
Minting Mechanisms for Blockchain

– or –

Moving from Cryptoassets to Cryptocurrencies∗

Dominic Deuber1, Nico Döttling2, Bernardo Magri1, Giulio Malavolta1, and
Sri Aravinda Krishnan Thyagarajan1

1Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
2CISPA Helmholtz Center, Germany

November 15, 2018

Abstract

Permissionless blockchain systems, such as Bitcoin, rely on users using their compu-
tational power to solve a puzzle in order to achieve a consensus. To incentivise users in
maintaining the system, newly minted coins are assigned to the user who solves this puzzle.
A hardware race that has hence ensued among the users, has had a detrimental impact on
the environment, with enormous energy consumption and increased global carbon footprint.
On the other hand, proof of stake systems incentivise coin hoarding as players maximise
their utility by holding their stakes. As a result, existing cryptocurrencies do not mimic the
day-to-day usability of a fiat currency, but are rather regarded as crypto-assets or investment
vectors.

In this work we initiate the study of minting mechanisms in cryptocurrencies as a primi-
tive on its own right, and as a solution to prevent coin hoarding we propose a novel minting
mechanism based on waiting-time first-price auctions. Our main technical tool is a proto-
col to run an auction over any blockchain. Moreover, our protocol is the first to securely
implement an auction without requiring a semi-trusted party, i.e., where every miner in the
network is a potential bidder. Our approach is generically applicable and we show that it
is incentive-compatible with the underlying blockchain, i.e., the best strategy for a player is
to behave honestly. Our proof-of-concept implementation shows that our system is efficient
and scales to tens of thousands of bidders.

∗This paper is part of the work of the Nuremberg Campus of Technology, a research cooperation of Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU) and Technischen Hochschule Nürnberg Georg Simon Ohm,
supported by the state of Bavaria.

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Our Solution . 3

2 Preliminaries 5
2.1 Cryptographic Building Blocks . 5
2.2 Execution Model . 6
2.3 Rational Security . 7

3 A Primer on Auction Theory 7
3.1 Waiting-time Auction . 8

4 Minting Mechanisms and Analysis 9
4.1 Utility-Preserving Allocation . 9
4.2 Hoarding in PoS . 10

5 Our protocol 11
5.1 Blockchain System . 11
5.2 Unlinkable Transactions . 12
5.3 Protocol Description . 13

5.3.1 Global Parameters . 13
5.3.2 Chain Validity. 14
5.3.3 The Minting protocol . 15

5.4 Protocol Analysis . 15
5.5 System Parameters . 17
5.6 Bootstrapping the System . 18

6 Implementation 18
6.1 Cryptographic Components . 18
6.2 Optimisations . 19
6.3 Benchmarking . 20

7 Discussion 21

8 Related Work 22

9 Conclusions and Open Problems 22

A Definitions 27
A.1 Probability . 27
A.2 Non-interactive CCA-Commitment . 28
A.3 Time-Lock Puzzles . 28
A.4 Succinct Non-interactive Arguments . 29
A.5 Unlinkable Transactions . 30

B Security Analysis 30

1 Introduction

Since its onset in 2008, Bitcoin [Nak08] has paved the way for the emergence and widespread
acceptance of several hundred cryptocurrencies all over the globe, promising an era of borderless
decentralised digital currency system. At the time of writing, there are over 1.7K cryptocurren-
cies with a total value of more than 260 Billion dollars. These currencies can be characterised
according to their consensus mechanism, namely, Proof of Work (PoW), Proofs of Space, and
Proof of Stake (PoS) among other variants.

Proof of Work based consensus systems, such as Bitcoin, rely on users solving a hard compu-
tational puzzle to achieve decentralised consensus on the state of the system. Since no efficient
algorithm is known for solving such a puzzle, users have to rely on their computational power
for an exhaustive search of the solution. This process is often referred to as “mining”. Miners
work to maintain the system by validating transactions and a reward is assigned to the miner
who solves the puzzle first. Apart from the reward, the miner also collects fees from the transac-
tions he validated. This incentive mechanism has led to a hardware race [Tay13, Pec13, Min17],
which has resulted in enormous energy demands and environmental problems [OM14]. As an
undesirable consequence, mining has now become feasible only to major investors who can afford
powerful mining hardware [Poo17].

To mitigate the problems mentioned above, the community investigated alternative consen-
sus mechanisms, based on more energy-efficient resources. Proof of Space proposals [ABFG14,
DFKP15] are based on disk space as the consensus resource, while Proof of Useful Work [Kin13,
MJS+14] achieve consensus by performing work that may turn useful in practice. Proof of Stake
(PoS) [KN12, KRDO17] systems rely on the rationality of a stakeholder in the system to be-
have honestly due to the risk of devaluing the currency. In PoS, the consensus leader is chosen
solely based on her stake in the system. This mechanism has the appealing feature of not being
“wasteful” as no resource is consumed to achieve a consensus.

An Unfulfilled Promise. The meteoric rise in the value of virtually all cryptocurrencies
has caused large scale hoarding of coins: Users are reluctant to trade their coins, fearing a
sudden surge (due to high volatility) in value of the currency. Bitcoin is speculated to be the
new digital gold, rather than a currency for day-to-day usage [Met]. Bitcoin’s fixed cap on the
supply of new coins and energy demanding PoW mining, has resulted in people viewing it as an
investment vector [ass, Kot] instead of a currency. On the other hand, in PoS based systems,
the stakeholders are incentivised to hold their stake to maximise their probability of becoming
the consensus leader and collect new coins and/or transaction fees. In both the above scenarios,
the system is affected by significant deflation of coins, thereby discouraging users to engage in
day-to-day trading (in contrast to fiat currencies).

Towards Cryptocurrencies. The relation between money supply and hoarding is a well
studied topic in economic theory. Tsiang [Tsi89] advocates for a moderate inflation as a coun-
termeasure for the stagnation of money. Several other works in the literature [Sat11, Hum07,
Woo11, OS90] extensively study a steady inflation (in the form of increase in money supply) as
a deterrent for money hoarding and as an incentive for trading. Predictably, fixing the supply of
coins (as in Bitcoin) and incentivising stake-holding (as in PoS), have the opposite effect. This
issue may hinder the long-term viability of cryptocurrencies as an alternative to fiat currency
systems.

State of the Art Minting Mechanisms. While consensus seems to be a better understood
problem [KRDO17, GKL15, PSS17, GKL17] given the current state of affairs, there is no unified
solution for the introduction of new coins in a cryptocurrency. Current folklore approaches are
either energy expensive (such as PoW-based systems) or incentivise hoarding of stakes (such as
PoS-based approaches). Surprisingly, this problem has hardly received any attention and, to the

1

best of our knowledge, there is no rigorous treatment of minting mechanisms in cryptocurrencies.
The problem of a secure minting mechanism shares several challenges with those that exist

for achieving consensus. Above all, the main difficulty lies in the prevention of Sybil attacks:
A malicious user may spawn arbitrarily many identities and exploit the benefits of the newly
created users simultaneously. Trivial solutions, such as randomly assigning newly minted coins
to a user in the system are vulnerable to this family of attacks. In a fully distributed scenario,
Sybil attacks are hard to prevent and may lead to catastrophic consequences [Goo].

Most of the current systems (such as PoW [Nak08, GKL15] or proofs of space [DFKP15,
ABFG14]) have integrated the distribution of new coins with the consensus mechanism: The
miner who proposes the new block, is also rewarded with the newly minted coins. However,
the brute-force approach (of PoW especially) to obtain the reward has resulted in a hardware
race among the miners [Min17] and subsequent increase in the difficulty of mining. PoS-based
system either do not mint new coins at all (fixed cap) [KRDO17], or assign the new coins to
the consensus leader [KN12]. As discussed above, this invariably incentivises coin hoarding by
the stakeholders and promotes the deflation of the currency. To the best of our knowledge, the
problem of a unified minting mechanism for cryptocurrencies is still open.

Decoupling Minting from Consensus. In this work we initiate the study of minting
mechanisms as a primitive on its own right and we propose a new protocol based on waiting-
time auctions. Any user in the system only requires a small amount of coins to compete for
the newly minted coins. As a result, the system mitigates coin hoarding and incentivises the
participation of regular users, as they can compete with large investors. In a nutshell, our
system rewards the user who is willing to “wait the longest”, after the user has waited for
that amount of time. Under the assumption that users cannot stack the time at their disposal,
pooling resources does not increase the chances of receiving the new coins (thereby preventing
sybil attacks).

On a conceptual level, we suggest a hybrid approach for cryptocurrencies, where the minting
mechanism is decoupled from the consensus. The consensus is only incentivised by the collection
of transactions fees, while the minting of new coins in the system is carried out by the minting
mechanism, with its own set of rules. This makes our proposal directly applicable to any form
of consensus and, in particular, to PoS-based systems.

1.1 Our Contributions

Our contributions can be summarised as follows.

1. We initiate the rigorous treatment of minting mechanisms in cryptocurrencies and we
analyse the pitfalls of folklore solutions. We introduce the concept of utility-preserving
stake allocation (section 4), on the same spirits of Pareto efficiency. Informally, this
property states that in a utility-preserving system, stakeholders can trade their stake
without affecting their chances of obtaining newly minted coins. Using this property
we analyse and show that coin hoarding is in fact incentivised in a PoS-based minting
mechanism where new coins are assigned to the consensus leader. To backup this claim,
we present empirical evidence that PoS-based systems have a significantly lower number
of transactions between users.

2. We propose a new minting mechanism based on waiting-time auctions (section 3) and we
show that it is incentive-compatible with the underlying blockchain (subsection 5.4), i.e.,
following honestly the protocol is the Nash equilibrium strategy for rational miners on the
blockchain system. We also formally show that our mechanism is utility-preserving in its
stake allocation, and therefore mitigates the problem of coin hoarding. Informally, this is

2

Auction Waiting Redeem

U1, 5 days U2, 3 days

U4, 40 sec U5, 30 min U6, 10 min

U3, 1 day

� 5 days

Figure 1: Waiting-time based rewarding where user U1 is prepared to wait the longest (5 days),
and obtains the reward after waiting for 5 days.

because the stakeholder needs only a token to participate in a minting round, while the
rest of the coins are free to be traded.

3. On a technical level, we present a cryptographic construction (subsection 5.3) for realising
a first-price auction on top of a blockchain. Our protocol does not require any additional
interaction other than what is required by the underlying blockchain, and does not rely
on any semi-trusted party. Our solution is the first where every miner in the network is
a potential bidder. This is in strong contrast with previous proposals that assume the
existence of a semi-trusted auctioneer to collect bids and announce the winner.

4. We demonstrate the scalability of our approach with a proof-of-concept implementation
(section 6) of our construction and a thorough performance analysis. The system can be
scaled to support thousands of bidders per block with a reasonable block size (8MB) while
leaving more than two-thirds of the block free for standard transactions.

1.2 Our Solution

To circumvent the problem of Sybil attacks, the minting mechanism must rely on some quan-
tifiable resource. On that regard, we identify time to be such a resource. The time that we
consider here is the physical time one has in her future, or in other words, the notion of “from
now on”. Our minting mechanism leverages the observation that the time at one’s disposal is
(roughly) equal across the set of users and cannot be combined with the time of other users.

Minting Mechanism. We describe our mechanism under the assumption of the existence
of an underlying blockchain system. Specifically, our protocol can be built on top of any
public transaction ledger whose consensus relies solely on transaction fees as incentive. Our
protocol implements a sequential first-price auction, does not require an auctioneer, and the
miners can actively participate in the protocol and compete for the rewards. We leverage
rational arguments to show that the best strategy for every user is to simply follow the protocol
specification. Figure 1 gives a pictorial overview of one full round of our minting mechanism,
that consists of an auction round, waiting period and redeem period. Each auction round in
itself consists of three phases:

1. At periodic intervals users engage in a first-price auction where the item being auctioned
are R newly minted coins. The bidding phase for the auction spans through α blocks
where every user willing to participate posts a bid transaction with a concealed bid. The
bid here is the amount of physical time units the user is willing to wait in order to obtain
the minted coins. To be eligible to participate, a user is required to “lock” some fixed
amount Q of his coins (called token of participation or participation token) for the entire
duration of the auction.

3

2. Once the bidding phase is over, the protocol allocates β blocks for users to broadcast the
unveil information of their bids. We call these β blocks the opening phase.

3. After the opening phase, miners can open all the posted bids (using the corresponding
unveil information) and determine the winner of the auction. A mint transaction is then
generated assigning R newly minted coins to the winner of the auction, that can be
redeemed only after the time corresponding to her bid has elapsed. All users can unlock
their token of participation Q after the auction round is over, except the winner, who only
gets back Q together with the minted coins.

