
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

AdamMC: A Model Checker for
Petri Nets with Transits against Flow-LTL ?

Bernd Finkbeiner1, Manuel Gieseking2,
Jesko Hecking-Harbusch1, and Ernst-Rüdiger Olderog2
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Abstract. The correctness of networks is often described in terms of
the individual data flow of components instead of their global behavior.
In software-defined networks, it is far more convenient to specify the cor-
rect behavior of packets than the global behavior of the entire network.
Petri nets with transits extend Petri nets and Flow-LTL extends LTL
such that the data flows of tokens can be tracked. We present the tool
AdamMC as the first model checker for Petri nets with transits against
Flow-LTL. We describe how AdamMC can automatically encode con-
current updates of software-defined networks as Petri nets with transits
and how common network specifications can be expressed in Flow-LTL.
Underlying AdamMC is a reduction to a circuit model checking prob-
lem. We introduce a new reduction method that results in tremendous
performance improvements compared to a previous prototype. Thereby,
AdamMC can handle software-defined networks with up to 82 switches.

1 Introduction

In networks, it is difficult to specify correctness in terms of the global behavior
of the entire system. Instead, the individual flow of components is far more
convenient to specify correct behavior. For example, loop and drop freedom can
be easily specified for the flow of each packet. Petri nets and LTL lack this local
view. Petri nets with transits and Flow-LTL have been introduced to overcome
this restriction [10]. A transit relation is introduced to follow the flow induced
by tokens. Flow-LTL is a temporal logic to specify both the local flow of data
and the global behavior of markings. The global behavior as in Petri nets and
LTL is still important for maximality and fairness assumptions. In this paper,
we present the tool AdamMC3 as the first model checker for Petri nets with
transits against Flow-LTL and its application to software-defined networking.

In Fig. 1, we present an example of a Petri net with transits that models the
security check at an airport where passengers are checked by a security guard.

? This work was supported by the German Research Foundation (DFG) Grant Petri
Games (392735815) and the Collaborative Research Center Foundations of Perspicu-
ous Software Systems (TRR 248, 389792660), and by the European Research Council
(ERC) Grant OSARES (683300).

3 AdamMC is available online at https://uol.de/en/csd/adammc [12].
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Fig. 1: Access control at an airport modeled as Petri net with transits. Colored
arrows display the transit relation and define flow chains to model the passengers.

The number of passengers entering the airport is unknown in advance. Rather
than introducing the complexity of an infinite number of tokens, we use a fixed
number of tokens to model possibly infinitely many flow chains. This is done by
the transit relation which is depicted with colored arrows.

The left-hand side of Fig. 1 models passengers who want to reach the ter-
minal. There are three tokens in the places airport, queue, and terminal. Thus,
transitions start and en are always enabled. Each firing of start creates a new
flow chain as depicted by the green arrow. This models a new person arriving at
the airport. Meanwhile, the double-headed blue arrow maintains all flow chains
that are still in place airport. Passengers have to enter the queue and wait until
the security check is performed. Therefore, transition en continues every flow
chain in airport to queue. Checking the passengers is carried out by transition
check which becomes enabled if the security guard works. Thus, passengers re-
siding in queue have to wait until the guard checks them. Afterwards, they reach
the terminal. The security guard is modeled on the right-hand side of Fig. 1. By
firing comeToWork and thus moving the token in place home, her flow chain
starts and she can repeatedly either idle or work, check passengers, and return.
Her transit relation is depicted in orange and models exactly one flow chain.

In Fig. 1, we define the checkpoints cp1 and cp2 and the booth as a security
zone and require that passengers never enter the security zone and eventually
reach the terminal. The flow formula ϕ = A(airport→ ( ¬(cp1∨ cp2∨ booth)∧
terminal)) specifies this. AdamMC verifies the example from Fig. 1 against

the formula check → ϕ specifying that if passengers are checked regularly
then they cannot access the security zone and eventually reach the terminal.

