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ABSTRACT
Secure search looks for and retrieves records from a (possibly cloud-

hosted) encrypted database while ensuring the confidentiality of

the queries. Researchers are paying increasing attention to secure

search in recent years due to the growing concerns about database

privacy. However, the low efficiency of (especially multiplicative)

homomorphic operations in secure search has hindered its deploy-

ment in practice. To address this issue, Akavia et al. [CCS 2018, PETS

2019] proposed new protocols that bring down the number of mul-

tiplications in the search algorithm from 𝑂 (𝑛2) to 𝑂 (𝑛 log
2 𝑛), and

then to𝑂 (𝑛 log𝑛), where 𝑛 is the size of the database. In this paper,

we present the first secure search protocol – LEAF and its variant

LEAF+– which only requires 𝑂 (𝑛) multiplications. Specifically, at

the core of LEAF are three novel methods we propose, referred to

as Localization, Extraction, and Reconstruction. In addition, LEAF
enjoys low communication complexity and only requires the client

to perform decryption, which adds its advantage in deployment on

weak-power devices such as mobile phones.
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1 INTRODUCTION
With the advancement of cloud computing technologies, more and

more companies and individuals (client) start to hand over their

data to third-party cloud storage companies (server). In this context,

a client gives away her data to a server, who has full access to and
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operates on the data in plaintext following the client’s instructions,

such as database queries and operations. In many such cases, pri-

vacy concerns arise especially when a client’s data contains highly

sensitive information, such as biomedical records, and the server is

not fully trustworthy.

Many advanced cryptographic techniques, such as multi-party

computation (MPC) and searchable encryption, can be leveraged to

perform data searching in the cloud in a privacy-preserving manner.

Among these techniques, fully homomorphic encryption (FHE)

based secure search has attracted a lot of attention in recent years.

Compared to MPC, secure search is more efficient communication

wise as it only requires a single round of interaction independent

of the matching function. Moreover, secure search does not reveal

any valid information contrary to searchable encryption, which

provides a stronger data privacy guarantee.

Secure search roughly contains two steps, i.e., matching and

searching. In the matching step, the server compares the encrypted

search query (from the client) with all encrypted items in the data-

base, and returns another encrypted array of 0s and 1s with 1

indicating the corresponding database item satisfying the query.

The searching step returns all 1’s indexes and corresponding items

to the client. Secure search suffers from high computation cost

due to the expensive FHE operations required, in particular, in the

searching step. In this paper, we focus on the searching step, and

will refer to the searching step as secure search without ambigu-

ity. The most intuitive method, namely Folklore, requires 𝑂 (𝑛2)
times of homomorphic multiplication which is not practical in

real-world scenarios. In recent years, some solutions have been pro-

posed to make secure search more practical. For example, Akavia et

al. [1] proposed SPiRiT, which leverages the multi-ring technique

to reduce the required multiplication number to 𝑂 (𝑛 log
2 𝑛). More

recently, Akavia et al. [2] proposed a new algorithm which adopts a

low-degree approximation method for the OR operation to further

reduce the number of multiplication to 𝑂 (𝑛 log𝑛).

1.1 Our Contributions
In this paper, we propose the first FHE-based secure search algo-

rithm which only requires 𝑂 (𝑛) times multiplication and, at the

same time, does not add depth in the asymptotic sense. As we will

explain in more detail in Section 2, depth is a unique and vital con-

cept we will meet when designing FHE-based algorithms. Higher

depth leads to more time per homomorphic operation costs. Our

algorithms, namely (LEAF) and its variant (LEAF+), rely on three

novel techniques: Localization, Extraction, and Reconstruction.
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Table 1: Complexity comparison. In the Full LEAF scheme, the bootstrapping technique is applied after every homomorphic
encryption, therefore the cost of each multiplication operation is independent of 𝑛, and the total complexity of 𝑂 (𝑛). We use
blue to represent the best complexity in practice, and use red to represent the optimal complexity in theory. As multiplication
takes much more time than addition, here the time complexity only considers multiplication.

Algorithm Name Degree of Function Number of Multiplications Time Complexity

Folklore 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2
log

𝜔 𝑛)
SPiRiT Det. 𝑂 (log

3 𝑛) 𝑂 (𝑛 log
2 𝑛) 𝑂 (𝑛 log

2 𝑛(log log𝑛)𝜔 )
AGHL 𝑂 (log𝑛) 𝑂 (𝑛 log𝑛) 𝑂 (𝑛 log𝑛(log log𝑛)𝜔 )
LEAF 𝑂 (log

2 𝑛) 𝑂 (𝑛) 𝑂 (𝑛(log log𝑛)𝜔 )
LEAF+ 𝑂 (log𝑛) 𝑂 (𝑛) 𝑂 (𝑛(log log𝑛)𝜔 )

Full LEAF / 𝑂 (𝑛) 𝑂 (𝑛)

Localization technique is used to localize the first matched item

in a smaller interval, it divides the original array into many equal

length’s smaller intervals, and returns the encrypted indexes of the

interval containing the matched item.

Extraction is designed to extract the interval containing the de-

sired item. Since both indexes and contents are homomorphically

encrypted, we cannot use indexes to extract the target interval di-

rectly. Therefore, we use extraction technique to extract the interval

while do not need to decrypt the index or increase depth.

Localization and extraction are able to reduce non-necessary

operations on non-target intervals, and allow us only apply the

search algorithm on the target interval. This results in LEAF and

LEAF+only requiring 𝑂 (𝑛) times multiplication.

Finally, we utilize Reconstruction technique to combine two posi-

tion information together to generate the final output. This method

accepts two encrypted position indexes: one indicates the interval

the matched item located, the other indicates the offset the matched

item in the target interval. Without decryption, Reconstruction is

able to output the encrypted actual index in the original database.

We combine these three techniques to construct LEAF. Moreover,

on the basis of LEAF, we use lazy bootstrapping to refresh depth

at a specific stage to construct its variant LEAF+. We compare the

state-of-the-art secure search algorithms in Table 1, where 𝑛 is

the number of items and 𝜔 < 2.3727 is the matrix multiplication

exponent. As we can see, LEAF+ has reached the most advanced

level both in degree of function and number of multiplications.

Asymptotically, LEAF+ algorithm performs best. But compared

with LEAF, when 𝑛 is small, the optimization effect is less satisfac-

tory due to the increased time overhead and computational depth

associated with introducing the bootstrapping step. However, when

𝑛 is large, the optimization efficiency of LEAF+ algorithm is better.

Our algorithms (LEAF, LEAF+) support negligible error prob-

ability and do not need pre- and post-processing, which means

our algorithm has very low computational power requirements

for the client. In our protocol, the client only needs to do one en-

cryption and decryption operation, which is particularly useful

when the client is limited in its computational power, e.g., the client

is a mobile device. This feature greatly expands the application

scenarios of the algorithm. Meantime, our algorithms require com-

putations solely over𝐺𝐹 (2), which makes them better optimized

as smaller plaintext modulus requires lower depth and makes the

bootstrapping procedure cost fewer multiplication operations. Our

algorithms also support unrestricted search function, e.g., exact

match operation, compare operation, and range limited operation.

To illustrate our algorithms’ correctness and efficiency, we give a

correctness proof and derive the complexity specifically. Moreover,

we implement our algorithm and compare with the prior state-of-

the-art proposal to show our algorithm’s efficiency.

In summary, our key contributions are as follows:

• We propose a new secure search algorithm which requires

only 𝑂 (𝑛) times of homomorphic multiplications, while the

state-of-the-art requires 𝑂 (𝑛 log𝑛) times of multiplications.

• We keep our algorithm’s depth invariant even after applying

retrieving method, which further speeds up our algorithm’s

efficiency.

• We give a concrete complexity analysis of our algorithm,

which allows potential users and researchers to estimate the

practical efficiency.

1.2 Organization
The rest of this paper is organized as follows: we present the whole

framework of secure search in Section 2, preliminary definitions

and notations are given in Section 3. The algorithm description

(LEAF) and its correctness proof is described in Section 4. Efficiency

analysis is provided in Section 5. A variant of the algorithm (LEAF+)
is given in Section 6. The experimental results are given in Section 7.

Further optimization is given in Section 8. Related works are given

in Section 9. Finally we conclude the paper in Section 10.

2 SECURE SEARCH: OVERVIEW
Due to the nature of cloud services, privacy has been a concern

since the day the cloud service appeared. Clients do not want the

server to learn anything sensitive. Thus, encrypt clients’ data would

be a natural solution. Privacy-preserving solutions are methods

that meet the requirements, including MPC, searchable encryption

and FHE. Among them, FHE has multiple advantages, such as low

communication complexity and stronger privacy guarantee. Using

FHE to realize searching on encrypted data is called secure search.
For the sake of simplicity, we assume there is only one client

(single client) and one server (single server) when we describe the

secure search process in our paper.