Cryptographic Implementation. As a first (flawed) attempt, consider a protocol in which
every bidder posts a transaction with a commitment com to their bid, then later in an opening
phase they post the unveil r, and the winner can be publicly determined. The challenge that
arises here is how to deal with the case where a player does not post the opening to their bid.
If there is a mechanism in place to actively prevent this behaviour, e.g. by excluding this player
from the auction and determining the winner among the other bidders, then this constitutes an
incentive for miners to suppress the openings of higher bidders. On the other hand, if no such
mechanism is in place and the auction is aborted after a certain time, then a single bidder can
prevent the minting of new coins.

Current proposals for running auctions over blockchains [KMS+16, BK] make clever usage
of smart contracts but assume the existence of a semi-honest party that is entrusted to run the
auction contract. This party is aware of the bidders’ inputs and it is trusted to not disclose or
manipulate that information. In our setting, every miner is a potential bidder, and at the same
time might be in charge of including the bids of other users in the current block. This opens the
door to “bid suppression” attacks where such a miner selectively discards some bids to increase
his chances of winning.

To deal with these apparently conflicting requirements, we propose a cryptographic solution
where each round of the auction can be completed even if players go offline after the bidding
phase. Our protocol requires players to embed the unveil information r in a time-lock puzzle
tlp during the bidding phase. Time-lock puzzles ensures that their payload is hidden for a
stipulated amount of time but can be opened once this amount of time has elapsed. This means
that bids remain concealed until the end of the bidding phase but can be efficiently recovered in
case a player does not publish the unveil of the corresponding commitment (i.e., the player goes
offline). This effectively eliminates the need for a trusted party in the execution of the auction
over the blockchain. We stress however, that in a rational run of the protocol the time-lock
puzzles are never required to be solved as the bidders reveal the bids during the opening phase.
Time-lock puzzles are only used as a deterrent against malicious bidders who refuse to open
their bids.

Towards a Scalable System. One of the major challenges tied to our approach is to ensure
that the system can be scaled to support a significant amount of bidders without affecting the
transaction throughput dramatically. A subtle issue with what was discussed above is that
there is no mechanism in place to ensure that the time-lock puzzle tlp contains a valid unveil r
of the associated commitment com. An obvious solution would be to include a non-interactive
zero-knowledge proof [BFM88] of consistency. However, attaching a proof to each bid would
have a critical impact on the size of transactions (and consequently of the blocks) and on the
computational effort of the bidders.

We instead adopt a different strategy, where players are not required to prove the well-
formedness of their bids. When miners encounter a puzzle that contains some information r
which is not a valid unveil for com, they can “steal” the participation token of that user by
publishing a recovery proof of r. Recovery proofs [BN00, Pie18] allow one to publicly verify

4

that a certain payload r is contained in a time-lock puzzle tlp exponentially faster than simply
solving the puzzle. It can then be publicly verified that r is not a valid opening of com.
This mechanism discourages players from posting malformed bids, since they will eventually be
caught and lose their participation token. The advantage of this solution is that cryptographic
proofs are invoked only for the few cases where the bids are malformed, as opposed to having
a consistency proof for each bid transaction.

Formal Analysis. Our protocol can be formally modelled as a first-price sequential auction
with sealed bids and we leverage state-of-the-art results on sequential auctions [LST12] to show
that our rewarding mechanism has a Nash equilibrium on the amount of time units that a user
should bid in each round of the auction. Then we analyse the utility-preserving stake allocation
of our system and we show that our minting mechanism incentivises stake trading. In contrast,
for folklore minting solutions, all stake allocations are not utility-preserving, which does not
promote coin circulation and lead to stake hoarding. Finally, we prove that our mechanism is
incentive-compatible with the underlying blockchain, i.e., honestly following the protocol is the
Nash equilibrium strategy for rational miners on the blockchain system.

Implementation. As a proof-of-concept implementation of our system we build an entire
blockchain system coupled with our minting mechanism. Considering a bidding phase of 10
blocks and blocks of size 8MB, we can fit more than 10K bids in a single auction round and still
leave around 70% of the block’s capacity free for standard transactions. To produce a proof for
a mint transaction including 750 bids, the system takes less than 3 minutes, and the verification
is almost instant, as we show in subsection 6.3. We remark that, at the time of writing, there
are roughly 10K Bitcoin nodes around the globe, and our protocol can easily support these
numbers without much overhead on the underlying blockchain.

2 Preliminaries

Throughout this work we denote by λ ∈ N the security parameter and by x← A(in) the output
of the algorithm A on input in.

2.1 Cryptographic Building Blocks

Below we recall the cryptographic primitives used in our protocol and we refer the reader
to Appendix A for formal definitions.

Non-interactive CCA-Commitment Schemes. A non-interactive tagged commitment
scheme consists of a pair of randomised algorithms: a setup Setup(1λ), that takes as in-
put the security parameter and outputs a common reference string crs, and a commitment
Commit(crs, addr,m; r) that takes as input a common reference string crs, a tag/identity
addr, a message m and random coins r and outputs a commitment com. Loosely speaking, the
commitment com should hide the message m, and it should be infeasible for anyone to show
a valid set of coins r′ that such that Commit(crs, addr,m′; r) = com for a different message
m′. Additionally, for such schemes it is not possible to “maul” commitments for one tag into
commitments for another tag. Such commitment schemes can be constructed from standard
SHA-256 commitments in the random oracle model [BR93].

Time-Lock Puzzles. A time-lock puzzle allow one to conceal a value for a certain amount
of time. The puzzle generation algorithm PGen(1λ,T,m) takes as input a security parameter,
a hardness-parameter T and a message m, and outputs a puzzle tlp. The puzzle tlp can be
cracked using the solving algorithm PSolve(tlp), which outputs the message m and a recovery
proof π. The proof can be verified with the corresponding verification algorithm PVer(tlp,m, π).

5

Time-lock puzzles guarantee that a puzzle can be solved in polynomial time, but strictly higher
than T. Additionally, verifying a recovery proof shall be exponentially faster then solving
the puzzle. The first and to date only efficient candidate construction of time-lock puzzles was
given by Rivest, Shamir and Wagner [RSW96] and is based on a variant of the RSA assumption.
Boneh and Naor [BN00] showed how to compute a recovery proof such that its verification is
exponentially faster than solving the puzzle. Subsequently, Pietrzak in his recent work [Pie18]
proposed an improvement in the efficiency of the recovery proof.

Succinct Non-interactive Arguments. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be an NP -
witness-relation with corresponding NP -language L := {x : ∃w s.t. R(x,w) = 1}. A succinct
non-interactive argument (SNARG) [Mic00] system for R is initialised with a setup algorithm
crsGen(1λ) that, on input the security parameter, outputs a common reference string crs.
A prover can show the validity of a statement x with a witness w by invoking P(crs, x, w),
which outputs a proof π. The proof π can be efficiently checked by the verification algorithm
V(crs, x, π). We require a SNARG system to be sound, in the sense that it is hard for any
prover to convince a verifier of a false statement, and proofs to be succinct (of size independent
of x and w).

2.2 Execution Model

In the following we define the notation for our protocol executions. Our definitions follow along
the same lines of [PS17].

A protocol refers to an algorithm for a set of interactive Turing Machines (also called nodes)
to interact with each other. The execution of a protocol Π that is directed by an environ-
ment/outer game Z(1λ), which activates a number of parties P = {p1, . . . , pn} as either honest
or corrupted parties. Honest parties would faithfully follow the protocol’s prescription, whereas
corrupt parties are controlled by an adversary A which reads all their inputs/message and sets
their outputs/messages to be sent.

• A protocol’s execution proceeds in rounds that model atomic time steps. At the beginning
of every round, honest parties receive inputs from an environment Z; at the end of every
round, honest parties send outputs to the environment Z.
• A is responsible for delivering all messages sent by parties (honest or corrupted) to all

other parties. A cannot modify the content of messages broadcast by honest parties.
• At any point, Z can corrupt an honest party j which means that A gets access to its

local state and subsequently, A controls party j. (In particular, this means we consider a
model with erasures: Random coin tosses that are no longer stored in the local state of j
and therefore are not visible to A.)
• At any point of the execution, Z can uncorrupt a corrupted party j, which means that

A no longer controls j. A party that becomes uncorrupt is treated in the same way as a
newly spawning party, i.e., the party’s internal state is re-initialised and then the party
starts executing the honest protocol no longer controlled by A.

Note that a protocol execution can be randomised, where the randomness comes from honest
parties as well as from A and Z. We denote by view← EXECΠ(A,Z, λ) the randomly sampled
execution trace. More formally, view denotes the joint view of all parties (i.e., all their inputs,
random coins and messages received, including those from the random oracle) in the above
execution; note that this joint view fully determines the execution. For convenience, we denote
by viewδ the state of the execution at round δ and we define the following two functions: On
input an execution viewδ at a certain round δ, the function public returns the public state of

6

the protocol, i.e., the information available to all machines, whereas honest returns the set of
honest parties at round δ.

2.3 Rational Security

Here we give a brief overview of the notion of rational players, following the definitions of [HP15].
Every player is characterised by some payoff (or utility) function u. In any protocol (game),
utility represents the motivations of players. A utility function for a given player assigns a
number for every possible outcome of the protocol with the property that a higher number
implies that the outcome is more preferred. A rational player wishes to maximise her utility.

Every player is also equipped with a strategy function. A strategy function takes as input
the view of the player so far and outputs its next action. Rational players will choose from the
strategies available to them the one that results in the most preferred outcome. Note that the
strategies and the protocol can have potential randomness which invokes a certain distribution
over the outcomes of the protocol. We define the utility of a distribution as the the expected
value of the utility of an outcome drawn from that distribution.

Let Z be a family of subsets of the set of players for a game G. We say that a set of strategies
s constitutes a Z-coalition-safe ε-Nash-equilibrium, if no coalition of players from a set Z can
gain more than ε in payoff when deviating from s when playing G.

A mediated game is one in which a trusted party, the mediator, takes inputs from players,
computes a function and provides outputs to the players. Following [HP15] we say that a
protocol Π implements a mediator F if it holds for any admissible environment/outer gamer Z
that if it is an equilibrium strategy to truthfully provide inputs to F in game Z, then it is an
ε-equilibrium strategy to honestly execute protocol Π in Z, where ε is negligible.

3 A Primer on Auction Theory

An auction is a mechanism which runs with some pre-determined rules to sell some item of value.
It involves the participation of several parties whose roles are well defined. In the simplest of
settings, there is a seller who puts an item on sale and more than one interested buyers compete
with each other by placing bids, or the cost they are willing to pay for the item. The highest
bidder is announced as the winner and is required to pay a certain amount of money and the
item is awarded to this winning buyer. Here we give a brief overview of some of the basic
concepts of auction theory.

Valuation. Players’ valuations define the economic value of an object that is on sale during
an auction. It may be the same across the participants in the auction or can be personalised
depending on the “value” of the object to each one of them. The valuation is denoted by a
function v(·) that takes the object and other observable information that might be specific and
personalised to each participant as input and returns the value as a real number v∗ ∈ R+ (up
to some fixed precision). For simplicity, we will refer to the valuation of player i as vi.

Cost. The cost defines the economic price that a participant in the auction pays depending
on the outcome of the auction. It is denoted by a function c(b) that takes as input a bid b and
returns the cost as a real number c∗ ∈ R+. We assume that the cost function is monotonously
increasing with b.

Auction Model. An auction model describes the set of participants (bidders and sellers), the
set of items up for sale and the rules regarding these items, and finally the value of each item
for each bidder. The value of an item for each bidder is determined by the bidder’s capabilities,
preferences, information, and beliefs or what can be collectively called as the type of each bidder.

7

The model accounts for a mechanism and an environment. A mechanism consists of rules that
govern what the participants are permitted to do and how these permitted actions determine
outcomes. In this context, an environment comprises of the following: A list of the participants
or potential participants, another of the possible outcomes, and another of the bidders’ possible
types.

We consider a set of potential bidders BI where I = {1, 2, . . . , n}. We assume that the types
of each bidder are independently and identically distributed (i.i.d.), meaning that the types of
each bidder are independent from one another while being from the same distribution. Finally,
the utility of bidder Bi is characterised by a function ui that depends on the bidder’s type and
on the outcome of the auction.

3.1 Waiting-time Auction

We first consider the mediated setting where an auction is conducted by a trusted auctioneer
A and a set of n bidders (B1, . . . , Bn). The auctioneer A is entrusted with collecting bids from
the bidders and awarding the reward to the winner. Moreover, after the bidding phase is over
the auctioneer A reveals the bids of all bidders.