In this paper, we present AdamMC as a full-fledged tool. First, AdamMC
can handle Petri nets with transits and Flow-LTL formulas in general. Second,
AdamMC has an input interface for a concurrent update and a software-defined
network and encodes both of them as a Petri nets with transits. Common as-
sumptions on fairness and requirements for network correctness are also pro-
vided as Flow-LTL formulas. This allows users of the tool to model check the
correctness of concurrent updates and to prevent packet loss, routing loops, and
network congestion. Third, AdamMC provides algorithms to check safe Petri
nets against LTL with both places and transitions as atomic propositions which
makes it especially easy to specify fairness and maximality assumptions.
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The tool reduces the model checking problem for safe Petri nets with transits
against Flow-LTL to the model checking problem for safe Petri nets against LTL.
We develop the new parallel approach to check global and local behavior in
parallel instead of sequentially. This approach yields a tremendous speed-up for
a few local requirements and realistic fairness assumptions in comparison to the
sequential approach of a previous prototype [10]. In general, the parallel approach
has worst-case complexity inferior to the sequential approach even though the
complexities of both approaches are the same when using only one flow formula.

As last step, AdamMC reduces the model checking problem of safe Petri nets
against LTL to a circuit model checking problem. This is solved by ABC [2,4]
with effective verification techniques like IC3 and bounded model checking.
AdamMC verifies concurrent updates of software-defined networks with up to
38 switches (31 more than the prototype) and falsifies concurrent updates of
software-defined networks with up to 82 switches (44 more than the prototype).

The paper is structured as follows: In Sec. 2, we recall Petri nets with transits
and Flow-LTL. In Sec. 3, we outline the three application areas of AdamMC:
checking safe Petri nets with transits against Flow-LTL, checking concurrent
updates of software-defined networks against common assumptions and specifi-
cations, and checking safe Petri nets against LTL. In Sec. 4, we algorithmically
encode concurrent updates of software-defined networks in Petri nets with tran-
sits. In Sec. 5, we introduce the parallel approach for the underlying circuit
model checking problem. In Sec. 6, we present our experimental evaluation.

Further details can be found in the full paper [13].

2 Petri Nets With Transits and Flow-LTL

A safe Petri net with transits N = (P,T,F, In, Υ ) [10] contains the set of
places P, the set of transitions T, the flow relation F ⊆ (P×T)∪(T×P), and
the initial marking In ⊆ P as in safe Petri nets [27]. In a safe Petri net, reachable
markings contain at most one token per place. The transit relation Υ is for every
transition t ∈ T of type Υ (t) ⊆ (preN(t) ∪ {�}) × postN(t). With p Υ (t) q, we
define that firing transition t transits the flow in place p to place q. The symbol �
denotes a start and � Υ (t) q defines that firing transition t starts a new flow
for the token in place q. Note that the transit relation can split, merge, and
end flows. A sequence of flows leads to a flow chain which is a sequence of the
current place and the fired outgoing transition. Thus, Petri nets with transits
can describe both the global progress of tokens and the local flow of data.

Flow-LTL [10] extends Linear-time Temporal Logic (LTL) and uses places
and transitions as atomic propositions. It introduces A as a new operator which
uses LTL to specify the flow of data for all flow chains. For Fig. 1, the formula
A(booth → check) specifies that the guard performs at least one check. We call
formulas starting with A flow formulas. Formulas around flow formulas specify
the global progress of tokens in the form of markings and fired transitions to for-
malize maximality and fairness assumptions. These formulas are called run for-
mulas. Often, Flow-LTL formulas have the form run formula → flow formula.
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Fig. 2: Overview of the workflow of AdamMC: The application areas of the tool
are given by three different input domains: software-defined network / Flow-LTL
(Input I), Petri nets with transits / Flow-LTL (Input II), and Petri nets / LTL
(Input III). AdamMC performs all unlabeled steps. MCHyper creates the final
circuit which ABC checks to answer the initial model checking problem.

