
Let’s not Trust Experience Blindly:

Formal Monitoring of Humans and other CPS

Saarland University

Department of Computer Science

Master’s Thesis

submitted by

Maximilian Schwenger

Saarbrücken, September 2019

Supervisor: Prof. Bernd Finkbeiner, Ph. D.

Reviewer: Prof. Bernd Finkbeiner, Ph. D.

Prof. Dr. Jan Reinecke

Submission: 24. September 2019

Abstract

The control logic of complex systems is based on experience: Trained experts steer a
machine directly until they help develop an automated controller. Recently, this pro-
cess was further improved by successfully incorporating machine learning techniques,
where the controller was learned from tremendous amounts of empirical data. The
resulting controller excels most of the time, especially in situations similar to ones oc-
curring in the training data. In a safety-critical context, however, this is not enough,
so formal guarantees about the behavior of the controller become crucial. When a full
static analysis and subsequent verification is infeasible due to the complexity of the
system, runtime monitoring is still applicable. It acts as a connecting link between the
efficiency of trained controllers and formally verifiable guarantees. A runtime monitor
assesses the system health based on sensor readings by using a specification that con-
tains information about desired system states and their expected evolution over time.
When the monitor encounters a violation of the specification, it raises an alarm. For
complex systems, characterizing the desired behavior requires an expressive language.
Moreover, provably correct behavior requires formal semantics and an evaluation algo-
rithm with static guarantees on resource consumption to prevent crashes during run-
time. This thesis presents formal semantics for the specification language RTLola and
shows that it satisfies the aforementioned criteria by introducing an evaluation algo-
rithm with static time and space bounds. The approach is evaluated based on examples
from health monitoring and aircraft controllers.

Zusammenfassung

Seit vielen Jahren basiert die Kontrolllogik von Systemen auf Erfahrung: Ausgebildete
Experten steuern eine Maschine selbst bis sie bei der Entwicklung eines automatis-
chen Reglers mithelfen. Neuerdings wird dieser Prozess weiter verbessert indem
erfolgreiche Machine Learning Techniken zum Einsatz kommen, wobei ein Regler
mit Hilfe enormer Mengen empirischer Daten gelernt wird. Der resultierender Re-
gler liefert die meiste Zeit hervorragende Resultate, insbesondere in Situationen,
die ähnlich zu bereits erfahrenen sind. In einem sicherheitskritischen Kontext ist
dies jedoch nicht ausreichend, weshalb formale Garantien bezüglich des Verhaltens
des Systems wesentlich werden. Wenn eine volle, statische Analyse und nachfol-
gende Verifikation jedoch aufgrund der Komplexität des Systems nicht praktikabel ist,
kann Laufzeitüberwachung weiterhin anwendbar sein. Es agiert dabei als Bindeglied
zwischen der Effizienz von empirisch trainierten Reglern und formal verifizierbaren
Garantien. Eine Laufzeitüberwachung evaluiert den Zustand des Systems basierend
auf Sensorwerten unter Berücksichtigung einer Spezifikation, die Informationen über
wünschenswerte Systemzustände und deren erwartete Evolution über die Zeit ent-
hält. Sobald die Überwachung eine Verletzung feststellt, wird ein Alarm ausgelöst.
Für komplexe Systeme benötigt eine solche Charakterisierung jedoch eine expressive
Sprache. Darüberhinaus verlangt beweisbar korrektes Verhalten eine formale Semantik
und einen Evaluationsalgorithmus mit statischen Garantien bezüglich Ressourcenver-
brauch. Diese Abschlussarbeit präsentiert eine formale Semantik für die Spezifika-
tionssprache RTLola und zeigt, dass diese die zuvor genannten Kriterien erfüllt, in-
dem sie einen Evaluationsalgorithmus mit statischen Laufzeit- und Speichergrenzen
vorstellt. Der Ansatz wird mit Hilfe von Beispielen aus der Gesundheitsüberwachung
und Avionik validiert.

Acknowledgements

First, I wish to thank my supervisor Bernd Finkbeiner for giving me a chance to write
this thesis. Thanks to Jan Baumeister, Leander Tentrup, Malte Schledjewski, Marvin
Stenger, and Hazem Torfah, as well as Sebastian Schirmer and Christoph Torens from
the DLR for great discussions — without you, the project would certainly not be in its
current state. Further, I want to thank the remainder of the Reactive Systems group
for your great company, Julia Wichlacz for proofreading, and all my friends and family,
especially my dearest sister Linda, for general support. Last but not least, thank you to
Jan Reinecke for reviewing this thesis.

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.
Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not used

any other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in

die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the

public by having them added to the library of the Computer Science Department.

Saarbrücken, 24. September 2019

Contents

1. Introduction 1

1.1. RTLola by Example . 4

2. Related Work 7

3. Preliminaries 11

3.1. Notation . 11
3.2. Basic Definitions . 12
3.3. Lola . 13

4. An Understandable Specification Language 15

4.1. Concrete Syntax . 16
4.1.1. Expressions . 17

4.2. Dependency Graph . 21
4.2.1. Evaluation Models . 22
4.2.2. Evaluation Order . 23

4.3. Type System . 26
4.3.1. Type Lattice . 29
4.3.2. Type Checking . 32

4.4. Semantics . 37
4.4.1. Handling Time . 37
4.4.2. The Evaluation Process . 39
4.4.3. Expression Evaluation . 41
4.4.4. Evaluation Model . 45
4.4.5. Monitoring . 46

xi

5. Efficient Monitoring of RTLola 49

5.1. Offset Handling . 50
5.2. Sliding Window Handling . 57

5.2.1. Properties of Aggregation Functions 58
5.2.2. Memory Reduction by Pre-Aggregation in Periodic Streams 60
5.2.3. Efficient Eviction of Values . 65

5.3. Finite Memory Evaluation . 67
5.3.1. Finite Memory Semantics . 67

6. RTLola in Practice 69

6.1. Syntactic Sugar . 69
6.1.1. Type Omission . 72
6.1.2. Full Syntax . 73

6.2. Case Studies . 74
6.2.1. Helper Macros . 75
6.2.2. Unmanned Aerial Vehicles . 75
6.2.3. Medical Cyber-Physical Systems . 78

7. Final Remarks and Future Directions 83

A. Appendix 85

A.1. BNF for the Concrete Syntax . 85
A.2. BNF for the Sugarized Syntax . 86

xii

Chapter 1
Introduction

A recurring theme in global development is to simplify complex tasks such that the
labor can be shifted from experts to an expendable work force with little need for su-
pervision. As an example, consider the first automobile, the Benz Patent-Motorwagen.
The prototype was assembled by its inventor Carl Benz, and so were the following
few models. Only when the assembly process was sufficiently well-understood, less
skilled mechanics were entrusted with the task. Over the last 130 years, the processes
was continually simplified and entrusted to low-paid assemblymen. Nowadays, the
task is automated using robot arms up to a point where little to no manual interven-
tion is necessary. Programming these arms, however, requires experience in two fields:
knowledge about the construction process and a firm grasp on the capabilities and
limitations of the arms. After deployment of the arms, when experience proved the
automated process sufficiently stable, the amount of supervision is reduced to a mini-
mum. In essence, experience allows the process to work almost-fully automated with
very little supervision.

A similar development can be seen for users of automobiles. The first driving li-
cense1 was specially issued to Carl Benz for his Motorwagen. Successor licenses re-
quired drivers to have knowledge about the mechanics of the vehicle. In contrast to
this, current student drivers barely need to know how to refill hydraulic fluid. Sim-
ilarly, in many countries, they are no longer required to train the operation of a car
with manual transmission. And the trend continues: there is a steady shift from level
2 autonomy, i.e., advanced driving assistance allowing the driver to disengage from
physically operating the car, towards level 3 autonomy, where the driver’s necessity to
monitor the situation ceases under normal circumstances. Increasing autonomy leads
to fewer requirements on the operator, so it seems reasonable to lower the required
training before granting driving licenses in the future.

1the “permit for conducting test drives in a patented engine vehicle” (German: “Berechtigung zur Durch-
führung von Versuchsfahrten mit einem Patentmotorwagen”)

1

1. Introduction

Yet again, the development process of autonomous cars heavily relies on experience:
empirical testing reveals that the autopilot behaves correctly in all tested scenarios.
Experience also plays a crucial role in the software itself, though less obvious. The
controller software of the car uses machine learned neural nets for image recognition,
prediction, and path planning. The training set for these nets consist of millions of
driving kilometers, which is realistic empirical data, also known as “experience”.

The learned controllers excel most of the time, often delivering vastly superior re-
sults compared to any existing tool. The disconcerting part about this statement is the
adverb “often”. The caveat about learned components is that they are highly cryptic;
explaining their decision process is considered impossible. This is no surprise consid-
ering that experience is similarly hard to explain: An experienced driver intuitively
knows to which position within their lane they should steer their car. However, they
cannot justify precisely why this position is correct. So if they overshoot and crash, a
post-mortem analysis often turns out inconclusive. As a bottomline, systems based on
experience, be it human experience or a comprehensive data set, are well-behaved most
of the time but come with flaws.

These flaws can have dire consequences when considering a second development
over time: automated tasks become ever more safety-critical. The confidence in au-
tomated systems rose from regulating the water level of a water clock in 270 BC to
controlling nuclear power plants in the 21st century.

Automated systems are deployed in a variety of critical areas such as in medical
cyber-physical systems or in avionics. While they performed reasonable well in the
past, several incidents show that misbehavior leads to significant ramifications. Be-
tween 1985-1987, for example, a data race in the Therac-25 radiation therapy machine
lead to severe radiation poisoning in several patients, causing multiple cases of debil-
itation and three deaths.2 More recently, in March 2019, the autopilot of a Tesla car
failed to recognize a truck towing a trailer, which lead to a fatal accident.3

These incidents reinforce the demand for formal, static guarantees on the system.
For this, a verifier analyses all possible executions of a system and verifies them against
a specification of the desired behavior. This requires a model of the system which
accurately represents the ramifications of a control decision. For purely discrete pro-
grams, an adequate model is easy to obtain. However, many safety-critical systems are
deployed in a cyber-physical context. A cyber-physical system is a discrete computer
program that interacts with the continuous, physical world. Examples are autonomous
cars and aircraft, humans with medical implants, or robotic arms in factories.

The physical world is so chaotic that a precise deterministic model is impossible to
find [1]. Moreover, the complexity of the physical world renders even imprecise models
large. As a result, finding a model adequately representing the system often leads to
a verification task that does not scale sufficiently well. The main reason behind this is
that static verifiers check every possible execution. In contrast to that, runtime verifica-
tion is only concerned with a single execution trace. Thus, the applicability of runtime

2https://www.bugsnag.com/blog/bug-day-race-condition-therac-25
3https://www.wired.com/story/teslas-latest-autopilot-death-looks-like-prior-crash/

2

verification significantly exceeds static verification. The basic idea of runtime verifi-
cation is to deploy a dedicated component, the monitor, on the system under scrutiny.
The monitor assesses the state of the system based on sensor readings and analyzes it
w.r.t. a formal specification. When detecting a violation, the runtime monitor reports
the problem to the controller, which initiates counter measures. Such counter measures
can be switching from the highly complex, effective and efficient controller to a simple,
verified safety-controller. In an autonomous taxi, for example, the safety-controller can
decelerate and pull over. This strategy is safe albeit ineffective w.r.t. its goal of trans-
porting passengers to a target location.

Runtime monitoring thus acts as a connection link between the efficacy of the empir-
ically trained controllers and formally verifiable guarantees. For granting guarantees,
however, the correctness of the monitor itself needs to be formally verified, and the
specification needs to represent the desired behavior of the system accurately. This
combination proves problematic for many runtime verification approaches because the
specification language is a compromise between formal guarantees and expressiveness.
Consider, for example, linear-time logic (LTL) [2]. The logic is studied extensively and
thus well understood. Respective monitors [3] are based on finite state automata, with
constant memory and performance overhead. However, what the logic has in static
guarantees, it lacks in expressiveness. Intuitively, LTL cannot count, so encoding re-
quirements such as “the location approximation based on the GPS module and the
IMU shall not diverge by more than 50 meters” is a hassle or even impossible. More
expressive logics come with the drawback of a non-constant memory and runtime over-
head in the length of the trace. As a result, the longer a system is deployed, the more
time and space it takes to verify compliance with the specification. Another way to
specify properties is using general purpose programming languages. They are suffi-
ciently expressive and the engineers developing the system are already familiar with
them, making the integration easier. However, many programming languages do not
feature formal semantics, which are required for formal guarantees. Moreover, a static
analysis of such a monitor becomes hard due to the expressiveness of the language.

The prototype language RTLola presented by Faymonville [4] aims to solve this
problem by providing a set of common operations as language primitives. These oper-
ations are selected to provide static guarantees regarding their runtime overhead. This
thesis builds upon this by presenting a version of the language with overhauled and ex-
tended syntax. Moreover, we formally define the semantics of the language and present
a monitoring algorithm that provably complies to the semantics. The resulting monitor
requires a statically bounded amount of memory and only imposes a constant amount
of runtime overhead.

The approach was implemented in a tool with the name StreamLab that generates a
monitor with the aforementioned features out of an RTLola specification. We validate
the tool and language with two case studies, based on health monitoring and aircraft
controllers.

3

1. Introduction

1.1. RTLola by Example

The best way to introduce a language like RTLola is on an intuitive level. The next sec-
tions will then formalize the semantics and show how to efficiently monitor an RTLola

specification.
An RTLola specification consists of stream declarations. Each of them declares ei-

ther an input stream, an output stream, or a trigger. The system collects information such
as sensor readings, and passes it on to the monitor. Each data packet is mapped to one
of the declared input streams. Output streams then access input data, aggregate and
refine until it is useable to assess the health state of a system.

