IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

1

Inputs from Hell:
Learning Input Distributions for Grammar-Based Test Generation

Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, and Andreas Zeller

Abstract—Grammars can serve as producers for structured test inputs that are syntactically correct by construction. A probabilistic
grammar assigns probabilities to individual productions, thus controlling the distribution of input elements. Using the grammars as input
parsers, we show how to learn input distributions from input samples, allowing to create inputs that are similar to the sample; by inverting
the probabilities, we can create inputs that are dissimilar to the sample. This allows for three test generation strategies: 1) “Common
inputs” — by learning from common inputs, we can create inputs that are similar to the sample; this is useful for regression testing.

2) “Uncommon inputs” — learning from common inputs and inverting probabilities yields inputs that are strongly dissimilar to the sample;
this is useful for completing a test suite with “inputs from hell” that test uncommon features, yet are syntactically valid. 3) “Failure-inducing
inputs” — learning from inputs that caused failures in the past gives us inputs that share similar features and thus also have a high chance
of triggering bugs; this is useful for testing the completeness of fixes. Our evaluation on three common input formats (JSON, JavaScript,
CSS) shows the effectiveness of these approaches. Results show that “common inputs” reproduced 96% of the methods induced by the
samples. In contrast, for almost all subjects (95%), the “uncommon inputs” covered significantly different methods from the samples.
Learning from failure-inducing samples reproduced all exceptions (100%) triggered by the failure-inducing samples and discovered new
exceptions not found in any of the samples learned from.

Index Terms—test case generation, probabilistic grammars, input samples

<+

INTRODUCTION

D URING the process of software testing, software engi-
neers typically attempt to satisfy three goals:

1) First, the software should work well on common inputs,
such that the software delivers its promise on the vast
majority of cases that will be seen in typical operation. To
cover such behavior, one typically has a set of dedicated
tests (manually written or generated).

Second, the software should work well on uncommon
inputs. The rationale for this is that such inputs would
exercise code that is less frequently used in production,
possibly less tested, and possibly less understood [1].
Third, the software should work well on inputs that
previously caused failures, such that it is clear that previous
bugs have been fixed. Again, these would be covered
via specific tests.

How can engineers obtain such inputs? In this paper, we
introduce a novel test generation method that learns from
a set of sample inputs to produce additional inputs that are
markedly similar or dissimilar to the sample. By learning
from past failure-inducing inputs, we can create inputs with
similar features; by learning from common inputs, we can
create uncommon inputs with dissimilar features not seen in
the sample.

e E. Soremekun is with the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), Luxembourg. This work was conducted while working at
CISPA Helmbholtz Center for Information Security, Saarbriicken, Germany.
E-mail: ezekiel.soremekun@uni.lu

e N. Havrikov and A. Zeller are with CISPA Helmholtz Center for
Information Security, Saarbriicken, Germany.

E-mail: see https://cispa.saarland/people/database/

o E. Pavese and L. Grunske are with the Department of Computer Science,
Humboldt-Universitit zu Berlin, Berlin, Germany.

E-mail: {pavesees, grunske}@informatik.hu-berlin.de

The key ingredient to our approach is a context-free gram-
mar that describes the input language to a program. Using
such a grammar, we can parse existing input samples and
count how frequently specific elements occur in these samples.
Armed with these numbers, we can enrich the grammar to be-
come a probabilistic grammar, in which production alternatives
carry different likelihoods. Since these probabilities come
from the samples used for the quantification, such a grammar
captures properties of these samples, and producing from
such a grammar should produce inputs that are similar to the
sample. Furthermore, we can invert the learned probabilities
in order to obtain a second probabilistic grammar, whose
production would produce inputs that are dissimilar to the
sample. We thus can produce three kinds of inputs, covering
the three testing goals listed above:

1) “Common inputs”. By learning from common samples,
we obtain a “common” probability distribution, which
allows us to produce more “common” inputs. This is
useful for regression testing.

“Uncommon inputs”. Learning from common samples,
the resulting inverted grammar describes in turn the
distribution of legal, but uncommon inputs. This is useful
for completing test suites by testing uncommon features.
“Failure-inducing inputs”. By learning from samples
that caused failures in the past, we can produce similar
inputs that test the surroundings of the original inputs.
This is useful for testing the completeness of fixes.

”

Both the “uncommon inputs” and “failure-inducing inputs
strategies have high chances of triggering failures. Since they
combine features rarely seen or having caused issues in the
past, we gave them the nickname “inputs from hell”. As an
example, consider the following JavaScript input generated
by focusing on uncommon features:

var { a: {} = "b" } = {};

This snippet is valid JavaScript code, but causes the
Mozilla Rhino 1.7.7.2 JavaScript engine to crash during in-
terpretationﬂ This input makes use of so-called destructuring
assignments: In JavaScript, one can have several variables on
the left hand side of an assignment or initialization. In such
a case, each gets assigned a part of the structure on the right
hand side, as in

var [one, two, three]l = [1, 2, 31;

where the variable one is assigned a value of 1, two a value

of 2, and so on. Such destructuring assignments, although

useful in some contexts, are rarely found in JavaScript

programs and tests. It is thus precisely the aim of our

approach to generate such uncommon “inputs from hell”.
This article makes the following contributions:

1) We use context-free grammars to determine production
probabilities from a given set of input samples.

2) We use mined probabilities to produce inputs that
are similar to a set of given samples. This is useful for
thoroughly testing commonly used features (regression
testing), or to test the surroundings of previously failure-
inducing inputs. Our approach thus leverages probabilis-
tic grammars for both mining and test case generation.
In our evaluation using the JSON, CSS and JavaScript
formats, we show that our approach repeatedly covers
the same code as the original sample inputs; learning
from failure-inducing samples, we produce the same
exceptions as the samples as well as new exceptions.

3) We use mined probabilities to produce inputs that are
markedly dissimilar to a set of given samples, yet still valid
according to the grammar. This is useful for robustness
testing, as well as for exploring program behavior not
triggered by the sample inputs. We are not aware of
any other technique that achieves this objective. In our
evaluation using the same subjects, we show that our
approach is successful in repeatedly covering code not
covered in the original samples.

The remainder of this paper is organized as follows.
After giving a motivational example in Section [2, we de-
tail our approach in Section [3| Section |4 evaluates our
three strategies (“common inputs”, “uncommon inputs”,
and “failure-inducing inputs”) on various subjects. After
discussing related work (Section[6), Section [7] concludes and
presents future work.

2 INPUTS FROM HELL IN A NUTSHELL

To demonstrate how we produce both common and uncom-
mon inputs, let us illustrate our approach using a simple
example grammar. Let us assume we have a program P that
processes arithmetic expressions; its inputs follow the standard
syntax given by the grammar G below.

Expr — Term | Expr "+" Term | Expr "=" Term;

Term — Factor | Term "«" Factor
| Term "™/"™ Factor;
Factor — Int | "+" Factor

1. We have reported this snippet as Rhino issue #385 and it has been
fixed by the developers.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

| wn_mn FﬂCtOr | " (" Expr ") " :
Int — Digit Int | Digit;
Dlglt N " 0 n ‘ LR | nomn ‘

ll3" | - ‘ llg";

Let us further assume we have discovered a bug in P:
Theinput I =1 % (2 + 3) is not evaluated properly. We
have fixed the bug in P, but want to ensure that similar
inputs would also be handled in a proper manner.

To obtain inputs that are similar to I, we first use the
grammar G to parse I and determine the distribution of the
individual choices in productions. This makes G a probabilistic
grammar G, in which the productions’ choices are tagged
with their probabilities. For the input I above, for instance,
we obtain the probabilistic rule

Digit — 0% "0" | 333% "1" | 33.3% "2"
| 33.30/0 "3" ‘ OO/O "4" | 00/0 "5"
| 0% "6" | 0% "7" | 0% "8" | 0% "9";

which indicates the distribution of digits in /. Using this rule
for production, we would obtain ones, twos, and threes at
equal probabilities, but none of the other digits. Figure
shows the grammar G, as extension of G with all probabili-
ties as extracted from the derivation tree of I (Figure[l). In
this derivation tree we see, for instance, that the nonterminal
Factor occurs 4 times in total. 75% of the time it produces
integers (Int), while in the remaining 25%, it produces a
parenthesis expression (" (" Expr ") "). Expressions using

unary operators like "+" Factor and "-" Factor do not occur.
Expr
Expr "+ Term
Term Faétor
Faétor " ("Ex//;r\") "
11‘1t Term
Diéit Temtor
myw Faétor 11‘1t
Int Digit
Digit n3m
non

Fig. 1. Derivation tree representing "1 + (2 = 3)"

If we use G, from Figure2|as a probabilistic production
grammar, we obtain inputs according to these probabilities.
As listed in Figure |3} these inputs uniquely consist of the
digits and operators seen in our sample 1 » (2 + 3).All
of these inputs are likely to cover the same code in P as the
original sample input, yet with different input structures that
trigger the same functionality in P in several new ways.

When would one want to replicate the features of sample
inputs? In the “common inputs” strategy, one would create
test cases that are similar to a set of common inputs; this is
helpful for regression testing. In the more interesting “failure-
inducing inputs” strategy, one would learn from a set of
failure-inducing samples to replicate their features; this is
useful for testing the surroundings of past bugs.