In theory, it is feasible to use FHE to securely compute any

(polynomial-time) algorithm including secure search. To use FHE,



one needs to represent the algorithm using a Boolean circuit. Fol-

lowing many FHE-relevant works (e.g., [10, 13]) by depth we refer

to the “multiplicative depth” of the circuit throughout this paper,

as illustrated in Figure 1. In homomorphic encryption, the time

required for the multiplication operation is much larger than the

addition operation, and the time consumption of the single multi-

plication operation is related to the circuit depth. How to design an

algorithm with fewer number of multiplications and low computa-

tion depth remains a huge challenge.

2.1 Secure Search Framework
Before presenting the secure search algorithm, we need to first

introduce some initial operations:

• Key Generation: Run the homomorphic encryption key

generation algorithm, generate a public key (𝑝𝑘) and a pri-

vate key (𝑠𝑘), publish the public key (𝑝𝑘), and keep the pri-

vate key (𝑠𝑘) by the client.

• Upload: The client encrypts items using the public key (𝑝𝑘),

as shown in Figure 2. in the client part. Then the client

uploads the encrypted items. It is worth noting that in this

step, the client can encrypt the newly added item with the

same public key and upload it to the server-side at any time.

• Data Structure: We utilize array as the data structure used

in the protocol. The items in the array are unsorted, which
eliminates the need for our protocol to preprocess uploaded

data and there is no need to guarantee the order in which

the data is stored in the database.

That is, we need to first use the public key to encrypt our data and

then upload them to the server. We use array as the data structure

to store data, every data has its own index, we only need to do these

steps once. If new data needs to be added, we can use the public

key to encrypt the new data and upload it, which also reflects the

benefits of not preprocessing the data, then we can execute our

search process:

• Input: The client selects the lookup value as needed, en-

crypts it using the public key (𝑝𝑘) generated in the Key

Generation step and sends it to the server.

AND

AND

XOR

XOR

AND

MUL-depth: 1 +0 +1 = 2

Figure 1: A function is represented by a Boolean circuit com-
posed of addition (XOR) and multiplication (AND), where
the multiplicative depth is the maximal number of ANDs
along the paths of the circuit (i.e., omitting XORs).

client

item1 item2 item3 item4 item𝑛

Homomorphic Encryption

item1 item2 item3 item4 item𝑛

. . .

. . .

server

item1 item2 item3 item4 item𝑛

0 1 0 1 1

. . .

. . .

. . .

Matching Step: Matching? Yes:1, No:0

index𝑖1 index𝑖2 index𝑖𝑘

Searching Step

Upload:Homomorphic encrypted items:

item1,item2,. . . ,item𝑛

Input:Homomorphic encrypted

lookup value

Output:Homomorphic encrypted

target items:

item𝑖1 ,item𝑖2 ,. . . ,item𝑖𝑘

Figure 2: The procedure of secure search using homomor-
phic encryption, the client encrypts its lookup value, and
the server returns the indexes and content of the corre-
sponding item. 𝑥 represents the ciphertext corresponding to
plaintext 𝑥 .

• Matching: The server runs the specified matching function
to match the encrypted items in the database and returns

an array whose element is encrypted 0 or 1 to represent a

mismatch or match based on the matching results.

• Searching: Search function takes an array of length𝑛 whose

elements are encrypted 0 or 1 (𝑛 is the number of elements) as

input, outputs the encrypted indexes of all non-zero elements

in the array entered.

• Output: According to the output of the searching step, the

server returns ciphertext corresponding to the index. After

the client decrypts it with the private key (𝑠𝑘), the required

plaintext can be obtained.

This gives a single round protocol with low communication, the
client only needs to input the encrypted lookup value, and the

serverwill returnmatched encrypted items to the client, as shown in

Figure 2. Specifically, the communication complexity is proportional

only to the sizes of the input and output ciphertexts, while using

prior secure multi-party computation (MPC) techniques (see [18,
19, 32]), the cost is proportional to the size of the search function.

It should be noted that this protocol can easily be extended to

multi-client and multi-server situation. All clients should have ac-

cess to the private key, and thus can upload their encrypted lookup

value and decrypt returned results. We can apply our algorithm on

every server, then gather the outputs together.

In the matching step, matching function refers to determining

whether two plaintexts corresponding to two ciphertexts satisfy

the certain condition when given two ciphertexts. There’s a lot of

research on matching function, see Section 9 for details. In this

paper, we mainly focus on improving the searching part.

Intuitively, the whole process seems very simple, however, due to

the inefficient operation of homomorphic multiplication, there are

still many difficulties and requirements in the design of a specific



algorithm. Specifically, since the time that homomorphic multiplica-

tion costs are absolutely dominant compared with other operations,

the goal of our algorithm design is to reduce the number of multi-

plications as much as possible.

At the same time, when utilizing the leveled fully homomorphic

algorithm, wemust consider the depth parameter 𝐿 of the algorithm.

Because choosing a larger depth parameter will increase the time

consumption of a single homomorphic operation as mentioned

before, we need to reduce the depth required by the entire algorithm

as much as possible while reducing the multiplication number.

Note that we may describe the searching polynomial in terms

of its (multiplicative) depth or degree depending on the context.

One should not be confused with these two notions, and in gen-

eral depth ≈ log degree for bounded fan-in circuits. That is, for

AND gates with fan-in bounded by 𝐵, the depth of Π
𝑑𝑒𝑔𝑟𝑒𝑒

𝑖=1
𝑥𝑖 is

minimized using the balanced 𝐵-ary tree evaluation such that

depth ≈ log𝐵 degree, where 𝐵 is a small constant (typically 2) and

thus often omitted, see Figure 10 in Appendix B as an example.

We now show the most relevant works: Secure Search on FHE En-
crypted Data, which addresses the same formulation as considered

in our work:

Folklore: This is the most direct and intuitive solution for secure

search on FHE encrypted data. For an encrypted array 𝑣 ∈ {0, 1}𝑛
to be searched, the search polynomial is (𝑝 > 𝑛):

Folklore(𝑣) =
𝑛∑
𝑖=1

𝑣 [𝑖] ·
𝑖−1∏
𝑗=1

(1 − 𝑣 [ 𝑗]) · 𝑖 mod 𝑝

This method will iterate through each item, resulting in ineffi-

cient server runtime due to evaluating 𝑂 (𝑛) degree polynomials,

in addition, the protocol also requires 𝑂 (𝑛2) multiplications, for 𝑛

the number of items.

SPiRiT: A breakthrough work by Akavia, Feldman, and Shaul ap-

peared in CCS18 [1], only needs to evaluate a polynomial of de-

gree 𝑂 (log
3 𝑛). The authors use Fermat’s theorem as a normalized

function which leads to a high degree. This algorithm requires

post-processing and requires 𝑂 (𝑛 log
2 𝑛) multiplications.

AGHL: The prior state-of-the-art for secure search on FHE en-

crypted data appeared in a recent work of Akavia, Gentry, Halevi

and Leibovich [2], where the server can evaluate a polynomial only

with logarithmic degree 𝑂 (log𝑛) to get the results without post-

processing and can be implemented on 𝐺𝐹 (2). Their work uses a

low-degree polynomial to compute the OR operations of the first

𝑖 items, and put the result in the 𝑖-th item. Their work requires

𝑂 (𝑛 log𝑛) multiplications.

In this paper, our main motivation is to find a more efficient

search algorithm which reduces the number of multiplications and

computational depth as much as possible.

2.2 Overview of Our Techniques
As described in Section 2.1, the search algorithm will receive an

array of which elements are 0 or 1 as input and output all non-

zero elements’ indexes and corresponding contexts. Without loss

of generality, we will only consider returning the first non-zero
item’s coordinate in this paper as previous works [1, 2]. In summary,

1
0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1

0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1

𝑜𝑢𝑡 [𝑖 ] = 𝑣 [𝑖 ] − 𝑣 [𝑖 − 1]

𝑣 [𝑖 ] = RS-OR(𝑢 [1],𝑢 [2], . . . ,𝑢 [𝑖 ])

𝑢

𝑣

𝑜𝑢𝑡 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3: Schematic diagram of AGHL algorithm, first we
change the value of each number in the array to the OR re-
sult of this number and all the numbers before this number
in the array to obtain a stepped array, then calculate pairwise
difference to get the pulse array.

our goal is to find the first non-zero item in an unsorted FHE en-

crypted array in the searching step, while minimizing the number

of multiplications and required depth.

At present, the prior state-of-the-art algorithm (AGHL) is pro-
posed by Akavia et al.[2], the schematic diagram of their algorithm

is shown in Figure 3. Roughly speaking, AGHL algorithm’s key idea

is changing the value of each element in the array to the OR result

of this element and all the elements before this element in the array.

Since any number OR 1 will result in 1, thus if the first non-zero

element appears, all the elements after this element will be changed

to 1, then compute pairwise differences of adjacent indexes, we

can obtain a pulse array containing only one 1 without revealing

any information, which could lead to a binary representation of

the first non-zero item’s coordinate. To reduce the depth, a low-

degree approximation method for OR called RS-OR (see definition

in Section 3.3) is applied.

In this paper, we utilize the Localization, Extraction and Recon-
struction techniques to propose a more efficient algorithm, whose

multiplication complexity is consistent with plaintext search asymp-

totically, more precisely, reduce the number of multiplications from

𝑂 (𝑛 log𝑛) to 𝑂 (𝑛).