We assume the time to be divided into discrete units which are known to all participants of
the auction and to the auctioneer. The auction has several fixed parameters which we assume
to be known to every participant:

• The auction good R of some economic value.
• A fixed token of participation Q in some arbitrary currency.
• The duration of each auction phase.
• The number of auction rounds.

The auction is composed of three phases, which we describe below.

1. Bidding Phase: In the bidding phase each bidder Bi sends its bid bi along with the token of
participation Q to the auctioneer A through a confidential channel. After a fixed amount
of time, A announces the end of the bidding phase.

2. Opening Phase: Let (b1, . . . , bn) be the bids collected in the bidding phase of the same
round, let bmax = max(b1, . . . , bn). In case of ties bmax is chosen according to some
deterministic order1. We denote by Bmax the bidder who sent the bid bmax. For all
i ∈ {1, . . . n} \max, the auctioneer A sends Q to Bi, whereas A sends (Q,R) to Bmax after
bmax-many units of time.

3. Winner Announcement: A publicly announces the identity of the winner Bmax, the amount
bmax and all other bids.

Bayesian Nash Equilibrium. A recent result of Leme et al. [LST12] shows that sequential
first-price auctions admit a subgame-perfect Nash equilibrium: This means that there exists a
profile of bidding which is a Nash equilibrium in the single round case and, if we arbitrarily fix
the outcomes of ` rounds, the profile also remains a Nash equilibrium for the induced game.
Greenwald et al. [GLS12] present a dynamic programming based algorithm to calculate the
approximation of such an algorithm. The only difference between our setting and the standard
first-price auction is that the winning bidder does not pay directly her bid but has to wait time
proportionate to it. If one views the cost of keeping some funds/investment locked for a certain
time as the payment (also known as collateral cost), then our waiting-time auction can be cast
in the more generic framework of first-price auctions and the existence of a Nash equilibrium
follows from the following theorem.

1E.g., lexicographical in the commitments of the bidders.

8

Theorem 1 ([LST12]). Sequential first-price auction when a single item is auctioned in each
round (assuming that after each round the bids of each agent become common knowledge) has
a subgame-perfect equilibrium that does not use dominated strategies, and in which bids in each
node of the game tree depend only on who got the item in the previous rounds.

4 Minting Mechanisms and Analysis

In this section we describe the basic minting for PoS systems and we show that with such
a mechanism in place, rational users are always incentivised to hoard their stake. Later, in
contrast to PoS minting, we show that our minting mechanism greatly mitigates this stake
hoarding phenomenon.

4.1 Utility-Preserving Allocation

To analyse the behaviour of minting mechanisms in relation to stake hoarding we introduce the
concept of utility-preserving stake allocation, that is similar in spirits to the concept of Pareto
efficiency2 [MCWG95]. Analogously to Pareto efficiency, we consider utility functions which
assign utilities or benefits to stake allocations. Informally, a utility-preserving stake allocation
(or distribution) is an allocation that allows a transition to a different stake allocation where
no user decreases his own utility in the process. With this new concept in hand, it becomes
possible to analyse if a particular distribution of stakes allows users to trade coins within the
system and still maintain their utilities. We give a formal definition below.

Definition 1 (Utility-Preserving Transition). Consider two stake allocations s = (s1, . . . , sn)
and s′ = (s′1, . . . , s

′
n) with

∑
i si =

∑
i s
′
i = t. We say a transition from s to s′ is utility-

preserving, if it holds for all i ∈ [n] that ui(s
′
i) ≥ ui(si).

Vanilla PoS Minting. In PoS systems, the stakeholders assume the role of consensus leaders
and propose new blocks to extend the blockchain. These systems ensure that a stakeholder
is chosen as the slot leader with probability proportional to one’s stake. As an incentive to
propose a new block, the consensus leader collects fees from the transactions within the block.
As the basic minting mechanism for PoS, we consider the scenario where the consensus leader is
also allowed to mint new coins, much similar to what happens in PoW systems (e.g., Bitcoin).

Specifically, consider a proof of stake system where a reward R is given to the consensus
leader. Player i becomes consensus-leader with probability si/t. Let Xi be a random variable
which is 1 if player i is consensus leader and 0 otherwise, i.e. the payoff of player i is given by
R ·Xi. Consequently, it holds that E[R ·Xi] = R ·E[Xi] = R ·Pr[Xi = 1] = R · sit , i.e. we define
ui(si) = R · sit .

In such a system, no non-trivial transition between two stake allocations is utility-preserving.
This is shown by the following theorem.

Theorem 2. let s = (s1, . . . , sn) and s′ = (s′1, . . . , s
′
n) be stake allocations with

∑
i si =

∑
i s
′
i =

t and s 6= s′. Then there exists a player i∗ for which it holds that ui∗(s
′
i∗) < ui∗(si∗).

Proof. As s 6= s′, there must exists a j with sj 6= s′j . If s′j < sj we set i∗ = j and it follows
immediately that ui∗(s

′
i∗) = R · s′i∗/t < R · si∗/t = ui∗(si∗). On the other hand, if s′j > sj , there

must be a k with s′k < sk, as otherwise
∑

i s
′
i >

∑
i si = t. In this case, set i∗ = k and the

statement follows analogously.

2Pareto efficiency is a common notion in game and economic theory used to determine if a particular allocation
of resources within a set of players is optimal or not.

9

Waiting-Time Auction Minting. In our proposal, minting is performed via a waiting time
auction. Let Xi

j be a random variable which is 1 if player i wins in round j and 0 otherwise.

Thus, the payoff of player i is R ·
∑`

j=1X
i
j . We will assume that given that player i participates

in the auction, his valuation, and therefore his probability of winning does not depend on the
stake distribution. I.e. we can write E[Xi

j] = pij for pij that do not depend on s. Therefore, it

holds that E[R ·
∑`

j=1X
i
j] = R ·

∑`
j=1 p

i
j and we can set ui(si) = R ·

∑`
j=1 p

i
j .

In such a system, every transition of stake-allocations from s to s′ for which it holds for all
i ∈ [n] that si, s

′
i ≥ Q is utility-preserving.

Theorem 3. Let s = (s1, . . . , sn) and s′ = (s′1, . . . , s
′
n) be stake allocations with

∑
i si =

∑
i s
′
i =

t. If it holds for all i ∈ [n] that si, s
′
i ≥ Q, then it holds for all i ∈ [n] that ui(s

′
i) = ui(si).

Proof. As it holds for each i ∈ [n] that that si, s
′
i ≥ Q, every player i can participate in

the waiting-time auction bid according to their valuation, which is independent of s or s′

respectively. The winner of the auction is therefore the same, regardless of whether the stake
allocation is s or s′. Consequently, the utilities are the same for s and s′.

Interpreting the Results. Theorem 2 says that any distribution of stakes within a PoS
system with the basic minting strategy will inevitably incentivise the hoarding of stakes, as
trading coins will reduce the probability of receiving the newly minted coins. Therefore, users
that circulate their coins within the system (i.e., decrease their stake) will be losing utility.

In contrast, Theorem 3 says that our minting protocol based on waiting-time auctions mit-
igates the problem of hoarding; in fact, for each auction round a user is only incentivised to
keep a stake of the size of a single participation token. In that case, the user can participate in
the auction round, and the probability of winning the newly minted coins will be strictly based
on the user’s own valuation. The remaining of the stake can be traded into the system without
reducing the user’s utility.

As an example, consider a system with t = 100 total coins, and a user with stake s = 30.
In case of PoS based minting, to optimise his utility, the user holds his stake throughout the
period of the system. In case of our minting, the user needs only Q = 2 coins to participate
and obtain the newly minted coins. After participating and winning ` rounds, the user only
has locked ` · Q amount of coins. He can freely trade the rest of the stake for his day-to-day
usage. For a pictorial representation we refer the reader to Figure 2. The dotted line represents
holding the entire stake and the bars represent locking of participation tokens after winning `
successive rounds of the auction. The space between the line and the bars (i.e., the gray region)
represents the freely tradable stake.

4.2 Hoarding in PoS

We present an empirical analysis (in Table 1) that suggests that PoS systems might incentivise
their users to hoard their coins, thereby affecting the overall circulation within the system. For
comparison, we take into account the PoW based systems Ethereum, Monero, and Zcash, and
we compare them with the PoS based systems Cardano, Reddcoin and Peercoin. We consider
the total number of transactions per month in each system for the last 6 months starting with
May 2018 (data collected from [chab, chaa], where the market capitalization considered is of
October 1st, 2018).

Our rationale behind considering these systems is: Ethereum and Cardano are both focus-
ing on smart contract and thus similar on the application level. Monero has a comparable
market cap [mar] to Cardano, which is the most popular PoS based system at this time; Red-
dcoin and Peercoin have existed for approximately the same amount of time as Monero; both
Cardano [KRDO17] and Zcash [BCG+14] are based on academic works.

10

Total # Tx

Currency Consensus Market cap Origin 05/2018 06/2018 07/2018 08/2018 09/2018 10/2018 Avg. # Tx/day Avg./Peak

Ethereum PoW $23, 6 B 04/2013 25.1 M 22.5 M 19.9 M 19.8 M 16.1 M 17.1 M 654.7 K 48.5%
Monero PoW $1.9 B 05/2014 166.4 K 131.3 K 124.4 K 116.2 K 129 K 117.4 K 4.26 K 39.4%
Zcash PoW $638 M 10/2016 244.8 K 254.5 K 175.9 K 96.6 K 100.3 K 96.7 K 5.26 K 31.6%
Cardano PoS [KRDO17] $2.2 B 10/2017 62.9 K 43.8 K 44.5 K 38.4 K 43.5 K 38.5 K 1.48 K 13.7%
Reddcoin PoS [Ren14] $135 M 02/2014 80.7 K 74 K 60.6 K 64.4 K 69 K 65.7 K 2.25 K 9.4 %
Peercoin PoS [KN12] $26 M 04/2013 11.4 K 9 K 13.6 K 13.9 K 9.4 K 8.7 K 359 4.1 %

Table 1: Number of transactions per day in cryptocurrency systems based on PoW and PoS.

We can infer from Table 1 that the volume of transactions per day is significantly lower in
PoS based systems when compared against PoW based systems. To normalise the difference in
transaction volume, we also report the average number of transactions per day, divided by the
peak. Here the peak is the number of transactions in the day at which the most transactions
occurred in the entire history of the chain (i.e., not only within the last 6 months). As an
example, for Ethereum (48.5%) this means that the average number of transactions per day
is roughly half compared to the day with most transactions. For all PoS based systems, this
measure is below 15%, what again suggests that users tend to hoard after buying the tokens.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

Rounds (`)

S
ta

ke
ra

ti
o

(s
t
) Best strategy in PoS minting

Figure 2: The plot shows the best strategy of a user who wishes to maximise his chance of
obtaining the newly minted coins. We consider a system with total number of coins t = 100, a
user with 30 coins as his stake (i.e., stake ratio 0.3), and participation token Q = 2 coins.

5 Our protocol

Our minting mechanism implements a first-price waiting-time auction on top of a blockchain
protocol. We give a description of the underlying blockchain next.

5.1 Blockchain System

In this section we detail the relevant aspects of the underlying blockchain system that is required
for our protocol. We treat the blockchain as a public transaction ledger, containing a set
of transactions in each block. We consider time to be divided into standard discrete units,
such as seconds, minutes, etc. A well defined continuous amount of these units is called a
slot. Each slot sl l is indexed for l ∈ {1, 2, 3, . . .}. We assume that users have a synchronised
clock that indicates the current time down to the smallest discrete unit. The users execute
a distributed protocol to generate a new block in each slot. We assume the slots’ real time
window properties as in [KRDO17]. In [GKL15, PSS17, KRDO17] it is shown that a “healthy”
blockchain must satisfy the properties of persistence and liveness, which intuitively guarantee

11

that after some time period, all honest users of the system will have a consistent view of the
chain, and transactions posted by honest users will eventually be included. We informally
discuss the two properties next.

Persistence: Once a user in the system announces a particular transaction as stable, all of
the remaining users when queried will either report the transaction in the same position in the
ledger or will not report any other conflicting transaction as stable. A system parameter k
determines the number of blocks that stabilise a transaction. That is, a transaction is stable if
the block containing it has at least k blocks following it in the blockchain. We only consider a
transaction to be in the chain after it becomes stable.

Liveness: If all the honest users in the system attempt to include a certain transaction into their
ledger, then after the passing of time corresponding to u slots which represents the transaction
confirmation time, all users, when queried and responding honestly, will report the transaction
as being stable.

We consider an abstraction of the blockchain protocol, denoted by Γ, where nodes receive
inputs from the environment Z, and interact among each other to agree on an ordered ledger of
transactions that achieves persistence and liveness. The blockchain protocol Γ is characterised
by a set of global parameters and validity conditions which are available to all nodes in the
network. The protocol Γ provides the nodes with the following set of interfaces which are
assumed to have complete access to the network and its users.