As a running example consider a car with an accelerometer measuring the accel-
eration in driving direction. The car shall drive smoothly, so it may never accelerate
or decelerate with more than 4m/s2. An RTLola specification for this declares an in-
put stream for the measurements of the accelerometer, and an output stream checking
whether the absolute acceleration exceeds 4. If so, a trigger sends a message to the
controller of the car.

input accel_mpss: Float64
output high_accel: Bool := abs(accel_mpss) > 4
trigger high_accel "Ride not smooth."

Note that the suffix of stream name indicates the unit; this is not part of RTLola but a
common convention. Note that RTLola is a strongly typed language and requires type
annotations for input streams. Output stream types, however, can often be inferred
and are thus optional most of the time.

Assume the aforementioned care should additionally ensure that the speed limit of
50km/h is respected. Recall that the acceleration is the first derivative of the veloc-
ity and the second derivative of the distance. As a result, integrating the acceleration
yields the velocity. RTLola provides primitives for involved common operations such
as aggregations over a pre-defined history of values. This includes the time-bounded
integration of input stream values. Thus, we declare an output stream computing the
difference in velocity ∆v over the last second by integrating all readings of the ac-
celerometer in this time frame. Then, the overall velocity v is the sum of all ∆v values.
Expressed as a formula, the specification computes the following for a point in time
t ∈N:

v(t) =
∫ t

0
v̇(τ)dτ =

∫ t

0
a(τ)dτ =

t−1∑
i=0

(∫ i+1

i
a(τ)dτ

)
=
t−1∑
i=0

∆vi (1.1)

In RTLola, such a specification looks as follows:

input accel_mpss: Float64
output high_accel: Bool := abs(accel_mpss) > 4
trigger high_accel "Ride not smooth."

output ∆v_mps: Float64 @1Hz := accel.aggregate(over: 1s, using:
∫
)

output v_mps: Float64 @1Hz := v_mps.offset(by: -1).defaults(to: 0.0) + ∆v_mps

4

1.1. RTLola by Example

output v_kmph: Float64 := v_mps * 3.6
trigger v_kmph > 50 "Driving faster than permitted."

The specification exhibits several noteworthy characteristics. The ∆v_mps stream de-
clares an extension frequency of 1Hz. This prompts the monitor to compute ∆v_mps once
per second only, rendering ∆v_mps a periodic stream. In contrast to that, high_accel in the
last specification was event-based, i.e., the monitor computed its value whenever the ac-
celerometer generated a new reading. The detailed rationale behind periodic streams
will be explained in Section 5.2 : Sec. 5.2, Page 57. For now, the only relevant information is that an out-
put with a sliding window expression is required to be periodic. A sliding window is
a time frame of a fixed length, in this case 1s, whose values get aggregated using a
specified function. In the case, the aggregation function is the integral.

∆v_mps only takes the “recent” acceleration data into account. For the total velocity,
v_mps sums up all values of ∆v_mps. The stream refers to itself with an offset of -1, meaning
it takes the last computed value of itself. If this value does not exists — which is the
case when the monitor just started — it falls back to the specified default value 0. Thus,
the stream actively holds a state. This distinguished RTLola from many rule-based
specification languages like RuleR [5] or Snort [6].

The last major characteristic of RTLola covered in this brief introduction is its ex-
tensibility and modularity. The former specification required the vehicle to drive at
most 50km/h. However, a more realistic specification only demands that the speed of
the vehicle is below 50km/h when close to a radar trap. Assume the trap is 60km away
from the start position of the car. The extended specification merely requires two more
output streams to compute the traveled distance and an adapted trigger condition. It
uses the same technique showed in Equation 1.1, just for the position rather than the
velocity, i.e.:

s(t) =
∫ t

0
ṡ(τ)dτ =

" t

0
s̈(τ)d2τ =

" t

0
a(τ)d2τ =

∫ t

0

(∫ τ

0
s̈(ι)dι

)
dτ =

t∑
i=0

i−1∑
j=0

∆vi

This results in the following specification where d_km is the number of kilometers the
car has traveled so far:

input accel_mpss: Float64
output high_accel: Bool := abs(accel_mpss) > 4
trigger high_accel "Ride not smooth."

output ∆v_mps: Float64 @1Hz := accel.aggregate(over: 1s, using:
∫
)

output v_mps: Float64 @1Hz := v.offset(by: -1).defaults(to: 0.0) + ∆v
output v_kmph: Float64 @1Hz := v_mps * 3.6
output d_km: Float64 @1Hz := d_km.offset(by: -1).defaults(to: 0.0) + ∆d_m / 1000
trigger v_kmph > 50 ∧ d_km > 59.5 ∧ d_km < 60.1 "Speeding near radar trap."

The addition of new sensor values is similarly simple. Assume the vehicle is now
equipped with a GPS module with alleged sensor frequency 10Hz. The specification
checks the frequency and alerts the controller when the monitor receives too few sam-
ples. Moreover, it checks whether the computed position coincides with the measured

5

1. Introduction

one up to a derivation threshold ε. This is a common pattern in a highly redundant,
safety-critical system such as aircraft or autonomous cars. The same metric is com-
puted in several different ways, implemented by different people, sometimes even in
different programming languages, based on different sensors. If the resulting values
match, there is a high confidence in the correctness of the value. If they diverge, a
majority vote yields the most probable result and the sensor health estimate for the
respective sensors deteriorates.

The extended specification featuring the cross validation looks as follows:

input accel_mpss: Float64
output high_accel: Bool := abs(accel_mpss) > 4
trigger high_accel "Ride not smooth."

output ∆v_mps: Float64 @1Hz := accel.aggregate(over: 1s, using:
∫
)

output v_mps: Float64 @1Hz := v.offset(by: -1).defaults(to: 0.0) + ∆v
output v_kmph: Float64 @1Hz := v_mps * 3.6
output d_km: Float64 @1Hz := d_km.offset(by: -1).defaults(to: 0.0) + ∆d_m / 1000
trigger v_kmph > 50 ∧ d_km > 59.5 ∧ d_km < 60.1 "Speeding near radar trap."

input gps: Float64
output gps_cnt: UInt64 @1Hz := gps.aggregate(over: 1s, using: count)
trigger gps_cnt < 10 "Few GPS samples."
output cross_diff: Float64 := abs(gps - d_km.hold().defaults(to: gps))
trigger cross_diff > ε "Estimated and measured position deviate."

Note that the GPS module in the simplified scenario only yields a single floating point
number representing the x position of the car in km. The output stream gps_cnt counts
the number of readings produced by the GPS module per second. If the count drops be-
low 10, an alarm is raised because the module does not behave as expected. The count
operation is another aggregation function that is predefined for sliding window expres-
sions. Other prominent aggregation functions are extrema, summation, (co-)variance,
and existential and universal quantification.

Lastly, the computation of cross_diff uses a sample and hold expression. This expres-
sion bridges the gap between periodic and event-based streams. When the accessing
stream is evaluated, it takes the latest value of the accessed stream in a zero-order hold.
This is different to the other accesses because they required a compatible timing between
streams. Consider the expression in which v_kmph accesses v_mps. This is a synchronous
access meaning that the evaluation of the accessing stream happens at the same point
in time when the accessed stream is evaluated. Thus, the accessed value is “fresh”, i.e.,
no zero-order hold is necessary.

6

Chapter 2
Related Work

Early work on formal runtime monitoring was mainly based on temporal logics [7, 8,
9, 2, 10, 11]. For many applications, these logics lacked expressiveness, giving rise to
real-time temporal logics such as MTL [12] and STL [13]. For both logics, monitoring
algorithms and implementations thereof exist [14, 15, 16, 17].

The main advantage of temporal logics is that monitors with formal guarantees on
the space and time complexity can be synthesized for specifications.

These monitors can be abstract finite state automata, or concrete circuits: MBAC [18]
translates PSL formulas into a monitoring automaton; FoCs [19] compiles sPSL [20] as-
sertions to Verilog code, which can then be realized on programmable hardware such
as Field-Programmable Gate Arrays (FPGA). Similarly, BusMOP [21] synthesizes hard-
ware monitors out of past-time linear temporal logics. Jaksic et al. [22] introduced an
algorithm to synthesize monitors for STL — and thus real-time languages — on an
FPGA. Furthermore, the R2U2 tool [23, 24] introduced an FPGA implementation for
real-time temporal specification based on MTL, featuring future-time specifications.
All of these approaches, however, are restricted to monitoring specifications expressed
in a logic. This allows for guarantees on the runtime behavior of the monitor. However,
while these formal guarantees should not be neglected, a major drawback of logics is
their expressiveness. Moreover, when the monitor is used for cyber-physical systems
such as medical devices or autonomous vehicles, a simple yes or no verdict is often
insufficient. Statistical information about the degree in which the execution was a fail-
ure helps the development process. Moreover, expressing arithmetic expressions with
boolean properties is cumbersome unless the specification language provides appro-
priate primitives. For this reason, languages with more expressive native constructs
such as arithmetic, and more expressive non-binary outputs have been studied.

One direction for increasing expressiveness is by monitoring first-order temporal log-
ics. This can be achieved by using BDDs [25], Regular Expressions [26], rule-based
systems [27, 5, 28], or SMT solvers [29]. Unfortunately, these approaches, while more
expressive, still yield binary results only.

7

2. Related Work

For this reason, temporal logics have been enriched by quantitative measures. These
can be the edit distance to the desired result [30]. Similarly, the ratio of violation ver-
sus satisfaction is highly relevant. For this, the amount of satisfying and violating
models [31, 32] or events [33, 34] can be counted. When considering real-time sig-
nals, the actual satisfaction and violation time on the real axis can be measured [35].
Mascle et al. [36] presented an approach for monitoring robust LTL [37, 38], a vari-
ant of LTL that naturally gives more detailed, non-binary verdicts. Lastly, aggregating
expressions assessing the rate of satisfaction and dissatisfaction can be integrated into
first-order temporal logics [39]. Moreover, when given a constant reference signal, sig-
nal integration gives a measure of deviation from the reference [40].

In the recent past, the collection of statistics became increasingly popular in mon-
itoring tools [41, 42, 43]: A wide-spread, commercial, rule-based monitoring tool for
networks, Snort [6], computes a pre-defined set of statistics efficiently. Rather than
using a rule based language, Beep Beep 3 [44] uses a query language similar to SQL.
Its connection to database systems allows for powerful aggregation functions and thus
statistical measures. This comes at the hefty prive of requiring a heavy-weight database
application on the system under scrutiny — which is impractical on many embedded
devices. The Copilot [45] framework is a light-weight alternative based on synchronous
languages [46, 47]. It transforms a declarative specification in a data-flow language into
a simple C implementation. Due to the simplicity, guarantees on the space and time
complexity of the monitor can be provided.

Also based on synchronous languages like Lustre [48, 49], and Esterel [50], stream-
based monitoring approaches were studied in the form of the specification language
Lola [51]. Lola forms the basis of the language formalized in this thesis. It is a descrip-
tive language subsuming discrete temporal logics and can express properties concern-
ing the past as well as the future. Apart from RTLola, there are two other languages
based on Lola: TeSSLa and Striver.

TeSSLa [52] monitors piece-wise constant signals. Its output streams run on different
timelines and can produce events at arbitrary points in time. This especially allows for
Zeno1 behavior that cannot be detected statically. This is impossible in RTLola since
output streams are clocked based on input events which cannot be Zeno, or they are
isochron, i.e., their evaluation behavior is determined statically. As a result, RTLola
decouples input and output streams which allows for an efficient aggregation of values
via sliding windows. This is not possible in TeSSLa. Moreover, as opposed to RTLola,
TeSSLa relies on instrumented C code. As a result, it is not applicable on blackbox
systems.

The other language that arose from Lola is Striver [53]. Striver also does not have a
clean separation of input and output streams and lacks convenient and efficient native
primitives for 0-order sampling and sliding window expressions.

1Zeno behavior, named after the Greek philosopher Zeno of Elea, requires a system to perform an infinite
amount of operations in a finite amount of time.

8

An approach for compiling synchronous Lola has been presented by Maltry [54].
Later on, the work was extended to cover the entire language presented in this the-
sis [55].

The adequacy of Lola’s and RTLola’s expressiveness was demonstrated in case stud-
ies. The monitored systems were aircraft [56, 57, 55] and networks [58, 55]. In addition
to that, there are first endeavors to apply the language on medical cyber-physical de-
vices[59]. This thesis presents the underlying case studies.

9

Chapter 3
Preliminaries

In this chapter, we will lay the basis for the remainder of the thesis by introducing some
notation and concepts as well as the language on which RTLola is based.

3.1. Notation

First, we introduce is a notation to transform a binary value into a corresponding inte-
ger value.

Definition 1 (Indicator)
The (boolean) indicator 1φ yields 1 if φ is true and 0 otherwise. Def. Indicator

1φ B

 1 if φ

0 otherwise

The next definition concerns a short-hand notation for a series of similar elements. It
allows for a concise notation without the need of resorting to the abbreviating ellipsis
(. . .) notation.

Definition 2 (Families)
A family is a sequence of similar elements. It consists of an enumerable set S with Def. Family

order <S , and a unary function f : S → S ′. The order of S induces the order of the re-
sulting sequence, and f produces the respective elements. If unambiguously possible,
f is left implicit, so i ∈N represents the identity function on N.

(f (a))a∈S B f (a1), f (a2), . . . given
⋃
i∈N
{ai} = S ∧∀i ∈N : ai <S ai+1

11

3. Preliminaries

3.2. Basic Definitions

In this section, we will recall the definitions of some basic concepts concerning lattices
and define a notion of interval partitioning.

Definition 3 (Partial Order)
A partial order on S is a binary relation ≤⊆ S × S that satisfies three criteria:Def. Partial Order

Reflexivity ∀a ∈ S : a ≤ a

Anti-Symmetry ∀a,b ∈ S : a ≤ b∧ b ≤ a =⇒ a = b

Transitivity ∀a,b,c ∈ S : a ≤ b∧ b ≤ c =⇒ a ≤ c

Note that an order defined with a strict less < can be a partial order if equality ≈ is
defined based on non-relation of elements, i.e. a≮ b∧ b ≮ a =⇒ a ≈ b for any a and b.