1
0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1

1
0 0 0

Step:Extraction

Step:Localization

Step:Reconstruct

1 1
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

Figure 4: The basic framework of LEAF, after the localiza-
tion step, it is determined the interval in which the target
item is located, then applied extraction step to extract this
interval, and finally the reconstruction step is used to obtain
the array we need.



Key Intuition:We derive the intuition behind our algorithm from

two observed facts:

(1) In AGHL algorithm, RS-OR operation is the main source of

multiplication.

(2) In OR operation, if at least one of the elements involved in

the operation is 1, the result of the operation is 1.

According to (1), to improve the efficiency of the algorithm, we

hope to reduce RS-OR operations as much as possible. Utilizing

(2), we can locate the first non-zero item to a smaller interval and

thus reduce RS-OR operations on the non-target interval. Then we

use AGHL algorithm to find the first non-zero item in this small

interval. Combining the above two position information, we can

obtain the position information of the first non-zero item in the

original array.

For the sake of easy understanding, we take Figure 4 as an ex-

ample: the length of the array is 16 (𝑛 = 16), and we divide it into

four equal length intervals, each with a length of 4, we create a

new array of length 4, where the 𝑖-th item of the array indicates

whether the 𝑖-th interval of the original array contains the first

non-zero item, the second element of the array in the figure is 1,

indicating that the first non-zero item in the original array appears

in the interval of 5 to 8. Next, we extract the interval containing

the first non-zero item, and use AGHL algorithm to get the offset of

the first non-zero item in this interval which is 2. Combined with

the previous position information, we can get the coordinate of the

first non-zero item in the original array, which is 4 + 2 = 6.

One major difficulty is how to extract the target interval while

don’t increase degree too much. In plaintext case, we can directly

utilize indexes to get the target interval, however, it will not work

in ciphertext case since the indexes are encrypted. PIR could be

applied to solve this problem without further interaction, but will

introduce additional𝑂 (log𝑛) function degree, even worse, PIR can

only retrieve one item at a time, we have to utilize PIR several times,

which will be time-consuming.

In this paper, we propose a technique call Extraction to solve

this problem, while only increasing a constant to the depth of the

circuit. The key idea behind this technique is that we can obtain

more position information in our protocol compared with only

know the encrypted indexes.

Later in this paper, to complete our protocol, we propose a re-

trieval algorithm that will not further increase our full protocol’s

depth, by adjusting the multiplication structure.

We also provide some suggestions on algorithm optimization, so

that the efficiency could be further improved in the implementation,

see details in Section 8.

3 PRELIMINARIES
In this section, we introduce notations, security model and neces-

sary building blocks for establishing our algorithm in Section 4.

3.1 Notations
Denote [𝑛] = {1, . . . , 𝑛}. For an array 𝑣 , we denote 𝑣 [𝑖] the 𝑖-th ele-

ment in 𝑣 . We enumerate array entries starting from entry number

1, unless stated otherwise.

We use 𝑥 to represent the ciphertext of 𝑥 with some homomor-

phic encryption scheme. For a field F, vectors 𝑣,𝑢 ∈ F𝑛 and 𝑘 ∈ [𝑛],

denote ⟨𝑣,𝑢⟩ = ∑𝑛
𝑖=1

𝑣 [𝑖] · 𝑢 [𝑖] mod 2, prefix𝑘 (𝑣) = (𝑣1, . . . , 𝑣𝑘 ) ∈
F𝑘 , suffix𝑘 (𝑣) = (𝑣𝑘+1, . . . , 𝑣𝑛) ∈ F𝑛−𝑘 , and |𝑣 | the size of 𝑣 .

In this paper, RS-OR refers to Razborov-Smolenski method as de-

scribed in definition 3.1, and PPT denotes probabilistic polynomial

time. We define pulse array as an array in which only one element

is 1 and the others are 0. Stepped array is defined as an array where

elements are all 0 before the first 1 appears, and others are all 1

after the first 1 appears.

3.2 Security Model
In our scenario, the server is compromised by a semi-honest and
computationally bounded adversary who will not deviate from the

protocol but try to learn additional information in polynomial-time.

The use of semantically secure homomorphic encryption ensures

that the adversary learns nothing substantial more than the scale

of computation and length of ciphertext.

Since the protocol itself returns all matches, allowing the server

to know the number of matches, we can let the client decides

whether to continue the next match search after finding a cer-

tain number of matches in the subsequent interaction design to

solve this problem.

3.3 Razborov-Smolenski Method
The Razborov-Smolenski method [26, 29] is a low-degree approxi-

mation algorithm for OR, which reduces the degree of OR from 𝑛

to log( 𝑛𝜀 ) by introducing an error parameter 𝜀. This technique is

applicable in𝐺𝐹 (𝑞) for any 𝑞 ≥ 2, but we only consider the case of

𝑞 = 2 in this paper.

Definition 3.1 (Razborov-Smolenski Method). For any 𝑘-bit
prefix (𝑣 [1], . . . , 𝑣 [𝑘]) ∈ {0, 1}𝑘 of the vector of 𝑛 binary indica-
tor values, we can calculate the approximation OR result of these 𝑘
values in the following way: Select 𝑁 (𝜀) = ⌈log( 𝑛𝜀 )⌉ independent
uniformly random 𝑟1, . . . , 𝑟𝑁 (𝜀) ∈ {0, 1}𝑛 , compute the parity of the
corresponding random subset of entries,

𝑝 (𝑟 𝑗 ) =
𝑘∑
𝑖=1

𝑟 𝑗 [𝑖] · 𝑣 [𝑖] mod 2

Next, compute the OR of these parity values using the standard degree
𝑁 (𝜀) polynomial for the logical-OR of 𝑁 (𝜀) binary values:

RS-OR(𝑣 [1], . . . , 𝑣 [𝑘]) = OR
(
𝑝 (𝑟1), . . . , 𝑝 (𝑟𝑁 (𝜀) )

)
= 1 −

𝑁 (𝜀)∏
𝑗=1

(
1 − 𝑝 (𝑟 𝑗 )

)
mod 2

The parity bit 𝑝 (𝑟 𝑗 ) is always zero when 𝑣 = 0
𝑘 and it is one with

probability half when 𝑣 ≠ 0
𝑘 . Therefore, when 𝑁 (𝜀) random variables

𝑟𝑖 are selected, the error probability of RS-OR is:

𝑃𝑟
[
OR(𝑣 [1], . . . , 𝑣 [𝑘]) ≠ RS-OR(𝑣 [1], . . . , 𝑣 [𝑘])

]
< 2
−𝑁 (𝜀)

The above equation indicates that when 𝑁 (𝜀) = ⌈log( 𝑛𝜀 )⌉, the proba-
bility that RS-OR(𝑣 [1], . . . , 𝑣 [𝑘]) and OR(𝑣 [1], . . . , 𝑣 [𝑘]) are equal
is 1 − 𝜀

𝑛 , but reduced the calculation degree to 𝑁 (𝜀) = ⌈log( 𝑛𝜀 )⌉.

Since the error parameter 𝜀 will directly affect the degree of

RS-OR operation, choosing a small error probability will reduce the

efficiency of the algorithm. Therefore, from a practical perspective,



clients need to choose the appropriate parameter 𝜀 according to

their requirements for accuracy, and we usually choose 𝜀 = 2
−80

.

In this paper, we will set 𝑛 to be the whole database’s size, so every

RS-OR operation’s error probability is equal to
𝜀
𝑛 in this paper.

3.4 Fully Homomorphic Encryption
Fully homomorphic encryption (FHE) [4, 5, 15, 16] allows server to
receive encrypted data from client and perform arbitrarily complex

computations on that data while it remains encrypted.

Definition 3.2. A leveled fully homomorphic encryption (FHE)
scheme is defined by a quadruple of PPT algorithms FHE = (KGen,
Enc, Dec, Eval) as follows:
• Key Generation: (𝑝𝑘, 𝑠𝑘)← KGen(1𝜅 , 1𝐿) takes a security
parameter 𝜅 and a circuit depth upper bound 𝐿, and outputs
the public key 𝑝𝑘 and secret key 𝑠𝑘 .
• Encryption: 𝑏 ← 𝐸𝑛𝑐𝑝𝑘 (𝑏) takes as input the public key
𝑝𝑘 and a message 𝑏 ∈ {0, 1}, and outputs a ciphertext ¯𝑏.
For 𝑥 ∈ {0, 1}𝑛 , we denote its bit-by-bit encryption 𝑥 [𝑖] ←
𝐸𝑛𝑐𝑝𝑘 (𝑥 [𝑖]) by 𝑥 = 𝑥 [1], . . . , 𝑥 [𝑛].
• Decryption: 𝑥 ← 𝐷𝑒𝑐𝑠𝑘 (𝑥) takes the secret key 𝑠𝑘 and a
ciphertext 𝑥 , and outputs a message 𝑥 ∈ {0, 1}∗. When 𝑥 is
an array of ciphertexts, decryption is ciphertext-by-ciphertext.
Correctness says that:

𝐷𝑒𝑐𝑠𝑘
(
𝐸𝑛𝑐𝑝𝑘 (𝑥)

)
= 𝑥 .