• {CH′,⊥} ← Γ.getChain: returns a longer CH in the network if it exists, otherwise returns
⊥.
• {0, 1} ← Γ.isChainValid(CH): The validity checking takes as input a chain CH and returns

1 iff the chain satisfies a (public) set of conditions.
• Γ.postTx(TxType, dt): takes as input the transaction type information and the transaction

data. It then constructs a transaction of type TxType with data dt , validate the transaction
and include it in the next block.
• {txID,⊥} ← Γ.isTxStable(CH, dt): takes as input a chain CH and some transaction data

dt and checks if the transaction containing dt is stabilised (w.r.t. the persistence property)
in CH. If yes, then it returns the transaction id txID within Γ, otherwise it returns ⊥.
• Γ.broadcast(dt): takes as input some data dt and broadcast it to all the nodes of the

system.

The nodes in the Γ protocol network have their own local chain CH which are initialised with a
common genesis block. The genesis block contains the information about the addresses of nodes
and the spendable balances in each of them. The consensus in Γ guarantees the properties
of Common prefix, Chain Quality and Chain growth, which in turn gives the properties of
persistence and liveness [GKL15, PSS17].

5.2 Unlinkable Transactions

In addition to the standard blockchain functionalities, we consider the following interface.

• Γ.postUnlinkTx(TxType, dt): takes as input the transaction type information TxType and
the transaction data dt and includes the corresponding unlinkable transaction in the next
block.

Such an interface is used in our main protocol to “shuffle” the addresses of the bidders of the
auction. The reason behind this is that an adversary may infer information about the current

12

bid by linking bid transactions from one round to another. This may lead to bid suppression
attacks, where the adversary is only willing to include the bids from users that consistently
bid lower than the adversary itself, and suppress all other bids. Unlinkable transactions break
the link between addresses across several rounds of the auction, thus preventing this selective
suppression attack.

Unlinkable transactions have been extensively studied in the literature [BNM+14, RMSK16,
RMSK14, MGGR13] and several efficient systems have been proposed. On the one hand we
have decentralized mixing protocols [RMSK16, RMSK14, MGGR13] which work on top of an
existing (non-unlinkable) blockchain. On the other hand, some blockchain systems have an
integrated mechanism to anonymise every transaction and are successfully deployed for real-life
applications (cryptocurrencies), such as ZCash or Monero.

Any of the above mentioned proposals is suitable for our system, since we require a very
weak notion of unlinkability: Transactions shall be indistinguishable only among the set of
payments characterised by the same amount of coins. That is, the amount being transacted is
not required to be hidden. The exact property is formalised in Appendix A

5.3 Protocol Description

In the following we define the public parameters of the system, the set of validity conditions,
and the formal specifications of our construction.

sl0︷ ︸︸ ︷
gen ←

sl1︷ ︸︸ ︷
bid1 ←

sl2︷ ︸︸ ︷
bid1 ← ·· ←

slα︷ ︸︸ ︷
bid1︸ ︷︷ ︸

bidding phase (α blocks)

←
slα+1︷ ︸︸ ︷
open1 ←

slα+2︷ ︸︸ ︷
open1 ← ·· ←

slα+β︷ ︸︸ ︷
open1︸ ︷︷ ︸

opening phase (β blocks)

←

slα+β+1︷ ︸︸ ︷
bid2 ← ·· ←

sl2α+β+1︷ ︸︸ ︷
open2 ← · · ·

Figure 3: Diagram of the auction phases for each block in the blockchain. The bidding phase
of an auction round begins immediately after the opening phase of the previous auction round
ends.

5.3.1 Global Parameters

Our protocol runs on top of a blockchain system Γ, and consists of discrete auction rounds
j = (1, 2, . . .). Each auction round consists of two phases: A bidding phase and an opening
phase. The bidding phase spans over a sequence of α blocks whereas the opening phase spans
over β blocks (see Figure 3 for a pictorial description). The parameters α and β are fixed
throughout the execution of the system. Consider the following NP-language

Lwin =
(crscom, {comi, addri}i∈[1,`], (bid?, addr?)) :

∃({bid i, ri}i∈[1,`]) s.t.

{comi = Commit(crscom, addri, bid i; ri)}i∈[1,`] and

(bid?, i?) = max
(
{bid i}i∈[1,`]

)
and

addr? = addri?

 ,

where the function (bid?, i?)← max
(
{bid i}i∈[1,`]

)
takes as input an ordered set of real numbers

and returns the greatest number together with its index. If the output index is not unique, the
function selects one deterministically according to some ordering (e.g., lexicographically). Let

13

(crsGenwin,Pwin,Vwin) be a SNARG system for the language Lwin. The global system parameters

params =

(
α, β,T, Q,R,

crswin ← crsGenwin(1λ),
crscom ← Setup(1λ)

)
consist of the auction parameters (α, β), the hardness parameter T (of the time-lock puzzle
refer subsection 2.1), a token value Q, a reward value R, and a set of common reference strings.

5.3.2 Chain Validity.

In the following we describe the conditions that determine the validity of a chain in our system.
The interface isChainValid(CH′) takes as input a chain CH′ and validates all transactions in the
chain according to the rules that will be described below. It returns 1 if and only if all of the
transactions are valid. Users of the blockchain are indexed by addresses addr, which belong to
a certain efficiently samplable domain A (note that a node in the network may be associated
with multiple addresses). We define the balance function balance(CH, addr) that takes as input
the chain CH and an address addr and returns the spendable balance associated with addr.
The spendable balance is initially 0 for all addresses and it is modified by different types of
transactions. We now define the different types of transactions and describe how to validate
each of them.

Spend transactions: Standard spend transactions payTx move coins between addresses and are
of the form (addr0, addr1, val). Let CH and CH′ be the state of the chain before and after this
transaction, respectively. A spend transaction is considered valid if and only if

balance(CH, addr0) ≥ val .

Such a transaction updates the spendable balance of the two addresses as

balance(CH′, addr0) = balance(CH, addr0)− val

and
balance(CH′, addr1) = balance(CH, addr1) + val .

Bid transactions: Bid transactions bidTx are used to post bids in each auction round and are of
the form (com, tlp, addr, j). Bid transactions are considered valid and accepted into the chain
if and only if the round j is the current and balance(CH, addr0) ≥ Q. Let CH′ be the state of
the chain right after this transaction, the spendable balance is updated as

balance(CH′, addr) = balance(CH, addr)−Q.

Steal transactions: Steal transactions stealTx are used to steal the participation token, in case
one user posts an inconsistent bid. Steal transactions are of the form (addr0, addr1, π, (m, r), j)
and are considered valid if the j-th round is the current and the j-th bidding phase contains an
inconsistent bid of the form (com, tlp, addr0, j) such that

PVer(tlp, (m, r), π) = 1 and Commit(crs, addr0,m; r) 6= com.

If the transaction is valid, the spendable balance of addr1 is updated as follows

balance(CH′, addr1) = balance(CH, addr1) +Q.

In case of multiple stealTx transactions for the same bid, only the first instance is considered
valid.

14

Mint transactions: Mint transactions mintTx are used to introduce new coins in the system and
are of the form (addr?, bid?, πwin, R, j). To validate a mint transaction, a node checks if no valid
mint transaction for the same round already is included in the blockchain. If not, it fetches all
the bid transactions in the bidding phase of the corresponding auction round to retrieve the
vector {comi, addri}i∈[1,`]. Addresses for which a valid steal transaction is present in the current
round (i.e., they published a malformed bid) are excluded from this set. A mint transaction is
valid if and only if

Vwin

crswin,

 crscom,
{comi, addri}i∈[1,`]

(bid?, addr?)

 , πwin

 = 1

and the round j is the current. The balance of all non-winning accounts is immediately increased
by Q. Let CH′ be the state of the chain after bid?-many units of time. The value of balance(CH′,
addr?) is increased by R+Q. That is, the newly minted coins are not spendable until bid?-many
units of time are elapsed.

5.3.3 The Minting protocol

Our protocol generates new coins periodically, over fixed time intervals. The complete specifi-
cation of our protocol is given in Figure 4. The coin generation mechanism spans over a round
of a first-price waiting-time auction. At the beginning of each time slot, users in the network
receive and update their local chain and generate a fresh and unlinkable bidding address.

During the bidding phase (step 1), a user obtains a bid as input from the environment and
commits to the bid (provided she has sufficient balance to afford the participation token). Along
with the commitment, she also generates a time-lock puzzle of the unveil information of the
commitment. This time-lock ensures that after a specified time the unveil information can be
recovered if a user fails to reveal the bid herself (e.g. the user went offline). She then posts a
transaction containing the commitment and the time-lock puzzle.

During the opening phase (step 2), users that posted a bid in the bidding phase can broadcast
to the network the unveil information of their commitment, so their bids can be opened. If
the opening phase is over and no winner was announced yet (step 3), the miners determine the
winner by opening all the bids posted during the bidding phase. If there is no unveil information
available for a commitment (i.e., the bid is unknown), then the miner solves the time-lock puzzle
for that commitment and recovers the unveil information. If the puzzle does not contain a well-
formed unveil, the miner posts the corresponding recovery proof, thereby stealing the token Q
from the faulty address. Such a bidding transaction is ignored in the subsequent computations
for deciding the winner of the auction round.

Once all openings are computed, the miner includes in its block a mint transaction that
assigns newly minted coins to the winner of the auction. The new coins are only redeemable
after the time corresponding to the winning bid has elapsed, and a SNARG proof guarantees
that every bid posted in the bidding phase was considered in the auction round. The veracity
of such a statement can be verified using minimal space over the blockchain, since the SNARG
proof is succinct.

5.4 Protocol Analysis

The following theorem shows that our implementation preserves the subgame-perfect Nash-
equilibria of the mediated game. In other words, we formally argue that our protocol implements
a waiting-time first-price auction on top of a blockchain (with its own set of incentives). Note

15

(Fetch chain). At the beginning of each time slot sl l, for l ∈ N, each node attempts to
update its local view by calling CH ← Γ.getChain. If isChainValid(CH) = 1 then the node sets
CH as the new local chain.

(Address Generation). Starting from an address addr such that balance(CH, addr) ≥ Q,
the node generates a fresh bidding address addrB and posts an unlinkable transaction through
Γ.postUnlinkTx(payTx, (addr, addrB, Q)).

(Auction round) At the beginning of an auction round j, all the nodes start with a bidding
address addrB. Each node checks the local chain CH to determine the current phase (bidding,
opening or winner announcement) and proceed as follows.

1. (Bidding phase)

(a) Receive input bid from the environment Z
(b) If the bid-transaction has not yet been posted in the current phase yet, then

compute com ← Commit(crscom, addrB, bid ; r), using some random coins r, to
commit to bid

(c) Create a time-lock puzzle tlp encapsulating the unveil information of com by
running tlp ← PGen(1λ,T, (bid , r); r′), using some random coins r′

(d) Post a bid transaction through Γ.postTx(bidTx, (com, tlp, addrB, j))

2. (Opening phase)

(a) Check the stability of the bid transaction by verifying that Γ.isTxStable(CH,
(com, tlp, πbid, j, addrB)) 6= ⊥. If the transaction is stable, then broadcast the unveil
information through Γ.broadcast(addrB, bid , r).

3. (Winner announcement)

(a) If a valid winner announcement transaction for the current round already exists,
skip the steps below

(b) Collect all valid openings that are broadcasted for the current auction round and
determine the corresponding bids and addresses

(c) For each of the unopened bids (comi, tlpi, addrBi) solve the corresponding time-lock
puzzle tlpi by computing ((bid i, ri), πtlp)← PSolve(tlpi). If
Commit(crscom , addrBi , bid i; ri) 6= 1 then post the steal transaction
Γ.postTx(stealTx, (addrBi , addr, πtlp , (bid i, ri), j)), where addr is the address of the
miner.

(d) After this step, a complete list of all bids together with the corresponding random
coins and addresses of the bidders is available {bid i, ri, addrBi}i∈[1,`]

(e) Determine the highest bid bid? and the corresponding address addr?B by
(bid?, i?)← max

(
{bid i}i∈[`]

)
and set addr?B = addrBi?

(f) Run

πwin ← Pwin

(
crswin,

(
crscom, {comi, addri}i∈[1,`] , (bid?, addr?)

)
,
(
{bid i, ri}i∈[1,`]

))
to generate a proof that addr?B is the highest bidder among all ` bids and the
highest bid value is bid?