The concept of partial orders is integral for lattices. Note that there are two com-
monly used definitions for lattices, a set-theoretic and an algebraic one. Both are equiv-
alent, we will use the latter one.

Definition 4 (Meet-Semilattice)
A is a set S with partial order v and binary meet operator u. The meet operationDef.

Meet-Semilattice needs to be defined on any two elements in S and satisfy the following criteria:

Closedness ∀a,b ∈ S : au b ∈ S

Associativity ∀a,b,c ∈ S : (au b)u c = au (bu c)

Commutativity ∀a,b ∈ S : au b = bu a

Idempotency ∀a ∈ S : au a = a

The u operator on two elements a,b ∈ S then results in the greatest lower bound of a
and b in S w.r.t. v. The semilattice is bounded if S contains an identity element ε withDef. Bounded

Meet-Semilattice εu a = a for any a ∈ S.

Related to the closedness property of the lattice, recall the definition of a transitive
closure of a binary relation.

Definition 5 (Transitive Closure)
The transitive closure of a binary relation R⊆ S × S is a set R′ ⊇R satisfying:Def. Transitive

Closure

∀a,b,c ∈ S : aRb∧ bRc =⇒ aR′c

It can always be constructed by successively adding missing elements to R′ until the
property is satisfied.

12

3.3. Lola

Lastly, we define a special partition for intervals. It essentially splits an interval into
a sequence of different non-overlapping, consecutive chunks. The sequence of chunks
preserves the order in the original interval.

Definition 6 (Ordered (Interval-) Partition)
Let I = (Ii)i≤k for some k. I is an ordered partition of X ⊆N iff Def. Ordered

Partition⋃
i≤k
Ii = X ∧∀i ≤ k : ∅ , Ii = [`,u]∧∅ , Ii+1 = [`′ ,u] =⇒ `′ = u + 1

The first criterion ensures that I covers X entirely, the second ensures that the sub-
sequences are non-overlapping and ordered.

Example 3.2.1. ([2i , . . . ,2i+1−1])i∈N is an ordered interval partition of the natural num-
bers. 4

3.3. Lola

Lola [51] is a strongly-typed stream-based specification language. Any specification
consists of input streams, output streams and triggers. Input stream declarations only
contain type information about the expected input data, whereas output streams also
declare a stream expression. This expression may contain conditional expressions, con-
stants, arbitrary k-ary operators, and lookup expressions with discrete offsets. As op-
posed to RTLola, these offsets can be positive, in which case they refer to a future value
of a stream. The evaluation of the expression is delayed until the referenced value is
available.

As a consequence of this, Lola allows for unbounded future references, These occur
if a stream s refers to the next value of s′ and s′ refers to the next value of s. In this case,
the evaluation is only possible as soon as the end of the input trace is reached. If the
length of the trace is statically unknown, the memory consumption of the monitor is
equally unbounded. Such specifications are considered not efficiently monitorable.

However, this problem can be determined statically based on the dependency
graph (DG) of a specification. The DG consists of nodes representing streams and
edges representing stream accesses where the offsets are the weights of the edge. If
there are no positive cycles in the DG, every stream only depends on values that will
be available after a bounded amount of steps.

Theorem 1 (Efficiently Monitoriable [51]). A specification is efficiently monitorable if there
is no cycle with positive weight in the dependency graph.

The dependency graph helps to compensate for another problem of Lola: Not every
Lola specification has exactly one solution for the evaluation of stream expressions —
some have multiple, others none. Image an output stream s which expression consists
of an access to s itself with an offset of 0. As a result, s needs to assume the value

13

3. Preliminaries

of s, a condition that holds vacuously. Thus, any evaluation of the expressions is valid.
Similarly, consider a boolean stream, i.e. its expression can only yield true or false. If
this expression is a logical negation of a lookup targeting itself with an offset of 0, then
no evaluation result is valid for this stream. Fortunately, there is a sufficient criterion
on the DG that identifies such constellations.

Theorem 2 (Unique Evaluation Model [51]). A specification has a unique evaluation
model if the dependency graph has no 0-weight cycle. The inverse direction does not hold.

Lastly, note that there is a monitoring algorithm for any efficiently monitorable Lola

specification with a unique evaluation model. The algorithm requires constant memory
in the length of the trace.

14

Chapter 4
An Understandable
Specification Language

The stream-based specification language RTLola is designed to satisfy two seemingly
contradictory goals: simplicity and expressiveness. Simplicity is a subjective metric
and is influenced by the conciseness and readability of a specification. In general,
abstract concepts are less readable and more expressive than concrete ones. As an
example, consider the highly abstract flatmap function found in many higher-order
programming languages like Haskell and Scala. It is polymorphic and of type:

flatmap<T,A>: List<T> -> (T -> Option<A>) -> List<A>

Semantically, it takes every element of a list and applies a function that may or may not
return a value, indicated by the monadic Option type. It returns a list of the results of
the function application granted it was not None. Compare this to the less abstract and
less expressive, polymorphic filter function with type:

filter<T>: List<T> -> (T -> Bool) -> List<T>

It takes a list as an argument and retains all values for which the second argument, a
boolean classifier, returns a positive result.

Technically, filter is a superfluous function as it can be expressed with the flatmap
function:

filter l p = flatmap l (λ x: if p x then Some(x) else None)

Yet, it is part of most — if not all — standard libraries along with flatmap. The reason
is the relative readability of filter when compared with flatmap. The name filter
already indicates what the result will be, i.e., a shorter version of the list where each
element satisfies the filter criterion. The name flatmap, however, only conveys the ab-
stract meaning of the function but not about the resulting list, which would require
information about the second argument. Thus, developers tend to use the less expres-
sive, more readable filter function whenever possible.

15

4. An Understandable Specification Language

This principle was a leading factor when designing RTLola. Expressiveness is with-
out a doubt crucial for a specification language. An overly clumsy and cumbersome
language has slim chances of ever being widely adopted1. Moreover, an illegible speci-
fication can contain significant errors that remain hidden on first glance. For a safety-
critical component such as a runtime monitor, hidden errors entail potentially danger-
ous consequences and should thus be ruled out as much as possible. So, the design of
RTLola is focused on providing a language that is easy to understand even for novices.
It still provides enough functionality such that even complicated properties can be
specified easily.

This section presents the “vanilla” syntax of RTLola, i.e., the basic building blocks of
a specification without syntactic sugar. It exhibits the entire expressiveness of RTLola
while easing the process of defining the formal semantics and understanding the eval-
uation algorithm. Real specifications can then use syntactic sugar and predefined func-
tions as defined in Section 6.1 to circumvent clumsy syntactic structures. A desugarizing
step replaces syntactic sugar by the respective, equivalent vanilla RTLola constructs.

The concrete syntax is transformed into the abstract syntax tree. Based on this, we
will define static analyses: a dependency and a type analysis. Both target the detection
of inconsistencies in the specification before deployment of the monitor.

4.1. Concrete Syntax

An RTLola specification declares input streams that constitute the entry point of data.
Further, it defines output streams that transform, aggregate, and analyze the input data
to produce more refined output data. This data can either be logged or be target of a
trigger, which raises an alarm if a stream produces a positive boolean result.

The abstract representation for a specification is the abstract syntax tree, which has
n↓ + n↑ + n! children, representing all input streams, output streams and triggers, re-
spectively. With slight abuse of notation, let AST be a function transforming a concrete
specification into its respective AST.

Note that in the remainder of this thesis, we will indicate the kind of streams using
a marker as superscript. A down arrow such as in s↓ symbolizes inputs, an up arrow
(s↑) symbolizes outputs, and a bang (s!) symbolizes triggers. Lastly, a vertical line (s−)
indicates that the subject is either an input, or an output.

The ith input stream is of form:

input a: T

The respective AST is s↓i = (a,AST(T)). The name of the stream is a one-to-one copy
and irrelevant for the semantics. The type T is transformed into an AST object. For
conciseness of notation, we define s↓i .nameB a and let T ↓i be AST(T).

The syntax for output streams is similar, yet features two more components: an ex-
pression e and an evaluation frequency nHz. Let the following be the jth output stream.

output a: T @nHz := e

1Yet, some recent, wide-spread languages like Javascript beg to differ.

16

4.1. Concrete Syntax

The respective AST is s↑j = (a,AST(T),n,AST(e)) for a natural number n. For brevity, let

s↑j .name = a,s↑j .ext = n,s↑j .expr = AST(e), and T ↑j = AST(T).

Remark 4.1.1 (A Note on Time and its Units). We require n to be a natural number and
enforce the unit hertz for it. This is unnecessarily restrictive, the algorithm presented in this
thesis is theoretically capable of working with any kind of frequency. The actual order of
magnitude induced by the unit, i.e., hertz, millihertz, etc., is irrelevant, yet introduces an
additional complication into the semantics. Thus, for simplicity, we assume hertz. With this
in mind, one can easily see that the restriction to a natural number can be replaced by a
restriction to positive rational numbers. The remaining irrational numbers are utterly irrel-
evant in practice because a computer cannot wait for exactly 1

π seconds. From a theoretical
standpoint, the presented approach is still applicable to specification with irrational frequen-
cies. However, it makes treatment of frequencies at some points unnecessarily cumbersome.
For these two reasons, we disallow them statically in this chapter.

The specified frequency is part of the stream’s type and optional, so the following
syntax for s↑j would yield the AST (a,AST(T),⊥,AST(e)).

output a: T := e

Lastly, a trigger consists of a stream name and a message. In the AST, the stream
name is replaced by a reference to the stream with the specified name or ⊥ if no such
stream exists.

trigger a "msg"

s!
k = (s,msg) =

 (s↑j ,msg) if s↑j .name = a

(⊥,msg) otherwise

We again abbreviate s!
i .tar = s and s!

i .msg =msg.

4.1.1. Expressions

Expressions in RTLola consist of the usual operations such as constants, arithmetic
operations, and conditionals. All of these constructs are collected in arbitrary func-
tion expressions: constants are 0-ary functions, n-ary arithmetic operations become
n-ary functions and conditionals become ternary functions. Infix operations such as a

+ b and the common if b then e1 else e2 notation are syntactic sugar for plus(a, b) and
ite(b, e1, e2), respectively. Note that the conditional can only be encoded as a function
because the semantics of RTLola expressions is free of side-effects. Further discussion
follows in Remark 6.1.1 : Sec. 6.1, Page 70.

In addition to these operations, RTLola expressions contain lookups that allow out-
put streams to access other streams in one of three ways, see Table 4.1.

Synchronous Lookups A stream accesses another stream synchronously, i.e. whenever
the accessee stream produces a value, the accessor stream gets access to it. This
reflects a push-based paradigma where data is pushed from accessee to accessor.

17

4. An Understandable Specification Language

Syntax Name

e.offset(by: -n) Offset

e.defaults(to: e) Default

f(e1,...,en) Function

s Synchronous Lookup

s.hold() Sample&Hold Lookup

s.aggregate(over: δs, using: γ) Sliding Window

Table 4.1.: Concrete syntax of RTLola expressions and their corresponding names.

Sample & Hold A stream accesses another stream asynchronously. The accessor stream
gets access to the latest value computed for the accessee stream. The timing is
dictated by the accessor, so this offset reflects a pull-based paradigma where the
accessor pulls data from the

Sliding Window A stream can access all values of another stream that occurred in a
certain real time period. This is called a sliding window because the window
of relevant values slides continuously over the real time axis. The sequence of
values is aggregated with an aggregation function. The duration of the window
is a natural number of seconds. This limitation can be resolved as explained in
Remark 4.1.1.

Some of these lookups can fail, resulting in an optional value. The default operation
remedies this by providing a default value in case the lookup failed.

The output of the AST function is then:

AST(s.offset(by: -n))B

 Offset(s−i ,n) if s−i .name = s

Offset(⊥,n) otherwise

AST(e.defaults(to: d))BDefault(AST(d),AST(e′))

AST(f(e1,...,en))B Func(f ,AST(e1), . . . ,AST(en))

AST(s)B

 Sync(s−i) if s−i .name = s

Sync(⊥) otherwise

AST(s.hold())B

 Hold(s−i) if s−i .name = s

Hold(⊥) otherwise

18

4.1. Concrete Syntax

input a: Int8
input b: Bool
input c: Float32
output d: Int8 @5Hz := a.aggregate(over: 12s, using: Σ)
output e: Float32 := multiply(

a.offset(by: -3).defaults(to: 99),
f.hold().defaults(to: 1)

)
output f: Float32 := gt(ite(b, e, add(c, 4.0)), 9000.0)
trigger f "It’s over 9000.0!"

Figure 4.2.: A “vanilla” RTLola specification showcasing the concrete syntax elements.
multiply and add are binary multiplication and addition, ite is the ternary
conditional operator. 0-ary functions representing constants are in-lined.

AST(s.aggregate(over:δs, using:γ))B

 Window(s−i ,δ,γ) if s−i .name = s

Window(⊥,δ,γ) otherwise

Note that — similar to streams — we assign unique indices to sliding window ex-
pressions. The ith window occurring in the specification is thus called wi .

The BNF for the concrete syntax can be found in the appendix, Section A.1 : Sec. A.1, Page 85

The validity of an RTLola specification is based on several factors. The first one is
the syntactic validity, which is defined as follows.

Definition 7 (Syntactic Validity)
An RTLola specification is syntactically valid iff Def. Syntactic

Validity

• all stream and trigger definitions conform to the concrete syntax stated above,

• AST(s) can be computed without violating a condition. This especially includes
that all stream names can be resolved.

• all names of streams are unique, i.e., ∀i, j : s−i .name = s−j .name =⇒ i = j

Example 4.1.1. Figure 4.2 shows a specification written in “vanilla” RTLola, i.e., with-
out any syntactic sugar apart from in-lined constants. The first three lines declare input
streams of type integer with bit-width 8, a boolean stream, and a floating point stream
with bit-width 32. Output d declares a sliding window over stream a, integrating all
values of the last 12s. Output stream e multiplies the fourth-to-last value of a default-
ing to 99, and the last value of c defaulting to 1. Note that the offset is −3 and results in
the fourth-to-last value because the “first-to-last” value is the last value and represents
an offset of 0. Lastly, f compares either d or c + 4.0 with 9000. If it is greater, the trigger
goes off and alarms the user or controller thusly.