• Evaluation: 𝑦 ← 𝐸𝑣𝑎𝑙𝑝𝑘 (𝑓 , 𝑥 [1], . . . , 𝑥 [𝑡]) takes as input
the 𝑝𝑘 , a function 𝑓 : {0, 1}𝑡 → {0, 1} represented as an arith-
metic circuit over 𝐺𝐹 (2) and a set of 𝑡 ciphertexts (𝑥 [𝑖])𝑡

𝑖=1

outputs a ciphertext𝑦 such that𝐷𝑒𝑐𝑠𝑘 (𝑦) = 𝑓 (𝑥 [1], . . . , 𝑥 [𝑡]).
As a shorthand notation we write 𝑓 (𝑥) in place of 𝐸𝑣𝑎𝑙𝑝𝑘 (𝑓 , 𝑥).

3.5 Bootstrapping
The bootstrapping technique introduced byGentry [16] is a fascinat-

ing framework to transfer leveled fully homomorphic encryption

into fully homomorphic encryption. All the existing leveled fully

homomorphic encryption schemes involve complicated error man-

agement, which means after some homomorphic operations, the

error in the ciphertext increases rapidly, and will finally destroy the

plaintext and incur decryption failure. In order to support arbitrary

homomorphic operations, the bootstrapping technique enables to

"refresh" the ciphertext into a new one with the same plaintext

while reducing the error.

Theoretically, one could refresh the ciphertext after every homo-

morphic operation (especially multiplication) using bootstrapping

to manage the error in the ciphertext. However, bootstrapping

is one of the heaviest computations in the FHE scheme, this will

dramatically slow down the performance.

This in-time bootstrapping technique is only used in the Full
LEAF algorithm. In LEAF+, we will use it in a "lazy" way. This means

the bootstrapping technique is only applied when the error will

reach the decryption error bound.

3.6 Match Functions
In this section, we list the two most commonly used matching

functions as a reference.

3.6.1 ExactMatch. The standard equality operator, for𝑎, 𝑏 ∈ {0, 1}𝜇 ,
is:

IsEqual𝜇 (𝑎, 𝑏) =
∏
𝑖∈[𝜇 ]

(1 + 𝑎[𝑖] + 𝑏 [𝑖]) mod 2

with degree 𝜇 and 𝜇 − 1 overall multiplications.

It is worth noting that, unlike PIR, secure search does not require
the keyword to be searched to be a unique identifier. That is to
say, under this setting, the length of the keyword is a constant

independent of the number of elements 𝑛. In contrast, the length of

a unique identifier is at least log𝑛.

In this paper, we select Exact Match as the matching function,

the content to be matched could be the name of the disease (in

medical scenario) or company valuation (in business scenario), and

the length (𝜇) of the matching keywords is a constant independent
of the database’s size (𝑛). Therefore, it takes 𝜇𝑛 multiplications to

do an exact match on the entire database.

3.6.2 Greater Than. The greater than operator (𝑎 > 𝑏), for 𝑎, 𝑏 ∈
{0, 1}𝜇 , is:

IsGrt𝜇 (𝑎, 𝑏) =
∑

𝑖∈[𝜇−1]

(
(𝑎[𝑖] · (𝑏 [𝑖] + 1))

· IsEqual𝜇−𝑖 (suffix𝑖 (𝑎), suffix𝑖 (𝑏))
)

+
(
𝑎[𝜇] · (𝑏 [𝜇] + 1)

)
mod 2

with degree 𝜇 + 1 and 2𝜇 overall multiplications.

4 OUR SECURE SEARCH SCHEME (LEAF)
We introduce LEAF in this section. For ease of description, all of

our operations are done by default under homomorphic encryption,

unless otherwise specified.

Following previous works [1, 2], we mainly focus on locating

the first non-zero item, and once it is done, all the matches can be

retrieved via similar processing. We defer the details on how to

retrieve all records to Appendix A for completeness. Further, we

only focus on the algorithm of returning the index 𝑖 instead of the

value array(𝑖). As shown in Section 4.4, with the encrypted index 𝑖

we just need to pay𝑂 (𝑛) multiplications and without incrementing

the depth to get the encrypted value.

4.1 Overview
We will briefly introduce the three main steps of the algorithm, i.e.,

Localization, Extraction, and Reconstruction, following which we

obtain an encrypted array with only a single 1 whose coordinate

locates the first non-zero term. For completeness, we explain how

to get the encrypted binary representation of the non-zero term’s

index in this encrypted array without increasing the number of

multiplications in Section 4.2.4.

In the Localization step, our goal is to find the interval contain-

ing the first non-zero item. We divide the original array 𝑣 into

𝑡 smaller intervals, each of which has length 𝑘 , we create a new

array ind to indicate whether the first 𝑖 intervals contain a non-

zero item, which could be implemented as follows: Let 𝑖𝑛𝑑 [1] =
RS-OR(𝑣 [1], 𝑣 [2], . . . , 𝑣 [𝑘]), 𝑖𝑛𝑑 [2] = RS-OR(𝑣 [1], 𝑣 [2], . . . , 𝑣 [2𝑘]),
and so on. Suppose that the first non-zero item in the original ar-

ray has coordinate between ( 𝑗 − 1)𝑘 + 1 and 𝑗𝑘 , then we have

𝑖𝑛𝑑 [1] = 𝑖𝑛𝑑 [2] = · · · = 𝑖𝑛𝑑 [ 𝑗 − 1] = 0 and 𝑖𝑛𝑑 [ 𝑗] = 𝑖𝑛𝑑 [ 𝑗 + 1] =



· · · = 𝑖𝑛𝑑 [𝑡] = 1 for any 𝑗 ∈ [𝑡], by computing pairwise differences

of adjacent indexes, we can get an array 𝑓 𝑙𝑎𝑔 ∈ {0, 1}𝑡 with only

one 1 at 𝑓 𝑙𝑎𝑔[ 𝑗], which indicates that the first non-zero item’s index

in the original array 𝑣 is between ( 𝑗 − 1)𝑘 + 1 and 𝑗𝑘 .

In the Extraction step, our goal is to extract the interval that

contains the first non-zero item. The difficulty of the problem is

that although we have coordinates of the target interval, these

coordinates are homomorphically encrypted, so we cannot directly

use these coordinates to get the target interval. The good news is

that we can use PIR to solve this problemwithout further interaction

with the client under this situation, but using PIR will introduce an

additional log𝑛 degrees. In this paper, we propose a new technique

for extracting complete interval, which only increases the depth

by 1 to get the target interval. The basic idea of this technique is

to make use of the richer position information in the interval than

the encrypted coordinates. More specifically, we can change all the

elements in the non-target interval to 0 through a method we put

forward. Finally, we add the elements in the corresponding position

to get the target interval. See Section 4.2.2 for details.

In the Reconstruction step, our goal is to integrate the position

information from the two steps above into one final output. The

above two steps output the starting coordinate of the target interval

(index1) in which the first non-zero item is located and the offset of

the non-zero item within the target interval (index2), respectively.

In theory, we can output the two position information to the client,

and then calculate the coordinate of the first non-zero item in the

original array by the client after decrypting (index = (index1 −
1)𝑘 + index2). However, we want to output the final result directly

for two purposes:

(1) We hope the client only needs to decrypt, thus reducing

the requirement of the protocol on the client’s computing

power;

(2) Output the coordinate of the output non-zero item in the

whole array can increase the compatibility of our algorithm,

as this output could be adapted to any existing retrieval

algorithm.

4.2 Algorithm Description
4.2.1 Localization. The goal of this step is to locate the target item

into a smaller interval, then we can ignore non-target intervals and

only apply search operation on target interval, thereby reducing

the number of RS-OR operations, which is the main source of

multiplication operation.

Step 1: The process is shown in Figure 5. We first divide the original

array into 𝑡 smaller intervals, the size of the partition interval is 𝑘

(determined by the parameter in section 5.2). By calculating RS-OR
result of all elements in one chunk, we can determine whether this

chunk contains the non-zero element. Specifically, we apply the

RS-OR method to the first 𝑖𝑘 elements in array 𝑣 and put the result

at the position of the 𝑖-th element in array 𝑖𝑛𝑑 .

𝑖𝑛𝑑 [𝑖] ← RS-OR(𝑣 [1], 𝑣 [2], . . . , 𝑣 [𝑖 × 𝑘])

Depending on the nature of the RS-OR operation, if the 𝑖-th

element in 𝑖𝑛𝑑 is 1, all elements after this element are 1 (Because

the result of 1 OR any number is 1). We don not calculate OR of

each interval separately since we want to derive an array with only

1

𝑣

Degree : 𝑑 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1

1 1 1
0

𝑖𝑛𝑑
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𝑛
𝜀

1
0 0 0

𝑓 𝑙𝑎𝑔

Degree : 𝑑 · log
𝑛
𝜀

Step 2

Step 1

Figure 5: Localization step: divide the array to be searched
into many intervals to determine the specific interval in
which the first non-zero entry occurs

one 1 indicating the interval where the first non-zero item appears.