(g) Post the minting transaction through Γ.postTx(mintTx, (addr?B, bid?, πwin, R, j))

Figure 4: Waiting-time auction based minting protocol

16

that our analysis holds under the condition that R ≤ m ·F , where F is the value of a transaction
fee, m is the number of players in the auction, and R is the value of the reward (i.e., newly
minted coins). This ensures that it is more profitable for a miner to include all bids (thereby
collecting fees) rather than dropping even one anonymous bid to increase its own odds in the
auction. Therefore, all bids will eventually be posted in the blockchain. In practice, R can be
adjusted to meet this bound with a conservative estimation on the number of active players in
the auction. The analysis is deferred to Appendix B.

Theorem 4 (Subgame-perfect Nash-equilibria). Let m be the number of bidders in the auction,
F be the transaction fee for each bid, and R be the reward. If R ≤ m · F then the protocol
in Figure 4 implements a sequential mediated waiting-time auction.

5.5 System Parameters

In this section we discuss about plausible settings for the parameters of our system.

Minting Reward (R). In our system, each transaction is associated with a fee F , that
the user offers to the miner as an incentive to include her transaction. This holds also for
bid transactions. To avoid selective suppression attacks, where the miner does not include a
transaction to increase her odds to win the auction, we need to make sure that (in the long run)
it is more beneficial to include all bids and thereby collect all transaction fees. As discussed
above, our analysis requires that R ≤ m · F , where m is the number of potential bidders in a
round of the protocol. Note that m denotes the number of participants in the auction, among
which some might be “blocked” by the miners. The value of m can be estimated from the
addresses present in the blockchain and from the previous runs of the protocol. The value of R
is set accordingly.

Participation Token (Q). In our system, every address (user) can participate in the auction
as long as it holds at least Q coins. To claim the reward, the winning bidder is required to
“freeze” these Q coins until the amount of time corresponding to her bid. Ideally, Q should
correspond to an amount of coins that is meaningful enough so that players are not willing to
freeze it for an absurd amount of time. The upper bound guarantees that most users of the
system can compete for the reward, whereas the lower bound avoids malicious attacks where
players prevent the creation of new coins at very little cost (e.g., by bidding an unreasonable
amount of time).

Difficulty Parameter (T). The difficulty parameter T of time-lock puzzles depends on
the advancements of microchips design and manufacturing. An estimate of the performance of
the best processor that is currently available can be made and the difficulty parameter can be
calibrated by the network itself in periodic intervals. For our analysis, we will assume that the
time-lock puzzle has a fixed gap e < 1 and that the hardness parameter T is chosen in such a
way that Te is longer than the bidding-phase.

Auction Phases (α and β). In our protocol, the opening phase begins immediately after the
last block in the bidding phase (of that auction round) is published. Recall that a transaction
is required to be present in the blockchain for at least k blocks (persistence) in order to be
considered stable. It is therefore precautious to not broadcast the unveil information before
one’s bid is stabilised. For this reason we require that the opening phase (β) spans over an
amount of blocks strictly larger than k (for eg., k = 6 in case of Bitcoin). On the other hand,
the bidding phase (α) should not be as long as to allow some resourceful user to solve some
puzzle (and thus learn some bid) before the phase is over. This prevents players from adaptively
choosing bids according to other players’ bids. Therefore, we require that α < T. Under this
constraint, the bidding phase would be over by the time anyone solves a time-lock puzzle.

17

5.6 Bootstrapping the System

The simplest way to bootstrap our system is to assign coins to an initial set of users and start
the auction rounds thereafter. One can also apply our minting mechanism on top of any existing
currency system where funds are already distributed across users. This can be done by taking
a snapshot of the existing currency system with its existing keys and balances and then start
our minting mechanism on top of the existing stake distribution. Since the system is already
running we do not require any additional assumption given that our mechanism is incentive
compatible (see Theorem 4). We only require the system to be compatible with coin mixers
(Mixing Services, Coinshuffle(++), etc.) to support unlinkable transactions. Note that there is
no hard limit on the number of initial participants.

Yet another possibility is to bootstrap the blockchain system with an existent minting pro-
tocol (such as proof of work), and switch to our minting protocol after a fixed amount of time.
The initial mining process can ensure that new coins are introduced into the system and dis-
tributed among users so that, once the minting mechanism is switched, these users possess
enough spendable balance to participate in the auction.

6 Implementation

In this section we report a python proof-of-concept implementation of our protocol from sub-
section 5.3. We implement a full-fledged Blockchain system with our minting mechanism in
a way that it is completely independent of the underlying consensus used in the system. For
this, we rely on the libSNARK library [Lab18] to produce the SNARG proof for new minting
transactions. Although libSNARK’s proof require a trusted setup, we remark that our system
is completely parametric in the SNARG algorithm and we can switch to setup-free alterna-
tives [AHIV17, WTTW, BCC+16, BSBHR17, BBB+17] essentially for free. For convenience,
our prototype uses the reference implementation of libSNARK.

Apart from standard Blockchain operations (e.g., coin transfer, public verification, etc.), our
system accommodates all of the required auction operations and validation rules specified in
our minting protocol. In the next sections we describe the implementation in detail, followed
by benchmarking.

6.1 Cryptographic Components

Our proof-of-concept blockchain system has been fully implemented on python 3 and it mimics
all the basic functionalities of Bitcoin, including a subset of Bitcoin’s script language. We
rely on a proof-of-work based consensus for conceptual simplicity and we set the average time
between block creation to be 10 minutes; the duration of a full auction round extends for 100
blocks, with the bidding phase being 50 blocks. As in Bitcoin, we use the ECDSA signature
scheme over the elliptic curve secp256k1 which has a signature of size 65-bytes, private key of
size 32-bytes and public-key of size 65-bytes. We use the fastecdsa [Kue18] library for ECDSA
signatures. The two main components of our system are bid and mint transactions, that we
describe in the following.

Bid Transactions. Like standard transactions, a bid transaction consists of inputs and
outputs; the difference here is that we limit a bid transaction to contain a single input which
points to a previous output with at least the transaction fees plus the participation token (which
we set as 10 coins in the prototype). The output of a bid transaction consists of a commitment
to a bid (in seconds) and a tlp that contains the unveil information of the commitment. The
average size for a bid transaction (including input and output) in our prototype is 289 bytes. The

18

Tx per block size

Transaction Type Size 1MB 8MB 12MB

Bid Tx 289 bytes 3.4 K 27.6 K 41.5 K
Mint Tx 252 bytes 3.9 K 31.7 K 47.6 K
Spend Tx 165 bytes 6.0 K 48.4 K 72.7 K
Unveil Tx 56 bytes 17.8 K 142.8 K 214.8 K
Steal Tx 2.2 KB 454 3.6 K 5.4 K

Table 2: Number of transactions of each type that would fit in a single block. We stress however
that the bidding phase can consist of multiple blocks, and that only a single mint transaction
is allowed per auction round.

commitment to bids are implemented as SHA-256 commitments computed using the libSNARK
SHA-256 hash function, with the inputs being the bid, a 64-bit integer (representing seconds),
and the randomness, a 128-bit integer. The unveil information for the commitments are the bid
itself and the randomness. To verify the correctness of the unveil, we use it to recompute the
hash function and check for equality with the initially committed value.

Time-Lock Puzzles. The tlp we deploy is based on the work of Pietrzak [Pie18], which
leverages repeated squaring as a non-parallelisable operation. We conservatively set the hardness
parameter T to be 235, which keeps the tlp locked for more than 15 hours with the hardware
specified in subsection 6.3. We instantiate the tlp with an RSA modulus of 512 bits, which we
estimate to be sufficient for hiding a value for less than a day. In Pietrzak’s scheme a tlp is of
the form (N, x, y), where N is an RSA modulus, x is an element of Z∗N , and y is constructed as
H(xT)⊕m. Given xT one can efficiently recover m. Furthermore, one can efficiently compute a
proof π that a certain z = xT, which consists of log(T)− 2 elements of Z∗N , using the technique
described in [Pie18]. We refer the reader to [Pie18] for further details.

Mint Transactions. A mint transaction has no inputs and it contains exactly two outputs
that we detail next. The first output contains a 137-byte SNARG proof, along with the highest
bid (8-bytes), and the commitment to the highest bid (32-bytes), thus adding to a total of
177-bytes. The second output is a pay-to-pubkey-lock type transaction, that is a standard
pay-to-pubkey transaction with a lock-time corresponding to the value of the winning bid; the
transaction cannot be redeemed until the lock-time expires. The size of a mint transaction is
approximately 252-bytes.

LibSNARK. For the SNARG in the mint transactions we use the libSNARK [Lab18] imple-
mentation of the system described in [Gro16]. We build a python wrapper around the libSNARK
argument system and use it as a shared library. To produce a proof of the auction winner the
miner supplies a list of bid commitments and a list of unveils, and the statement is that the
miner knows the unveils for all bid commitments and that all bid commitments are smaller than
the first bid commitment on the list. Since we use SHA-256 commitments for the bids we can
employ the constraint systems already defined by libSNARK. The libSNARK library requires
a set-up phase, that runs before the initialisation of the Blockchain system and generates the
public parameters. In our prototype we run tests for up to 750 bids in each auction round.

6.2 Optimisations

As shown in Figure 5, the time to generate a SNARG can grow significantly with the number
of bids. A possible trade-off to allow more bids in a round is to exclude the part of unveils

19

100 200 300 400 500 600 700

50

100

150

Number of bids

P
ro

ve
r

ti
m

e
(s

ec
on

d
s)

100 200 300 400 500 600 700

5

10

15

Number of bids

V
er

ifi
er

ti
m

e
(m

il
is

ec
on

d
s)

Figure 5: The graphs show the average time to generate/verify a SNARG in a mint transaction.
The average is taken over the run of 100 experiments for each parameter value. The error bars
display the standard deviation of the measurements.

from the proof and publish them in the Blockchain instead. Unveil transactions contain the bid
commitment and its unveil information; their total size sums up to around 56-bytes. That way,
the miner creating a payout block can publish the SNARG for part of the bids (as usual) and
publish the unveil information of the remaining bid commitments that were not included in the
SNARG; the reward is assigned to the highest bidder among the highest bid in the proof and
the highest bid with the unveil published. To verify the validity of such a mint transaction a
miner opens the bid commitments (with the unveil in the Blockchain) and verify the proof for
the remaining bids; if the mint transaction is assigned to the highest bidder among the two sets
then the transaction is valid. Taking this time-space tradeoff even further, one can completely
replace SNARGs if willing to include all the bid unveils in the Blockchain.

We stress that the only reason to compute a SNARG in the mint transaction is its succinct-
ness. Without including any unveil transactions in the Blockchain, and for a reasonable amount
of bids (around 750) a proof can be generated in under 3 minutes and verified almost instantly
in our current implementation (see Figure 5).

6.3 Benchmarking

In this section we detail the performance achieved by our implementation running several ex-
periments. The benchmarking was performed in a virtual environment on a Linux server with
the following specifications.

• Intel Xeon Gold 6132 CPU (32 cores) @ 2.60GHz
• 64GB of RAM
• Debian Linux 4.9.0-6-amd64
• Python 3.6.4, fastecdsa 1.6.4, and the latest libSNARK.

We measure the time to generate and to verify SNARG proofs for a mint transaction varying
the number of bids considered in each auction round. For each experiment we generate fresh
bid commitments and we run 100 iterations of each experiment, taking the average time among
all the iterations. The results of the experiments shown in Figure 5 were measured considering
the wait time, and with the libSNARK multicore mode enabled (32 cores). The graph on the
left of Figure 5 shows outlier points for 300 and 600 bids; this is due to parallelisation.

In Table 2 we show the different types of transactions introduced by our minting mechanism
and how many transactions of each type could be included in different sizes of blocks. We stress

20

that Steal transactions happen only in the case of a malformed bid, which does not happen
in a rational run of the protocol. A block of size 8MB allows us to accommodate around 1K
bid transactions per block still leaving roughly 70% of the block space free for standard spend
transactions. Extending the bidding phase to about 10 blocks gives a total of 10K bids in a
single auction round, and only taking 30% of the available block space for bid transactions.
This gives strong evidences that the system can scale to support a large amount of users.

7 Discussion

Due to space constraints, we informally discuss the intuition behind how we prevent some of the
common attacks against our minting protocol of subsection 5.3. For a more formal treatment
we refer the reader to Theorem 4 and its proof.

Bid Suppression. The most straightforward attack for the adversary is to suppress bids from
a block during the bidding phase. By suppressing bids from a block, the adversary can increase
its chances of winning the newly minted coins. As we show in the analysis of Theorem 4,
this strategy has ultimately a decreasing payoff, and therefore will be avoided by the rational
adversarial miner. The intuition behind this argument is that by suppressing bids, the adversary
will be forfeiting the transaction fees incurred by the bid transactions, what would be less
profitable than simply including all the bids and following the protocol.