If one only has sample inputs that work just fine, one
would typically be interested in inputs that are different from

SOREMEKUN et al.: INPUTS FROM HELL

Expr — 66.7% Term | 33.3% Expr "+" Term
| 0% Expr "=" Term;

Term — 75% Factor | 25% Term "*" Factor
| 0% Term "/" Factor;
Factor — 75% Int | 0% "+" Factor

| 0% "=" Factor | 25% " (" Expr ")";
Int — 0% Digit Int | 100% Digit;

Digit — 0% "0" | 33.3% "1" | 33.3% "2"
| 333% "3" | 0% "4" | 0% "5"
| 00/O ll6" | 00/0 ngn ‘ 00/0 118n | OO/O ll9";

Fig. 2. Probabilistic grammar G, expanding G

(2 * 3)

2+ 2+ 1 x (1) + 2

((3 * 3))

3% (((3 +3 +3) *« (2% 3+ 3))) = (3)
3«1 % 3

((3) + 2 + 2 % 1) %= (1)

1

((2)) + 3

Fig. 3. Inputs generated from G,, in Figure[2]

our samples—the “uncommon inputs” strategy. We can easily
obtain such inputs by inverting the mined probabilities: if a
rule previously had a weight of p, we now assign it a weight
of 1/p, normalized across all production alternatives. For
our Digit rule, this gives the digits not seen so far a weight
of 1/0 = oo, which is still distributed equally across all
seven alternatives, yielding individual probabilities of 1/7 =
14.3%. Proportionally, the weights for the digits already seen
in I are infinitely small, yielding a probability of effectively
zero. The “inverted” rule reads now:

Digit — 14.3% "0" | 0% "1" | 0% "2" | 0% "3"
| 14.3% "4" | 143% "5" | 143% "6"
| 14.3% "7" | 143% "8" | 14.3% "9";

Applying this inversion to rules with non-terminal sym-
bols is equally straightforward. The resulting probabilistic
grammar G,-1 is given in Figure

Expr — 0% Term | 0% Expr "+" Term
| 100% Expr "=" Term;

Term — 0% Factor | 0% Term "%" Factor
| 100% Term "/" Factor;

Factor — 0% Int | 50% "+" Factor
| 50% "=" Factor | 0% "("™ Expr ")";
Int — 100% Digit Int | 0% Digit;

Digit — 143% "0" | 0% "1" | 0% "2" | 0% "3"
| 14.3% "4" | 143% "5" | 143% "6"
| 14.3% "7" | 143% "8" | 14.3% "9";

Fig. 4. Grammar G -1 inverted from Gy, in Figure

This inversion can lead to infinite derivations, for ex-
ample, the production rule in GG,-1 for generating Expr is
recursive 100% of the time, expanding only to Expr "=" Term,
without chance of hitting the base case. As a result, we take

3

special measures to avoid such infinite productions during
input generation (see Section [3.3).

If we use G,-1 as a production grammar—and avoiding
infinite production—we obtain inputs as shown in Figure |
These inputs now focus on operators like subtraction or
division or unary operators not seen in our input samples.
Likewise, the newly generated digits cover the complement
of those digits previously seen. Yet, all inputs are syntactically
valid according to the grammar.

In summary, with common inputs as produced by G,
we can expect to have a good set of regression tests—or a
set replicating the features of failure-inducing inputs when
learning from failure-inducing samples. In contrast, uncom-
mon inputs as produced by G,,-1 would produce features
rarely found in samples, and thus cover complementary
functionality.

+5/-5/7-+0/6 /6 -6 /8 -5 -4
-4/ +7/5-4/7/4-6/0-5-0

+5 / ++4 / 4 -8 /8 -4/8/7-8-29
-6/ 9/5/8-+7/-9/6-4-4-256
+8 / ++8 / 5/ 4 /0 -5-4/8 -8 -28
-9 /-5/9/4--9/0/5-8/4-%86

++7 /9 /5 -+8 /49 / 7/ 7 -6 - 8 — 4
-+6 / -8/ 9/ 6 -5/0-5-8-0-25

Fig. 5. Inputs generated from G/,—1 from Figure

3 APPROACH

In order to explain our approach in detail, we start with
introducing basic notions of probabilistic grammars.

3.1

The probabilistic grammars that we employ in this paper are
based on the well-known context-free grammars (CFGs) [2].

Probabilistic Grammars

Definition 1 (Context-free grammar). A context-free grammar
is a 4-tuple (V,T, P,Sy), where V is the set of non-terminal
symbols, T' the terminals, P : V. — (V UT)* the set of
productions, and Sy € V' the start symbol.

In a non-probabilistic grammar, rules for a non-terminal
symbol S provide n alternatives A; for expansion:

In a probabilistic context-free grammar (PCFG), each of
the alternatives A; in Equation is augmented with a
probability p;, where > | p; = 1 holds:

If we are using these grammars for generation of a
sentence of the language described by the grammar, each
alternative A; has a probability of p; to be selected when
expanding S.

By convention, if one or more p; are not specified in
a rule, we assume that their value is the complement
probability, distributed equally over all alternatives with
these unspecified probabilities. Consider the rule

Letter — 40.0% "a" | "b" | "c"

4

Here, the probabilities for "b" and "c" are not specified; we
assume that the complement of "a", namely 60%, is equally
distributed over them, yielding effectively

Letter — 40.0% "a" | 30.0% "b" | 30.0% "c"

Formally, to assign a probability to an unspecified p;, we use

o 1 =3 {pjlp; is specified for A}
Pe= number of alternatives A; with unspecified py,

®)

Again, this causes the invariant Z?Zl p; = 1 to hold. If no p;
is specified for a rule with n alternatives, as in Equation ,
then Equation (3) makes each p; = 1/n, as intended.

3.2 Learning Probabilities

Our aim is to turn a classical context-free grammar G into a
probabilistic grammar G, capturing the probabilities from
a set of samples—that is, to determine the necessary p;
values as defined in Equation (2) from these samples. This is
achieved by counting how frequently individual alternatives
occur during parsing in each production context, and then
to determine appropriate probabilities.

In language theory, the result of parsing a sample input /
using G is a derivation tree [3], representing the structure of a
sentence according to G. As an example, consider Figure
representing the input "1 + (2 * 3)" according to the
example arithmetic expression grammar in Section 2} In this
derivation tree, we can now count how frequently a particular
alternative A; was chosen in the grammar G during parsing.
In Figure 1} the rule for Expr is invoked three times during
parsing. This rule expands once (33.3%) into Expr "+" Term
(at the root); and twice (66.7%) into Term in the subtrees.
Likewise, the Term symbol expands once (25%) into Term " "
Factor and three times (75%) into Factor. Formally, given a set
T of derivation trees from a grammar G applied on sample
inputs, we determine the probabilities p; for each alternative
A; ofasymbol S — Ay |...| A, as

_ Expansions of S — A;in T

(4)

’ Expansions of S'in T
If a symbol .S does not occur in 7', then Equation (4) makes
p; = 0/0 for all alternatives A;; in this case, we treat all p;
for S as unspecified, assigning them a value of p; = 1/n in
line with Equation (B). In our example, Equation () yields
the probabilistic grammar G, in Figure [2}

3.3

We turn our attention now to the converse approach; namely
producing inputs that deviate from the sample inputs that
were used to learn the probabilities described above. This
“uncommon input” approach promises to be useful if we
accept that our samples are not able to cover all the possible
system behavior, and if we want to find bugs in behaviors
that are either not exercised by our samples, or do so rarely.

The key idea is to invert the probability distributions as
learned from the samples, such that the input generation
focuses on the complement section of the language (w.r.t.
the samples and those inputs generated by the probabilistic
grammar). If some symbol occurs frequently in the parse
trees corresponding to the samples, this approach should

Inverting Probabilities

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

generate the symbol less frequently, and vice versa: if the
symbol seldom occurs, then the approach should definitely
generate it often.

For a moment, let us ignore probabilities and focus on
weights instead. That is, the absolute (rather than relative)
number of occurrences of a symbol in the parse tree of
a sample. We start by determining the occurrences of a
symbol A during a production S found in a derivation tree 7"

Occurrence count of A in the
expansions of symbol S in T

wa,5 =)
To obtain inverted weights w'; ¢, a simple way is to make
each w’, g based on the reciprocal value of w4 s, that is
1 1

Wy g =was = wis (6)

If the set of samples is small enough, or focuses only on a
section of the language of the grammar, it might be the case
that some production or symbol never appears in the parsing
trees. If this is the case, then the previous equations end up
yielding w4 s = 0. We can compute w4 s~ = oo, assigning
the elements not seen an infinite weight. Consequently, all
symbols B that were indeed seen before (with wp g > 0)
are assigned an infinitesimally small weight, leading to
wg g = 0. The remaining infinite weight is then distributed
over all of the originally “unseen” elements with original
weight w4, g = 0. Recall the arithmetic expression grammar
in Section [2} such a situation arises when we consider the
rule for the symbol Digit: the inverted probabilities for the
rule focus exclusively on the complement of the digits seen
in the sample.

All that remains in order to obtain actual probabilities
is to normalize the weights back into a probability measure,
ensuring for each rule that its invariant) ;- , p/ = 1 holds:

wh

/ K3
P=)
’ Z;L:l w;

3.4 Producing Inputs from a Grammar

Given a probabilistic grammar G, for some language (irre-
spective of whether it was obtained by learning from samples,
by inverting, or simply written that way in the first place),
our next step in the approach is to generate inputs following
the specified productions. This generation process is actually
very simple, since it reduces to produce instances by travers-
ing the grammar, as if it were a Markov chain. However, this
generation runs the serious risk of probabilistically choosing
productions that lead to an excessively large parsing tree.
Even worse, the risk of generating an unbounded tree is very
real, as can be seen in the rule for the symbol Int in the
arithmetic expression grammar in Section [2} The production
rule for said symbol triggers, with probability 1.0, a recursion
with no base case, and will never terminate.

Our inspiration for constraining the growth of the tree
during input generation comes from the PTC2 algorithm [4].
The main idea of this algorithm is to allow the expansion
of not-yet-expanded productions, while ensuring that the
number of productions does not exceed a certain thresh-
old of performed expansions. This threshold would be
set as parameter of the input generation process. Once

SOREMEKUN et al.: INPUTS FROM HELL

this threshold is exceeded, the partially generated instance
cannot be truncated, as that would result in an illegal input.
Alternatively, we choose to allow further expansion of the
necessary non-terminal symbols. However, from this point
on, expansions are not chosen probabilistically. Rather, the
choice is constrained to those expansions that generate the
shortest possible expansion tree. This ensures both termina-
tion of the generation procedure, as well as trying to keep
the input size close to the threshold parameter. This choice,
however, does introduce a bias that may constitute a threat to
the validity of our experiments that we discuss in Section [4.3]

3.5

As a prerequisite for carrying out our approach, we only
assume we have the context-free grammar of the language
available for which we are interested in generating inputs,
and a collection (no matter the size) of inputs that we will
assume are common inputs. Armed with these elements, we
perform the workflow detailed in Figure|[6]

The first step of the approach is to obtain a counting
grammar from the original grammar. This counting grammar
is, from the parsing point of view, completely equivalent
to the original grammar. However, it is augmented with
actions during parsing which perform all necessary counting
of symbol occurrences parallel to the parsing phase. Finally, it
outputs the probabilistic grammar. Note that this first phase
requires not only the grammar of the target language, but
also the grammar of the language in which the grammar itself
is written. That is, generating the probabilistic grammar not
only requires parsing sample inputs, but also the grammar
itself. In the particular case of our implementation, we make
use of the well-known parser generator ANTLR [5].