Step 2: For a stepped array containing only 0s and 1s (they’re all

0 before the first 1 and 1 after the first 1), we do the difference

operation on the array, that is, we change the value of the 𝑖-th

element in the array to the value at 𝑖 minus the value at 𝑖 − 1:

∀𝑖 ∈ [2, 𝑡] : 𝑓 𝑙𝑎𝑔[𝑖] ← 𝑖𝑛𝑑 [𝑖] − 𝑖𝑛𝑑 [𝑖 − 1]

𝑓 𝑙𝑎𝑔[𝑡 + 1] ← 1 − 𝑖𝑛𝑑 [𝑡]
After this operation, 𝑓 𝑙𝑎𝑔 only have one 1. If its index is 𝑗 (≠ 𝑡 +1),

it means that the first 1 is located in (𝑣 [( 𝑗 − 1) · 𝑘 + 1], . . . , 𝑣 [ 𝑗 · 𝑘]),
if its index is 𝑡 + 1, it means there is no 1 in the original array.

Through this process, we locate the position of the first non-zero

item in a smaller interval.

4.2.2 Extraction. The purpose of this subroutine is to extract the

interval containing the first non-zero element for subsequent search

operations on the interval. The reason for this step is that the loca-

tion information obtained in the previous step is homomorphically

encrypted, so we need an extraction method while increasing the

computing depth as less as possible.

Step 1: The second part is shown in Figure 6, the result of the

previous step is the output of a new array 𝑓 𝑙𝑎𝑔, this array only

contains one 1 represents the interval in which the first non-zero

element located, the purpose of step 1 is to use the array 𝑓 𝑙𝑎𝑔 to

build a new array 𝑠ℎ𝑖𝑒𝑙𝑑 of the same length as the original array 𝑣 ,

where all the elements in the interval without the first non-zero item

are 0, and all the elements in the interval where the first non-zero

element appears are 1:

∀𝑗 ∈ [𝑡],∀𝑖 ∈ [𝑘] 𝑠ℎ𝑖𝑒𝑙𝑑 [( 𝑗 − 1) · 𝑘 + 𝑖] ← 𝑓 𝑙𝑎𝑔[ 𝑗]
We call this new array "𝑠ℎ𝑖𝑒𝑙𝑑", as we’ll see later, it acts as a shield.

Step 2:We multiply array 𝑠ℎ𝑖𝑒𝑙𝑑 and initial array 𝑣 bit by bit:

∀𝑖 ∈ [𝑛], 𝑣 [𝑖] ← 𝑣 [𝑖] · 𝑠ℎ𝑖𝑒𝑙𝑑 [𝑖]
It is like covering a newspaper with a piece of paper with a hole

in it, all we can see is the text under the hole. That is, after this

operation, only the interval contained the first 1 in 𝑣 is not all 0
′𝑠 .

Step 3: In order to extract the target interval, we define a new array

𝑓 𝑖𝑛 ∈ {0, 1}𝑘 :
∀𝑗 ∈ [𝑘], 𝑓 𝑖𝑛[ 𝑗] ← 𝑣 [ 𝑗] + 𝑣 [𝑘 + 𝑗] + · · · + 𝑣 [(𝑡 − 1) · 𝑘 + 𝑗]
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Figure 6: Extraction step: we turn elements in the non-target
interval to 0, then add the corresponding position together
to obtain the target interval.

Adding the elements in the corresponding position of each in-

terval, because all the elements in the interval except the interval

with the first 1 are all 0, so the result is the interval with the first

non-zero item. So far, we have completed the goal of extracting the

target interval.

Step 4: After extracting the target interval, we only need to call

AGHL_Step algorithm on this interval to obtain a pulse array, then
we assign the result to array 𝐸𝑥_𝑜𝑢𝑡 . There are two things we want

to point out about AGHL_Step algorithm:

(1) Compared with AGHL algorithm mentioned above, this algo-

rithm (AGHL_Step) eliminates the step of finally converting

pulse array into binary representation;

(2) The parameter selection of RS-OR operation in this algo-

rithm is the same as we mentioned in Section 3.3, which are

all 𝑁 (𝜀) = ⌈log( 𝑛𝜀 )⌉, means that the probability of failure of

all RS-OR operations in this paper is
𝜀
𝑛

Compared to the previous algorithm, LEAF algorithm does not need

to apply RS-OR on every elements in the array, instead, we utilize

RS-OR in a coarse-grained manner, that is, we partition the original

array, evaluate only one RS-OR operation in an interval, and replace

the result of the whole interval with this result, so as to determine

the first non-zero element into a smaller interval with less expen-

sive operations. Although the localization and extraction steps bring
extra time overhead, through choosing suitable parameters, we ob-

tained, by analysis, the ascension of the whole performance of the

algorithm will be relatively large. All the way through, we get ap-

proximate interval coordinates of the first non-zero element and the

offset within that interval. In the Reconstruction step, we’ll explain

how to build the final result with the two position information.

4.2.3 Reconstruction. In this step, our goal is to integrate the po-

sition information from the two steps above into one final output.

The process is shown in Figure 7.

Expansion: In this step, we extend the pulse array (𝐸𝑥_𝑜𝑢𝑡 ) ob-

tained by AGHL_Step algorithm to an array with the same length

as the original array (𝑣), ∀𝑖 ∈ [𝑘]:

0 0 0
1

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1

Expension

𝐸𝑥_𝑜𝑢𝑡

𝐸𝑥_𝑣

𝑠ℎ𝑖𝑒𝑙𝑑

𝑜𝑢𝑡

1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0

× × × . . .

. . .

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7: Reconstruction step: we want to get a pulse array
with the same length as the original array, while the only
1’s index is corresponding to the first non-zero term in the
original array.

𝐸𝑥_𝑣 [𝑖] = · · · = 𝐸𝑥_𝑣 [𝑖 + (𝑡 − 1)𝑘] = 𝐸𝑥_𝑜𝑢𝑡 [𝑖]

Integration: We multiply the expanded array 𝐸𝑥_𝑣 by the array

𝑠ℎ𝑖𝑒𝑙𝑑 we got from the previous section to get a new array 𝑜𝑢𝑡 ,

∀𝑖 ∈ [𝑛]:
𝑜𝑢𝑡 [𝑖] = 𝐸𝑥_𝑣 [𝑖] × 𝑠ℎ𝑖𝑒𝑙𝑑 [𝑖]

Since the array 𝑠ℎ𝑖𝑒𝑙𝑑 is only non-zero in the target interval, the

result of the multiplication is the final reconstructed array.

4.2.4 Transform array to number. This subroutine takes as input
an encrypted array, which consists of a single 1 and multiple 0s for

the rest, and outputs the ciphertext of the index of the non-zero

term in the array.

As a slightly abuse of notation, 𝑜𝑢𝑡 ∈ {0, 1}𝑛 represents a vector

of encrypted bits as input, where 𝑥 denotes 𝑥 ’s ciphertext. We

obtain the binary representation of the index (of the non-zero term

in 𝑜𝑢𝑡 ) in encrypted form, i.e., by outputing 𝐵 · 𝑜𝑢𝑡 , where 𝐵 ∈
{0, 1} ⌈log(𝑛+1) ⌉×𝑛

is a ⌈log(𝑛 + 1)⌉ × 𝑛 matrix whose every 𝑖-th

column is the binary representation of integer 𝑖 in cleartext.

While the process seemingly involves multiplications, it actually

requires only homomorphic additions since 𝐵 consists of 0-1 valued

entries in plaintext, and therefore multiplying 𝐵 with a vector 𝑜𝑢𝑡

of encrypted entries first selects the corresponding ciphertexts in

𝑜𝑢𝑡 (based on the values in 𝐵) and then outputs their encrypted

sum using homomorphic additions. We provide an example below

for 𝑛 = 4 and thus 𝐵 is a 3 × 4 matrix and we let the encrypted

vector 𝑜𝑢𝑡 = (0, 1, 0, 0)𝑇 . Multiplying 𝐵 and 𝑜𝑢𝑡 yields:

©«
0 0 0 1

0 1 1 0

1 0 1 0

ª®¬ ·
©«
0

1

0

0

ª®®®¬ =
©«

0

1 + 0

0 + 0

ª®¬ = ©«
0

1

0

ª®¬ ,

where the result (0, 1, 0)𝑇 corresponds to binary representation

of 2 (i.e., the non-zero term’s index in 𝑜𝑢𝑡 ).