19

4. An Understandable Specification Language

s↑1

d Int

8

5 Window

s↓1 12 f1

s↑2

e Float

32

⊥ Func

f2 Default

Offset

s↓1 3

f3

Default

Hold

s↓3

f4

s↑3

f Float

32

⊥ Func

f5 Func

f6 Sync

s↓2

Sync

s↑2

Func

f7 Sync

s↓3 Func

f8

Func

f9

Figure 4.3.: Abstract syntax tree for the output streams of the RTLola specification in
Figure 4.2.

The AST consists of seven root level nodes, three representing the inputs, one for the
trigger, and three representing the outputs. The latter are best illustrated as trees, see
Figure 4.3, whereas the input streams, trigger and functions look as follows:

s↓1 = (a, Int(8))

s↓2 = (b,Bool)

s↓3 = (c,Float(32))

s!
1 = (s↑3,“It’s over 9000.0!”)

f1((xi)i≤k) =
∑k

i=1
xi

f2(x,y) = x ·y

f3 = 99

f4 = 1

f5(x,y) = x > y

f6(x,y,z) =

 y if x

z otherwise

f7(x,y) = x+ y

f8 = 4

f9 = 9000

4

From now on, we will always refer to the AST of a specification rather than its con-
crete syntactic form. Moreover, Stream = Stream↓ ∪̇Stream↑ ∪̇Stream! denotes the set of
streams comprised of the set of input streams Stream↓ = {s↓i | i ≤ n

↓}, output streams
Stream↑ = {s↑i | i ≤ n

↑}, and triggers Stream! = {s!
i | i ≤ n

!}, respectively. Lastly, let W =
{wi | i ≤ nw} be the set of all window expressions.

20

4.2. Dependency Graph

4.2. Dependency Graph

While the abstract syntax tree captures the syntax of an RTLola specification, the
dependency graph is concerned with semantic dependencies between streams. Intu-
itively, an output stream s depends on another stream s′ if the evaluation of the stream
expression of s requires access to stream values of s′. The dependency graph captures
these dependencies and is required for semantic checks such as the type analysis and
the existence of an evaluation model. Moreover, it allows us to determine a static upper
bound on the memory consumption of a monitor for the specification.

Definition 8
The expression of an output stream contains the information which streams are ac-

cessed, i.e. on which streams it potentially depends. A dependency is a triple consisting
of the accessing stream, a weight capturing the temporal properties of the access, and
the target stream. The computation is recursive over the structure of the stream ex-
pression of s↑i .

deps↑i
(Offset(s−j ,n))B {(s↑i ,n, s

−
j)}

deps↑i
(Default(e,e′))B dep(e)∪ dep(e′)

deps↑i
(Func(f ,a1, . . . , an))B

⋃
0<i≤n

dep(ai)

deps↑i
(Sync(s−j))B {(s

↑
i ,0, s

−
i)}

deps↑i
(Hold(s−j))B {(s

↑
i ,0, s

−
j)}

deps↑i
(Window(s−i ,δ,γ))B {(s↑i , (δ,γ), s−j)}

This allows us to define the dependency graph.

Definition 9 (Dependency Graph)
The dependency graph of a specification is a directed, multi-graph DG = (V ,E) with Def. Dependency

Graphweighted edges. Its vertices are streams and the edges reflect dependencies between
streams:

V B Stream

E B
⋃

1≤i≤n↑
deps↑i

(s↑i .expr)∪
⋃

1≤i≤n!

{(s!
i ,0, s

!
i .tar)}

21

4. An Understandable Specification Language

s↓1 s↓2 s↓3

s↑1 s↑2 s↑3 s!
1

(12,
∑

)
3

0

0
0

0 0

Figure 4.4.: The dependency graph for the specification in Example 4.1.1.

Example 4.2.1. Recall the specification from Example 4.1.1. Figure 4.4 shows the re-
spective dependency graph. As for all specifications, input streams are sink nodes
whereas triggers are source nodes. However, output stream s↑1 can also be a sink node.
Nodes like these do not serve any purpose in the specification and can thus be purged
prior to evaluation. However, it might be beneficial to log all values of input and output
streams during execution for post-deployment analysis. In this case, sink nodes cannot
be purged.

4

4.2.1. Evaluation Models

The dependency graph grants some insights into the requirements on the expression
evaluation. Without detailing the semantics of RTLola specifications we can already
identify potential problems. Intuitively, an evaluation model of a specification is a set ofDef. Evaluation

Model infinite sequences of values where each sequence represents a single stream. The values
of the sequence need to be in the domain of the stream. As an example consider an
input stream s↓ = (a, Int(8)). A valid evaluation model of this stream is (x mod 128)x∈N.

While an input stream imposes very little constraints on its model, the expression
of output streams dictates the model mostly explicitly. The following specification
uniquely defines its model as (x mod 128)x∈N:

output b: Int8 := b.offset(by: -1).defaults(to: 0)

However, this is not always the case. Consider the following specification:

output x: Int8 := y
output y: Int8 := x

Intuitively, the stream x copies the value of y and y copies the value of x. As a re-
sult, there is more than one valid model for these streams; namely any two identical
sequences over natural numbers in the domain of 8 bit integers.

In contrast to that, the following specification does not have a single evaluation
model because it constitutes a logical contradiction.

output x: Bool := negation(y)
output y: Bool := x

A specification is said to be well-defined if a unique model exists. This problem al-Def.
Well-Definedness

22

4.2. Dependency Graph

ready arose for Lola specifications [47]. Here, D’Angelo et al. proved that a unique
model exists if the dependency graph of a specification does not contain a cycle with
weight 0, cf. Theorem 2 : Sec. 3.3, Page 14. We will re-instate this result for RTLola specifications in Pro-
position 12 : Sec. 4.4, Page 45. Here, we show that the absence of 0-weight cycles implies the existence
of an evaluation order (formally defined later), which implies well-definedness. The in-
tuition behind the proof is simple: the difference between sample and hold operations
and synchronous lookups is only concerned with timing. Since this is irrelevant for the
number of valid models, both operations behave equivalently. Window operations im-
pose restrictions on the evaluation order of streams but behave as constants afterwards.
Thus, the result for Lola is applicable to RTLola specifications.

Remark 4.2.1 (Sliding Windows as 0-Dependency). For the intends and purposes of the
remainder of this section, sliding window edges are considered 0-weight edges unless stated
otherwise. This is because the evaluation of a sliding window requires its target stream to be
evaluated the same way a synchronous lookup does.

The absence of 0-weight cycles is captured in a the well-formedness property.

Definition 10 (Well-formedness)
An RTLola specification is well-formed if there is no cycle with weight 0 in the de- Def. Well-formed

pendency graph.

Example 4.2.2. The specification from Example 4.1.1 is not well-formed. This becomes
evident in the dependency graph in Figure 4.4 due to the 0-cycle between s↑2 and s↑3. 4

4.2.2. Evaluation Order

The evaluation of an RTLola specification requires to evaluate the expressions of out-
put streams. In this process, the order in which expressions are evaluated influences
the outcome, as can be seen in the following example.

Example 4.2.3. Consider the following specification:

input i: Int8
output a: Int8 = b.offset(by: -1).defaults(to: i)
output b: Int8 = multiply(2, i)

When evaluating this specification, the input stream i is synchronously accessed by
both output streams, so it needs to be evaluated first. Stream a accesses b with a negative
offset, meaning it accesses the second to last value. This, however, assumes that b was
already evaluated. Inspecting the stream expression of b reveals that it only depends
on i. Thus, it can be evaluated before a, resulting in a correct evaluation.

Therefore, the appropriate evaluation order ≺ for this specification is i ≺ b ≺ a. 4

Yet, there are specifications where an evaluation order does not solve all dependen-
cies properly.

23

4. An Understandable Specification Language

a

b

Figure 4.5.: A timing diagram showing that an offset shift is required for the evaluation.
Solid arrows represent intended lookup targets, dashed arrows indicate the
lookup result when resolving offsets naïvely.

Example 4.2.4. Consider a slightly modified version of the specification from the for-
mer example.

input i: Int8
output a: Int8 = b.offset(by: -1).defaults(to: i)
output b: Int8 = a.hold().defaults(to: multiply(2, i))

In this case, yet again, i needs to be evaluated first. The dependency between a as
accessor of b persists and is complemented by b accessing a synchronously. Note that
this specification is well-formed since one of the resulting edges has weight -1 whereas
the other has weight 0. In this scenario, evaluating b first, accessing a’s latest value
is incorrect since a needs to produce a new value first. Evaluating a first, however,
results in an access to b’s second to latest value, which is incorrect because b was not
evaluated, yet. The value that ought to be accesses in this case is the latest value of b

before evaluating b. Figure 4.5 illustrates the dependency structure of the streams.
4

This problem is solved by initiating a pseudo evaluation phase in which all streams thatPseudo Evaluation

will be evaluated get a new pseudo-value. This value is replaced as soon as the actual
value is computed. During the evaluation of expressions, the specified offsets can be
resolved regularly. These accesses are correct assuming that the evaluation order is
obeyed.

The computation of the evaluation order is based on the dependency graph and fol-
lows the intuition gained from the former two examples: When a stream s accesses
another stream s′, then s′ needs to be less than s according to the order. Thanks to
the pseudo extension phase, accesses with a non-zero offset can be disregarded for the
evaluation order. The access refers to the a past value, which consequently is already
accessible and does not impose a restriction on the evaluation order.

Definition 11 (Evaluation Order)
The evaluation order ≺ is a partial order on streams. Incomparable streams can beDef. Evaluation

Order evaluated in an arbitrary order because they either do not depend on each other, or the
dependencies refer to accessible values. The order reflects the structure of the depen-
dency graph DG = (V ,E). The evaluation order is the transitive closure of a relation
satisfying the following rules:

24

4.2. Dependency Graph

1. ∀i, j : s↓i ≺ s
↑
j

2. s↑i ≺ s
↑
k ∧ s

↑
k ≺ s

↑
j =⇒ s↑i ≺ s

↑
j

3. (s↑i ,x, s
−
j) ∈ E ∧ (x = 0∨ x = (δ,γ))∧ s↑i , s

−
j =⇒ s−j ≺ s

↑
i

The first rule ensures that input streams are evaluated first. While not strictly nec-
essary, it eases the evaluation process. The second rule ensures the transitivity of ≺.
Lastly, the third rules only concerns 0-weight and window dependencies because ev-
erything else is resolved with the pseudo extension. It especially includes prohibiting
that an access of a stream on itself influences the order.

Note that triggers are not part of the evaluation order. They always access a single
other stream and cannot be accessed themselves. Thus, they can always be evaluated
in a last step.

Proposition 3 (Existence of Evaluation Order). Every well-formed specification has an
evaluation order.

Proof. We first construct a relation ≺ ⊆ Stream×Stream that satisfies all criteria by con-
struction. We then show that it must be a partial order. The first rule is satisfied when
declaring all input streams less than all output streams.

≺1 B
⋃

s↓i ∈Stream↓

⋃
s↑j ∈Stream↑

{(s↓i , s
↑
j)}

Next, ≺2 satisfies the first and third rule by construction.

≺2 B ≺1 ∪
⋃

(s↑i ,x,s
−
j)∈E

x=0∨x=(δ,γ)
s↑i ,s

−
j

{(s−j , s
↓
i)}

Lastly, ≺3 is the transitive closure of ≺2.
The three criteria for a partial order are transitivity, given by the transitive closure,

reflexivity, and anti-symmetry. Reflexivity for output streams follows from the fact
that reflexive relations are explicitly excluded in the construction and the third rule for
evaluation orders. Reflexivity for input streams does not immediately follow from the
first rule for evaluation orders. However, the construction only adds relations between
inputs and outputs as well as between different outputs.

Anti-symmetry follows from the absence of 0-weight cycles. For this, assume the re-
lation was not anti-symmetric. Yet again, the construction does not allow for a relation
between two input streams. Thus:

∃i, j : s↑i ≺
3 s↑j ∧ s

↑
j ≺

3 s↑i

25

4. An Understandable Specification Language

We claim for any pair of output streams s↑i and s↑j :

∀i, j : s↑i ≺ s
↑
j

⇐⇒ ∃s↑k1
. . . s↑kn : (s↑i ,x1, s

↑
k1

), (s↑k1
,x2, s

↑
k2

), . . . , (s↑kn−1
,xn, s

↑
kn

), (s↑kn ,xn+1, s
↑
j) ∈ E

Here, each xi is either 0 or a (δ,γ).
If the relation between s↑i and s↑j arose from the third rule, the claim follows by con-

struction. Otherwise, since the first rule is not applicable on two output streams, the
relation is the result of the transitivity rule. Thus, there is an intermediate stream s↑k
with s↑i ≺ s

↑
k ≺ s

↑
j . Now, the argument is applicable recursively. Either both ≺ relations

arose due to the third rule, leading to the desired 0-path through DG, or we resolve an-
other transitivity rule the same way. The argument is well-founded because any such
path is either acyclic and finite because V is finite, or cyclic, contradicting the absence
of 0-cycles in DG.

Using this information, we can conclude that s↑i ≺ s
↑
j ∧ s

↑
j ≺ s

↑
i constitutes a 0-cycle,

rendering it a contradiction to the assumption.
Thus, the constructed relation is a partial order and an evaluation order.

The semantics heavily relies on the evaluation order. For this, however, a different,
equivalent representation is more convenient.

Definition 12 (Evaluation Layer)
The evaluation layer is an equivalent representation of �. If Layer(s−i) = k then thereDef. Evaluation

Layer is a strictly decreasing sequence of k streams w.r.t. ≺ starting in s−i . Intuitively, a stream
from layer k only depends on streams from layers k − 1 or lower.