3 Application Areas

AdamMC consists of modules for three application areas: checking safe Petri
nets with transits against Flow-LTL, checking concurrent updates of software-
defined networks against common assumptions and specifications, and checking
safe Petri nets against LTL. The general architecture and workflow of the model
checking procedure is given in Fig. 2. AdamMC is based on the tool Adam [14].
Petri Nets with Transits Petri nets with transits follow the progress of to-
kens and the flow of data. Flow-LTL allows to specify requirements on both. For
Petri nets with transits and Flow-LTL (Input II), AdamMC extends a parser
for Petri nets provided by APT [30], provides a parser for Flow-LTL, and im-
plements two reduction methods to create a safe Petri net and an LTL formula.
The sequential approach is outlined in [10] and the parallel approach in Sec. 5.
Software-Defined Networks Concurrent updates of software-defined net-
works are the second application area of AdamMC. The tool automatically
encodes an initially configured network topology and a concurrent update as a
Petri net with transits. The concurrent update renews the forwarding table. We
provide parsers for the network topology, the initial configuration, the concurrent
update, and Flow-LTL (Input I). In Sec. 4, we present the creation of a Petri
net with transits from the input and Flow-LTL formulas for common network
properties like connectivity, loop freedom, drop freedom, and packet coherence.
Petri Nets AdamMC supports the model checking of safe Petri nets against
LTL with both places and transitions as atomic propositions. It provides ded-
icated algorithms to check interleaving-maximal runs of the system. A run is
interleaving-maximal if a transition is fired whenever a transition is enabled. Fur-
thermore, AdamMC allows a concurrent view on runs and can check concurrency-
maximal runs which demand that each subprocess of the system has to progress
maximally rather than only the entire system. State-of-the-art tools like LoLA [32]
and ITS-Tools [29] are restricted to interleaving-maximal runs and places as
atomic propositions. For Petri net model checking (Input III), we allow Petri
nets in APT and PNML format as input and provide a parser for LTL formulas.
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The construction of the circuit in Aiger format [3] is defined in [11]. MCHy-
per [15] is used to create a circuit from a given circuit and an LTL formula.
This circuit is given to ABC [2,4] which provides a toolbox of modern hardware
verification algorithms like IC3 and bounded model checking to decide the initial
model checking question. As output for all three modules, AdamMC transforms
a possible counterexample (CEX) from ABC into a counterexample to the Petri
net (with transits) and visualizes the net with Graphviz and the dot language [9].
When no counterexample exists, AdamMC verified the input successfully.

4 Verifying Updates of Software Defined Networks

We show how AdamMC can check concurrent updates of realistic examples from
software-defined networking (SDN) against typical specifications [19]. SDN [25,6]
separates the data plane for forwarding packets and the control plane for the
routing configuration. A central controller initiates updates which can cause
problems like routing loops or packet loss. AdamMC provides an input interface
to automatically encode software-defined networks and concurrent updates of
their configuration as Petri nets with transits. The tool checks requirements like
loop and drop freedom to find erroneous updates before they are deployed.

4.1 Network Topology, Configurations, and Updates

A network topology T is an undirected graph T = (Sw ,Con) with switches as
vertices and connections between switches as edges. Packets enter the network
at ingress switches and they leave at egress switches. Forwarding rules are of the
form x.fwd(y) with x, y ∈ Sw . A concurrent update has the following syntax:

switch update ::= upd(x.fwd(y/z)) | upd(x.fwd(y/-)) | upd(x.fwd(-/z))
sequential update ::= (update >> update >> ... >> update)
parallel update ::= (update || update || ... || update)
update ::= switch update | sequential update |parallel update

where a switch update can renew the forwarding rule of switch x from switch z

to switch y, introduce a new forwarding rule from switch x to switch y, or remove
an existing forwarding rule from switch x to switch z.

4.2 Data Plane and Control Plane as Petri Net with Transits

For a network topology T = (Sw ,Con), a set of ingress switches, a set of egress
switches, an initial forwarding table, and a concurrent update, we show how data
and control plane are encoded as Petri net with transits. Switches are modeled
by tokens remaining in corresponding places s whereas the flow of packets is
modeled by the transit relation Υ . Specific transitions is model ingress switches
where new data flows begin. Tokens in places of the form x.fwd(y) configure the
forwarding. Data flows are extended by firing transitions (x,y) corresponding
to configured forwarding without moving any tokens. Thus, we model any order
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of newly generated packets and their forwarding. Assuming that each existing
direction of a connection between two switches is explicitly given in Con, we
obtain Algorithm 1 which calls Algorithm 2 to obtain the control plane.