Once the probabilistic grammar is obtained, we derive the
probabilistically-inverted grammar as described in this sec-
tion. Armed with both probabilistically annotated grammars,
we can continue with the input generation procedure.

Implementation

4 EXPERIMENTAL EVALUATION

In this section we evaluate our approach by applying the
technique in several case studies. In particular, we ask the
following research questions:

e RQ1 (“Common inputs”). Can a learned grammar be
used to generate inputs that resemble those that were
employed during the grammar training?

e RQ2 (“Uncommon inputs”). Can a learned grammar be
modified so it can generate inputs that, opposed to RQ1,
are in contrast to those employed during the grammar
training?

o RQ3 (“Sensitivity to training set variance”). Is our
approach sensitive to variance in the initial samples?

e RQ4 (“Sensitivity to size of training set”). Is our
approach sensitive to the size of the initial samples?

o RQ5 (“Bugs found”). What kind of crashes (exceptions)
do we trigger in RQ1 and RQ2?

e RQ6 (“Failure-inducing inputs”). Can a learned gram-
mar be used to generate inputs that reproduce failure-
inducing behavior?

To answer RQ1 and RQ2, we need to compare inputs
in order to decide whether these inputs are “similar” or

TABLE 1
Depth and size of derivation trees for “common inputs” (PROB) and
“uncommon inputs” (INV)

Grammar | Mode .Depth of derivation tree Nodes
min | max | avg. | median avg.

PROB 14 | 2867 96 63 3058

JSON INV 5 37 23 37 68
JavaScript PROB 1 79 19 8 400
INV 1 38 19 1| 11,061

css | PROB 3 44 41 44 | 19,380

INV 9 30 29 30 | 11,269

“contrasting”. In the scope of this evaluation, we will use
the method coverage and call sequences as measures of input
similarity. We will define these measures later in this section,
and we will discuss their usefulness. We address RQ3 by
comparing the method calls and call sequences induced for
three randomly selected training sets, each containing five
inputs. Likewise, we evaluate RQ4 by comparing the method
calls and call sequences induced for four randomly selected
training sets, each containing N sample inputs, where N €
{1,5,10,50}. We assess RQ5 by categorizing, inspecting and
reporting all exceptions triggered by our test suites in RQ1
and RQ2. Finally, we address RQ6 by investigating if the
“(un)common inputs” strategy can reproduce (or avoid) a
failure and explore the surroundings of the buggy behavior.

4.1 Evaluation Setup
4.1.1 Generated Inputs

Once a probabilistic grammar is learned from the training
instances, we generate several inputs that are fed to each
subject. Our evaluation involves the generation of three types
of test suites:

a) Probabilistic - choice between productions is governed
by the distribution specified by the learned probabilities
in the grammar.

b) Inverse - choice is governed by the distribution obtained
by the inversion process described in Section

¢) Random - choice between productions is governed by a
uniform distribution (see RQ6).

Expansion size control is carried out in order to avoid
unbounded expansion as described in Section Table
reports the details of the produced inputs, i.e. the depth
and average number of nodes in the derivation trees for the
“common inputs” (i.e., probabilistic/ PROB) and “uncommon
inputs” (i.e., inverse/INV).

4.1.2 Research Protocol

In our evaluation, we generate test suites and measure the
frequency of method calls, the frequency of call sequences
and the number of failures induced in our subject programs.
For each input language, the experimental protocol proceeds
as follows:

a) We randomly selected five files from a pool of thousands
of sample files crawled from GitHub code repositories,
and through our approach produced a probabilistic
grammar out of themy| Since one of the main use cases of

2. To evaluate RQ6, we learned a PCFG from at most five random
failure-inducing inputs.

Grammar Counting
for target Parser grammar for Parser
language target language
Language
input
samples

>

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Probabilistic
“common”
inputs

Probabilistic Probabilistic Application
grammar for target d der test
language producer under tes

Inverse
probabilistic
“uncommon”
inputs

Fig. 6. Workflow for the generation of “common inputs” and “uncommon inputs”

our tool is to complete a test suite, we perform grammar
training with few (i.e. five) initial sample tests.

b) We feed the sampled input files into the subject program
and record the triggered failures, the induced call
sequences and the frequency of method calls using the
HPROF [6] profiler for Java.

c) Using the probabilistic grammar, we generate test suites,
each one containing 100 input files. We generate a total
of 1000 test suites, in order to control for variance in the
input files. Overall, each experiment contains 100,000
input files (100 files x 1,000 runs). We perform this step
for both probabilistic and inverse generations. Hence,
the total number of inputs generated for each grammar
is 200,000 (1,000 suites of 100 inputs each, a set of suites
for each experiment).

d) We test each subject program by feeding the input files
into the subject program and recording the induced
failures, the induced call sequences and the frequency
of method calls using HPROF.

All experiments were conducted on a server with 64 cores
and 126 GB of RAM; more specifically an Intel Xeon CPU
E5-2683 v4 @ 2.10GHz with 64 virtual cores (Intel Hyper-
threading), running Debian 9.5 Linux.

4.1.3 Subject Programs

We evaluated our approach by generating inputs and feeding
them to a variety of Java applications. All these applications
are open source programs using three different input formats,
namely JSON, JavaScript and CSS3. Table [2| summarizes the
subjects to be analyzed, their input format and the number
of methods in each implementation.

The initial, unquantified grammars for the input subjects
were adapted from those in the repository of the well-known
parser generator ANTLR [5]. We handle grammar ambiguity
that may affect learning probabilities by ensuring every input
has only one parse tree. Specifically, we adapt the input
grammars by (re-)writing lexer modes for the grammars,
shortening lexer tokens and re-writing parser rules. Training
samples were obtained by scraping GitHub repositories
for the required format files. The probabilistic grammars
developed from the original ones, as well as the obtained
training samples can be found in our replication package.

4.1.4 Measuring (Dis)similarity

Questions RQ1 and RQ2 refer to a notion of similarity
between inputs. Although white-box approaches exist that

TABLE 2
Subject details

Input Format Subject Version | #Methods LOC
Argo 5.4 523 8,265

Genson 14 1,182 18,780

Gson 2.85 793 25,172

JSONJava 20180130 202 3,742

Jackson 29.0 5,378 117,108

JsonToJava 1880978 294 5,131

JSON MinimalJson 0.9.5 224 6,350
Pojo 0.5.1 445 18,492

json-simple a8b94b7 63 2,432

cliftonlabs 3.0.2 183 2,668

fastjson 1.2.51 2,294 166,761

json2flat 1.03 37 659

json-flattener 0.6.0 138 1,522

JavaScript) Rhino 1.7.7 4873 100,234
rhino-sandbox 0.0.10 49 529
CSSValidator 1.04 7774 120,838

flute 1.3 368 8,250

CSS3 jstyleparser 32 2,589 26,287
cssparser 0.9.27 2,014 18,465

closure-style 0.9.27 3,029 35,401

aim to measure test-case similarity and dissimilarity [7],
[8], applying them to complex grammar-based inputs is
not straightforward. However, in this paper, since we are
dealing with evaluating the behavior of a certain piece of
software, it makes sense to aim for a notion of semantic
similarity. In this sense, two inputs are semantically similar
if they incite similar behaviors in the software that processes
them. In order to achieve this, we define two measures
of input similarity based on structural and non-structural
program coverage metrics. The non-structural measure of
input similarity is the frequency of method calls induced in
the programs. The structural measure is the frequency of call
sequences induced in the program, a similar measure was used
in [9]. Thus, we will say two inputs are similar if they induce
similar (distribution of) method call frequencies for the same
program. The frequency of call sequences refers to the number
of times a specific method call sequence is triggered by an
input, for a program. For this measure, we say two inputs are
similar if they trigger a similar distribution in the frequency
with which the method sequences are called, for the same
program. These notions allow for a great variance drift if
we were to compare only two inputs. Therefore, we perform
these comparisons on test suites as a whole to dampen the
effect of this variance.

Using these measures, we aim at answering RQ1 and
RQ2. RQ1 will be answered satisfactorily if the (distribution
of) call frequencies and sequences induced by the “common

SOREMEKUN et al.: INPUTS FROM HELL

10°

LY
PROB
N SAMP

H
2

Absolute frequency
=
<

Sequence of Method Calls Iemgth 2)

AL
(a) PROB vs. SAMP vs. INV

Froe s

“OPROB @ SAMP @ INV

Fig. 7. Frequency analysis of call sequences for json-flattener (length=2)

inputs” strategy is similar to the call frequency and sequences

obtained when running the software on the training samples.

Likewise, RQ2 will be answered positively if the (distribution
of) call frequencies and sequences for suites generated with
the “uncommon inputs” strategy are markedly dissimilar.

4.1.5 Visual test

For each test suite, we compare the frequency distribution of

the call sequences and method calls triggered in a program,

using grouped and single bar charts. These comparisons are
in line with the visual tests described in [10].

For instance, Figure [7] shows the frequency analysis of
the call sequences induced in json-flattener by our
test suites. The grouped bar chart compares the frequency
distribution of call sequences for all three test suites, (i.e. (a)
PROB vs. SAMP vs. INV) and the single bar chart shows the
frequency distribution of call sequences for each test suite
(i.e., (b.) PROB, (c) SAMP and (d) INV). Frequency analysis
(in (a.)) shows that the (distribution of) call sequences of
PROB and SAMP align (see rightmost part of bar chart), and
INV often induces a different distribution of call sequences

from the initial samples (see leftmost part of bar chart).