Core Idea of Our Algorithm: In our algorithm, we use the Local-
ization technique to narrow down the scope of the first 1 entity,

then use the Extraction technique to extract the desired interval, so

that we do not need to apply expansive operations on non-target



Algorithm 1 LEAF

1: Input: Array 𝑣 ∈ {0, 1}𝑛 ;
2: Output: 𝑖∗ =𝑚𝑖𝑛{𝑖 ∈ [𝑛] | 𝑣 [𝑖] == 1};
3: Set 𝑡 = ⌊

√
𝑛⌋, 𝑘 = ⌈𝑛𝑡 ⌉, pad the input array by 𝑡 × 𝑘 − 𝑛 zero

entries;

4: Create a new array 𝑖𝑛𝑑 ∈ {0, 1}𝑡 , ∀𝑖 ∈ [𝑡], set 𝑖𝑛𝑑 [𝑖] ←
RS-OR(𝑣 [1], 𝑣 [2], . . . , 𝑣 [𝑖 × 𝑘]);

5: Create a new array 𝑓 𝑙𝑎𝑔 ∈ {0, 1}𝑡 , ∀𝑖 ∈ [2, 𝑡] : 𝑓 𝑙𝑎𝑔[𝑖] ←
𝑖𝑛𝑑 [𝑖] − 𝑖𝑛𝑑 [𝑖 − 1], 𝑓 𝑙𝑎𝑔[𝑡 + 1] ← 1 − 𝑖𝑛𝑑 [𝑡];

6: Create a new array 𝑠ℎ𝑖𝑒𝑙𝑑 ∈ {0, 1}𝑛 : ∀𝑗 ∈ [𝑡],∀𝑖 ∈
[𝑘] 𝑠ℎ𝑖𝑒𝑙𝑑 [( 𝑗 − 1) · 𝑘 + 𝑖] ← 𝑓 𝑙𝑎𝑔[ 𝑗];

7: ∀𝑖 ∈ [𝑛], 𝑣 [𝑖] ← 𝑣 [𝑖] × 𝑠ℎ𝑖𝑒𝑙𝑑 [𝑖];
8: Create a new array 𝑓 𝑖𝑛 ∈ {0, 1}𝑘 : ∀𝑗 ∈ [𝑘], 𝑓 𝑖𝑛[ 𝑗] ← 𝑣 [ 𝑗] +

𝑣 [𝑘 + 𝑗] + · · · + 𝑣 [(𝑡 − 1) × 𝑘 + 𝑗];
9: 𝐸𝑥_𝑜𝑢𝑡 ← AGHL_Step(𝑓 𝑖𝑛);
10: Create a new array 𝐸𝑥_𝑣 ∈ {0, 1}𝑛 : ∀𝑖 ∈ [𝑘], 𝐸𝑥_𝑣 [𝑖] =

𝐸𝑥_𝑣 [𝑖 + 𝑘] = · · · = 𝐸𝑥_𝑣 [𝑖 + (𝑡 − 1)𝑘] = 𝐸𝑥_𝑜𝑢𝑡 [𝑖];
11: Create a new array 𝑜𝑢𝑡 ∈ {0, 1}𝑛 :∀𝑖 ∈ [𝑛], 𝑜𝑢𝑡 [𝑖] ← 𝐸𝑥_𝑣 [𝑖]×

𝑠ℎ𝑖𝑒𝑙𝑑 [𝑖];
12: index← 𝐵 · 𝑜𝑢𝑡, 𝑓 𝑜𝑟 𝐵 ∈ {0, 1} ⌈log(𝑛+1) ⌉×𝑛

;

13: return index;

intervals, significantly reducing the number of multiplication op-

erations. Finally, we use Reconstruction technique to construct the

final output based on the two position information.

The reason why we need to use new techniques to extract the

target interval instead of directly using array index is based on

the fact that the coordinates representing the general range are

homomorphically encrypted, and the server cannot get the general

position of the target items.

Combining the above operations, we get Algorithm 1 (The selec-

tion of 𝑡 , 𝑘 is detailed in Section 5.2).

4.3 Correctness of LEAF Algorithm
In this paper, a low-degree approximation method for OR called

RS-OR is adapted to construct our algorithm, this method can

significantly reduce the degree of the algorithm, but at the same

time introduce some error probability. We will prove that the error

probability of our algorithm can be controlled at a very low level.

As mentioned above, all RS-OR operations in this paper select

the same parameter 𝑁 (𝜀) = ⌈log( 𝑛𝜀 )⌉, according to the proof in

Section 3.3, all RS-OR operations with this parameter has the same

correct probability which is 1 − 𝜀
𝑛 .

In the Localization step, we divide the original array into 𝑡 inter-

vals of equal length, so in this step, we calculate RS-OR for a total

of 𝑡 times. In our Extraction step, we performed RS-OR for each

element in the target interval with length 𝑘 , so we calculated a total

of 𝑘 times of RS-OR operations in this step. In addition, other parts

of our algorithm did not use RS-OR operation, so our algorithm

used 𝑡 + 𝑘 times of RS-OR operation, if these operations do not

occur any error, our algorithm will be correct.

Based on the conclusion in Section 5.2, we select the parameter

𝑡 = 𝑘 =
√
𝑛 in this paper, so the probability of our algorithm being

correct is:

𝑃𝑟LEAF =
(
1 − 𝜀

𝑛

)𝑡+𝑘
=
(
1 − 𝜀

𝑛

)
2

√
𝑛
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Figure 8: Our Retrieval Process, we don’t apply Akavia’s
method since it will add 1 additional depth.

Lemma 4.1. (1 − 𝜀
𝑛 )

𝑛 ≥ 1 − 𝜀, ∀𝑛 ∈ N+, 𝜀 < 1, the equal sign
holds if and only if 𝑛 = 1.

Proof. We defer the concrete proof to Appendix C. □

For any 𝑛 > 4, we have 2

√
𝑛 < 𝑛, which means:

𝑃𝑟LEAF =
(
1 − 𝜀

𝑛

)
2

√
𝑛
> (1 − 𝜀

𝑛
)𝑛 > 1 − 𝜀

Here, 𝜀 is the parameter that can be selected by the client, nor-

mally we will choose 𝜀 = 2
−80

, the above equation illustrates that

when 𝑛 > 4, our algorithm’s output is correct with overwhelming

probability.

4.4 Retrieving Matches
Here we show how to retrieve the matched item given the en-

crypted pluse array without further interaction with clients. For the

convenience of description, we describe the process of retrieving

1-bit content. For arbitrary long content, we can retrieve each bit

in the same way.

Once we get the encrypted index of the target item, PIR would

be a feasible solution to retrieve the desired item without further

interactions at the cost of an extra degree of 𝑂 (log𝑛). Akavia et
al. [2] proposed a depth-preserving method to retrieve matched

item using 𝑂 (𝑛) multiplications and increasing the depth by 1.

In this paper, by rearranging the multiplication order, we can

complete the retrieval of matching items without increasing the

calculation depth, and ensure that the required number of multipli-

cation is the same as Akavia’s algorithm required, both of which

are 𝑂 (𝑛), as shown in Figure 8.

It is worth pointing out that the Step 1 in the figure is very

similar to the Step 3 we mentioned in our Extraction step, which

is to extract non-zero intervals in an array by adding them, to be

specific, define 𝑡𝑒𝑚𝑝2 ∈ {0, 1}𝑘 , ∀𝑗 ∈ [𝑘]:
𝑡𝑒𝑚𝑝2 [ 𝑗] ← 𝑡𝑒𝑚𝑝1 [ 𝑗] + 𝑡𝑒𝑚𝑝1 [𝑘 + 𝑗] + · · · + 𝑡𝑒𝑚𝑝1 [(𝑡 − 1) · 𝑘 + 𝑗]

Instead of manipulating the final output in the searching part, we

utilize location information obtained from the intermediate process,

which enables us to retrieve the target item without adding depth.



5 EFFICIENCY ANALYSIS
5.1 Efficiency Estimate
Since multiplication takes much more time than addition, so in our

analysis, we only consider multiplication. Assuming each multipli-

cation operation costs 𝑇MUL1
.

First, we use RS-OR 𝑡 times to calculate the OR results. In Sec-

tion 3.3, we know that each RS-OR is actually equivalent to doing

normal OR operations on log( 𝑛𝜀 ) elements, so each operation costs

log
𝑛
𝜀 times multiplication, thus this step costs:

𝑡 · log(𝑛
𝜀
) ×𝑇MUL1

Then we calculate the inner product of 𝑣 and 𝑠ℎ𝑖𝑒𝑙𝑑 , because

𝑣 and 𝑠ℎ𝑖𝑒𝑙𝑑 have 𝑛 elements, this step involves multiplying each

pair of elements in the two arrays, so it contains 𝑛 multiplication

operations, this step costs:

𝑛 ×𝑇MUL1

Then we apply AGHL_Step algorithm to calculate the stepped
array 𝑓 𝑖𝑛, it contains 𝑘 · log( 𝑛𝜀 ) times multiplication (AGHL_Step
needs 𝑘 times of RS-OR which requires 𝑘 · log( 𝑛𝜀 ) times of multi-

plication), so this step costs:

𝑘 · log(𝑛
𝜀
) ×𝑇MUL1

After obtaining two position information, we use Reconstruction
method to reconstruct the output, it contains 𝑛 times of multiplica-

tion, so this step costs:

𝑛 ×𝑇MUL1

And we have to add the time match procedure costs, assume it

contains MOPN times of multiplication, so it costs:

MOPN ×𝑇MUL1

so, the overall time costs is:

𝑇LEAF =
(
𝑡 · log(𝑛

𝜀
) + 2𝑛 + 𝑘 · log(𝑛

𝜀
) +MOPN

)
×𝑇MUL1

5.2 Concrete Parameters
To find the optimal parameters, we take the partial differential of

the total time expression 𝑇LEAF with respect to 𝑡 , sinceMOPN, 𝑇
and 𝑛 is not a function of 𝑡 , 𝑘 = 𝑛