For the update, let SwU be the set of switch updates in it, SeU the set of
sequential updates in it, and PaU the set of parallel updates in it. Depending
on update’s type, it is also added to the respective set. The subnet for the update
has an empty transit relation but moves tokens from and to places of the form
x.fwd(y). Tokens in these places correspond to the forwarding table. The order
of the switch updates is defined by the nesting of sequential and parallel updates.
The update is realized by a specific token moving through unique places of the
form us, uf , ss, sf , ps, pf for start and finish of each switch update u ∈ SwU , each
sequential update s ∈ SeU , and each parallel update p ∈ PaU . A parallel update
temporarily increases the number of tokens and reduces it upon completion to
one. Algorithm 2 defines the update behavior between start and finish places
and connects finish and start places depending on the subexpression structure.

input : T = (Sw ,Con), ingress,
forwarding, update

output: Petri net with transits
N = (P,T,F, In, Υ ) for
update of topology T with
ingress and forwarding

create emptyN = (P,T,F, In, Υ );
for switch s ∈ Sw do

add place s to P;
add place s to In;
if s ∈ ingress then

add transition is to T;
add s to pre (is), post (is);
add creating data flow
� Υ (is) s to Υ ;

add maintaining data flow
s Υ (is) s to Υ ;

for connection (x, y) ∈ Con do
add place x.fwd(y) to P;
if x.fwd(y) ∈ forwarding then

add place x.fwd(y) to In;

add transition (x, y) to T;
add x, y, x.fwd(y) to
pre ((x, y)), post ((x, y));

add connecting data flow
x Υ ((x, y)) y to Υ ;

add maintaining data flow
y Υ ((x, y)) y to Υ ;

N = call Algorithm 2 with T ,
update, N as input;

add place updates to In;

Algorithm 1: Data plane

input : T = (Sw ,Con), update, N
output: N = (P,T,F, In, Υ )
for switch update u ∈ SwU do

// u = upd(x.fwd(y/z))

add places us, uf to P;
add transition u to T;

add us to pre (u), uf to post (u);
if z 6= - then

add x.fwd(z) to pre (u);

if y 6= - then
add x.fwd(y) to post (u);

for sequential update s ∈ SeU do
// s = [s1, ..., si, ..., s|s|]
add places ss, sf to P;
for i ∈ {0, ..., |s|} do

add transition si to T;
if i == 0 then

add ss to pre (si);
else

add sfi to pre (si);

if i = |s| then
add sf to post (si);

else
add ssi+1 to post (si);

for parallel update p ∈ PaU do

add places ps, pf to P;
add transitions po, pc to T;

add ps to pre (po), pf to post (pc);
for sub-update ui of p do

add us
i to post (po), uf

i to pre (pc);

Algorithm 2: Control plane
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Fig. 3: Overview of the sequential approach: Each firing of a transition of the
original net is split into first firing a transition in the subnet for the run formula
and subsequently firing a transition in each subnet tracking a flow formula. The
constructed LTL formula skips the additional steps with until operators.

N>
O N>

1 N>
n

. . .

|T| · (|Tfl |+ 1)n

Fig. 4: Overview of the parallel approach: The n subnets are connected such that
for every transition t ∈ T there are (|Υ (t)| + 1)n transitions, i.e., there is one
transition for every combination of which transit of t (or none) is tracked by
which subnet. We use until operators in the constructed LTL formula to only
skip steps not involving the tracking of the guessed chain in the flow formula.

4.3 Assumptions and Requirements

We use the run formula pre (t) → t to assume weak fairness for ev-
ery transition t in our encoding N. Transitions, which are always enabled after
some point, are ensured to fire infinitely often. Thus, packets are eventually
forwarded and the routing table is eventually updated. We use flow formulas to
test specific requirements for all packets. Connectivity (A(

∨
s∈egress s)) ensures

that all packets reach an egress switch. Packet coherence (A( (
∨

s∈initial s) ∨
(
∨

s∈final s))) tests that packets are either routed according to the initial or final
configuration. Drop freedom (A (

∧
e∈egress ¬e →

∨
f∈Con f)) forbids dropped

packets whereas loop freedom (A (
∧

s∈Sw\egress s→ (sU ¬s))) forbids rout-
ing loops. We combine run and flow formula into fairness → requirement.

5 Algorithms and Optimizations

Central to model checking a Petri net with transits N against a Flow-LTL
formula ϕ is the reduction to a safe Petri net N> and an LTL formula ϕ>. The
infinite state space of the Petri net with transits due to possibly infinitely many
flow chains is reduced to a finite state model. The key idea is to guess and track a
violating flow chain for each flow subformula Aψi, for i ∈ {1, . . . , n}, and to only
once check the equivalent future of flow chains merging into a common place.