The single bar chart for a test suite shows the frequency

distribution of the call sequences triggered by the test suite.

For instance, Figure |[7] (b) and (c) show the call sequence
distribution triggered by the “common inputs” and initial
samples respectively. The comparison of both charts shows
that all call sequences covered by the samples, were also
frequently covered by the “common inputs”.

Likewise, Figure [0 to Figure [1T|show the call frequency
analysis of the test suites using a grouped bar chat for
comparison (i.e. (a) PROB vs. SAMP vs. INV) and a single
bar chart to show the call frequency distribution of each test
suite (i.e., (b.) PROB, (c) SAMP and (d) INV). The grouped
bar chart shows the call frequency for each test suite grouped
together by method, with bars for each test suite appearing
side by side per method. For instance, analysing Figure E] (a)

TABLE 3
Call Sequence analysis for “common inputs” (PROB) and “uncommon
inputs” (INV) for all subject programs

Call Sequences Call sequences
Length covered by Sample covered by
also by PROB also by INV PROB INV
2 1210 1157 (96%) 937 (74%) 6348 5196
3 1152 1099 (95%) 782 (62%) 7946 5930
4 849 803 (90%) 479 (47%) 9236 5825
Total 3211 3059 (94%) 2198 (61%) 23530 16951

Sequence of Method Calls covered by Sample: PROB vs INV

Common Inputs (PROB) ==
Uncommon Inputs (INV) === |

80 -

60 [

40

Sequences covered by Sample (%)

20

Length=2 Length=3 Length=4 Al

Sequence of Method Calls

Fig. 8. Call sequences covered by Sample for “common inputs” (PROB)
and “uncommon inputs” (INV)

shows that the call frequencies of PROB and SAMP align (see
rightmost part of bar chart), and INV often induces a different
call frequency for most methods (see leftmost part of bar
chart). Moreover, the single bar chart for a test suite shows
the call frequency distribution of the test suite. For instance,
Figure E] (b) and (c) show the call frequency distribution of
the “common inputs” and initial samples respectively, their
comparison shows that all methods covered by the samples,
were also frequently covered by the “common inputs”.

4.1.6 Collecting failure-inducing inputs

For each input file in our Github corpus, we fed it to
every subject program of the input language and observe
if the subject program crashes, i.e. the output status code
is non-zero after execution. Then, we collect such inputs as
failure-inducing inputs for the subject program and parse
the standard output for the raised exception. In total, we fed
10,853 files to the subject programs, 1,000 each for CSS and
JavaScript, and 8853 for JSON. Exceptions were triggered
for two input languages, namely JavaScript and JSON, no
exception was triggered for CSS. In total, we collected
15 exceptions in seven subject programs (see Table[10).

4.2 Experimental Results

In Figure 9] to Figure [1T} we show a representative selection
of our resultsﬂ For each subject, we constructed a chart that
represents the absolute call frequency of each method in the
subject. The horizontal axis (which is otherwise unlabelled)

3. The full range of charts is omitted for space reasons. However,
all charts, as well as the raw data, are available as part of the artifact
package. Moreover, the charts shown here have been selected so that
they are representative of the whole set; that is, the omitted charts do
not deviate significantly.

10°

LN
PROB
. SAMP

‘HHH LLLLLAL

Methods

(a) PROB vs. SAMP vs. INV

.t i .MIMW“

(b) PROB (c) SAMP

Fig. 9. Call frequency analysis for json-simple-cliftonlabs

H
2

Absolute frequency
=
<

H
2

&

107% 4

(@) INV

represents the set of methods in the subject, ordered by the
frequency of calls in the experiment on probabilistic inputs.

RQ1 (“Common inputs”): Can a learned grammar be used
to generate inputs that resemble those that were employed
during the grammar training?

To answer RQ1, we compare the methods covered by the
sample inputs and the “common inputs” strategy (Table
and Figure[9] to Figure[TT). We also examine the call sequences
covered by the sample inputs and the “common inputs”,
for consecutive call sequences of length two, three and four
(Table B| and Figure [8). In particular, we investigate if the
“common inputs” strategy covered at least the same methods
or the same call sequences as the initial sample inputs.

Do the “common inputs” trigger similar non-structural
program behavior (i.e., method calls) as the initial samples?
For all subjects, the “common inputs” strategy covered
almost all (96%) of the methods covered by the sample (see
Table[d). This result shows that the “common inputs” strategy
learned the input properties in the samples and reproduced
the same (non-structural) program behavior as the initial
samples. Besides, this strategy also covered other methods
that were not covered by the samples.

The “common inputs” strategy triggered almost all methods
(96%) called by the initial sample inputs.

Do the “common inputs” also trigger similar structural
program behavior (i.e., sequences of method calls)? In our
evaluation, the “common inputs” strategy covered most
of the call sequences that were covered by the initial
samples. For instance, Figure[7]shows that the call sequences
covered by the samples were also frequently covered by
the “common inputs”, for json-flattener. Overall, the
“common inputs” strategy covered 94% of the method call
sequences induced by the sample (see Table [3|and Figure [8).
For all call sequences, the “common inputs” strategy also
covered 90% to 96% of the method call sequences covered

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

10°

LN
PROB
. SAMP

H
2

Absolute frequency
=
(=]
s

1077 4

|

Methods

(a) PROB vs. SAMP vs. INV

mos . s

NI ul -l I L0 RN

(b) PROB (c) SAMP (d) INV
Fig. 10. Call frequency analysis for JSONJava

”

by the samples. This result shows that the ‘common inputs
strategy triggers the same structural program behavior as
the initial samples.

The “common inputs” strategy triggered most call sequences
(94%) covered by the initial sample inputs.

Additionally, we compare the statistical distributions
resulting from our strategies. We need to be able to see a
pattern in frequency calls such that the frequency curves for
the sample runs and the probabilistic runs match as described

in the visual test (see Section [£.1.5). Figure [9 to Figure
show that this match does hold for all subjects.

For all subjects, the method call frequency curves for the sample
runs and the probabilistic runs match.

We also perform a statistical analysis on the distributions
to increase the confidence in our conclusion. We performed
a distribution fitness test (KS - Kolmogorov-Smirnov) on
the sample vs. the probabilistic call distribution; and on the
sample vs. the inverse probabilistic distribution. It must
be noted that the KS test aims at determining whether
the distributions are exactly the same, whereas we want
to ascertain if they are similar or dissimilar. KS tests are
very sensitive to small variations in data, which makes it,
in principle, inadequate for this objective. In this work, we
employ the approach used by Fan [11]—we first estimate
the kernel density functions of the data distributions, which
smoothen the estimated distribution. Then, we bootstrap
and resample new data on the kernel density estimates, and
perform the KS test on the bootstrapped data.

The KS test confirms the results from the the visual
inspection, the distribution of the method call frequency of

“common inputs” matches the distribution in the sample (see

Table , for some subjects. However, there are also subjects,
where the hypothesis is rejected (p < 0.05) that method call
frequency distributions (sample and “common inputs”) come
from the same distribution, which is indicated by the blue

SOREMEKUN et al.: INPUTS FROM HELL

TABLE 4

Method coverage for “common inputs” (PROB) and “uncommon inputs” (INV)

Methods covered by sample Methods covered Kolmogorov-Smirnov (KS) test of
Subject # also by PROB also by INV by PROB | by INV sample vs. PROB sample vs. INV
D-statistic(p-value) | D-statistic(p-value)
Argo 52 52 (100%) 32 (62%) 256 165 0.28 (1.11E-9) 0.50 (1.84E—30)
Genson 12 12 (100%) 10 (83%) 218 188 0.25 (3.46E—7) 0.73 (5.88E—64)
Gson | 24 | 24 (100%) | 14 (58%) 287 239 0.52 (1.09E—40) 0.25 (1.94E—9)
JSONJava 29 29 (100%) 23 (79%) 51 42 0.08 (0.99) 0.63 (3.45E—11)
Jackson 2 2 (100%) 1 (50%) 957 732 N/A N/A
JsonToJava | 29 | 29 (100%) 9 (31%) 82 33 0.25 (8.48E—3) 0.24 (1.38E—2)
Minimaljson | 24 | 24 (100%) | 18 (75%) 110 100 0.34 (2.36E—6) 0.83 (5.39E—42)
Pojo 23 23 (100%) 7 (30%) 159 93 0.19 (1.81E-3) 0.29 (1.04E-7)
json-simple | 11 | 11 (100%) | 10 (91%) 26 24 0.35 (0.09) 0.46 (7.13E—3)
cliftonlabs 23 23 (100%) 23 (100%) 48 48 0.21 (0.25) 0.54 (8.29E—-7)
fastjson 70 70 (100%) 62 (89%) 245 231 0.37 (3.07E—15) 0.41 (8.84E—19)
json2flat 6 6 (100%) 5 (83%) 17 14 0.35 (0.24) 0.65 (1.15E—3)
json-flattener 36 36 (100%) 32 (89%) 83 81 0.15 (0.29) 0.15 (0.29)
Rhino 23 6 (26%) 23 (100%) 107 201 0.34 (3.18E—12) 0.45 (6.48E—21)
thino-sandbox 3 3 (100%) 3 (100%) 17 17 0.47 (0.04) 0.53 (0.02)
CSSValidator 10 10 (100%) 10 (100%) 97 124 0.42 (1.20E—10) 0.38 (7.95E—9)
flute 58 57 (98%) 51 (88%) 148 131 0.29 (3.35E—6) 0.50 (7.34E—18)
jstyleparser | 75 | 74 (99%) | 59 (79%) 183 169 0.34 (1.53E—13) 0.38 (1.83E—17)
cssparser 71 71 (100%) 66 (93%) 177 152 0.36 (2.91E—12) 0.62 (4.21E—37)
closure-style | 104 95 (91%) | 103 (99%) 229 238 0.16 (2.03E—6) 0.09 (3.34E—-2)
Total | 685 | 657 (96%) | 561 (82%) 3,497 3,022

10°

LN
PROB
. SAMP

107! 4

Absolute frequency
=
<

10-3 4

1074

|I ‘ ‘
Methods

(a) PROB vs. SAMP vs. INV

Do the “uncommon inputs” trigger fewer of the call
sequences covered by the initial samples? Table (3| shows
that the “uncommon inputs” strategy triggered significantly
fewer (61%) of the call sequences covered by the samples. The
number of call sequences induced by the uncommon inputs
decreases significantly as the length of the call sequence
increases (see Figure . For instance, comparing frequency
charts of call sequences in Figurem ((@), (c) and (d)) also show
that “uncommon inputs” frequently avoided inducing the
call sequences triggered by the initial samples. Notably, for
sequences of four consecutive method calls, the “uncommon
inputs” strategy covered only 47% of the sequences covered
by the initial samples (see Table[3). Overall, the “uncommon
inputs” avoided inducing the call sequences that were
triggered by the initial samples.