Denial-of-Coin. A denial-of-coin attack is when the adversary tries to stop the creation of
new coins in the system. One way to achieve this goal is to bid an incredibly high amount of time
(way above one’s valuation), such that the newly minted coins would remain locked (practically)
forever. This is not a profitable attack for the rational adversary, since this strategy would
quickly lock all funds of the adversary, eventually reestablishing the coin supply. Furthermore,
the attacker must be heavily invested in the currency to launch such an attack and thus he is
hurting primarily himself with this manoeuvre.

Denial-of-Service. A possible denial-of-service attack is for the adversary to spam the net-
work with many bid transactions in order to stall the network and avoid honest users from
participating in the bidding process. Our protocol avoids this by charging a transaction fee for
each bid posted. In that way, for the adversary to be able to spam the network he would have
to decrease his payoff significantly.

Another vector of attack to slow down the network is to post (well-formed) bids but not
their openings. This causes the miners to incur in additional computational efforts to brute-
force the time-lock puzzles. This behaviour falls outside of the scope of a rational attacker since
it only delays the resolution of the auction and the release of his own participation tokens (and
therefore increases his collateral cost). Such a behaviour can also be prevented by penalising
the absence of openings with additional fees.

Mint Suppression. This attack happens when the miner refuses to include a valid minting
transaction into the block being mined. Such an attack is not rational for any miner because
at this point of the execution the winner is already determined, although not yet announced.
The miner cannot change the winner of the auction and therefore does not gain any advantage
by denying to accept the minting transaction.

Malformed Bids. An attacker could see posting inconsistent time-lock puzzles as an opportu-
nity to slow down the system, since miners need to solve a time-lock puzzle to eventually realise
that the bid is not well-formed. As shown in our analysis in Appendix B, this behaviour is not
profitable for any attacker, since any miner who fails to solve a malformed time-lock puzzle can
produce a recovery proof and steal the participation token of the bidder.

21

8 Related Work

Blockchain and Consensus. Nakamoto [Nak08] proposed Bitcoin, the first currency system
with a consensus protocol based on Proof of Work (PoW) which was originally put forth by
Dwork and Naor [DN93]. The underlying protocol of Bitcoin was dubbed as the Blockchain
protocol and a formal analysis of its security definitions and properties can be found in the works
of Garay et al. [GKL15, GKL17] and Pass et al. [PSS17]. BitcoinCash, Litecoin (variants of Bit-
coin), Zcash and Monero are some of the popular currencies based on PoW. One among several
other alternatives proposed was Proof of Stake (PoS) based consensus where a consensus leader
proves she holds a stake in the system. The proposal was formally analysed with the assump-
tion of a synchronous [KRDO17] and semi-synchronous network [DGKR18], and in the recent
work of Badertscher et al. [BGK+18] which concerns with composability of PoS blockchains.
There are several currency systems that are based on different versions of PoS, namely, Cardano
(based on Ouroboros), Reddcoin [Ren14], Peercoin [KN12] among possibly many others. Proofs
of Space [DFKP15] is another proposal put forth that relies on a prover proving to a verifier
that she has sufficient disk space, to achieve a consensus. Spacecoin [PPA+15] is a currency
system whose consensus is based on proofs of space.A closely related proposal is Proof of Secure
Erasure formalised by Ateniese et al. [ABFG14] and Karvelas, and Kiayias [KK14], where a
space restricted prover convinces a verifier that she has erased some size of memory from her
storage.

Blockchain and Minting. In all of the above mentioned consensus mechanisms, the consensus
leader in the blockchain is also the one who receives the incentive in the form of newly minted
coins, with the exception of proof of stake. Selfish mining attacks (where a miner mines a block
selfishly and later hopes to make his chain longer and accepted) in case of Nakamoto’s blockchain
protocol were discussed in the bitcoin forum [mtg10] and later analysed and improved by Eyal
and Sirer [ES14], Sapirshtein et al. [SSZ16] and Nayak et al. [NKMS16]. Pass and Shi [PS17]
designed a new blockchain protocol called Fruitchain that ensures that no coalition that has less
than the majority of the computational power can gain more by deviating from the protocol.
Concurrently, Carlsten et al. [CKWN16] showed the possible instability in the future of Bitcoin
as a result of incentives through transaction fees only.

Auctions on Blockchains. Running auctions on blockchains has been gaining attention
given its nature of public verifiability [Acc17]. There are several existing proposals for running
different variants of auctions. Kosba et al.’s HAWK [KMS+16] employ smart contracts to run
auctions on top of a blockchain. They assume the existence of a special entity called Manager
who is entrusted to run the auction contract. The manager is aware of the bidders’ inputs
and is trusted to not disclose that information. Strain [BK] aims to decrease the amount of
interaction, while relying on a semi-honest judge who does not collude with any bidders and
produces proof of winner.

9 Conclusions and Open Problems

In this work we initialise the study of minting mechanisms in cryptocurrencies as a primitive of
independent interest in order to closely model a real world fiat currency. We propose the first
minting mechanism that when implemented in a PoS system, mitigates hoarding of tokens by
introducing a steady inflation, is completely decoupled from the consensus of the underlying
blockchain, and does not rely on a semi-trusted party. Our key technical contribution is a
protocol to run an auction over a blockchain that does not require a semi-trusted auctioneer.
In future works we hope to investigate the functioning of our rewarding mechanism considering

22

variable bidding fees and an asynchronous setting.

References

[ABFG14] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of
space: When space is of the essence. In International Conference on Security and
Cryptography for Networks, pages 538–557. Springer, 2014.

[Acc17] Accenture. How blockchain can bring greater value to procure-to-pay processes.
2017. https://www.accenture.com.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 2087–2104. ACM, 2017.

[ass] Bitcoin is an asset, not a currency. https://tinyurl.com/ydc2nnzw.

[BBB+17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Efficient range proofs for confidential transactions.
Technical report, Cryptology ePrint Archive, Report 2017/1066, 2017., 2017.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log
setting. In Fischlin and Coron [FC16], pages 327–357.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474,
Berkeley, CA, USA, May 18–21, 2014. IEEE Computer Society Press.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In 20th Annual ACM Symposium on
Theory of Computing, pages 103–112, Chicago, IL, USA, May 2–4, 1988. ACM
Press.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, pages 345–356. ACM, 2016.

[BGK+18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 913–930, New York, NY, USA, 2018.
ACM.

[BK] Erik-Oliver Blass and Florian Kerschbaum. Strain: A secure auction for
blockchains.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor, Ad-
vances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 236–254, Santa Barbara, CA, USA, August 20–24, 2000. Springer,
Heidelberg, Germany.

23

https://www.accenture.com
https://tinyurl.com/ydc2nnzw

[BNM+14] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A.
Kroll, and Edward W. Felten. Mixcoin: Anonymity for bitcoin with accountable
mixes. In Nicolas Christin and Reihaneh Safavi-Naini, editors, FC 2014: 18th In-
ternational Conference on Financial Cryptography and Data Security, volume 8437
of Lecture Notes in Computer Science, pages 486–504, Christ Church, Barbados,
March 3–7, 2014. Springer, Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press.

[BSBHR17] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. Manuscript.(2017).
Slides at https://people. eecs. berkeley. edu/˜ alexch/docs/pcpip bensasson. pdf,
2017.

[chaa] Bitinfocharts. https://tinyurl.com/yc4pkkjn.

[chab] Coin metric charts. https://coinmetrics.io/api/.

[CKWN16] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On
the instability of bitcoin without the block reward. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 154–167.
ACM, 2016.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 585–605, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

[DGKR18] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 66–98. Springer, 2018.

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740
of Lecture Notes in Computer Science, pages 139–147, Santa Barbara, CA, USA,
August 16–20, 1993. Springer, Heidelberg, Germany.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vul-
nerable. In International conference on financial cryptography and data security,
pages 436–454. Springer, 2014.

[FC16] Marc Fischlin and Jean-Sébastien Coron, editors. Advances in Cryptology – EURO-
CRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, Vienna,
Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone pro-
tocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture

24

https://tinyurl.com/yc4pkkjn
https://coinmetrics.io/api/

Notes in Computer Science, pages 281–310, Sofia, Bulgaria, April 26–30, 2015.
Springer, Heidelberg, Germany.

[GKL17] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol
with chains of variable difficulty. In Annual International Cryptology Conference,
pages 291–323. Springer, 2017.

[GLS12] Amy Greenwald, Jiacui Li, and Eric Sodomka. Approximating equilibria in sequen-
tial auctions with incomplete information and multi-unit demand. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 2321–2329. Curran Associates, Inc., 2012.

[Goo] Dan Goodin. Active attack on tor network tried to decloak users for five months.
https://tinyurl.com/y7995tkc.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Fischlin
and Coron [FC16], pages 305–326.

[HP15] Joseph Y. Halpern and Rafael Pass. Algorithmic rationality: Game theory with
costly computation. J. Economic Theory, 156:246–268, 2015.

[Hum07] Jeffrey Rogers Hummel. Death and taxes, including inflation: the public versus
economists. Econ Journal Watch, 4(1):46, 2007.

[Kin13] Sunny King. Primecoin: Cryptocurrency with prime number proof-of-work. 2013.

[KK14] Nikolaos P. Karvelas and Aggelos Kiayias. Efficient proofs of secure erasure. In
Security and Cryptography for Networks - 9th International Conference, SCN 2014,
Amalfi, Italy, September 3-5, 2014. Proceedings, pages 520–537, 2014.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-
manthou. Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In 2016 IEEE Symposium on Security and Privacy, pages 839–858,
San Jose, CA, USA, May 22–26, 2016. IEEE Computer Society Press.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake. self-published paper, August, 19, 2012. https://decred.org/research/

king2012.pdf.

[Kot] Ivana Kottasova. Bitcoin is not a currency. https://tinyurl.com/yca958rk.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual In-
ternational Cryptology Conference, pages 357–388. Springer, 2017.

[Kue18] Anton Kueltz. fastecdsa: Python library for fast elliptic curve crypto. https:

//github.com/AntonKueltz/fastecdsa, 2018.

[Lab18] SCIPR Lab. libsnark: a c++ library for zksnark proofs. https://github.com/

scipr-lab/libsnark, 2018.

[LST12] Renato Paes Leme, Vasilis Syrgkanis, and Éva Tardos. Sequential auctions and
externalities. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 869–886. Society for Industrial and Applied Mathemat-
ics, 2012.

25

https://tinyurl.com/y7995tkc
https://decred.org/research/king2012.pdf
https://decred.org/research/king2012.pdf
https://tinyurl.com/yca958rk
https://github.com/AntonKueltz/fastecdsa
https://github.com/AntonKueltz/fastecdsa
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

[mar] Coinmarketcap. https://coinmarketcap.com.

[MCWG95] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic
Theory. Oxford University Press, 1995.

[Met] Tom Metcalf. The wealthy are hoarding $ 10 billion of bitcoin in bunkers. https:
//tinyurl.com/yaymn3rd.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 397–411. IEEE, 2013.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

[Min17] Mining hardware comparison. 2017. https://tinyurl.com/4pjhy5t.

[MJS+14] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. Permacoin:
Repurposing bitcoin work for data preservation. In Security and Privacy (SP), 2014
IEEE Symposium on, pages 475–490. IEEE, 2014.

[mtg10] mtgox. 2010. https://tinyurl.com/y9alux2j.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. https:

//bitcoin.org/bitcoin.pdf.

[NKMS16] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining:
Generalizing selfish mining and combining with an eclipse attack. In Security and
Privacy (EuroS&P), 2016 IEEE European Symposium on, pages 305–320. IEEE,
2016.

[OM14] KJ O’Dwyer and D Malone. Bitcoin mining and its energy footprint. In IET
Conference Proceedings. The Institution of Engineering & Technology, 2014.

[OS90] Athanasios Orphanides and Robert M. Solow. Chapter 6 money, inflation and
growth. volume 1 of Handbook of Monetary Economics, pages 223 – 261. Elsevier,
1990.

[Pec13] Morgen E Peck. The bitcoin arms race is on! IEEE Spectrum, 50(6):11–13, 2013.

[Pie18] Krzysztof Pietrzak. Simple verifiable delay functions. Cryptology ePrint Archive,
Report 2018/627, 2018. https://eprint.iacr.org/2018/627.

[Poo17] Bitcoin mining pools. 2017. https://tinyurl.com/y8pdk922.

[PPA+15] Sunoo Park, Krzysztof Pietrzak, Joël Alwen, Georg Fuchsbauer, and Peter Gazi.
Spacemint: A cryptocurrency based on proofs of space. IACR Cryptology ePrint
Archive 2015:528, 2015. https://eprint.iacr.org/2015/528.pdf.