Layer(s−i)B 1 + max{Layer(s−j) | s
−
j ≺ s

−
i }

In the following, λ∗ denotes the maximum layer, i.e.,

λ∗ Bmax{λ | ∃s−j : λ = Layer(s−j)}

4.3. Type System

RTLola is a strongly typed language. There is two notions of types. The value typeValue Type

provides information about the domain and shape of a single value. RTLola’s value
types also occur in many other strongly typed programming languages such as Java or
Rust. All value types except Bool are annotated with a number that indicates how many
bits are used to represent a single value of this type. While the value type indicates the
spatial behavior of a value, the second dimension of types in RTLola argues about its
temporal behavior. The pacing type indicates when new values arrive or get computed.Pacing Type

To understand the pacing type, it is easier to think of expressions rather than singular

26

4.3. Type System

values. If an expression has the value type Int(8) and pacing type 3Hz, the expression
is evaluated thrice per second and each resulting value is of type Int(8), i.e. a signed
integer representable with 8 bits. The pacing type either states that a value is produced
periodically e.g. with 3Hz, or sporadically.

A type is a tuple of a value and a pacing type; every stream and every expression in
RTLola is required to have such a type. The concrete syntax of RTLola requires that
every stream is annotated with its value type and may be annotated with its pacing type
when its periodic. This is not always necessary as most types can be inferred. Consider,
for example, a specification with an input stream s of type Int(8) and an output stream
that only accesses s. The value type of the output is thus the same as the one of s.
Regardless, an annotation can change the type: if the output is declared as Int(16), the
value of type Int(8) can be coerced into 16 bits by repeating the most-significant bit 8
times.

This section introduces RTLola’s type system and defines type validity. For type
inference and type omission, refer to Section 6.1.1 : Sec. 6.1, Page 72.

We will first define types.

Definition 13 (Value Types)
In RTLola, a single value is of one of the following types: Def. Value Type

VTB {Bool, Int(x),UInt(x),Float(y) | x ∈ {8,16,32,64}, y ∈ {32,64}}

These types represent boolean values, signed integers, unsigned integers, and floating
point numbers, respectively.

The type annotations after a colon in the specification is always a value type. The
optional value after the at sign (“@”) indicates the pacing type.

Definition 14 (Pacing Types) Def. Pacing Types

Pacing types describe the temporal behavior of streams and expressions, i.e., when
new values become available. This can either be periodically, i.e., after pre-defined
time intervals, or sporadically, i.e., at unknown points in time.

In the former case, the pacing type is a periodic type π ∈ PT. If an output stream has Def. Periodic Type

periodic type π = 3, it is evaluated thrice per second.
A sporadic pace is captured in an event type ET. If an output stream s has event type Def. Event Type

ι = {a,b} for input streams a and b, s is evaluated whenever new values for a and b arrive.
Since the arrival of input values is uncontrollable and thus sporadic in the worst case,
the evaluation of s is also considered sporadic. If another output stream only accesses s,
it has the same event type as s. The event type thus represents immediate or transitive
dependencies of output streams to input streams.

Formally, an event type is a subset of input streams. The periodic type is a natural
number that divides the least common multiple (lcm) of all periodic types declared in
the specification. Recall Remark 4.1.1 : Sec. 4.1, Page 17for why natural numbers are not a restriction
here. Moreover, the greatest common multiple of all occurring periods needs to divide
the greatest common divisor (gcd).

27

4. An Understandable Specification Language

Let P spec B
⋃
s↑i ∈Stream↑{s

↑
i .ext}.

ETB 2Stream↓ (4.1)

PTB {p | p ∈N∧ gcd(P spec)
∣∣∣ p∧ p ∣∣∣ lcm(P spec)} (4.2)

Note that input streams cannot have a periodic type. This is because the monitor has
no control over input streams and thus cannot enforce the arrival of new values. Thus,
every input stream s↓i has type {s↓i }.

In RTLola, every stream and every expression has a concrete type, i.e., a single value
type and a single pacing type. For streams, the concrete type is the type declared in
the specification. An expression, however, does not have a type declaration. Thus,
depending on the expression, the concrete type is not uniquely defined. The candidate
set, i.e., the set of potential types is the abstract type of an expression.

Remark 4.3.1 (Coercion in Specification Languages). A commonly used technique in type
systems of programming languages is coercion. This techniques allows values of a certainCoercion

type to be coerced into another type. For example, a value that might be a signed integer
stored in 16 bits may be coerced into floating point number with 32 or 64 bits. There are
different flavor of coercion, for number representation with (un-)signed integers and floating
point numbers they mostly follow two rules:

• An unsigned integer can be coerced into a signed integer of equal bit-width, which can
be coerced into a floating point number of equal bit-width.

• Any type of number can be coerced into a number of the same type with greater bit-
width.

The rules follow the intuition that a coercion from type T to T ′ is allowed if T ′ subsumes T
in that T ′ can represent every value T can represent. So the rationale behind the first rule is
thusN ⊂Z ⊂R, and the rationale behind the second rule is that whatever fits in a container
also fits in a larger container.

These two intuitive rules need to be balanced with a set of unintuitive exceptions:

• There are unsigned numbers that cannot be coerced into a signed integer. The integer
constant 1019 fits into a UInt(64), does not fit into an Int(64), and does fit into a
Float(64).

• Not every integer can be accurately represented as a floating point number of the same
width.

In summary, neither coercion to floats, nor to integers is a guaranteed success. For a
specification language, the goal is to have unambiguous semantics, so operations with the
potential to fail at runtime pose a problem. Allowing for implicit coercion disregarding the
issue can result in unexpected values during runtime. A remedy might be declaring the

28

4.3. Type System

coercion as fallible and requiring the specifier to declare a default value. As a result, the
coercion is no longer an entirely implicit process, but a safe one. Since this is the major
maxim behind the design of RTLola, the language requires explicit casting for any type
conversion. The only implicit coercion is the infallible bit expansion.

Definition 15 (Abstract Types)
An abstract type summarizes the potential types an expression can assume. Def. Abstract Type

ṼTB {∅, {Bool}, {Float(64)}, {Float(32),Float(64)}}

∪
7⋃
i=4

{{UInt(y)|{8,16,32,64} 3 y ≥ 2i}, {Int(y)|{8,16,32,64} 3 y ≥ 2i}}

The abstract types regarding pacing types denote an upper bound on the evalua-
tion frequency, less frequent evaluations are still an option. So if an expression has
pacing type π = 4, it can be evaluated four times a second, but fewer evaluations are
also possible. Similarly, the event type represents a minimal set of dependencies of an
expression. If the expression is a part of a larger expression, the set may grow when
climbing up the AST, but not diminish.

ẼTB ET

P̃TB PT

Throughout the rest of this thesis, we will indicate abstract types with a tilde over
the name. Moreover, ι always represent event types and π represents periodic types.
On top of that, σ denotes the pacing types and τ denotes value types.

4.3.1. Type Lattice

The type checking procedure of an RTLola specification is as agnostic of actual types as
possible. It thus works on an abstract type lattice. It solely relies on the compatibility of
abstract types, expressed by the means of abstract meet functions. After defining them,
details about the type system can be ignored, allowing the type system to be changed
or extended without modifying the type checking procedure.

Values types are explicit sets of potential candidate types. Thus, the most constrained
set is the empty set denoting a contradiction. This is the least element in the lattice. As
a result, the meet operation is the intersection of two candidate sets.

Definition 16 (Value Meet)
The value meet reduces two sets of candidate types to the intersection thereof.

uVT B ∩

29

4. An Understandable Specification Language

Lemma 4. (ṼT,uVT) is a meet semi-lattice.

Proof. One can easily see that the set intersection is defined on all pairs of elements in
ṼT and itself member of ṼT. Moreover, ∩ is associative, commutative and idempotent.

Contrary to the value meet, the event meet is the union of two sets. This is because —
intuitively —- the more elements are in an event type, the more rarely the expression
gets evaluated.

Definition 17 (Event Meet)
The event meet reduces two sets of candidate sets to the union thereof, so the result-

ing type represents dependencies to all streams that were in either set.

uET B ∪

Lemma 5. (ẼT,uET) is a meet semi-lattice.

Proof. By definition of ẼT = ET = 2Stream↓ the set union of two types is also part of ẼT.
Moreover, ∪ is associative, commutative, and idempotent.

The periodic type declares the maximal frequency in which an expression can be
evaluated. The meet thus needs to be a lower frequency that divides both operands.

Definition 18 (Periodic Meet)
The periodic meet is the greatest common divisor of both operands.

π̃1 uPT π̃2 B gcd(π̃1, π̃1)

Lemma 6. (PT,uPT) is a meet semi-lattice.

Proof. We first show that π̃1 uPT π̃2 = gcd(π̃1, π̃2) ∈ P̃T.
By Definition 15:

P̃T = {p | p ∈N∧ (gcd(P spec)
∣∣∣ p)∧ (p

∣∣∣ lcm(P spec))}

Thus,

∃k1, k2 ∈N : π̃1 = k1 · gcd(P spec)∧ π̃2 = k2 · gcd(P spec)

=⇒ gcd(k1 gcd(P spec), k2 gcd(P spec)) = gcd(P spec)gcd(k1, k2)

=⇒ gcd(P spec)
∣∣∣ gcd(k1 gcd(P spec), k2 gcd(P spec))

=⇒ gcd(P spec)
∣∣∣ gcd(π̃1, π̃2)

30

4.3. Type System

Since π̃1 ∈ P̃T we know ∃k1 ∈N : k1π̃1 = lcm(P spec). By definition of gcd:

∃k′1 ∈N : k′1 gcd(π̃1, π̃2) = π̃2

Thus:

k′1 gcd(π̃1, π̃2) = π̃2

=⇒ k1k
′
1 gcd(π̃1, π̃2) = k1π̃2

⇐⇒ k1k
′
1 gcd(π̃1, π̃2) = lcm(P spec)

⇐⇒ gcd(π̃1, π̃2)
∣∣∣ lcm(P spec)

Since, gcd(π̃1, π̃2) ∈N, we can conclude gcd(π̃1, π̃2) ∈ P̃T.
It remains to be shown that gcd is commutative and associative. Consider gcd(a,b).

By the fundamental theorem of arithmetic, we know that a and b can be represented
as the product of primes numbers. Let Primes(x) be the set of prime numbers in the
prime number decomposition of x and ep,x the respective exponent such that for x = a
and x = b:

a =
∏

p∈Primes(a)

pep,a b =
∏

p∈Primes(b)

pep,b

We know:

gcd(a,b) =
∏

p∈Primes(a)
∪Primes(b)

pmax(ep,a,ep,b)

Therefore, the associativity, commutativity, and idempotency follows from the associa-
tivity, commutativity, and idempotency of max, concluding the proof.

The last addendum to the type system are optional types. They are a disjunctive Optional Values

monadic structure that either represents something, which wraps the value in a monad,
or nothing. These kind of values are commonly found in functional programming lan-
guages like Haskell or Standard ML. Modern imperative languages like rust and swift
increasingly opt for optional types as well to prevent the notorious null pointer excep-
tions (NPE), a consequence of what Tony Hoare famously called his “Billion Dollar Mis-
take”2. NPE occur when a process calls a sub-routine that ought to produce a value. If
the sub-routine fails, it silently returns an invalid value (“null”). The process now pro-
ceeds with its computation until it tries to access the value, which crashes the system.
There can be a wide temporal disparity between the point of failure and the crash of
the system, rendering the debug process excruciatingly cumbersome.

The whole conundrum can be mitigated by raising awareness that the sub-routine
might fail. While infallible functions produce a value of type T , fallible ones produce

2https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

31

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

4. An Understandable Specification Language

a value of type Opt〈T 〉. This forces the programmer to consider the possibility that no
value was produced. In a safety-critical language like RTLola, this paradigm consti-
tutes a formidable choice for how to deal with fallible stream accesses. For this reason,
there are two kind of expressions accessing a stream. The synchronous access cannot
fail because the type system ensures that accesser and accessee have compatible timing.
On the other hand, the sample and hold expression provides a way to access a stream
with incompatible timing. Since there is no way to ensure that the access succeeds, the
expression produces an optional value.

In its core, the type system of RTLola supplies the creation and destruction of op-
tional values via stream accesses and default values, respectively. Thus, incorporating
optional types in the type system requires the addition of an optional variant of each
existing value type. The meet operation for optional types then refers back to the meet
for value types.

Definition 19 (Type Lattice)
The full type system of RTLola is the meet-semilattice (ṼT ∪Opt〈ṼT〉 ∪ P̃T ∪ ẼT ∪
{⊥},u) with the following meet operation:

τ̃1 u τ̃2 B

τ̃1 uVT τ̃2 if τ̃1, τ̃2 ∈ VT

Opt〈τ̃1
′ uVT τ̃2〉′ if Opt〈τ̃1

′〉 = τ̃1 ∧Opt〈τ̃1
′〉 = τ̃1

τ̃1 uPT τ̃2 if τ̃1, τ̃2 ∈ PT

τ̃1 uET τ̃2 if τ̃1, τ̃2 ∈ ET

⊥ otherwise

Proposition 7. (ṼT∪Opt〈ṼT〉 ∪ P̃T∪ ẼT∪ {⊥},u) is a meet-semilattice.

Proof. u inherits associativity, commutativity, and idempotency from uVT,uET, and
uPT, i.e., Lemma 4, 5, and 6, respectively. The closedness property of the lattice un-
der u follows from two points. Within a sub-lattice, the closedness follows from the
closedness of the respective sub-lattice. The meet of two types from different sub-
lattices follows from the inclusion of ⊥ as fall-back.

4.3.2. Type Checking

The goal of the type check is to find inconsistencies in the specification. For exam-
ple, if an output stream is declared as an integer but the expression always yields
a boolean value, something went wrong. Similarly, a trigger targeting a stream that
yields numeric values constitutes a type error since trigger conditions are required to
be boolean. For these checks, we define a type validity relation |= where σ̃ , τ̃ |= e means
that the abstract stream and value type σ̃ and τ̃ model the expression e. A specification

32

4.3. Type System

is then only valid if there are valid pacing and value types for each stream and trigger.
Otherwise, the specification is contradictory and cannot be monitored.