AdamMC provides two approaches for this reduction: Fig. 3 and Fig. 4 give
an overview of the sequential approach and the parallel approach, respectively.
Both algorithms create one subnet N>

i for each flow subformula Aψi to track
the corresponding flow chain and have one subnet N>

O to check the run part of
the formula. The places of N>

O are copies of the places in N such that the cur-
rent state of the system can be memorized. The subnets N>

i also consist of the
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Table 1: Overview of optimization parameters of AdamMC: The three reduction
steps depicted in the first column can each be executed by different algorithms.
The first step allows to combine the optimizations of the first and second row.
1) Petri Net with Transits ; Petri Net sequential parallel

inhibitor act. token inhibitor act. token

2) Petri Net ; Circuit explicit logarithmic

3) Circuit ; Circuit gate optimizations

original places of N but only use one token (initially residing on an additional
place) to track the current state of the considered flow chain. The approaches
differ in how these nets are connected to obtain N>.
Sequential Approach The places in each subnet N>

i are connected with one
transition for each transit (Tfl =

⋃
t∈T Υ (t)). An additional token iterates se-

quentially through the subnets to activate or deactivate the subnet. This allows
each subnet to track a flow chain corresponding to firing a transition in N>

O . The
formula ϕ> takes care of these additional steps by means of the until operator:
In the run part of the formula, all steps corresponding to moves in a subnet N>

i

are skipped and, for each subformula Aψi, all steps are skipped until the next
transition of the corresponding subnet is fired which transits the tracked flow
chain. This technique results in a polynomial increase of the size of the Petri net
and the formula: N> has O(|N|·n+|N|) places and O(|N|3 ·n+|N|) transitions
and the size of ϕ> is in O(|N|3 ·n · |ϕ|+ |ϕ|). We refer to [11] for formal details.
Parallel Approach The n subnets are connected such that the current chain
of each subnet is tracked simultaneously while firing an original transition t ∈ T.
Thus, there are (|Υ (t)|+ 1)n transitions. Each of these transitions stands for ex-
actly one combination of which subnet is tracking which (or no) transit. Hence,
firing one transition of the original net is directly tracked in one step for all sub-
nets. This significantly reduces the complexity of the run part of the constructed
formula, since no until operator is needed to skip sequential steps. A disjunction
over all transitions corresponding to an original transition suffices to ensure cor-
rectness of the construction. Transitions and next operators in the flow parts of
the formula still have to be replaced by means of the until operator to ensure
that the next step of the tracked flow chain is checked at the corresponding step
of the global timeline of ϕ>. In general, the parallel approach results in an ex-
ponential blow-up of the net and the formula: N> has O(|N| · n + |N|) places
and O(|N|3n + |N|) transitions and the size of ϕ> is in O(|N|3n · |ϕ|+ |ϕ|). For
the practical examples, however, the parallel approach allows for model checking
Flow-LTL with few flow subformulas with a tremendous speed-up in comparison
to the sequential approach. Formal details are in the full version of the paper [13].
Optimizations Various optimizations parameters can be applied to the model
checking routine described in Sec. 3 to tweak the performance. Table 1 gives an
overview of the major parameters. We found that the versions of the sequential
and the parallel approach with inhibitor arcs to track flow chains are generally
faster than the versions without. Furthermore, the reduction step from a Petri
net into a circuit with logarithmically encoded transitions had oftentimes better
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Table 2: We compare the explicit and logarithmic encoding of the sequential
approach with the parallel approach. The results are the average over five runs
from an Intel i7-2700K CPU with 3.50 GHz, 32 GB RAM, and a timeout (TO)
of 30 minutes. The runtimes are given in seconds.

expl. enc. log. enc. parallel appr.
T / F Network #Sw Alg. Time |= Alg. Time |= Alg. Time |=