𝑡 , so the target expression is equal

to:

𝜕
(
𝑡 · log( 𝑛𝜀 ) +

𝑛
𝑡 · log( 𝑛𝜀 )

)
𝜕𝑡

= 0

we have:

𝑡 =
√
𝑛

So we get that the number of multiplications required by the

algorithm, it should be noted that since the matching algorithm

needs to check every element in the database, theMOPN term is

linearly dependent with the amount of data (𝑛), that is, MOPN =

𝜇𝑛 = 𝑂 (𝑛), as stated in Section 3.6.1. Define OPN as total number

of multiplications required by the protocol:

OPN = 𝑡 · log(𝑛
𝜀
) + 2𝑛 + 𝑘 · log(𝑛

𝜀
) +MOPN

=
√
𝑛 · log(𝑛

𝜀
) + 2𝑛 +

√
𝑛 · log(

√
𝑛

𝜀
) +MOPN

= 𝑂 (𝑛)

The above formula indicates that the number of multiplications

required by our algorithm has reached the optimal theoretical

bound in the asymptotic sense, because even if we retrieve in plain-

text case, at least 𝑂 (𝑛) operations are still needed.
The depth of this algorithm is:

𝑑LEAF = log𝑑 + log log(𝑛
𝜀
) + 1 + log log(𝑛

𝜀
) + 1

= 𝑂 (log log𝑛)
The first term in the above formula is required by matching step,

the second one is attributed to Localization step, and the third is

due to Extraction step. The last two terms are the depths required

to operate on the extracted interval. To be specific, the fifth term

is corresponding to Reconstruction, while the fourth term is equiv-

alent to replacing the 𝑛 in the first term with 𝑡 and removing the

log𝑑 , because the depth required by the matching algorithm is not

required when operating on the target interval.

We recall the depth of AGHL algorithm for comparison:

𝑑AGHL = log𝑑 + log log(𝑛
𝜀
) = 𝑂 (log log𝑛)

It’s shown that the algorithm does not increase the computa-

tional depth in the asymptotic sense, therefore, when 𝑛 is large, the

time required for the single multiplication of the two algorithms

(𝑇MUL2
for AGHL and 𝑇MUL1

for LEAF) becomes a constant ratio,

according to the estimation formula in Gentry et al.’s work[17]:

𝑇MUL2

𝑇MUL1

= (𝑑AGHL
𝑑LEAF

)𝜔 = (
log

(
𝑑 log( 𝑛𝜀 )

)
log

(
𝑑 log( 𝑛𝜀 )

)
+ log log( 𝑛𝜀 ) + 2

)𝜔

observe that:

lim

𝑛→+∞
𝑇MUL2

𝑇MUL1

= lim

𝑛→+∞
(

log

(
𝑑 log( 𝑛𝜀 )

)
log

(
𝑑 log( 𝑛𝜀 )

)
+ log log( 𝑛𝜀 ) + 2

)𝜔

= ( 1
2

)𝜔 = 𝑂 (1)

where 𝜔 < 2.3727 is the matrix multiplication exponent, there-

fore, by combining the multiplication number required by AGHL
algorithm: 𝑛 · log( 𝑛𝜀 ), we can get the time required by AGHL algo-

rithm:

𝑇AGHL = 𝑛 · log(𝑛
𝜀
) ×𝑇MUL2

= 𝑂 (𝑛 log𝑛) ×𝑇MUL2

thus we have:

𝑇AGHL

𝑇LEAF
=
𝑂 (𝑛 log𝑛)

𝑂 (𝑛) ×
𝑇MUL2

𝑇MUL1

= 𝑂 (log𝑛) ×𝑂 (1) = 𝑂 (log𝑛)

It turns out that our algorithm LEAF reduced the AGHL algo-

rithm by a log order of magnitude, mainly because we reduced the

number of multiplications from 𝑂 (𝑛 log𝑛) to 𝑂 (𝑛) while keeping
the required computational depth asymptotically constant.

6 PROTOCOLWITH BOOTSTRAPPING
LAZILY(LEAF+)

Compared with our algorithm LEAF, LEAF+ applies bootstrapping
only to the elements in the extracted interval, so as to control the

growth of the depth of computation, which leads to different effects:

• Pros: The bootstrapping step can control the computational

depth required by the algorithm, and the optimization effect

of the algorithm will be better when 𝑛 is large;



• Cons: The introduction of bootstrapping step will bring

about a large number of extra multiplication operations and

computation depth, which will even make the efficiency of

the algorithm lower than before when 𝑛 is small.

After bootstrapping was introduced, although the computation

depth of the algorithm did not change, the hidden constant in

𝑂 (log log𝑛) became smaller, so when 𝑛 is very large, the single

multiplication time costs in this algorithm will be the same as in

AGHL, which was different from LEAF algorithm.

At the same time, since we only need to do the bootstrapping

step once for the extracted interval elements rather than for all the

elements, this significantly reduces the extra time cost brought by

the bootstrapping step.

With proper parameter analysis and selection, we could use the

bootstrapping technology to bring benefits and lower down the

consequent disadvantages.

6.1 Efficiency Estimate
Similar to the analysis in the previous section and consider the

extra time bootstrapping takes, we could get the time that LEAF+ al-
gorithm takes:

𝑇LEAF+ =
(
𝑡 · log(𝑛

𝜀
) + 2𝑛 + 𝑘 · log(𝑛

𝜀
) +MOPN

)
·𝑇MUL3

+ 𝑡 ·𝑇BOO
where 𝑇MUL3

represents the time taken for each homomorphic

multiplication, 𝑇BOO is the time required for single bootstrapping,

define:

𝛼 =
𝑇BOO

𝑇MUL3

which means the number of multiplication operations boostrap-

ping procedure needs, we have:

𝑇LEAF+ =
(
(𝑡 · log(𝑛

𝜀
) + 2𝑛 + 𝑘 · log(𝑛

𝜀
) +MOPN) + 𝛼𝑡

)
×𝑇MUL3

where 𝑘 = 𝑛
𝑡 , 𝑇MUL3

is not a function of 𝑡 , according to Jung

Hee Cheon et.al.’s work [8]: 𝛼 = 𝑂 (log
2 𝜆), where 𝜆 is security

parameter, independent of 𝑛, we take the partial with respect to 𝑡

to get the optimal solution:

𝜕
(
(𝑡 · log( 𝑛𝜀 ) + 2𝑛 + 𝑘 · log( 𝑛𝜀 ) +MOPN) + 𝛼𝑡

)
𝜕𝑡

= 0

SinceMOPN and 𝑛 are not functions of 𝑡 , we have:

𝜕
(
𝑡 · log( 𝑛𝜀 ) +

𝑛
𝑡 · log( 𝑛𝜀 ) + 𝛼𝑡

)
𝜕𝑡

= 0

then we get the solution:

𝑡 =

√
𝑛

1 + 𝛼
thus we have:

𝑇LEAF+ =
(
(2
√

𝑛

1 + 𝛼 · log(𝑛
𝜀
) + 2𝑛 +MOPN)

+ 𝛼
√
𝑛
)
×𝑇MUL3

= 𝑂 (𝑛) ×𝑇MUL3

According to Chen et al.’s [6], bootstrapping requires depth

𝑑BOO = log(𝑧) + log(ℎ) for BGV [4] and 𝑑BOO = log log(𝑧) + log(ℎ)
for FV [15], where ℎ = | |𝑠 | |1 is the 1-norm of the secret key, and

𝑧 = 𝑝𝑟 is the plaintext modulus. Thus, the depth of our protocol is :

𝑑LEAF+ = log𝑑 + log log(𝑛
𝜀
) + 1 + 𝑑BOO = 𝑂 (log log𝑛) ,

where the 1 term accounts for the depth of retrieval. Similarly,

𝑇MUL2

𝑇MUL3

= ( 𝑑AGHL
𝑑LEAF+

)𝜔 = (
log

(
𝑑 log( 𝑛𝜀 )

)
+ 1

𝑑𝐵𝑂𝑂 + log

(
𝑑 log( 𝑛𝜀 )

)
+ 1

)𝜔 ,

where 𝜔 < 2.3727 is the matrix multiplication exponent. After

initializing the parameters, 𝑑BOO does not change with 𝑛, therefore:

lim

𝑛→+∞
𝑇MUL2

𝑇MUL3

= lim

𝑛→+∞
(

log

(
𝑑 log( 𝑛𝜀 )

)
+ 1

𝑑BOO + log

(
𝑑 log( 𝑛𝜀 )

)
+ 1

)𝜔 = 1

that is, when 𝑛 gets larger, the time multiplication needed of two

protocol is approximately the same, which is why LEAF+ algorithm
performs better when 𝑛 is large.

7 EVALUATION
In this section, we empirically evaluate our algorithm.

Experimental Setup. We implement the secure search algorithm

based on the open source homomorphic encryption library SEAL

(version 3.4.5) [27]. SEAL is a widely used HE library written in C++

and it implements two HE schemes, i.e., BFV [15] and CKKS [9].