[PS17] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the
ACM Symposium on Principles of Distributed Computing, pages 315–324. ACM,
2017.

26

https://coinmarketcap.com
https://tinyurl.com/yaymn3rd
https://tinyurl.com/yaymn3rd
https://tinyurl.com/4pjhy5t
https://tinyurl.com/y9alux2j
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2018/627
https://tinyurl.com/y8pdk922
https://eprint.iacr.org/2015/528.pdf

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, pages
643–673, 2017.

[Ren14] Larry Ren. Proof of stake velocity: Building the social currency of the digital age.
Self-published white paper, 2014.

[RMSK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle: Practical
decentralized coin mixing for bitcoin. In European Symposium on Research in
Computer Security, pages 345–364. Springer, 2014.

[RMSK16] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. P2p mixing and unlinkable
bitcoin transactions. IACR Cryptology ePrint Archive, 2016:824, 2016.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA, 1996.

[Sat11] Khayroollo Sattarov. Inflation and economic growth. analyzing the threshold level
of inflation.: Case study of finland, 1980-2010., 2011.

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in bitcoin. In International Conference on Financial Cryptography and
Data Security, pages 515–532. Springer, 2016.

[Tay13] Michael Bedford Taylor. Bitcoin and the age of bespoke silicon. In Proceedings of
the 2013 International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, page 16. IEEE Press, 2013.

[Tsi89] Sho Chieh Tsiang. A critical note on the optimum supply of money. In Finance
Constraints and the Theory of Money, pages 331–348. Elsevier, 1989.

[Woo11] Michael Woodford. Interest and prices: Foundations of a theory of monetary policy.
princeton university press, 2011.

[WTTW] Riad S Wahby, Ioanna Tzialla, Justin Thaler, and Michael Walfish. Doubly-efficient
zksnarks without trusted setup.

A Definitions

In this section we present the formal definitions that are going to be used in our analysis.

A.1 Probability

We introduce Hoeffding inequality theorem which we later use in our analysis.

Theorem 5 (Hoeffding Inequality). Let X1, . . . , Xm ∈ R be i.i.d. random-variables with
support-size bounded by B. Further let X̄ = 1

m

∑m
i=1Xi. Then it holds for every ε > 0 that

Pr[|X̄ − E[X̄]| > ε] ≤ 2 · e−
2mε2

B2 .

27

A.2 Non-interactive CCA-Commitment

Definition 2. A non-interactive tagged commitment scheme consists of a pair of efficient ran-
domised algorithms CS = (Setup,Commit) with the following syntax.

• Setup(1λ): takes as input 1λ and outputs a common reference string crs.
• Commit(crs, addr,m; r): takes as input a common reference string crs, a tag/identity
addr, a message m ∈ {0, 1}∗ and random coins r and outputs a commitment com. We
assume without loss of generality that the commitment com contains the tag addr.

We say that such a commitment scheme is extractable, if there exists a pair of efficient ran-
domised algorithms (TrapdoorSetup,Extract) with the syntax

• TrapdoorSetup: takes as input the security parameter 1λ and outputs a pair (crs, td) of
common reference string and trapdoor,
• Extract: takes as input a trapdoor td, and a valid commitment com and outputs a pair

(m, r) of message an random coins

such that the distributions of common reference strings generated by Setup and TrapdoorSetup
are computationally indistinguishable and it holds for all identities addr, messages m and ran-
dom coins that

Extract(td, com) = (m, r),

where (crs, td)← TrapdoorSetup(1λ) and com ← Commit(crs, addr,m; r).
We say that such a scheme is hiding under chosen commitment attacks, if every PPT

adversary A = (A1,A2) has at most negligible advantage in the following experiment.

EXPCS,CCAA (1λ)

(crs, td)← TrapdoorSetup(1λ)

(addr∗,m0,m1)← AO(·)(crs)

b←$ {0, 1}
com∗ ← Commit(crs, addr∗,mb)

b∗ ← AO(·)(crs, com∗)

return b = b∗

O(com)

if addr 6= addr∗ then

return Extract(td, com)

else

return ⊥

where the advantage of A is defined as

AdvCCA(A) = Pr
[
EXPCS,CCAA (1λ) = 1

]
− 1

2
.

We remark that multi-challenge security, where the adversary gets several challenge cipher-
texts under different identities follows from the above notion via a routine hybrid argument.

A.3 Time-Lock Puzzles

We follow the definitions of Bitansky et. al [BGJ+16] and we additionally require the existence
of an efficiently verifiable recovery proof.

Definition 3. A time-lock puzzle scheme consists of a pair of efficient randomised algorithms
(PGen,PSolve,PVer) with the syntax

28

• PGen(1λ,T,m) takes as input a security parameter 1λ, a hardness-parameter T and a
message m, and outputs a puzzle tlp.
• PSolve(tlp) takes as input a puzzle tlp and outputs a message m and a proof π.
• PVer(tlp,m, π) takes as input a puzzle tlp, a message m and a proof π and outputs a bit
b ∈ {0, 1}.

We require the following properties:

• Completeness: For every security parameter λ, difficulty parameter T, message m and
every puzzle tlp in the support of PGen(1λ,T,m) it holds that PSolve(tlp) outputs m.
• Efficiency: For every message m, PGen(1λ,T,m) can be computed in time poly(λ, log(T)).

Moreover, for every tlp in the support of PGen(1λ,T,m) it holds that PSolve(tlp) can be
computed in time T · poly(λ).
• Security: We say that (PGen,PSolve) is secure with gap e < 1, if there exists a T′ =

T′(λ) = poly(λ), such that for every T = T(λ) = poly(λ) with T(λ) > T′(λ) and every
(non-uniform) PPT-adversary A of depth/parallel complexity less than Te it holds that A
has at most negligible advantage in the following experiment. Here the advantage of A is
defined as

AdvTLP(A) = Pr
[
EXPTLP

A (1λ) = 1
]
− 1

2
.

EXPTLP
A (1λ)

b←$ {0, 1}
b∗ ← AOb(·,·)(1λ)

return b∗ = b

Ob(m0,m1)

tlp ← PGen(1λ,T,mb)

return tlp

• Soundness: For every security parameter λ, difficulty parameter T, message m and every
puzzle tlp in the support of PGen(1λ,T,m) there exists a negligible function such that for
all PTT adversaries A it holds that

Pr
[
PVer(tlp,m, π) and m 6= m′ : (π,m′)← A(tlp)

]
≤ negl(λ).

We remark that the standard definition gives the adversary only a single query to the oracle
O. The multi-query version used here follows via a standard hybrid argument and a slight loss
in the gap-parameter e.

A.4 Succinct Non-interactive Arguments

The notion of succinct non-interactive arguments (SNARGs) was first introduced by Micali [Mic00].

Definition 4. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be an NP-witness-relation with corresponding
NP-language L := {x : ∃w s.t. R(x,w) = 1}. A SNARG system for R consists of three efficient
randomized algorithms crsGen, P and V with the following syntax.

• crsGen(1λ) takes as input the security parameter 1λ and outputs a common reference string
crs.
• P(crs, x, w): Takes as input a common reference string crs, a statement x and a witness
w and outputs a proof-string π.
• V(crs, x, π) Takes as input a common reference string crs, a statement x and a proof-

string π and outputs a verdict b ∈ {0, 1}.

29

We require the following properties.

• Completeness: We say that (crsGen,P,V) is complete, if it holds for all pairs (x,w) with
R(x,w) = 1 that V(crs, x, π) = 1 if crs← crsGen(1λ) and π ← P(crs, x, w).
• Soundness: We say that (crsGen,P,V) is (adaptively) sound, if it holds for every PPT-

prover P∗ that

Pr

[
x /∈ L and V(crs, x, π∗) = 1 :

crs← crsGen((1λ);π∗ ← P∗(crs);

]
≤ negl(λ)

• Succinctness: We say that a SNARG is succinct if the size of the proof π does not depend
on the size of the statement x nor the witness w.

A.5 Unlinkable Transactions

Here we formally define the concept of unlinkability for blockchain transactions.

Definition 5. The Γ.postUnlinkTx interface is unlinkable if for all PPT adversaries A there
exists a negligible function negl such that∣∣∣∣12 − Pr

[
UnlinkExpbA(1λ) = 1

]∣∣∣∣ ≤ negl(λ)

where UnlinkExpbA(1λ) is defined below.

UnlinkExpbA(1λ)

(CH, addrR0
, addrR1

, addrS0
, addrS1

, val)← A(1λ)

Γ.postUnlinkTx(payTx, (addrS0
, addrRb

, val))

Γ.postUnlinkTx(payTx, (addrS0
, addrR1−b

, val))

CH∗ ← Γ.getChain

b′ ← A(CH∗)
return b = b′ ∧ (balance(CH, addrS0

) ≥ val)

∧ (balance(CH, addrS1
) ≥ val)

B Security Analysis

Throughout the analysis we denote any function that is negligible in the security parameter by
negl(λ). We say that an algorithm is PPT if it is modelled as a probabilistic Turing machine
whose running time is bounded by some function poly(λ). The proof of Theorem 4 follows.

Proof of Theorem 4. If all parties are honest, the protocol implements a correct sequential sealed
bid first-price auction.

Now fix an efficient adversary A which at each timestep i controls a coalition Ci of nodes. We
will assume that the coalition Ci is fixed over single timestep. Therefore, in abuse of notation
we will refer to the adversarial coalition as C without specifying the index i. We will show that
regardless of its strategy, the payoff which the adversary A achieves when participating the
waiting-time auction protocol is at most a negligible amount higher than what it could achieve
in a mediated auction.

As a consequence, we can conclude that honest bidding constitutes a subgame-perfect Nash-
equilibrium for the waiting-time auction protocol, as honest bidding constitutes a subgame-
perfect Nash-equilibrium for the mediated game. Thus, deviating from the honest strategy
provides at most a negligible increase in payoff for Ci.

30

Each of our changes in the following hybrid-argument only affects a single timestep. Let
L̂ = poly(λ) be an upper bound on the number of rounds that the system will run. Let i′ in the
following always denote i′ = L̂− i.

Hybrid H0: This is the real experiment, i.e. the waiting-time auction implemented on a
blockchain.

Hybrid H1: Identical to experiment H0, except that the common reference string crscom is
generated via (crscom, td) ← TrapdoorSetup(1λ). In other words, the common reference string
of the commitment scheme is now generated together with an extraction-trapdoor td. Clearly,
hybridsH0 andH1 are computationally indistinguishable given the indistinguishability of modes
for the commitment scheme. Therefore, the payoff of C in H1 can be at most a negligible amount
higher than in H0.

Note the if the commitments used are modelled in the RO-model, then this step can be
omitted as there is no common reference string.

For i = 0, . . . , L̂− 1 define the following hybrids.
Hybrid Hi,1: In this experiment, when nodes in C place bids in round i′, their bid is

extracted from the commitment com using the extraction trapdoor td. Later, when the bids
are opened, the mediator disqualifies openings that are inconsistent with with the value that
was extracted in the bidding-phase.

It follows from the extractability of the commitment scheme Commit is extractable that the
payoff of C in Hi−1,7 (or H1 for i = 0) is at most a negligible amount larger than in Hi,1.

Hybrid Hi,2: In this experiment the nodes in C do not submit malformed bids in round
i′, i.e. bids for which the solving the time-lock puzzle does not provide the correct for the
commitment to the bid. This holds because submitting a malformed bid does not increase the
payoff of C, but rather decrease it on average as if such a bid is detected the corresponding node
loses its token of participation.

Hybrid Hi,3: In this game the nodes in C are not allowed to post steal transactions for the
bids of honest parties.

By the soundness property of the argument system of the time-lock puzzle, an efficient
adversary has at most negligible probability in forging an accepting proof for a false statement.
Therefore, the payoff of C does not decrease if we forbid the coalition C to post steal transactions.

Hybrid Hi,4: In this game we replace the opening-phase of round i′ with an ideal mediated
game in which the winner of the auction is determined by a mediator based in the bids extracted
from the commitments comi′ .

We will show in Lemma 1 that the payoff of C in Hi,3 is larger by at most a negligible amount
than in Hi,4.

Hybrid Hi,5 The time-lock puzzles in the bids of honest bidders in round i′ are replaced
with time-lock puzzles of 0. We will show in Lemma 2 that the payoff of C in Hi,4 is larger by
at most a negligible amount than in Hi,5.

Hybrid Hi,6 The commitments in bids of honest nodes in round i′ are replaced with com-
mitments to 0.

We will show in Lemma 3 that the payoff of C in Hi,3 is larger by at most a negligible amount
than in Hi,4.

