automated Software
Engineering. ACM, New York, NY, USA, 720–725.

[34] H. Hungar, T. Margaria, and B. Steffen. 2003. Test-based model generation for

legacy systems. In International Test Conference, 2003. Proceedings. ITC 2003.,
Vol. 2. 150–159 Vol.2. https://doi.org/10.1109/TEST.2003.1271205

[35] Clinton L Jeffery. 2003. Generating LR syntax error messages from examples.

ACM Transactions on Programming Languages and Systems (TOPLAS) 25, 5 (2003),
631–640.

[36] Trevor Jim and Yitzhak Mandelbaum. 2010. Efficient Earley parsing with regular

right-hand sides. Electronic Notes in Theoretical Computer Science 253, 7 (2010),
135–148.

[37] Lukas Kirschner, Ezekiel O. Soremekun, and Andreas Zeller. 2020. Debugging

Inputs. In International Conference on Software Engineering. ACM.

[38] Nicolas Laurent and Kim Mens. 2016. Taming context-sensitive languages with

principled stateful parsing. In Proceedings of the 2016 ACM SIGPLAN International

https://github.com/vrthra/mimid
https://www.codeproject.com/Articles/88435/Simple-Guide-to-Mathematical-Expression-Parsing
https://www.codeproject.com/Articles/88435/Simple-Guide-to-Mathematical-Expression-Parsing
https://grammarlearning.org
https://github.com/HarryDC/JsonParser
https://hackage.haskell.org/package/lispparser
https://github.com/louisfisch/mathematical-expressions-parser
https://github.com/louisfisch/mathematical-expressions-parser
https://github.com/phensley/microjson
https://github.com/phensley/microjson
https://github.com/cesanta/mjs
https://github.com/TinyCC/TinyCC
https://github.com/python/cpython/blob/3.6/Lib/urllib/parse.py
https://github.com/python/cpython/blob/3.6/Lib/urllib/parse.py
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://www.syssec.ruhr-uni-bochum.de/media/emma/veroeffentlichungen/2019/06/03/grimoire.pdf
https://www.syssec.ruhr-uni-bochum.de/media/emma/veroeffentlichungen/2019/06/03/grimoire.pdf
https://doi.org/10.1007/978-3-319-17040-4_8
https://doi.org/10.1145/1315245.1315286
https://doi.org/10.1109/SP.2009.14
http://par.nsf.gov/biblio/10097303
http://dl.acm.org/citation.cfm?id=3155562.3155573
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final73.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final73.pdf
https://doi.org/10.1109/TEST.2003.1271205


ESEC/FSE 2020, 8–13 November, 2020, Sacramento, California, United States Gopinath, Mathis, Zeller

Conference on Software Language Engineering. ACM, 15–27.

[39] Zhiqiang Lin and Xiangyu Zhang. 2008. Deriving Input Syntactic Structure

from Execution. In ACM SIGSOFT Symposium on The Foundations of Software
Engineering. ACM, New York, NY, USA, 83–93.

[40] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Reverse Engineering

Input Syntactic Structure from Program Execution and Its Applications. IEEE
Transactions on Software Engineering 36, 5 (Sept. 2010), 688–703. https://doi.org/

10.1109/TSE.2009.54

[41] Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Mathias

Höschele, and Andreas Zeller. 2019. Parser Directed Fuzzing. In ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, New

York, NY, USA.

[42] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical Delta Debugging.

Proceedings - International Conference on Software Engineering 2006, 142–151.

https://doi.org/10.1145/1134307

[43] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson. 2016. The Seven Turrets

of Babel: A Taxonomy of LangSec Errors and How to Expunge Them. In 2016
IEEE Cybersecurity Development (SecDev). 45–52. https://doi.org/10.1109/SecDev.

2016.019

[44] Václav Rajlich and NormanWilde. 2002. The role of concepts in program compre-

hension. In Proceedings 10th International Workshop on Program Comprehension.
IEEE, 271–278.

[45] Mohit Rajpal, William Blum, and Rishabh Singh. 2017. Not all bytes are equal:

Neural byte sieve for fuzzing. CoRR abs/1711.04596 (2017). arXiv:1711.04596

http://arxiv.org/abs/1711.04596

[46] Andrew Stevenson and James R. Cordy. 2014. A Survey of Grammatical Inference

in Software Engineering. Science of Computer Programming 96, P4 (Dec. 2014),

444–459. https://doi.org/10.1016/j.scico.2014.05.008

[47] Neil Walkinshaw, Kirill Bogdanov, Mike Holcombe, and Sarah Salahuddin. 2007.

Reverse Engineering State Machines by Interactive Grammar Inference. InWork-
ing Conference on Reverse Engineering. IEEE Computer Society, Washington, DC,

USA, 209–218. https://doi.org/10.1109/WCRE.2007.45

[48] Zhengkai Wu, Evan Johnson, Wei Yang, Osbert Bastani, Dawn Song, Jian Peng,

and Tao Xie. 2019. REINAM: reinforcement learning for input-grammar inference.

In ACM SIGSOFT Symposium on The Foundations of Software Engineering. 488–498.
https://doi.org/10.1145/3338906.3338958

[49] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian

Holler. 2019. Code Coverage. In Generating Software Tests. Saarland University.

https://www.fuzzingbook.org/html/Coverage.html

[50] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian

Holler. 2019. Efficient Grammar Fuzzing. In Generating Software Tests. Saarland
University. https://www.fuzzingbook.org/html/GrammarFuzzer.html

[51] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian

Holler. 2019. Mining Input Grammars. In Generating Software Tests. Saarland
University. https://www.fuzzingbook.org/html/GrammarFuzzer.html

[52] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian

Holler. 2019. Parsing Inputs. In Generating Software Tests. Saarland University.

https://www.fuzzingbook.org/html/GrammarFuzzer.html

https://doi.org/10.1109/TSE.2009.54
https://doi.org/10.1109/TSE.2009.54
https://doi.org/10.1145/1134307
https://doi.org/10.1109/SecDev.2016.019
https://doi.org/10.1109/SecDev.2016.019
http://arxiv.org/abs/1711.04596
http://arxiv.org/abs/1711.04596
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1109/WCRE.2007.45
https://doi.org/10.1145/3338906.3338958
https://www.fuzzingbook.org/html/Coverage.html
https://www.fuzzingbook.org/html/GrammarFuzzer.html
https://www.fuzzingbook.org/html/GrammarFuzzer.html
https://www.fuzzingbook.org/html/GrammarFuzzer.html

	Abstract
	1 Introduction
	2 Our Approach in a Nutshell
	3 Tracking Control Flow and Comparisons
	4 From Traces to Parse Trees
	4.1 Active Learning of Labeling
	4.2 Active Learning of Nullability

	5 Grammar Inference
	5.1 Generalizing Tokens
	5.2 Producing a Compact Grammar

	6 Evaluation
	6.1 Subjects
	6.2 RQ 1. Grammar Accuracy as Producer
	6.3 RQ 2. Grammar Accuracy as Parser
	6.4 RQ 3. Modern Parsing Techniques

	7 Limitations
	8 Related Work
	8.1 Learning Context-Free Grammars
	8.2 Recovering Parse Trees
	8.3 Testing with Grammar-Like Structures
	8.4 Learning Finite State Models
	8.5 Domain-Specific Approaches

	9 Conclusion and Future Work
	References