We use the BFV implementation since CKKS works better with

fixed-point arithmetics while we only need Boolean operations for

our search algorithm. We run our algorithms on a server equipped

with Debian 10 (Buster) and Intel(R) Xeon(R) CPU E7-8867 v3 @

2.50GHz, 1, 536 GigaByte of RAM. The state-of-the-art AGHL algo-

rithm [2] is used as our baseline model. For fairness, no optimization

technique is used for these two algorithms, like “batching”.

Results. Figure 9 shows the results. Since our algorithm mainly

improves the searching part of the whole protocol, we conduct

our experiments in two scenarios. First, we measure the time cost

of the searching process alone, i.e., without matching, as shown

in Figure 9(a), this could give us a direct impression of how our

improvement works on the searching part. Second, we add the

matching part back and see the total improvement, the result is

shown in Figure 9(b). According to the experimental results, we

conclude that improving the searching process indeed significantly

accelerates the whole protocol. Note that in both scenarios, we

set error rate 𝜀 = 2
−80

, and we assume the keyword’s length is

𝜇 = 16-bits.

As shown by our formal analysis, our algorithm requires around

double depth compared to AGHL, this makes our multiplications

slower. According to our evaluation, the time cost per multiplication

operation for our algorithm is around 4.17 times higher than AGHL.

On the other hand, our algorithm requires a much less number of

operations. Specifically, our algorithm only requires 2

√
𝑛 times

RS-OR operation while AGHL requires 𝑛 times RS-OR operation.

This drives our algorithm much faster than AGHL in general.

The searching algorithm alone starts to perform better than

AGHL when 𝑛 is greater than 80, and the entire protocol outper-

forms the previous algorithm when 𝑛 ≥ 400. According to our

formal analysis in Section 5.2, the advantage of our algorithm will

increase further with the increase of the number of records 𝑛, not

only for the searching part but also for the entire protocol.

8 FURTHER OPTIMIZATION
Single instruction multiple data (SIMD) is an optimization tech-

nique proposed by Smart-Vercauteren[28], this technique allows us
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Figure 9: Server’s running time as a function of the number of records 𝑛. In the left figure, we show the time cost of the search
process, and in the right one, we depict the time consumption of the whole secure search, i.e., searching and matching. The
results show our work could achieve better efficiency even for a small number of records.

to pack many plaintext elements in a single ciphertext and apply

operations to them at the same time. Plaintext values in a single

ciphertext are referred to as “plaintext slots” of that ciphertext.

We can use SIMD technology as an optimization tool, it is worth

noting that the selection of parameters will be a little different after

using this method. Since SIMD technique operates on the elements

in the slot simultaneously, we should choose the appropriate pa-

rameters so that the technique can be better combined with the

size of the segments we are dividing.

Therefore, when using this optimization technique, further pa-

rameter analysis is very important. We need to carry out detailed

analysis to weigh the multiple parallelism caused by more slots

against the single operation inefficiencies caused by more slots.

9 RELATEDWORK
Secure Pattern Matching (SPM): The task of SPM is to deter-

mine whether the plaintext corresponding to the two encrypted

ciphertext meets certain conditions. Specifically, given an encrypted

lookup value, it returns a vector of 𝑛 ciphertexts (𝑐1, . . . , 𝑐𝑛), where
𝑐𝑖 indicates whether the 𝑖th data element is a match to the lookup

value (or sometimes returning only a YES/NO answer of whether a

match exists). There are many works about SPM on FHE encrypted

data, see [11, 12, 20, 21, 23, 31, 33] for details. The main drawback of

these protocols is that the communication complexity and client’s

running time are proportional to the number of stored elements.

Private Information Retrieval (PIR): PIR is a useful protocol to

retrieve at most a single record 𝑥𝑖 in the encrypted array (as in SQL

UNIQUE constraint), it provides a restricted search functionality,

where the client’s lookup value must be a unique identier. Low
degree polynomials realizing secure data retrieval for these unique

identifier settings have been shown in prior works (see [5, 14, 16]).

We note that the server’s run-time in a single server PIR (whether

or not FHE based) is inherently linear in the size of dataset (𝑛). This

protocol provides only a restricted search functionality, which is

incompatible in our setting.

Private Set Intersection (PSI): PSI refers to a setting where two

parties each hold a set of private items and wish to learn the inter-

section of their sets without revealing any additional information

except for the intersection itself. Themost efficient works are shown

in [7, 22, 24, 25], however, the protocol is inefficient in the sense of

its communication complexity is at least linear dependence on the

smaller database size (𝑛).

Searchable Encryption (SE): SE enables highly efficient search

over encrypted data. Specifically, SE focuses on achieving sublinear

search time. There are two main primitives for searchable encryp-

tion: searchable symmetric encryption (SSE) [30] and public key

encryption with keyword search (PEKS) [3]. However, the security
is weakened to leak vital search information, like access pattern.

10 CONCLUSION
In this paper, we propose an efficient algorithm – LEAF (and its

variants LEAF+ ) – with low communication complexity for FHE-

based secure search. Our scheme relies on three novel techniques

including localization, extraction, and reconstruction. LEAF only

requires the client to encrypt the lookup value and upload it to

the server, and the server will return the encrypted coordinates

corresponding to the matching items in the encrypted database.

In the whole process, the client only needs to encrypt the lookup

value and decrypt the output, which enables our algorithm to be

deployed on weak-power devices and embedded systems.

The security of the protocol is guaranteed by the semantic se-

curity feature of FHE. The server could only access the encrypted

data in the whole process, so the data privacy is enhanced. LEAF
can be performed over 𝐺𝐹 (2), which fits all current homomorphic

encryption algorithm. Meanwhile, our algorithm can support un-

restricted search function, which greatly expands its application

scenarios.
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Appendices

A SEQUENTIAL RETRIEVAL
In the main body, we provide a faster secure search algorithm that

takes as input an encrypted array, consisting of encrypted 0s and 1s,

and produces as output the first 1’s index and its corresponding item.

For completeness, we recall from Akavia et al. [2] how to extend

secure search functionality to return the rest matching elements.

Assume that we have obtained the first match’s index, say 𝑖 , and

want to retrieve the second matching. The intuition is that once

we set the first non-zero term to 0, the second non-zero term now

becomes the first in the original encrypted array, so one just applies

the secure search algorithm and repeats the above process.

It’s not very hard to set the first non-zero term in the original

array to 0, since we obtain this encrypted binary array by applying

the matching method on each item in the database, we can change

the original matching criteria by adding additional requirement, i.e.,

output 1 if and only if the item in the database meets the following

two conditions simultaneously:

• The item satisfies the original matching condition;

• The item’s index is greater than 𝑖 (the first matching’s index);

Then, apply this new matching method to the database to obtain

a new encrypted binary array, which differs only in that the first

non-zero term in the original array is set to 0. More details are found

in Akavia et al.’s work [2], which takes the same time complexity

(𝑂 (𝑛)) as a normal exact matching in the asymptotic sense.

To our best knowledge, retrieval following matching needs fur-

ther interaction as we have to send the encrypted index 𝑖 to the

server and need to rerun the matching and searching algorithms,

which is time-consuming. However, at the same time it makes

adversary infeasible to find out the number of matchings in the

database, since the client can choose whether to continue fetching

the next matching or not, which enhances the privacy.

https://github.com/Microsoft/SEAL
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Figure 10: An example that a polynomial of degree dgr, e.g.,
Π
𝑑𝑔𝑟

𝑖=1
𝑥𝑖 can be implemented by a balanced 𝐵-ary tree for min-

imized depth ≈ log𝐵 dgr.

B MULTIPLICATION STRUCTURE
C PROOF OF LEMMA 4.1

Lemma. (1 − 𝜀
𝑛 )

𝑛 ≥ 1 − 𝜀, ∀𝑛 ∈ N+, 𝜀 < 1, the equal sign holds if
and only if 𝑛 = 1.

Proof. Define

𝑓 (𝑥) = (1 − 𝜀

𝑥
)𝑥

Take the derivative with respect to 𝑥 , define the derivative func-

tion as 𝑔(𝑥):

𝑔(𝑥) = 𝑑 𝑓 (𝑥)
𝑑𝑥

= (1 − 𝜀

𝑥
)𝑥
( 𝜀

𝑥 (1 − 𝜀
𝑥 )
+ ln(1 − 𝜀

𝑥
)
)

Take the derivative with respect to 𝑥 :

𝑑𝑔(𝑥)
𝑑𝑥

= − 𝜀2

𝑥3 (1 − 𝜀
𝑥 )2

< 0

which means that 𝑔(𝑥) is a monotonically decreasing function,

so we have:

𝑔(𝑥) > 𝑔(+∞) = 0

which means that 𝑓 (𝑥) is a monotonically increasing function,

so for 𝑛 ≥ 1, we have:

𝑓 (𝑛) ≥ 𝑓 (1) = 1 − 𝜀
that is, if 𝑛 ≥ 1, we have:

(1 − 𝜀

𝑛
)𝑛 ≥ 1 − 𝜀

□
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