T Arpanet196912 4 IC3 12.08 3 IC3 9.89 3 IC3 2.18 3

T Napnet 6 IC3 146.49 3 IC3 96.06 3 IC3 4.75 3

· · · · · · · · · · · ·
T Heanet 7 IC3 806.81 3 IC3 84.62 3 IC3 30.30 3

T HiberniaIreland 7 - TO ? - TO ? IC3 26.58 3

T Arpanet19706 9 - TO ? IC3 362.21 3 IC3 11.33 3

T Nordu2005 9 - TO ? - TO ? IC3 12.67 3

· · · · · · · · · · · ·
T Fatman 17 - TO ? IC3 1543.34 3 IC3 162.17 3

· · · · · · · · · · · ·
T Myren 37 - TO ? - TO ? IC3 1309.23 3

T KentmanJan2011 38 - TO ? - TO ? IC3 1261.32 3

F Arpanet196912 4 BMC3 2.18 7 BMC3 1.85 7 BMC3 1.97 7

F Napnet 6 BMC2 4.17 7 BMC2 5.22 7 BMC3 1.48 7

· · · · · · · · · · · ·
F Fatman 17 BMC3 168.78 7 BMC3 169.82 7 BMC3 6.72 7

· · · · · · · · · · · ·
F Belnet2009 21 BMC2 1146.26 7 BMC2 611.81 7 BMC3 24.26 7

· · · · · · · · · · · ·
F KentmanJan2011 38 BMC3 167.92 7 BMC3 86.44 7 BMC2 9.35 7

· · · · · · · · · · · ·
F Latnet 69 - TO ? - TO ? BMC2 209.20 7

F Ulaknet 82 - TO ? - TO ? BMC2 1043.74 7

Sum of runtimes (in hours): 82.99 79.15 30.31
Nb of TOs (of 230 exper.): 146 138 6

performance than the same step with explicitly encoded transitions. However,
several possibilities to reduce the number of gates of the created circuit worsened
the performance of some benchmark families and improved the performance of
others. Consequently, all parameters are selectable by the user and a script is
provided to compare different settings. An overview of the selectable optimiza-
tion parameters can be found in the documentation of AdamMC [12]. Our main
improvement claims can be retraced by the case study in Sec. 6.

6 Evaluation

We conduct a case study based on SDN with a corresponding artifact [16]. The
performance improvements of AdamMC compared to the prototype [10] are
summarized in Table 2. For realistic software-defined networks [19], one ingress
and one egress switch are chosen at random. Two forwarding tables between the
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two switches and an update from the first to the second configuration are chosen
at random. AdamMC verifies that the update maintained connectivity between
ingress and egress switch. The results are depicted in rows starting with T. For
rows starting with F, we required connectivity of a random switch which is not
in the forwarding tables. AdamMC falsified this requirement for the update.

The prototype implementation based on an explicit encoding can verify up-
dates of networks with 7 switches and falsify updates of networks with 38
switches. We optimize the explicit encoding to a logarithmic encoding and the
number of switches for which updates can be verified increases to 17. More sig-
nificantly, the parallel approach in combination with the logarithmic encoding
leads to tremendous performance gains. The performance gains of an approach
with inferior worst-case complexity are mainly due to the smaller complexity
of the LTL formula created by the reduction. The encoding of SDN requires
fairness assumptions for each transition. These assumptions (encoded in the run
part of the formula) experience a blow-up with until operators by the sequential
approach but only need a disjunction in the parallel approach. Hence, the size
of networks for which AdamMC can verify updates increases to 38 switches and
the size for which it can falsify updates increases to 82 switches. For rather small
networks, the tool needs only a few seconds to verify and falsify updates which
makes it a great option for operators when updating networks.

7 Related Work

We refer to [21] for an introduction to SDN. Solutions for correctness of updates
of software-defined networks include consistent updates [28,7], dynamic schedul-
ing [17], and incremental updates [18]. Both explicit and SMT-based model
checking [5,23,22,31,1,26] is used to verify software-defined networks. Closest to
our approach are models of networks as Kripke structures to use model checking
for synthesis of correct network updates [8,24]. The model checking subroutine
of the synthesizer assumes that each packet sees at most one updated switch.
Our model checking routine does not make such an assumption.

There is a significant number of model checking tools (e.g., [32,29]) for Petri
nets and an annual model checking contest [20]. AdamMC is restricted to safe
Petri nets whereas other tools can handle bounded and colored Petri nets. At the
same time, only AdamMC accepts LTL formulas with places and transitions as
atomic propositions. This is essential to express fairness in our SDN encoding.

8 Conclusion

We presented the tool AdamMC with its three application domains: checking
safe Petri nets with transits against Flow-LTL, checking concurrent updates of
software-defined networks against common assumptions and specifications, and
checking safe Petri nets against LTL. New algorithms allow AdamMC to model
check software-defined networks of realistic size: it can verify updates of networks
with up to 38 switches and can falsify updates of networks with up to 82 switches.
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