The search for valid types is based on inference rules. They are defined for streams
and expressions and take type annotations into account. For this, the generalization
function lift : VT → ṼT is used. It transforms a concrete value type into an abstract
value type while imposing the least amount of restriction.

lift(τ)B

{Bool} if τ = Bool

{Xz | {8,16,32,64} 3 z ≥ y}
if τ = Xy,y ∈ {8,16,32,64},

X ∈ {Int,UInt,Float}

One can easily see that the result of lift is indeed always a valid abstract type and always
contains τ , i.e. τ ∈ lift(τ).

The inference rule for input streams then asserts that the value type is compatible
with the declared type and that the pacing type is exactly the singleton set of the stream
itself.

τ̃ v lift(T ↓i) σ̃ = {s↓i }
σ̃ , τ̃ |= s↓i (4.3)

Output streams reflect the types that are valid for their stream expression, with the
additional constraint that it needs to respect annotated types. If an evaluation fre-
quency is declared, the pacing type needs to be a periodic one; otherwise it needs to be
an event type.

s↑i .ext =⊥ τ̃ v lift(T ↑i)u τ̃ ′ ι̃, τ̃ ′ |= s↑i .expr

ι̃, τ̃ |= s↑i

π̃ v s↑i .ext τ̃ v lift(T ↑i)u τ̃ ′ σ̃ , τ̃ ′ |= s↑i .expr

π̃, τ̃ |= s↑i
For triggers, the evaluation target needs to yield a boolean value.

{Bool} v τ̃ σ̃ , τ̃ |= s!
i .tar

σ̃ , τ̃ |= s!
i

Next are the inference rules for expression, starting with synchronous lookups. These
expressions bind the timing of a stream to the one of the accessed stream. This trans-
lates to a respective constraint in the inference rule: the accessor’s type needs to be a
more concrete type than the accessee’s type.

σ̃ ′ , τ̃ ′ |= s−i σ̃ v σ̃ ′ τ̃ v τ̃ ′

σ̃ , τ̃ |= Sync(s−i) (4.4)

33

4. An Understandable Specification Language

An offset expression behaves similar. The two differences are that the access might
fail because the accessed stream did not produce enough values yet. Thus, the resulting
value type is an optional type. Moreover, the offset needs to be a natural number.

σ̃ ′ , τ̃ ′ |= s−i σ̃ v σ̃ ′ τ̃ vOpt〈τ̃ ′〉 n ∈N
σ̃ , τ̃ |= Offset(s−i ,n)

The sample and hold access can also fail and thus results in an optional value. How-
ever, opposed to the other kinds of accesses, it decouples the timing of accessor and
accessee.

σ̃ ′ , τ̃ ′ |= s−i τ̃ vOpt〈τ̃ ′〉
σ̃ , τ̃ |= Hold(s−i)

Default expressions relieve the specification of any optional types by providing a
default value if the lookup has failed. In addition to that, the types of both sub-
expressions need to be compatible. The meet of both types constitutes the type of the
default expression.

σ̃1, τ̃1 |= e1 σ̃2, τ̃2 |= e2 σ̃1 = Opt〈σ̃1
′〉 σ̃ v σ̃1

′ u σ̃2 τ̃ v τ̃1 u τ̃2

σ̃ , τ̃ |= Default(e1, e2) (4.5)

Unsurprisingly, Function expressions heavily depend on the function itself. The
function’s type acts as explicit type annotations for the passed arguments. The gen-
eralized return type of the function then needs to match the expression’s type.

f : T1 × · · · × Tn→ T τ̃ v lift(T) ∀i : σ̃i , τ̃i |= ai ∀i : τ̃1 v lift(Ti) σ̃ v σ̃1 u . . .u σ̃n
σ̃ , τ̃ |= Func(f ,a1, . . . , an)

(4.6)

Lastly, aggregation expressions impose restrictions on the value type of the accessed
stream and the result of the expression according to the typing of the aggregation func-
tion. Moreover, the aggregation expression itself needs to be of periodic type.

The rationale behind this is as follows: The evaluation of a sliding window expression
is inherently more involved than other computations barring excessive nesting of ex-
pensive operations. Thus, disallowing these computations in the uncontrollable realm
of event-based streams can impact the performance of the evaluator significantly. A
side-effect of this decision is that it also enables the determination of a memory bound
for an evaluator. Without the restriction, the required memory is unbounded. The
details of the efficient computation follow in Section 5.2: Sec. 5.2, Page 57 .

δ ∈N γ : T ∗a → Tr τ v lift(Tr) σ̃ ′ , τ̃ ′ |= s−i τ̃ ′ v lift(Ta)
π̃, τ̃ |= Window(s−i ,δ,γ) (4.7)

34

4.3. Type System

input a: Int32
input b: Float64
output x: Float64 := multiply(a, b.hold.defaults(to: 99))
trigger x "Type checks prevent errors before deployment!"

Figure 4.6.: An RTLola specification that has valid types up to the trigger, which re-
quires a boolean value and provides a floating point number.

Definition 20 (Type Validity)
A specification has valid types if and only if for every stream and trigger there is a Def. Type Validity

non-contradictory value and pacing type.

∀s−i∃σ̃ , τ̃ : σ̃ , τ̃ |= s−i ∧ σ̃ ,⊥∧ τ̃ ,⊥

Example 4.3.1 (Type Checking). Consider the specification in Figure 4.6, which is a
simplification of the specification from Example 4.1.1 : Sec. 4.1, Page 19.

The only viable choices for type for the input streams are as follows:

{s↓1}, {Int(32), Int(64)} |= s↓1

{s↓2}, {Float(64)} |= s↓2
The type check of the output stream starts with the stream accesses. While the access
to a is synchronous and thus imposes a restriction on the pacing type, the access to b is a
sample and hold expression. As such, there is no immediate requirement on the pacing
type. However, the application of the multiply function requires that both arguments
have compatible stream types. Therefore, we already choose a suitable stream type to
prevent backtracking.

{s↑1}, {Int(32), Int(64)} |= Sync(s↓1)

{s↑1}, {Float(64)} |= Hold(s↓2)

{s↑1}, {Float(64)} |= Func(f ,Sync(s↓1),Hold(s↓2))

f : Int(32)×Float(64)→ Float(64)

{s!
1}, {Float(64)} |= s↑1

The types for s↑1 are not a choice but enforced by the respective inference rule. As a
result, the only viable choice for the value type of the trigger is {Float(32)} u {Bool} =⊥,
rendering the specification invalid; this is expected because a trigger needs a boolean
condition which x does not provide.

The specification can be fixed by introducing another output stream y of type Bool
that accesses x synchronously and applies a boolean condition on it. The target of the
trigger then needs to be changed to y. 4

35

4. An Understandable Specification Language

Remark 4.3.2 (Type Choices). The example already indicates that the types for each stream
are not always uniquely defined. The resolution of this ambiguity is to require that the final
type assignment is always the least restrictive viable choice. This is a unique solution because
choices are always comparable, which means, all choices are in the same sub-lattice:

• A stream cannot declare an optional type, so the v relation on value types can always
be applied.

• An output stream is periodic iff it declares an evaluation frequency. Therefore, a pe-
riodic and an event-based type can never be viable at the same time. Thus, all viable
types are either periodic or event-based.

• The contradictory type (⊥) cannot be part of a valid specification.

The type analysis concludes the series of static criteria for RTLola specifications. The
following definition summarizes the criteria for valid specifications.

Definition 21 (Specification Validity)
A RTLola specification is valid iff it satisfies the following three criteria on its syntax,Def. Valid

Specification dependency graph, and types:

• Syntactic validity according to Definition 7: Sec. 4.1, Page 19

• Well-formedness according to Definition 10: Sec. 4.2, Page 23

• Type validity according to Definition 20: Sec. 4.3, Page 35

For the type system we introduced optional types. Fallible stream accesses like offset
expressions and sample and hold expressions produce these type. However, the fol-
lowing lemma shows that a valid stream expression cannot have an optional type. This
means that a stream expression cannot yield an optional value while sub-expressions
can. The only possibility to remove optional types is the usage of default expressions.
Thus, intuitively, every fallible stream expression is encompassed in a default expres-
sion.

Lemma 8 (Absence of Optional Output Types). In a valid RTLola specification, a stream
expression cannot have an optional value type.

∀s↑i ∈ Stream↑ : σ̃ , τ̃ |= s↑i .expr =⇒ ∀τ̃ ′ : τ̃ ,Opt〈τ̃ ′〉.

Proof. By definition of type validity, there are valid types σ̃ , τ̃ with σ̃ , τ̃ |= s↑i .expr. Here,
τ̃ = lift(τd)u τ̃e is the meet of the lift of the concrete declared type τd and the type of
the expression, i.e., σ̃ , τ̃e |= s↑i .expr. Further, we know τ̃ , ⊥ because the specification
has valid types. By definition of u, τ̃ can only be an optional type if both lift(τd) and
τ̃e are optional types. Declaring optional types is not syntactically valid, rendering τd
non-optional. As a result, lift(τd) cannot be optional as well.

36

4.4. Semantics

Corollary 9. In a valid RTLola specification, any fallible expression, i.e., offset or sample
and hold expression, is encompassed in a default expression, where it is a sub-expression of
the first argument.

Proof. The encompassment follows from Lemma 8 and the inference rules for RTLola
expressions: Default expressions are the only expressions that can destruct optional
types. The fact that it has to be the first argument follows from the inference rule for
default values (Equation 4.5 : Sec. 4.3, Page 34) that destructs only the optional type of the first argument.

4.4. Semantics

The preceding sections, the examples argued the semantics of RTLola on an intuitive
level. While this suffices to get the general gist of the language, the lack of formal
meaning can hinder a deployment on safety critical devices. So this section introduces
the formal semantics of RTLola. Hereby, we first introduce RTLola’s two-fold concept
of time: it is related to incoming events and the real wall-clock time. Both aspects can
trigger evaluations of streams independent of each other, so the evaluation of periodic
streams does not rely on the arrival of certain input values and events can arrive at
arbitrary points in time. The resulting evaluation process is split into multiple phases
based on the evaluation layers computed using the dependency graph.

Note that the formal semantics disregards triggers. They do not have an expression
and merely access a boolean stream synchronously, there is no value to be computed
and the memory configuration does not change.

The goal of the semantics is to construct a model for the specification, i.e., an infi-
nite sequence of values for each stream, disregarding the evident impracticality. Any
realization of the semantics can neither store nor even construct any infinite sequence.
For this reason, we will identify a criterion on a practical realization that renders them
“close enough to the actual semantics”, so they reflect them properly.

4.4.1. Handling Time

The split of pacing types into periodic and event-based types indicates that there are
two criteria that start the evaluation of streams. Periodic streams follow a static Sched- Schedule

ule that contains points in time when the stream needs to be evaluated. A stream with
evaluation frequency 5Hz, for example, has a schedule that starts an evaluation ev-
ery 200ms. Successively adding other streams and merging the schedules yields a
specification-global schedule that repeats after its hyper-period. The hyper-period is Hyper-Period

the inverse of the gcd of all evaluation frequencies, or — equivalently — the lcm of all
evaluation periods lcm({p−1 | p ∈ P spec}).

On the contrary, the points in time when event-based streams need to be evaluated is
statically undetermined; the monitor has no information on when input values arrive
and trigger an evaluation. The semantics, however, are a theoretical construct and thus
have access to all the information. Formally, events are of the following shape:

37

4. An Understandable Specification Language

Definition 22 (Event Sequence)
The input event sequence is an infinite sequence of events e1e2 · · · ∈ Eω. Each eventDef. Event Sequence

Def. Event ei ∈ E = (T ↓j ∪{⊥})j≤n↓ ×R+ itself is a sequence of values (νj)j≤n↓ , each value belonging to

an input stream. An undefined (⊥) value νj indicates that the stream s↓j did not receive

a new value. Otherwise, νj is in the domain of s↓j . Moreover, the event is coupled with
a real-valued timestamp. We abbreviate ei = (νi , ti) and ei .time = ti , ei .data = νi .

The annotated timestamp enables a merge of event arrival times and the schedule.
This results in a countably infinite set of timestamps on which an evaluation needs to
take place.

Definition 23 (Relevant Timestamps)
The sequence of relevant timestamps (t̂i)i∈N is comprised of all timestamps whenDef. Relevant

Timestamp event-based or periodic streams need to be evaluated. For each relevant timestamp
t̂i , the following holds:

∃j ∈N : ej .time = t̂i ∨∃s↑j ∈ Stream↑, k ∈N : s↑j .ext ,⊥∧ s↑j .ext−1 ·k = t̂i

Moreover, the sequence needs to be monotonically increasing, i.e., ∀i : t̂i < t̂i+1.

Note that the arrival of an event can coincide with a deadline in the overall sched-
ule. This does only produce a single relevant timestamp due to the strict monotonicity
requirement.

Example 4.4.1. Consider the following simple specification.

input a: Int8
input b: Int8
output v: Int8 := a
output w: Int8 := a + b
output x: Int8 @10Hz := 800
output y: Int8 @5Hz := 85

The output streams v and w have event type {a} and {b}, respectively. The output streams
x and y have periodic types 10 and 5, which corresponds to an evaluation period of
(10Hz)−1 = .1s and (5Hz)−1 = .2s, respectively. The schedule of the entire specification
thus has a hyper period of 200ms with two entries: {x} after 100ms and {x,y} after
200ms. Now assume the event sequence contains four events:

e1 = ((1,⊥),0.02)

e2 = ((2,3),0.11)

e3 = (⊥,4),0.26)

e4 = ((5,6),0.4)

38

4.4. Semantics

v

w

x

y

|
.02
t̂1

|
.1
t̂2

|
.11
t̂3

|
.2
t̂4

|
.26
t̂5

|
.3
t̂6

|
.4
t̂7

time

Figure 4.7.: Illustration of the real time axis for a given event sequence and specifica-
tion. The evaluation of event streams (gold) v and w follows no pattern; x

and y are evaluated periodically (blue) after .1s and .2s, respectively. t̂7 is
both periodic and event-based.