(b) PROB (c) SAMP

Fig. 11. Call frequency analysis for json-simple

entries. In the case of the Jackson subject, frequencies for
the sample calls are all close to zero, which makes the data
inadequate for the KS test.

RQ2 (“Uncommon inputs”): Can a learned grammar be modi-
fied such it can generate inputs that, opposed to RQ1, are in
contrast to those employed during the grammar training?

For all subjects, the “uncommon inputs” produced by
inverting probabilities covered markedly fewer (82%) of
the methods covered by the sample (see Table). This result
shows that the “uncommon inputs” strategy learned the
input properties in the samples and produced inputs that
avoid several methods covered by the samples.

The “uncommon inputs” strategy triggered markedly fewer
methods (82%) called by the initial sample inputs.

The “uncommon inputs” strategy induced significantly fewer
call sequences (61%) covered by the initial samples.

Do the “uncommon inputs” only cover fewer, or also
different methods? We perform a visual test to examine if we
see a markedly different call frequency between the samples
and the inputs generated by the “uncommon inputs” strategy.
In almost all charts this is the case (see Figure[9)to Figure [TT).
The only exception is the CSSValidator subject.

For all subjects (except CSSValidator), the method call frequency
curves for the sample runs and ‘uncommon inputs’ runs are
markedly different.

Besides, we examine if the frequency of distribution of
method calls for the samples and the “uncommon inputs”
are significantly dissimilar. In particular, the KS tests shows
that for all subjects (except json-flattener) the distributions of
method calls in the sample and the “uncommon inputs” are
significantly different (p < 0.05, see sample vs. INV in Table[d).

RQ3 (“Sensitivity to training set variance”): Is our approach
sensitive to variance in the initial samples?

We examine the sensitivity of our approach to the variance in
the training set. We randomly selected three distinct training

10

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 5
Sensitivity to training set variance using three different sets of initial samples containing five inputs each

Methods covered
by PROB
3,497
8,623
8,655

Set# Methods covered by sample
also by PROB also by INV
1 685 657 (96%) 561 (82%)
2 | 2963 | 2,924 97%) | 2,764 (85%)
3 | 2656 | 2,639 (100%) | 2,516 (87%)

by INV
3,022
8,246
8,165

Call Sequence covered
by PROB by INV
23,530 16,951
22,531 19,896
20,792 19,892

Call Sequences covered by sample
also by PROB also by INV
3211 | 3,059 (94%) | 2,198 (61%)
6,044 | 5643 (93%) | 4110 (68%)
5005 | 4915 (98%) | 3,306 (66%)

sets, each containing five inputs. Then, for each set, we
compare the methods and call sequences covered by the
samples to those induced by the generated inputs (Table [5).
Our evaluation showed that our approach is not sensitive
to training set variance. In particular, for all training sets,
the “common inputs” strategy covered most of the methods
and call sequences induced by the initial sample inputs.
Table [f|shows that the “common inputs” (PROB) consistently
covered almost all call sequences (93 to 98%) covered by the
initial samples, while “uncommon inputs” (INV) covered
significantly fewer call sequences (61 to 68%). Likewise, the
“common inputs” consistently covered almost all methods (96
to 100%) covered by the initial samples, while “uncommon
inputs” covered fewer methods (82 to 87%) (cf. Table .

Both strategies, the “common inputs” and the “uncommon
inputs”, are insensitive to training set variance.

RQ4 (“Sensitivity to the size of training set”): Is our approach
sensitive to the size of the initial samples?

We evaluate the sensitivity of our approach to the size of the
training set. For each input format, we randomly selected
four distinct training sets containing /N sample inputs, where
N € {1,5,10,50}. Then, for each set, we compare the
methods and call sequences induced by the samples to those
induced by the generated inputs (Table [6).

Regardless of the size of the training set, the “common
inputs” strateqy consistently covered most of the methods and
call sequences covered by the initial samples. Specifically, for all
sizes, the “common inputs” covered almost all (94 to 99%) of
the call sequences covered by the initial samples, while “un-
common inputs” covered significantly fewer call sequences
(58 to 79%). In the same vein, the “common inputs” consis-
tently covered almost all methods (96 to 100%) covered by
the initial samples, while “uncommon inputs” covered fewer
methods (79 to 89%) (cf. Table[6). These results demonstrates
that the effectiveness of our approach is independent of the
size of the training set.

The effectiveness of our approach is independent of the size of the
training set used for grammar training.

RQ5 (“Bugs found”): What kind of crashes (exceptions) do
we trigger?

To address RQ5, we examine all of the exceptions triggered
by our test suites. We inspect the exceptions triggered during
our evaluation of the “common inputs” strategy (in RQ1)
and the “uncommon inputs” strategy (in RQ2). To evaluate
if our approach is capable of finding real-world bugs, we
compare the exceptions triggered in both RQ1 and RQ2
to the exceptions triggered by the input files crawled from
Github (using the setup described in Section [4.1.6).

Crawled

ok

INV

PROB

Fig. 12. Number of exceptions triggered by the test suites

Both of our strategies triggered 40% of the exceptions
triggered by the crawled files, i.e. six (out of 15) exceptions
causing thousands of crashes in four subjects (cf. Table[7]and
Table [). Half (three) of these exceptions had no samples
of failure-inducing inputs in their grammar training. This
indicates that, even without failure-inducing input samples
during grammar training, our approach is able to trigger
common buggy behaviors in the wild, i.e. bugs triggered by the
crawled input samples. Exceptions were triggered for JSON
and JavaScript input formats, however, no exception was
triggered for CSS.

Probabilistic grammar-based testing induced two fifths of all
exceptions triggered by the crawled files.

Our strategies were able to trigger eight other exceptions
that could not be found by the crawled files (cf. Figure[12).
This result shows the utility of our approach in finding
rare buggy behaviors, i.e. uncommon bugs in the crawled
input samples. Besides, all of these exceptions were triggered
despite a lack of “failure-inducing input” samples in the
grammar training. In particular, both strategies triggered
nine exceptions each, three and four of which were triggered
only by the “common inputs” and only by the “uncommon
inputs”, respectively.

Probabilistic grammar-based testing induced eight new
exceptions that were not triggered by the crawled files.

The “common inputs” strategy triggered all of the ex-
ceptions triggered by the original sample inputs used in
grammar training. Three exceptions were triggered by the
sample inputs and all three exceptions were triggered by
the “common inputs” strategy, while “uncommon inputs”
triggered only two of these exceptions (cf. Table [7] and
Table[8). Again, this result confirms that our grammar training
approach can learn the input properties that characterize

SOREMEKUN et al.: INPUTS FROM HELL

11

TABLE 6
Sensitivity to the size of the training set using initial sample size N € {1, 5,10, 50}

Size Methods covered by sample Methods covered Call Sequences covered by sample Call Sequence covered
also by PROB also by INV by PROB | by INV # also by PROB also by INV by PROB by INV
1| 1,496 | 1490 = (100%) | 1,352 (79%) 8,715 7,954 | 1,955 | 1942~ (99%) | 1,135 (58%) 21,279 15,341
5 685 657 (96%) 561 (82%) 3,497 3,022 | 3211 | 3,059 (94%) | 2,198 (61%) 23,530 16,951
10 | 3546 | 3517 (100%) | 3,339 (89%) 9,388 11,497 | 6,297 | 6,105 (97%) | 4474 (71%) 26,575 21,214
50 | 5347 | 5313 (100%) | 4,961 (89%) 8,950 8,217 | 9,389 | 9,076 (97%) | 7421 (79%) 23,512 18,391
TABLE 7 in our corpus. This shows that the grammar training ap-
Exception details proach effectively captured the distribution of input proper-
ties in the failure-inducing inputs. Moreso, it reproduced the
#Exceptions #Subjects [Average subject crash rate behavi . the 1 d PCEG
Subject Al (Crashed) program behavior using the learne .
SAMP 3 T 0.05263 1 ; o . ; —
PROB 9 4 0.05999 0.28493 Learning probabilities from failure-inducing inputs strategqy
INV 9 7 003139 0.08521 reproduces 100% of the exceptions in our corpus.

specific program behaviors.

The “common inputs” induced all of the exceptions triggered by
the original sample inputs.

Overall, 14 exceptions in seven subject programs were
found in our experiments (see Table [7] and Table [§). On
inspection, six of these exceptions affecting five subject
programs have been reported to developers as severe bugs.
These exceptions have been extensively discussed in the
bug repository of each subject program. This result reveals
that our approach can generate inputs that reveal real-
world buggy behaviors. Additionally, from the evaluation
of crawled files, 15 exceptions in five subjects were found.
In particular, one exception (Rhino issue #385, which is also
reproducible with our approach) has been confirmed and
fixed by the developers.

RQ6 (“Failure-inducing inputs”): Can a learned grammar
be used to generate inputs that reproduce failure-inducing
behavior?

Let us now investigate if our approach can learn a PCFG
from failure-inducing samples and reproduce the failure.

For each exception triggered by the crawled files (in
Section4.1.6), we learned a PCFG from at most five failure-
inducing inputs that trigger the exception. Then, we run our
PROB approach on the PCFG, using the protocol setting in
Section[4.1.2] The goal is to demonstrate that the PCFG learns
the input properties of the “failure-inducing inputs”, i.e.
inputs generated via PROB should trigger the same exception
as the failure-inducing samples. This is useful for exploring
the surroundings of a bug.