Hybrid Hi,7 Round i′ of the protocol is entirely handled by the mediator.
In Hi, 6 the coalition C obtains no information about the bids of the honest nodes via the

transactions (addrj , tlpj , comj , πj) and provides its bids independently of the bids of the honest
parties. Therefore, the only way to increase its payoff at this point is by suppressing bids. We
will show in Lemma 4 that suppressing bids does not increase the payoff of C. Consequently,
the payoff of C in Hi,7 is not smaller than in Hi,6.

31

Lemma 1. Given that the argument system (crsGenwin,Pwin,Vwin) is sound, the payoff of C in
Hi,4 is larger by at most a negligible amount than in Hi,3.

Proof. Assume towards contradiction that the payoff of C in Hi,2 is larger by a non-negligible
amount ε than in Hi,1. We will construct a PPT-adversary A that breaks the soundness of the
argument system (crsGenwin,Pwin,Vwin) with non-negligible advantage ε′.

First note that by assumption in all rounds following round i the auctions are implemented
by a trusted mediator.

Conditioned on the event that the statement that announces the winner of the auction is
true, deviating from the protocol in the opening-phase of round i does not increase the payoff
of C. Consequently, C must convince the honest nodes of a false statement with non-negligible
probability ε′. The adversary A′ against the soundness of the argument system proceeds as
follows. A′ first gets as input a common reference string crs∗. A now simulates Hi,3 faithfully
until the end of the opening-phase of round i′, except that instead of computing crswin by
crswin ← crsGen(1λ) it sets crswin ← crs∗. A now fetches the transaction that announces the
winner and outputs the statement x = (crscom, (com1, addr1), . . . , (com`, addr`)), bid?, addr?)
and proof πwin.

It follows immediately that with probability ε′ it holds that both the statement x is invalid
and (x, πwin) is accepted by the verifier Vwin. This, however, contradicts the soundness of
(crsGenwin,Pwin,Vwin).

Lemma 2. Assuming that the hardness-parameter T is set such that Te is longer than the
bidding phase and given that the time-lock puzzle TLP is secure with gap e < 1, the payoff of C
in Hi,5 is at most a negligible amount smaller than in Hi,4.

Proof. Assume towards contradiction that p(Hi,5, C) ≤ p(Hi,4, C)− ε for a non-negligible ε.
First note that from the view of A the hybrids Hi,4 and Hi,5 are distinguishable after T has

elapsed, as it can trivially open the time-lock puzzles. However, by then the bidding phase of
round i′ is over and the auctions in the remaining rounds are implemented by the mediator.

To facilitate notation, write p4 = p(Hi,4, C) and p5 = p(Hi,5, C), i.e. we have p5 ≤ p4−ε. We
will construct a Te-bounded distinguisher D that breaks the security of the time-lock puzzle
scheme (PGen,PSolve) with advantage negligibly close to 1.

Before we provide the actual distinguisher, we will briefly sketch the idea behind this re-
duction. The main idea is that distinguisher D that plays the TLP-distinguishing experiment
can compute an approximation of the expected payoff of the coalition C by running m instances
of the i-th round of experiment Hi,4 in parallel. This does not affect the parallel complexity,
i.e. D can perform this simulation with the same parallel complexity as the i-th round of Hi,4,
which by assumption is Te-bounded. Moreover, computing the average of m numbers can be
performed in parallel complexity poly(log(m)), therefore this additional step does not increase
the parallel complexity by a significant amount. The distinguisher we construct will be non-
uniform, specifically it will receive a transcript of the first i′− 1 rounds and the expectations p4

and p5 conditioned on this transcript as non-uniform advice.
The experiments Hi,4 and Hi,5 are perfectly identical until round i′. Therefore, if tr is a

transcript of Hi,4 for the first i′ rounds, we can extend tr to both a full transcript of Hi,4 and
Hi,5. Let p4,tr be the expected payoff of C in the i′-th round of Hi,4 when the transcript of the
first i′ − 1 rounds is tr. Likewise, let p5,tr be the expected payoff of C in the i′-th round of Hi,5
when the transcript of the first i′ − 1 rounds is tr. Clearly, it holds that Etr[p4,tr] = p4 and
Etr[p5,tr] = p5. Therefore, by linearity of expectation it holds that

Etr[p4,tr − p5,tr] = p4 − p5 ≥ ε.

32

By the averaging principle, for every security parameter λ there exists a tr∗ = tr∗(λ) such that

p4,tr∗ − p5,tr∗ ≥ ε

Now fix such a transcript tr∗. Let R = poly(λ) be an upper bound for the payoff the coalition C
can obtain in round i of either Hi,4 or Hi,5 if the transcript of the first i′ − 1 rounds is tr∗. Let

m = d2λ · R2

ε2
e, which, as ε is non-negligible can be upper-bounded by a polynomial for infinitely

many λ. In the following we are only concerned with λ for which m = m(λ) is polynomially
bounded.

For security parameter λ, the distinguisher D receives tr∗, p4,tr∗ , p5,tr∗ and m as non-uniform
advice. The distinguisher D simulates m executions of the i′-th round of Hi,4 (for starting-
transcript tr∗) in parallel, with the following modification. Each time an honest node Nj wants
to compute a time-lock puzzle via tlpj ← PGen(T, bid j), D sends the message pair (bid j , 0)
to its time-lock puzzle oracle, and sets tlpj to the output of the oracle. Once the i′-th round

of all m parallel simulations is completed, the distinguisher D computes the payoff p(l) of the
coalition C for all parallel executions with indices l ∈ [m]. Next, D computes the empirical
average p̄ = 1

m

∑m
l=1 p

(l). Finally, D checks if p̄ is closer p4,tr∗ or p5,tr∗ . If it is closer to p4,tr∗ it
outputs 0, otherwise 1.

First notice that parallel execution-time of D is only marginally longer than that of the i-th
round of Hi,4. Thus, D is Te-bounded. We will now compute the advantage of D. If the secret
bit b of the TLP-experiment is 0, then each of the parallel executions simulated by D faithfully
simulates the i-th round of Hi,4 for transcript tr∗. Likewise, if the bit b is 1, then each parallel
execution of D faithfully simulates the i′-th round of Hi,5 for transcript tr∗. We will now analyze
the case b = 0, the case b = 1 follows analogously.

Therefore, assume in the following that b = 0. As each parallel execution faithfully simulates
Hi,4 for transcript tr∗, it holds for all l ∈ [m] that E[p(l)] = p4,tr∗ . Consequently, by linearity of
expectation we have that

E[p̄] =
1

m

m∑
l=1

E[p(l)] = p4,tr∗ .

As the support of each p(l) (for l ∈ [m]) is upper-bounded by R, the Hoeffding-inequality
(Theorem 5) yields that

Pr[|p̄− p4,tr∗ | ≥ ε/2] ≤ 2e−2 mε
2

4·R2 ≤ 2e−λ,

where the second inequality follows from m ≥ 2λ · R2

ε2
. Consequently, except with probability

2e−λ, it holds that |p̄− p4,tr∗ | < ε/2.
Likewise, if b = 1 we can show that |p̄− p5,tr∗ | < ε/2. We conclude that the guess that D

outputs is correct, except with probability 2e−λ. Thus, the advantage of D is

E(D) = Pr[DO1 = 1]− Pr[DO0 = 1] = 1− 4e−λ,

which contradicts the security of the time-lock puzzle scheme (tlpGen, tlpSolve).

Lemma 3. From the view of C, the experiments Hi,5 and Hi,6 are computationally indistinguish-
able by the CCA-hiding property of the commitment scheme (Setup,Commit). Consequently, the
payoff of C in Hi,6 is at most an negligible amount smaller than in Hi,5.

Proof. Assume towards contradiction that A distinguishes between Hi,5 and Hi,6 with non-
negligible advantage ε.

The adversary A′ against the hiding property simulates Hi,5 faithfully, with the following
modifications:

33

1. It sets crscom = crs∗, where crs∗ is A’s input.
2. Instead of extracting the commitments of nodes in C via the extraction trapdoor, A′ uses

the extraction oracle provided by the CCA experiment to extract these bids.
3. Instead of computing the commitments comj = Commit(crscom, addrj , bidj) of the honest

nodes by itself, it submits addrj and (bidj , 0) as challenge-ciphertexts and sets comj to
the challenge-ciphertext.

In the end, A′ outputs the view of A.
Clearly, if the secret bit b of the hiding-experiment is 0, then the view of A in A′’s simulation

is distributed identically to A’s view in Hi,5, as the commitments comj computed by the oracle
are of the form comj = Commit(crs∗, addrj , bidj). On the other hand, if the secret bit b is 1,
then the view of A in A′’s simulation is identically distributed to the view of A in Hi,6, as the
comj are of the form comj = Commit(crs∗, addrj , 0).

It follows that the advantage ofA′ against the hiding-experiment is identical to the advantage
of A distinguishing between Hi,5 and Hi,6, which is ε. However, as ε is non-negligible this
contradicts the hiding property of (Setup,Commit).

Lemma 4. Given that the addresses used by honest bidders in round i′ are are fresh and
unlinkable to the addresses used in prior rounds, and given that it holds for the reward R and
the transaction fee F that R ≤ ` · F , it is not rational for the coalition C to suppress bids by
honest parties. Consequently, under these conditions it holds that p(Hi,6, C) ≤ p(Hi,7, C).

Proof. In this parameter-setting, we will show that the revenue lost by transaction fees is greater
than the additional revenue obtained from the reward. The main idea is that since the addresses
of the honest bidders are unlinkable to the addresses used in prior rounds, the adversary must
blindly suppress a large number of bids to be certain that he suppresses a higher bid. However,
this will reduce his revenue in transaction fees by more than what he gains by winning the
newly minted coin.

Assume henceforth that there are ` honest bidders, of which k bid higher than the adversarial
coalition C. Denote the (index-) set of bidders that bid higher than C by V . Assume further
that C suppresses t bids, denote the (index-) set of suppressed bids by W . Since the addresses
used by honest bidder in this round are unlinkable to the addresses used in previous rounds,
the adversary must blindly suppress t out of ` bids, which in effect means that the set W is
chosen uniformly at random. There are

(
`
t

)
possible choices for the set W . Out of these,

(
`−k
t−k
)

contain the (fixed) set V . Thus it holds that

Pr
W

[V ⊆W] =

(
`−k
t−k
)(

`
t

) =
(`− k)! · t!
`! · (t− k)!

. (1)

If the adversary suppresses a set of bids W that contains V , then it will win the reward R,
but lose an amount of t · F in transaction fees. On the other hand, if W does not contain
V , then the change in payoff for the adversary only consists in the loss of t · F in transaction
fees. Therefore, in expectation the difference in the adversary’s payoff compared to following
the honest strategy is

∆p̃t = Pr
W

[V ⊆W] ·R− t · F =
(`− k)! · t!
`! · (t− k)!

·R− t · F.

We will now show that under the condition R ≤ t ·F the value ∆p̃t is always ≤ 0, which means

34

that suppressing bids does not increase the payoff for the adversary. It holds that

∆p̃t ≤
(`− k)! · t!
`! · (t− k)!

· ` · F − t · F

= t · F ·
(

(`− k)! · (t− 1)!

(`− 1)! · (t− k)!
− 1

)

= t · F ·

((`− 1)− (k − 1))! · (t− 1)!

(`− 1)! · ((t− 1)− (k − 1))!︸ ︷︷ ︸
=:γ

−1

 .

Recall that k > 0. By equation 1 the term γ is the probability that a random subset of size
t− 1 of a set of size `− 1 contains a fixed set of size k − 1. As γ is the probability of an event
it holds that γ ≤ 1 and consequently ∆p̃t ≤ 0.

Consequently, if one of these two points holds, suppressing bids in round i′ of Hi,6 does
not increase C’s payoff, and we can conclude that p(Hi,6, C) ≤ p(Hi,7, C). This concludes the
proof.

35

	Introduction
	Our Contributions
	Our Solution

	Preliminaries
	Cryptographic Building Blocks
	Execution Model
	Rational Security

	A Primer on Auction Theory
	Waiting-time Auction

	Minting Mechanisms and Analysis
	Utility-Preserving Allocation
	Hoarding in PoS

	Our protocol
	Blockchain System
	Unlinkable Transactions
	Protocol Description
	Global Parameters
	Chain Validity.
	The Minting protocol

	Protocol Analysis
	System Parameters
	Bootstrapping the System

	Implementation
	Cryptographic Components
	Optimisations
	Benchmarking

	Discussion
	Related Work
	Conclusions and Open Problems
	Definitions
	Probability
	Non-interactive CCA-Commitment
	Time-Lock Puzzles
	Succinct Non-interactive Arguments
	Unlinkable Transactions

	Security Analysis