As a result, the first seven entries of the sequence of relevant timestamps are 0.02, 0.1,
0.11, 0.2, 0.26, 0.3, 0.4.

Figure 4.7 illustrates the real time axis and which streams are affected by each rel-
evant timestamp. Streams x and y are evaluated at regular intervals whereas v and w

depend on the irregular events. At relevant timestamp t̂5 = 0.26, only b receives a new
value which does not trigger any evaluation: v depends solely on a and w requires new
values for both a and b.

4

4.4.2. The Evaluation Process

Section 4.2.1 : Sec. 4.2, Page 22outlined the notion of an evaluation model for RTLola specifications.
The evaluation model is an infinite sequence of values for each stream. It contains
the values every stream assumes “after” the infinite sequence of events and time has
passed. Formally, we represent the model as a memory configuration, and access it with
a function mapping streams and discrete time indicators to values. The time indicators
refer to relevant timestamps.

Definition 24 (Memory Configuration)
A memory configuration M ∈ MC contains the history of all values that have been Def. Memory Config

observed as inputs or computed as outputs. A memory access function µ constitutes
the interface between the abstract memory configuration and concrete values.

µ : MC→ (Stream↓ × Stream↑)→N→ (
n↓⋃
i=1

T ↓i ∪
n↑⋃
i=1

T ↑i ∪ {#})

Hereby, # denotes an invalid value.

Intuitively, µ(M)(s↓i)(5) refers to the fifth value input stream s↓i ever received.

39

4. An Understandable Specification Language

Remark 4.4.1 (Structure of Memory Configurations). The definition of a memory config-
uration leaves the structure of a configuration entirely open. This allows for an easy exchange
of representations of memory configurations as only the output of the access function µ is rel-
evant. More concretely, the semantics defined here require an unbounded amount of memory.
Any realization thereof does not have this luxury and needs to cope with memory limitations.

The semantics are now defined inductively, primarily on the sequence of relevant
timestamps, and secondarily on the evaluation order (Definition 12: Sec. 4.2, Page 26). That is, the initial
memory configuration is M0; M i+1 for i > 0 is the memory configuration after evalu-
ating relevant timestamp t̂i . In-between two relevant timestamps, we define several
sub-configurations: M i

λ denotes the memory configuration after evaluating t̂i−1 fully,
and the first λ evaluation layers for t̂i .

For each evaluation step, i.e. relevant timestamp and evaluation layer, the active pred-Evaluation Step

icate determines whether a stream needs to be evaluated. The first criterion for this is
whether the current timestamp affects a stream. For this, ∃s↑j , k : s↑j .ext ·k = t identifies a
periodic deadline and ∃j : ej .time = t̂i the arrival of input data. Note that both criteria
can hold for the same point in time.

Definition 25 (Stream Activation)
Assume t̂i is induced by an event eq. An event-based stream s↑j with event-type ι is

active in evaluation layer λ if its eq covers ι and s↑j is in layer λ.Def. Stream
Activation

active(s−j , i,λ) ≡ Layer(s−j) = λ∧∀s↓k ∈ ι : ek .data ,⊥

If t̂i is induced by a periodic deadline, a periodic stream s↑j with periodic type π is active
in layer λ if its evaluation layer is λ and the period divides the current timestamp.

active(s↑j , i,λ) ≡ Layer(s−j) = λ∧π
∣∣∣ t̂i

Example 4.4.2. Recall the specification from Example 4.4.1. Input streams a and b are
in layer 0, the output streams v, w, x, and y are in layer 1. The following table summarizes
in which evaluation steps the streams are active.

t̂i 1 2 3 4 5 6 7

λ 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a 3 7 7 7 3 7 7 7 7 7 7 7 3 7

b 7 7 7 7 3 7 7 7 3 7 7 7 3 7

v 7 3 7 7 7 3 7 7 7 7 7 7 3 7

w 7 7 7 7 7 3 7 7 7 7 7 7 7 3

x 7 7 7 3 7 7 7 3 7 7 7 3 7 3

y 7 7 7 7 7 7 7 3 7 7 7 7 7 3

40

4.4. Semantics

4

The initial memory configuration M0 does not contain any information and is thus
comprised of # indicating a non-extant value. In subsequent steps, the fempty predicate
indicates the first empty spot in the memory configuration, i.e., when s↑i has been active
8 times before, fempty yields 9.

fempty(M,s−j)Bmin{x | µ(M)(s−j)(x) = #} (4.8)

Definition 26 (RTLola Memory Semantics)
The memory semantics of RTLola are defined based on the desired output of µ.

Initially, all values are invalid:

∀n ∈N : µ(M0)(s−j)(n)B # (4.9)

After that, assume relevant timestamp t̂i with i > 0 and layer λ = 0:

µ(M0
i)(s−j)(x)B

 µ(Mi−1)(s−j)(x) if ¬active(s−j , i,0)∨ x , fempty(M,s−j)

eq.data[j ′] if s−j = s↓j ′

For λ > 0:

µ(Mλ
i)(s↑j)(x)B

 µ(Mλ−1
i)(s−j)(x) if ¬active(s−j , i,λ)∨ x , fempty(M,s−j)

eval(Mλ−1
i)(s↑j .expr) otherwise

Lastly, the new memory configuration is the configuration after evaluating the greatest
layer.

Mi+1 BMλ∗
i

Intuitively, the evaluation starts with layer 0 containing only input streams. All val-
ues of inactive streams remain unchanged, as well as all entries of active input streams
that are not the first empty value. The first empty value now contains the respective
data from the event eq. The evaluation then proceeds layer by layer, following the same
general idea. The only difference is that rather than copying new values from the input
events, the stream expression gets evaluated, which is done in the eval function defined
later. This function evaluates an expression and returns the resulting value.

4.4.3. Expression Evaluation

The most non-standard aspect of expression evaluation in RTLola is stream access.
These can declare a relative offset based on the time line of the accesses stream. For
example, if a stream with evaluation frequency 10Hz accesses a stream with frequency

41

4. An Understandable Specification Language

1Hz using an offset of −3, the accessed value is 3s old. The r2a function translates a
relative offset o for an access to stream s−j at relevant timestamp t̂i in layer λ into the
absolute offset for an access within memory configuration M as follows:

r2a(M,s−j , i,λ,o)B fempty(M,s−j)− 1− o+1∃λ′∈[λ,λ∗] : active(s−j ,i,λ) (4.10)

Intuitively, the function first computes the first free value for s−j . Subtracting 1 yields
the first non-# value, and subtracting the offset o yields the desired value granted no
pseudo-evaluation (cf. Example 4.2.3: Sec. 4.2, Page 23) took place. If s−j needs to be evaluated in a greater
layer, the semantics assume the evaluation already took place and compensates by re-
ducing the offset by 1.

The evaluation of a sliding window expression wx = Window(s−j ,δ,γ) takes the arrival
or computation time of values into account. It aggregates all values of s−j that occurred
in the last δ seconds using γ . The number of relevant values for the window are thus:

inwinwx(i)B |{η ∈ [0, . . . , i] | t̂η > t̂i − δ∧∃λ : active(s−j ,η,λ)}| (4.11)

Note that the values for η represent the indices of relevant timestamps that qualify
for the window and in which the window target was active. As such, they are neither
relative, nor absolute offsets of qualifying values in M.

Definition 27 (RTLola Expression Semantics)
The evaluation of a stream expression of stream s↑k at relevant timestamp t̂i is defined

as:

evals↑k
(M)(Func(f ,a1, . . . , an))B f (evals↑k

(M)(a1), . . . ,evals↑k
(M)(an))

evals↑k
(M)(Default(e,e′))B

 evals↑k
(M)(e) if evals↑k

(M)(e) , #∧ evals↑k
(M)(e) ,⊥

evals↑k
(M)(e′) otherwise

evals↑k
(M)(Sync(s−j ,n,d))B µ(M)(s−j)(r2a(M,s−j , i,Layer(s↑k),0))

evals↑k
(M)(Offset(s−j ,n))B

 µ(M)(s−j)(x) if x = r2a(M,s−j , i,Layer(s↑k),n)∧ x ≥ 0

otherwise

evals↑k
(M)(Hold(s−j))B evals↑k

(M)(Offset(s−j ,0))

evals↑k
(M)(Window(s−j ,δ,γ))B γ((µ(M)(s−j)(r2a(M,s−j , i,λ,η)))0≤η≤inwinWindow(s−j ,δ,γ)(i))

The evaluation of function expressions requires to evaluate each argument and apply
the function afterwards — nothing unexpected. Similarly straight-forward are default
expressions. If the first argument yields a non-empty value, it becomes the result of the

42

4.4. Semantics

expression. Otherwise the second argument is evaluated and returned; the type system
ensures that this value cannot be empty. Synchronous stream accesses also utilize the
type system: the pacing type of s↑k and s−j need to be compatible so s−j will receive a new
value in the evaluation cycle. The access forces s−j to be in a lower evaluation layer than

s↑k , so the value was already computed and the access always succeeds. This assump-
tion does not hold for offset expressions. If s−j did not produce at least n values, the
access fails. As a result, the evaluation yields an empty value. While the type system
restricts offset expressions by requiring compatible pacing types, the sample and hold
expression merely requires the accessee to have at least one value. Semantically, it thus
behaves equivalently to an offset expression with n = 0. Lastly, window expressions are
the only expressions that are not time-agnostic. Note that γ takes an unbounded, stati-
cally undetermined number of values as argument because the evaluation frequency of
s−j is potentially unknown. The evaluation computes how many values are relevant for
the window, accesses all of them and aggregates them oldest to newest using γ .

The crucial property for expression evaluations is that every stream expression will
always yield a non-empty value.

Theorem 10 (Valid Accesses). For any i ∈ N and any layer λ, the evaluation of a stream
expression will always result in a valid value, i.e., the value is neither empty nor undefined.
The latter would be the result of an invalid argument to the µ function.

evals↑k
(Mλ

i)(s↑k .expr) < {#,⊥}

Proof. By structural induction on the expression AST. Synchronous lookup, offset, sam-
ple and hold, and sliding window expressions constitute the base cases. We assume the
specification is valid and can thus make use of the type system.

1) Consider a synchronous lookup, so s↑k .expr = Sync(s−j).
The type system (Equation 4.4 : Sec. 4.3, Page 33) provides knowledge that s−j has a compatible pacing.

Moreover, the definition of Layer (Definition 12 : Sec. 4.2, Page 26) guarantees that Layer(s−j) < Layer(s↑k).
Therefore, there is a layer λ′ < λ with active(s−j , i,λ

′). While inactive streams carry their
last value over, active streams get a new one. In layer 0, i.e., for input streams, this is
a copy of a value of the current input event. By the type system (Equation 4.3) and the
definition of active, the value is defined and thus non-empty. In a layer greater than
0, i.e., the stream in an output stream, it only has a valid value if this theorem is true.
However, we can apply the argument recursively. This is well-founded by the strict
decline of the evaluation layer. The last thing to consider is the offset passed to the
memory access function, computed by r2a:

43

4. An Understandable Specification Language

r2a(Mλ
i , s

−
j , i,λ,0) = fempty(Mλ

i , s
−
j)− 1− 0 +1∃λ′∈[λ,λ∗] : active(s−j ,i,λ)

= fempty(Mλ
i , s

−
j)− 1− 0 + 0 (Layer(s−j) < Layer(s↑k))

= fempty(Mλ
i , s

−
j)− 1

≥ 1− 1 = 0

This derivation shows two things: the result of r2a is non-negative and strictly less than
fempty(Mλ

i , s
−
j). This suffices to conclude that the synchronous lookup always results in

a valid value, it breaks when considering the next case: offset accesses.
3) Consider an offset expression, so s↑k .expr = Offset(s−j ,n).

In former sections, this kind of stream access was referred to as "fallible". That is be-
cause r2a(Mλ

i , s
−
j , i,λ,n) can be negative if n exceeds the number of values s−j already

produced:

r2a(Mλ
i , s

−
j , i,λ,n) < 0

⇐⇒ fempty(Mλ
i , s

−
j)− 1−n+1∃λ′∈[λ,λ∗] : active(s−j ,i,λ) < 0

⇐⇒ fempty(Mλ
i , s

−
j)− 1 +1∃λ′∈[λ,λ∗] : active(s−j ,i,λ) < n

However, by Corollary 9: Sec. 4.3, Page 37 , fallible accesses are surrounded by default expressions, pre-
venting optional types. Thus, we can exempt offset lookups from the proof, granted
default expressions always yield a valid value. The same reasoning applies to the sam-
ple and hold case, i.e., for s↑k .expr = Sample(s−j).

4) Consider a sliding window expression, so s↑k .expr = Window(s−j ,δ,γ).
The aggregation function γ aggregates an arbitrary number of values to an interme-
diate value. This especially includes the empty sequence for which the aggregation
yields the neutral value εγ . All other stream accesses are necessarily valid accesses be-
cause the last n = inwinw(i) values are accesses. By its definition (Equation 4.11: Sec. 4.4, Page 42), the
value is upper bounded by the amount of times active held. Yet again, the argument
can be applied recursively, which is well-defined because a sliding window imposes a
dependency in the dependency graph.

This concludes the base cases. The inductive cases consist of function and default ex-
pressions. The former is trivial: By induction all arguments yield a valid value. Thus,
by the type check for function expressions (Equation 4.6: Sec. 4.3, Page 34), the function is applicable
for the arguments, resulting in a valid value. A default expression e = Default(e1, e2)
has two sub-expressions as argument. The type systems (Equation 4.6: Sec. 4.3, Page 34) allows the first
argument to result in an optional value. However, the expression evaluation function
replaces an invalid value with the result of evaluating the second argument. By Corol-
lary 9: Sec. 4.3, Page 37 , either e is again encompassed in a default expression where it is the first argu-
ment, or it does yield a non-optional value. In the former case, the optional value is

44

4.4. Semantics

passed upwards until reaching the respective default expression. In the latter case, by
recursive application of this proof argument, the resulting value is valid. In both cases,
recursion is well-defined because the abstract expression tree is finite and acyclic. Thus,
the result of evaluating a default expression is a valid value.