In addition, for each exception, we run the inverse of
“failure-inducing inputs” (i.e., INV), in order to evaluate if
the “uncommon inputs” avoid reproducing the failures. In
contrast, for each exception, we run the random generator
(RAND) on the CFG (according to Section [£.1.2), in order
to evaluate the probability of randomly triggering (these)
exceptions without a (learned) PCFG. In the random config-
uration (RAND), production choices have equal probability
of generation.

In Table [0 we have summarized the number of re-
produced exceptions. We see that probabilistic generation
(PROB) reproduced all (15) failure-inducing inputs collected

For the inverse of “failure-inducing inputs”, our evalu-
ation showed that the “uncommon inputs” strategy could
avoid reproducing the learned failure-inducing behavior for
most (10 out of 15) of the exceptions (cf . Table [J|and Table [10).

The “uncommon inputs” strategy could avoid reproducing the
learned program behavior for two-thirds of the exceptions.

However, this strategy reproduced a third (five out of 15)
of the exceptions in our corpus (cf . Table[9]and Table[10). On
inspection, we found that “uncommon inputs” reproduced
these five exceptions by generating new counter-examples,
i.e.,, new inputs that are different from the initial samples
but trigger the same exception. This is because the initial
sample of failure-inducing inputs was not general enough
to fully characterize all input properties triggering the crash.
This result demonstrates that the inverse of “failure-inducing
inputs” can explore the boundaries of the learned behavior in
the PCFG, hence, it is useful for generating counter-examples.

The “uncommon inputs” strategy generated new
counter-examples for one-third of the exceptions in our corpus.

In contrast, the random test suite (RAND) could not
trigger any of the exceptions in our corpus, as shown in
Table E} This is expected, since a random traversal of the
input grammar would need to explore numerous path com-
binations to find the specific paths that trigger an exception.
This result demonstrates the effectiveness of the grammar
training and the importance of the PCFG in capturing input
properties.

Random input generation could not reproduce any of the
exceptions in our corpus.

Furthermore, we examined the proportion of the gen-
erated inputs that trigger an exception. In total, for each
test configuration and each exception we generated 100,000
inputs. We investigate the proportion of these inputs that
trigger the exception.

Our results for this analysis are summarized in Table
We see that about 18% of the inputs generated by the
“failure-inducing inputs” strategy (PROB) trigger the learned
exception, on average. This rate is three times as high as the
exception occurrence rate in our corpus (SAMP; 6%).

12

TABLE 8

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Exceptions induced by “Common Inputs” (PROB), and “Uncommon Inputs” (INV)

Input #Failure- Occurrence rate in
Subject Exception inducing | PROB INV Crawled
Format .
samples Files
CSS No exceptions triggered
Gson java.lang.NullPointer 0 0 0.0001 0
Pojo java.lang.StringIndexOutOfBounds 0 0.0259 0 0.0024
Pojo java.lang. NumberFormat 0 0 0.0001 0
Argo argo.saj.InvalidSyntax 0 0 0.0023 0.0225
JSONToJava org.json.JSON 0 0.0200 0.0200 0.0223
JSON json2flat com.fasterxml jackson.core.JsonParse 0 0 0.0013 0
json-flattener com.eclipsesource.json.Parse 0 0 0.0013 0
json-flattener java.lang.UnsupportedOperation 0 0.2981 0 0
json-flattener java.lang Illegal Argument 0 0.2554 0 0
json-flattener java.lang.NullPointer 0 0.0398 0 0
json-flattener java.lang. NumberFormat 0 0.0028 0.0745 0
rhino-sandbox org.mozilla.javascript.Evaluator 3 0.4905 0.4469 0.5290
JavaScript | rhino-sandbox java.lang.IllegalState 1 0.0016 0 0.0010
rhino-sandbox org.mozilla.javascript.EcmaError 1 0.0058 0.0500 0.3740

TABLE 9
Reproduced exceptions by sample inputs (SAMP), “failure-inducing
inputs” (PROB), inverse of “failure-inducing inputs” (INV) and random
grammar-based generation (RAND)

#Exceptions Average #
Reproduced Other | Failure-inducing inputs
SAMP 15 0 87
PROB 15 21 18,429
INV 5 6 18,080
RAND 0 0 0

About one in five inputs generated by the “failure-inducing
inputs” strategy reproduced the failure-inducing exception.

Finally, the “failure-inducing inputs” strategy also pro-
duced new exceptions not produced by the original sample
of failure-inducing inputs. As shown in the “Other” column
in Table [9] “failure-inducing inputs” triggered at least one
new exception for each exception in our corpus. This result
suggests that the PCFG is also useful for exploring the
boundaries of the learned behavior, in order to trigger
other program behaviors different from the learned program
behavior. This is possible because “failure-inducing inputs”
not only reproduces the exact features found in the samples,
but also their variations and combinations.

The “failure-inducing inputs” strategy discovered new
exceptions not triggered by the samples or random generation.

4.3 Threats to Validity
4.3.1 Internal Validity

The main threat to internal validity is the correctness of our
implementation. Namely, whether our implementation does
indeed learn a probabilistic grammar corresponding to the
distribution of the real world samples used as training set.
Unfortunately, this problem is not a simple one to resolve.
The probabilistic grammar can be seen as a Markov chain,
and the aforementioned problem is equivalent to verifying
that its equilibrium distribution corresponds to the posterior
distribution of the real world samples. The problem is two-
fold: first, the number of samples necessary in order to
ascertain the posterior distribution is inordinate. Second,

even if we had a chance to process such a number of
inputs, or if the posterior distribution were otherwise known,
it might well be the case that the probabilistic grammar
actually has no equilibrium distribution. However, our tests
on smaller and simpler grammars suggest that this is not an
issue.

A second internal validity threat is present in the tech-
nique we use for controlling the size of the generated samples.
As described before, a sample’s size is defined in terms of
the number of expansions in its parsing tree. In order to
control the size, we keep track of the number of expansions
generated. Once this number crosses a certain threshold
(if it actually crosses it at all), all open derivations are
closed via their shortest path. This does introduce a bias
in the generation that does not exactly correspond to the
distribution described by the probabilistic grammar. The
effects of such a bias are difficult to determine, and merit
further and deeper study. However, not performing this
termination procedure would render useless any approach
based on probabilistic grammars.

4.3.2 External Validity

Threats to external validity relate to the generalizability of the
experimental results. In our case, this is specifically related to
the subjects used in the experiments. We acknowledge that
we have only experimented with a limited number of input
grammars. However, we have selected the subjects with the
intention to test our approach on practically relevant input
grammars with different complexities, from small to medium
size grammars like JSON; and rather complex grammars like
JavaScript and CSS. As a result, we are confident that our
approach will also work on inputs that can be characterized
by context-free grammars with a wide range of complexity.
However, we do have evidence that the approach does not
seem to be generalizable to combinations of grammars and
samples such that they induce the learning of an almost-
uniform probabilistic grammar.

4.3.3 Construct Validity

The main threat to construct validity is the metric we
use to evaluate the similarity between test suites, namely
method call frequency. While the uses of coverage metrics as
adequacy criteria is extensively discussed by the community

SOREMEKUN et al.: INPUTS FROM HELL 13
TABLE 10
Reproducing exceptions by “failure-inducing inputs” (PROB), inverse of “failure-inducing inputs” (INV), and random grammar-based test generation
(RAND)
Input #Failure- | Occurence Reproduction
Format Subject Exception inducing rate in rate in
(#Crawled files) inputs | crawled files | PROB RAND | INV
Gson java.lang.ClassCast 6 0.0007 0.0090 0 0
Gson java.lang IllegalState 22 0.0025 1 0 1
JSONToJava java.lang.ArrayIndexOutOfBounds 38 0.0043 0.0025 0 0
JSON JSONToJava java.lang Illegal Argument 1 0.0001 0.0003 0 0
(8853) JSONToJava org.json.JSON_1 167 0.0189 0.1811 0 0.1811
JSONToJava org.json.JSON_2 30 0.0034 1 0 1
Pojo java.lang Illegal Argument 88 0.0099 0.0002 0 0
Pojo java.lang.StringIndexOutOfBounds 21 0.0024 0.0471 0 0
Rhino java.util.concurrent. Timeout 11 0.0110 0.0048 0 0
Rhino java.lang.IllegalState 2 0.0030 0.0001 0 0
JavaScript rhino-sandbox | delight.rhinosandox.ScriptDuration 11 0.0110 0.0073 0 0
(1000) rhino-sandbox | org.mozillajavascript.Evaluator 529 0.5290 0.4560 0 0.4982
rhino-sandbox | org.mozillajavascript.EcmaError_1 372 0.3720 0.0056 0 0.0326
rhino-sandbox | org.mozillajavascript.EcmaError_2 2 0.0020 0.0002 0 0
rhino-sandbox | org.mozillajavascript.JavaScript 1 0.0010 0.0502 0 0
AVERAGE 0.0646 0.1842 0 0.1808

[12], [13]], [14], their binary nature (that is, we can either
report covered or not covered) makes them too shallow to
differentiate for behavior. The variance intrinsic to the
probabilistic generation makes it very likely that at least one
sample will cover parts of the code unrelated to those covered
by the rest of the suite. Besides, method call frequency is
considered a non-structural coverage metric. To mitigate this
threat, we also evaluate our test suites using a structural
metric, in particular, (frequency of) call sequences.

5 LIMITATIONS

Context sensitivity: Although, our probabilistic grammar
learning approach captures the distribution of input proper-
ties, the learned input distribution is limited to production
choices at the syntactic level. This approach does not handle
context-sensitive dependencies such as the order, sequences
or repetitions of specific input elements. However, our
approach can be extended to learn contextual dependencies,
e.g. by learning sequences of elements using N-grams [15] or
hierarchies of elements using k-paths [16].

Input Constraints: Beyond lexical and syntactical validity,
structured inputs often contain input semantics such as
checksums, hashes, encryption, or references. Context-free
grammars, as applied in this work, do not capture such
complex input constraints. Automatically learning such input
constraints for test generation is a challenging task [17]. In
the future, we plan to automatically learn input constraints
to drive test generation, e.g. using attribute grammars.

6 RELATED WORK

Generating software tests. The aim of software test generation
is to find a sample of inputs that induce executions that
sufficiently cover the possible behaviors of the program—
including undesired behavior. Modern software test genera-
tion relies, as surveyed by Anand et al. [12] on symbolic code
analysis to solve the path conditions leading to uncovered
code [1f, [18], [19], [20], [21], [22], [23], [24], search-based
approaches to systematically evolve a population of inputs
towards the desired goal [25], [26], [27], [28], random inputs
to programs and functions [29]], [30] or a combination of
these techniques [31]], [32], [33], [34], [35]. Additionally,

machine learning techniques can also be applied to create test
sequences [36], [37]]. All these approaches have in common
that they do not require an additional model or annotations
to constrain the set of generated inputs; this makes them
very versatile, but brings the risk of producing false alarms—
failing executions that cannot be obtained through legal
inputs.

Grammar-based test generation. The usage of grammars
as producers was introduced in 1970 by Hanford in his
syntax machine [38]. Such producers are mainly used for
testing compilers and interpreters: CSmith [39] produces
syntactically correct C programs, and LANGFUZZ [40] uses
a JavaScript grammar to parse, recombine, and mutate
existing inputs while maintaining most of the syntactic
validity. GENA [41], [42] uses standard symbolic grammars
to produce test cases and only applies stochastic annotation
during the derivation process to distribute the test cases and
to limit recursions and derivation depth. Grammar-based
white-box fuzzing [43] combines grammar-based fuzzing
with symbolic testing and is now available as a service
from Microsoft. As these techniques operate with system
inputs, any failure reported is a true failure—there are no
false alarms. None of the above approaches use probabilistic
grammars, though.

Probabilistic grammars. The foundations of probabilistic
grammars date back to the earliest works of Chomsky [44].
The concept has seen several interactions and generalizations
with physics and statistics; we recommend the very nice
article by Geman and Johnson [45] as an introduction.
Probabilistic grammars are frequently used to analyze am-
biguous data sequences—in computational linguistics [46] to
analyze natural language, and in biochemistry [47]] to model
and parse macromolecules such as DNA, RNA, or protein
sequences. Probabilistic grammars have been used also to
model and produce input data for specific domains, such as
3D scenes [48] or processor instructions [49].

The usage of probabilistic grammars for test generation
seems rather straightforward, but is still uncommon. The
Geno test generator for .NET programs by Lammel and
Schulte [50] allowed users to specify probabilities for in-
dividual production rules. Swarm testing [51], [52] uses
statistics and a variation of random testing to generate

14

tests that deliberately targets or omits features of interest.
These approaches, in contrast to the one we present in this
paper, does not use existing samples to learn or estimate
probabilities. The approach by Poulding et al. [53], [54] uses
a stochastic context-free grammar for statistical testing. The
goal of this work is to correctly imitate the operational profile
and consequently the generated test cases are similar to what
one would expect during normal operation of the system. The
test case generation [55], [56] and failure reproduction [57]
approaches by Kifetew et al. combine probabilistic grammars
with a search-based testing approach. In particular, like our
work, StGP [55] also learns stochastic grammars from sample
inputs.

Our approach aims to generate inputs that induce
(dis)similar program behaviors as the sample inputs. In
contrast to our paper, StGP [55] is focused on evolving
and mutating the learned grammars to improve code coverage.
Although, StGP’s goal of generating realistic inputs is very
similar to our “common inputs” strategy (see RQ1), our
approach can further generate realistic inputs that are
dissimilar to the sample inputs (see RQ2). Meanwhile, StGP
is not capable of generating dissimilar inputs.

Mining probabilities. Related to our work are ap-
proaches that mine grammar rules and probabilities from
existing samples. Patra and Pradel [58] use a given parser to
mine probabilities for subsequent fuzz testing and to reduce
tree-based inputs for debugging [59]]. Their aim, however, is
not to produce inputs that would be similar or dissimilar
to existing inputs, but rather to produce inputs that have
a higher likelihood to be syntactically correct. This aim is
also shared by two mining approaches: GLADE [60] and
Learn&Fuzz [61]], which learn producers from large sets of
input samples even without a given grammar.

All these approaches, however, share the problem of
producing only “common inputs”—they can only focus on
common features rather than uncommon features, creating
a general “tension between conflicting learning and fuzzing
goals” [61]. In contrast, our work can specifically focus on
“uncommon inputs”—that is, the complement of what has
been learned.

Like us, the Skyfire approach [62] aims at also leveraging
“uncommon inputs” for probabilistic fuzzing. Their idea is to
learn a probabilistic distribution from a set of samples and
use this distribution to generate seeds for a standard fuzzing
tool, namely AFL [63]. Here, favoring low probability rules
is one of many heuristics applied besides low frequency,
low complexity, or production limits. Although the tool has
shown good results for XML-like languages, results for other,
general grammar formats such as JavaScript are marked as
“preliminary” only, though.

Mining grammars. Our approach requires a grammar
that can be used both for parsing and producing inputs.
While engineering such a grammar may well pay off in terms
of better testing, it is still a significant investment in the case
of specific domain inputs where such a grammar might not
be immediately available. Mining input structures [64], as ex-
emplified using the above GLADE [60] and Learn&Fuzz [61]
approaches, may assist in this task. AUTOGRAM [65]
and MIMID [66] mine human-readable input grammars
exploiting structure and identifiers of a program processing
the input, which makes them particularly promising.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
7 CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach that allows
engineers, using a grammar and a set of input samples,
to generate instances that are either similar or dissimilar
to these samples. Similar samples are useful, for instance,
when learning from failure-inducing inputs; while dissimilar
samples could be used to leverage the testing approach to
explore previously uncovered code. Our approach provides
a simple, general, and cost-effective means to generate test
cases that can then be targeted to the commonly used
portions of the software, or to the rarely used features.

Despite their usefulness for test case generation,
grammars—including probabilistic grammars—still have a
lot of potential to explore in research, and a lot of ground to
cover in practice. Our future work will focus on the following
topics:

Deep models. At this point, our approach captures
probabilistic distributions only at the level of individual rules.
However, probabilistic distributions could also capture the
occurrence of elements in particular contexts, and differentiate
between them. For instance, if a "+" symbol rarely occurs
within parentheses, yet frequently outside of them, this dif-
ference would, depending on how the grammar is structured,
not be caught by our approach. The domain of computational
linguistics [46] has introduced a number of models that take
context into account. In our future work, we shall experiment
with deeper context models, and determining their effect on
capturing common and uncommon input features.

Grammar learning. The big cost of our approach is
the necessity of a formal grammar for both parsing and
producing—a cost that can boil down to 1-2 programmer
days if a formal grammar is already part of the system (say,
as an input file for parser generators), but also extend to
weeks if it is not. In the future, we will be experimenting
with approaches that mine grammars from input samples and
programs [65], [66] with the goal of extending the resulting
grammars with probabilities for probabilistic fuzzing.

Debugging. Mined probabilistic grammars could be
used to characterize the features of failure-inducing inputs,
separating them from those of passing inputs. Statistical fault
localization techniques [67], for instance, could then identify
input elements most likely associated with a failure. Generat-
ing “common inputs”, as in this paper, and testing whether
they cause failures, could further strengthen correlations
between input patterns and failures, as well as narrow down
the circumstances under which the failure occurs.

We are committed to making our research accessible for
replication and extension. The source code of our parsers
and production tools, the raw input samples, as well as all
raw obtained data and processed charts is available as a
replication package:

https:/ /tinyurl.com/inputs-from-hell

ACKNOWLEDGMENT

We thank the reviewers for their helpful comments. This
work was (partially) funded by Deutsche Forschungsgemein-
schaft, Project “Extracting and Mining of Probabilistic Event
Structures from Software Systems (EMPRESS)”.

https://tinyurl.com/inputs-from-hell

SOREMEKUN et al.: INPUTS FROM HELL

REFERENCES

(1]

(2]

(3]

(4]

(5]
(6]
(7]

(8]

(%]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: automatically generating inputs of death,” ACM Trans. Inf.
Syst. Secur., vol. 12, no. 2, pp. 10:1-10:38, 2008.

J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to
automata theory, languages, and computation,” Acm Sigact News,
vol. 32, no. 1, pp. 60-65, 2001.

A.V. Aho, M. S. Lam, R. Sethi, and]J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

S. Luke, “Two fast tree-creation algorithms for genetic program-
ming,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 3,
pp. 274-283, Sep 2000.

T. Parr, The Definitive ANTLR 4 Reference, 2nd ed.
Bookshelf, 2013.

K. O’Hair, “HPROF: a Heap/CPU profiling tool in J2SE 5.0,” Sun
Developer Network, Developer Technical Articles & Tips, vol. 28, 2004.
R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for
cognitively diverse tests: Towards universal test diversity metrics,”
in First International Conference on Software Testing Verification and
Validation, ICST 2008. IEEE Computer Society, 2008, pp. 178-186.
Q. Shi, Z. Chen, C. Fang, Y. Feng, and B. Xu, “Measuring the
diversity of a test set with distance entropy,” IEEE Trans. Reliability,
vol. 65, no. 1, pp. 19-27, 2016.

W. Jin and A. Orso, “Bugredux: reproducing field failures for in-
house debugging,” in 2012 34th International Conference on Software
Engineering (ICSE). 1EEE, 2012, pp. 474-484.

A. Buja, D. Cook, H. Hofmann, M. Lawrence, E.-K. Lee, D. F.
Swayne, and H. Wickham, “Statistical inference for exploratory
data analysis and model diagnostics,” Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 367, no. 1906, pp. 4361-4383, 2009.

Y. Fan, “Testing the goodness of fit of a parametric density function
by kernel method,” Econometric Theory, vol. 10, no. 2, pp. 316-356,
1994.

S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn, “An
orchestrated survey of methodologies for automated software test
case generation,” Journal of Systems and Software, vol. 86, no. 8, pp.
1978-2001, 2013.

A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in International Conference on Software Engineering, ISCE
2007, Workshop on the Future of Software Engineering, FOSE 2007, May
23-25, 2007, Minneapolis, MN, USA, L. C. Briand and A. L. Wolf,
Eds. IEEE Computer Society, 2007, pp. 85-103.

H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366—427,
1997.

M. Damashek, “Gauging similarity with n-grams: Language-
independent categorization of text,” Science, vol. 267, no. 5199,
pp. 843-848, 1995.

N. Havrikov and A. Zeller, “Systematically covering input struc-
ture,” in Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE '19. IEEE Press, 2019,
p- 189-199.

M. Mera, “Mining constraints for grammar fuzzing,” in Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2019, pp. 415-418.

W. Visser, C. S. Pdsdreanu, and S. Khurshid, “Test input generation
with Java PathFinder,” in Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
‘04. New York, NY, USA: ACM, 2004, pp. 97-107.

M. Béhme, V. Pham, M. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 2329-2344.

C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI'08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209-224.

S. Khurshid, C. S. Pasareanu, and W. Visser, “Generalized symbolic
execution for model checking and testing,” in Tools and Algorithms
for the Construction and Analysis of Systems, 9th International Con-
ference, TACAS 2003, ser. Lecture Notes in Computer Science,

Pragmatic

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

15

H. Garavel and J. Hatcliff, Eds., vol. 2619.
553-568.

Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution
to less traveled paths,” in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013, A. L. Hosking, P. T.
Eugster, and C. V. Lopes, Eds. ACM, 2013, pp. 19-32.

M. Christakis, P. Miiller, and V. Wiistholz, “Guiding dynamic
symbolic execution toward unverified program executions,” in
Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser,
and L. Williams, Eds. ACM, 2016, pp. 144-155.

N. Tillmann and]. de Halleux, “Pex—white box test generation
for NET,” in Tests and Proofs, Second International Conference, TAP
2008, Prato, Italy, April 9-11, 2008. Proceedings, ser. Lecture Notes
in Computer Science, B. Beckert and R. Hahnle, Eds., vol. 4966.
Springer, 2008, pp. 134-153.

P. McMinn, “Search-based software testing: Past, present and
future,” in Proceedings of the 2011 IEEE Fourth International Conference
on Software Testing, Verification and Validation Workshops, ser. ICSTW
"11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
153-163.

G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation
for object-oriented software,” in Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ser. ESEC/FSE "11. New York, NY, USA:
ACM, 2011, pp. 416-419.

A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122158, Feb 2018.

K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective auto-
mated testing for android applications,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016,
A. Zeller and A. Roychoudhury, Eds. ACM, 2016, pp. 94-105.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE ‘07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 75-84.

B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol. 33, no. 12, pp.
32-44, Dec. 1990.

P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI
’05. New York, NY, USA: ACM, 2005, pp. 213-223.

K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing
engine for ¢,” in Proceedings of the 10th European Software Engineer-
ing Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE-13.
New York, NY, USA: ACM, 2005, pp. 263-272.

M. Bohme, V. Pham, M. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. ACM, 2017, pp. 2329-2344.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in 24th Annual
Network and Distributed System Security Symposium, NDSS 2017, San
Diego, California, USA, February 26 - March 1, 2017. The Internet
Society, 2017.

L. D. Toffola, C. Staicu, and M. Pradel, “Saying "hi! is not enough:
mining inputs for effective test generation,” in Proceedings of the
32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November
03, 2017, G. Rosu, M. D. Penta, and T. N. Nguyen, Eds. IEEE
Computer Society, 2017, pp. 44-49.

P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017,
S. Uchitel, A. Orso, and M. P. Robillard, Eds. IEEE / ACM, 2017,
pp. 643-653.

T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, E. Bodden, W. Schifer, A. van
Deursen, and A. Zisman, Eds. ACM, 2017, pp. 245-256.

Springer, 2003, pp.

16
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(50]

(51]

[52]

(53]

(54]

K. V. Hanford, “Automatic generation of test cases,” IBM Systems
Journal, vol. 9, no. 4, pp. 242-257, 1970.

X. Yang, Y. Chen, E. Eide, and]. Regehr, “Finding and understand-
ing bugs in ¢ compilers,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI"11. New York, NY, USA: ACM, 2011, pp. 283-294.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”
in Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA: USENIX, 2012, pp. 445-458.

H. Guo and Z. Qiu, “Automatic grammar-based test generation,”
in Testing Software and Systems - 25th IFIP WG 6.1 International
Conference, ICTSS 2013, Istanbul, Turkey, November 13-15, 2013,
Proceedings, ser. Lecture Notes in Computer Science, H. Yenigiin,
C.Yilmaz, and A. Ulrich, Eds., vol. 8254. Springer, 2013, pp. 17-32.
H. Guo and Zongyan Qiu, “A dynamic stochastic model for
automatic grammar-based test generation,” Softw., Pract. Exper.,
vol. 45, no. 11, pp. 1519-1547, 2015.

P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based white-
box fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI "08.
New York, NY, USA: ACM, 2008, pp. 206-215.

N. Chomsky, Syntactic structures. Mouton, 1957.

S. Geman and M. Johnson, “Probabilistic grammars and their ap-
plications,” in In International Encyclopedia of the Social & Behavioral
Sciences. N.]J. Smelser and P.B, 2000, pp. 12 075-12 082.

C. D. Manning and H. Schiitze, Foundations of Statistical Natural
Language Processing. Cambridge, MA, USA: MIT Press, 1999.

Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sj6lander, R. C.
Underwood, and D. Haussler, “Stochastic context-free grammers
for tRNA modeling,” Nucleic Acids Research, vol. 22, no. 23, pp.
5112-5120, 1994.

T. Liu, S. Chaudhuri, V. G. Kim, Q. Huang, N. J. Mitra, and
T. Funkhouser, “Creating consistent scene graphs using a probabilis-
tic grammar,” ACM Trans. Graph., vol. 33, no. 6, pp. 211:1-211:12,
Nov. 2014.

O. Cekan and Z. Kotasek, “A probabilistic context-free grammar
based random test program generation,” in 2017 Euromicro Confer-
ence on Digital System Design (DSD), Aug 2017, pp. 356-359.

R. Lammel and W. Schulte, “Controllable combinatorial coverage
in grammar-based testing,” in Testing of Communicating Systems,
M. U. Uyar, A. Y. Duale, and M. A. Fecko, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 19-38.

A.Groce, C. Zhang, E. Eide, Y. Chen, and]. Regehr, “Swarm testing,”
in Proceedings of the 2012 International Symposium on Software Testing
and Analysis, 2012, pp. 78-88.

M. A. Alipour, A. Groce, R. Gopinath, and A. Christi, “Generating
focused random tests using directed swarm testing,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 70-81.

R. Feldt and S. M. Poulding, “Finding test data with specific
properties via metaheuristic search,” in IEEE 24th International
Symposium on Software Reliability Engineering, ISSRE 2013, Pasadena,
CA, USA, November 4-7, 2013. IEEE Computer Society, 2013, pp.
350-359.

S. M. Poulding, R. Alexander, J. A. Clark, and M.]J. Hadley,
“The optimisation of stochastic grammars to enable cost-effective

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

probabilistic structural testing,” Journal of Systems and Software, vol.
103, pp. 296-310, 2015.

F. M. Kifetew, R. Tiella, and P. Tonella, “Combining stochastic
grammars and genetic programming for coverage testing at the
system level,” in Search-Based Software Engineering - 6th International
Symposium, SSBSE 2014, Fortaleza, Brazil, August 26-29, 2014.
Proceedings, ser. Lecture Notes in Computer Science, C. L. Goues
and S. Yoo, Eds., vol. 8636. Springer, 2014, pp. 138-152.

F. M. Kifetew, R. Tiella, and Paolo Tonella, “Generating valid
grammar-based test inputs by means of genetic programming
and annotated grammars,” Empirical Software Engineering, vol. 22,
no. 2, pp. 928-961, 2017.

F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella, “Repro-
ducing field failures for programs with complex grammar-based
input,” in Seventh IEEE International Conference on Software Testing,
Verification and Validation, ICST 2014, March 31 2014-April 4, 2014,
Cleveland, Ohio, USA. IEEE Computer Society, 2014, pp. 163-172.
J. Patra and M. Pradel, “Learning to fuzz: Application-independent
fuzz testing with probabilistic, generative models of input data,”
Technical University of Darmstadt, Tech. Rep. TUD-CS-2016-14664,
Nov. 2016.

S. Herfert, J. Patra, and M. Pradel, “Automatically reducing
tree-structured test inputs,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017, G. Rosu, M. D.
Penta, and T. N. Nguyen, Eds. IEEE Computer Society, 2017, pp.
861-871.

O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing
program input grammars,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI 2017. New York, NY, USA: ACM, 2017, pp. 95-110.

P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine
learning for input fuzzing,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 50-59.

J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in 2017 IEEE Symposium on Security and
Privacy, SP 2017. 1EEE Computer Society, 2017, pp. 579-594.

M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/
afl/, 2018, accessed: 2018-01-28.

Z. Lin and X. Zhang, “Deriving input syntactic structure from
execution,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008, Atlanta,
Georgia, USA, November 9-14, 2008, M. J. Harrold and G. C. Murphy,
Eds. ACM, 2008, pp. 83-93.

M. Hoschele and A. Zeller, “Mining input grammars from dynamic
taints,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2016. New York, NY,
USA: ACM, 2016, pp. 720-725.

R. Gopinath, B. Mathis, and A. Zeller, “Mining input grammars
from dynamic control flow,” in Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE) 2020, 2020.

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey
on software fault localization,” IEEE Transactions on Software
Engineering, vol. 42, no. 8, pp. 707-740, 2016.

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Inputs from Hell in a Nutshell
	Approach
	Probabilistic Grammars
	Learning Probabilities
	Inverting Probabilities
	Producing Inputs from a Grammar
	Implementation

	Experimental Evaluation
	Evaluation Setup
	Generated Inputs
	Research Protocol
	Subject Programs
	Measuring (Dis)similarity
	Visual test
	Collecting failure-inducing inputs

	Experimental Results
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Limitations
	Related Work
	Conclusions and Future Work
	References