Corollary 11. The semantics never requires an assignment of an empty or undefined value
after the initialization.

Proof. According to Definition 26 : Sec. 4.4, Page 41, there are three kind of assignment:

• A replication of an old value if the stream is not active in the current evalua-
tion phase. An uninitialized stream then remains uninitialized. For initialized
streams, the result of one of the other kinds of assignments gets carried over.

• An input event value is assigned if the stream is active and the layer is 0. The
assignment further requires that the target stream s↓i is an input stream. Thus,
its pacing type is the event-type ι = {s↓i } by type validity (Definition 20 : Sec. 4.3, Page 35) and the
inference rule for input streams (Equation 4.3 : Sec. 4.3, Page 33). Lastly, the definition of active
requires that the input event is defined for all streams in the event type.

• The result of an expression evaluation is assigned. By Theorem 10, this is a valid
value.

4.4.4. Evaluation Model

We will now re-instate the result of D’Angelo [47] concerning the unique existence of
an evaluation model for Lola. This formalizes the intuition given in Section 4.2.1 : Sec. 4.2, Page 22.

The semantics of an RTLola specification are defined solely by the memory access
function µ. This is an implicit notion of the evaluation model. An explicit notion of the
model is a collection of sequences representing all values any stream every got. In Lola,
every stream is evaluated every time a new input arrives, resulting in infinite models
for all streams. In RTLola, however, each sequence is separately potentially infinite:
periodic streams are active infinitely often, so their model is always infinite. Event-
based streams with event-type ι are only infinite if there is an infinite sub-sequence of
events, where each event covers ι entirely.

The evaluation model for a stream in an RTLola specification is thus the sequence
of values that µ is required to yield when the stream is active. The model is uniquely
defined if µ is uniquely defined for each point in time.

Proposition 12. The memory access function µ is uniquely defined.

Proof Sketch. Theorem 10 : Sec. 4.4, Page 43shows that any stream evaluation always yields at least one
valid value. The uniqueness follows trivially from Definition 26 : Sec. 4.4, Page 41regarding the mem-
ory semantics and the evaluation of expressions (Definition 27 : Sec. 4.4, Page 42): The values for input

45

4. An Understandable Specification Language

streams come from input events, which are unique by the definition of events (Defini-
tion 22: Sec. 4.4, Page 38).

Output stream values come from eval. Their uniqueness follows by induction on the
sequence of memory configurations complying with the requirements imposed on µ.

Function Expressions yield unique values because the respective function yields a
unique value.

Default, Offset, Sample and Hold, and Synchronous Expressions refer to value “old-
er” values of the memory semantics and are thus unique by induction.

Sliding Window expressions aggregate “older” values of the memory semantics and
the aggregation function is uniquely defined, therefore the window expression is
as well.

4.4.5. Monitoring

With the fully defined semantics of RTLola specifications, we can finally define a mon-
itor. Intuitively, a monitor for a specification takes event values and reports whether
the specification is violated or not. As opposed to the semantics, this is an entirely finite
concept. While the monitor can potentially run for an infinite amount of time, it only
has access to a finite prefix of the events and ran for a finite number of hyper-periods
of the specification.

Moreover, the semantics referred to the memory access function µ, not requiring
insights into the concrete memory configuration. The requirements on the monitor are
similar. It does, however, require a timestamp indicating the termination time. This
time can differ from the timestamp of the last event in the input sequence. While the
termination time has no influence on the general monitoring process, it is required for
checking compliance of the monitor to the semantics of the specification.

Definition 28 (Monitor)
A monitorMΦ for a specification Φ transforms a finite prefix of events and the ter-

mination time into a mapping from streams to values.

MΦ : E∗ ×R+→ Stream↑→
n↑⋃
i=1

T ↑i

Recall the type of the memory access function µ from Definition 24: Sec. 4.4, Page 39 :

µ : MC→ (Stream↓ × Stream↑)→N→ (
n↓⋃
i=1

T ↓i ∪
n↑⋃
i=1

T ↑i ∪ {#})

The type of of the monitor output MΦ (e1 . . . ek , t) is Stream↑ →
⋃n↑
i=1T

↑
i . It varies from

the type of µ in three points:

46

4.4. Semantics

1. It does not require a memory configuration. While the monitor maintains its
internal memory representation, it is not necessary to reveal details about this for
proving functional correctness.

2. The third argument to the memory access function is a natural number repre-
senting an offset used to access old values of streams. The semantics requires this
information to resolve temporal dependencies such as lookup expressions with
offsets. For a monitor, only the most recent outputs are of concern.

3. The output of the monitor does not contain information about input stream val-
ues because these are part of the event and do not need to be computed.

The next chapter develops techniques that allow for monitoring a specification with a
bounded amount of memory independent of the input sequence and termination time.

47

Chapter 5
Efficient Monitoring of
RTLola

The formal semantics of an RTLola specification starts with an entirely invalid memory
and gradually increases the amount of valid information stored in its memory configu-
ration. Since information is never discarded, a naïve realization of the semantics stores
all events and computed output values. While this properly reflects the semantics, it
is infeasible in practice because its memory consumption grows linearly in the num-
ber of streams and the length of the trace. Though the size of the formula is constant
at the time the monitor is started, the length of the trace is often unknown and thus
unbounded. While this poses little to no problem to state of the art general purpose
computers, embedded devices are a different story entirely. They are often subject to
strict limitations in terms of weight, space, cost, and energy consumption. Consider, for
example, a spacecraft. Every additional gram of payload increases the fuel consump-
tion, resulting in the necessity to bring more fuel, increasing the total weight of the
system and so on. Thus, every additional kilobyte of memory can significantly increase
the cost of the operation.

Thus, this section presents a procedure to identify statically when values lose their
relevancy for the evaluation process and can thus be discarded. Similarly, we identify
cases where data can be aggregated without loss of information. Further, we show
how to compute an upper bound on the amount of memory needed to evaluate a given
RTLola specification.

A closer inspection of the formal semantics reveals that the evaluation process refers
back to old memory configuration in three places.

1. When a stream is inactive, it retains its value from the former layer, or — in the
0th layer — from the memory configuration after the preceding relevant time-
stamp. This, however, does not lead to an increase amount of memory because
appropriate bookkeeping allows us to forgo re-duplicating the value.

49

5. Efficient Monitoring of RTLola

2. A stream lookup such as Sync(s−j ,n,d) accesses the (n + 1)st-to-latest value. For
instance, a.offset(by: -1) becomes the AST node Offset(a,1) with a positive offset
and refers to the second to latest value of a; the synchronous lookup a refers to the
latest one. Offset expressions always include a discrete a-priori determined offset
that can be utilized to save memory.

3. In contrast to that, sliding window aggregations are more involved. There is a
potentially infinite number of values that are subject to the aggregation because
the target stream of a window can have a variable frequency. Yet, the type system
and some restrictions on the aggregation functions allow us to bound the memory
requirement for sliding windows statically.

In the following, we will show that every value that is further in the past than any
discrete set referring to it can be safely discarded. Moreover, utilizing the type system
and some restriction on the aggregation functions reduces the memory consumption of
sliding windows expressions to a reasonable level; even without assumption on the in-
put frequency. For both of these transformations we show correctness by referring back
to the semantics of RTLola. Lastly, we will introduce an algorithm for the evaluation
of a specification. The resulting monitor is provably semantically valid.

5.1. Offset Handling

The first source of memory requirements is offsets in stream lookups. All of them
are finite and statically available, they do not depend on dynamic data. Thus, it is
possible to compute the storage requirement of each stream based on the dependency
graph. If the storage requirement of s is n, the evaluation potentially needs access to
the latest n+ 1 values of s. Triggers generally do not impose any memory requirement
because other streams cannot depend on them, so computed values can be discarded
immediately. Their storage requirement is therefore 0.

Example 5.1.1. Consider the following specification.

input a: Int8
output b: Int8 @5Hz := a.hold().defaults(to: -2)
output c := multiply(a.offset(by: -1).defaults(to: 0), a)
output d := c.offset(by: -1).defaults(to: 1)

Stream b accesses a synchronously over a sample and hold operation. Since there is
no offset involved, this only requires to store the latest value of b. As opposed to that,
c accesses a with offset 0 and 1. As a result, the storage requirement of a is at least 2.
Lastly, d accessing c with offset 1 imposes a storage requirement of at least 2 on c and
does not influence the requirement of a transitively. 4

Definition 29 (Storage Requirement)
The storage requirement κ(s) of stream s states how many values of s need to be storedDef. Storage

Requirement

50

5.1. Offset Handling

for the evaluation process. It is the maximum offset of stream lookups with target s
computed based on the dependency graph DG = (V ,E) (Definition 8 : Sec. 4.2, Page 21).

κ(s−i)Bmax{w | ∃s↑j : (s↑j ,w,s
−
i) ∈ E ∧w ∈N}+ 1

Note that this definition deliberately excludes window dependencies because these are
handled separately as explained in Section 5.2 : Sec. 5.2, Page 57.

This information allows for defining a memory representation that contains enough
information to be equivalent to the formal semantics and requires only finite memory.

Definition 30 (Finite Memory Configuration)
The finite memory configuration M reserves space for each stream based on its stor-

age requirement in a two-dimensional matrix. It further contains information about
the age of a stream, i.e., the number of values a stream already produced. Stream Age

M ∈ (T ↓1
κ(s↓1) ×N)× · · · × (T ↓

n↓
κ(s↓

n↓
) ×N)× (T ↑1

κ(s↑0) ×N)× · · · × (T ↑
n↑
κ(s↑

n↑
) ×N)

The age is then:

age(M,s)B

 M[i][κ(s↓i) + 1] if s = s↓i

M[n↓ + i][κ(s↓i) + 1] if s = s↑i

The memory access selects the row vector corresponding to the stream based on
whether it is an input or an output. Within the row, the access function selects the
entry based on the age and absolute offset. The values within the row are ordered latest
to oldest, so if the absolute offset corresponds to the age of the stream, the left-most
value is selected.

µ(M)(s)(x)B

 M[i][age(M,s↓i)− x] if s = s↓i

M[n↓ + i][age(M,s↑i)− x] if s = s↑i

This finite memory configuration is an integral part of the finite monitorM. Its evalu- Def. Finite Monitor

ation process behaves similar to the formal semantics in that it progresses with relevant
timestamps and evaluation layer by evaluation layer.

Definition 31 (Finite Memory Semantics)
Initially, all values are invalid and all ages are 0:

M0[s][x]B

 # if x ≤ κ(s)

0 if x = κ(s) + 1

51

5. Efficient Monitoring of RTLola

Then, for relevant timestamp i > 0 and evaluation layer λ = 0, once again the output
streams cannot be active and thus do not change. Also, input streams that are not active
do not change. Assume active(s↓j , i,0).

M
0
i [j][x]B

eq.data[j] if x = 0

M i−1[j][x+ 1] if 0 < x ≤ κ(s↓j)

age(M i−1, s
↓
j) + 1 if x = κ(s↓j) + 1

For a layer λ > 0, the inputs do not change, and so do inactive outputs. For active
output s↑k , the entry j = k +n↓ changes as follows:

M
λ
i [j][x]B

eval(M

λ−1
i)(s↑

j−n↓ .expr) if x = 0

M
λ−1
i [j][x+ 1] if 0 < x ≤ κ(s↑k)

age(M
λ−1
i , s↑k) + 1 if x = κ(s↑k) + 1

The stream expression evaluation works exactly as in Definition 27: Sec. 4.4, Page 42 , only µ and M

are replaced by µ and M.

Theorem 13 (Correctness of Finite Memory Accesses). Assume the specification does not
contain a sliding window expression. The memory access function µ behaves equivalently
for an infinite memory configuration M and a finite one (M) when both are built according
to the rules declared in Definition 26: Sec. 4.4, Page 41 and Definition 31, respectively. More formally, let
x ≤ κ(s) and let t̂i be a relevant timestamp, λ ≤ λ∗ be any evaluation layer, and s ∈ Stream
be a stream. Then:

µ(Mλ
i)(s)(x) = µ(M

λ
i)(s)(x)

Note that the exclusion of sliding windows is a heavy restriction on the specification.
In the next section, we will introduce a mechanism to remove it. The reason for the
restriction becomes evident when stating and proving two lemmas. The first one shows
the relation between the fempty function and a stream’s age. The second shows that the
expression evaluation never accesses values without the bounds of M.

Lemma 14 (Connection of First Empty and Stream Age). The fempty function always
yields the same value as age.

fempty(Mλ
i , s) = age(M

λ
i , s)

52

5.1. Offset Handling

Proof.

fempty(Mλ
i , s) = min{x | µ(Mλ

i)(s)(x) , #}

=

 i−1∑
k=1

1∃λ : active(s,k,λ)

+1∃λ′<λ : active(s,i,λ′)

=

 i−1∑
k=1

1µ(Mk−1)(s)(κ(s)),µ(Mk)(s)(κ(s))

+1∃λ′<λ : active(s,i,λ′)

=

 i−1∑
k=1

1µ(Mk−1)(s)(κ(s))=µ(Mk)(s)(κ(s))−1

+1∃λ′<λ : active(s,i,λ′)

(Definition 31 : Sec. 5.1, Page 51)

=

 i−1∑
k=1

1age(Mk−1,s)=age(Mk ,s)−1

+1∃λ′<λ : active(s,i,λ′) (Definition 30 : Sec. 5.1, Page 51)

= age(M
λ
i−1, s) +1∃λ′<λ : active(s,i,λ′)

= age(M
λ
i , s)

The next lemma attempts to correlate the evaluation of stream expressions for regu-
lar and finite memory.

Lemma 15 (Attempt: Stream Expression Equivalence with Finite Memory). The eval-
uation of an expression via eval, which uses µ, is equivalent for the regular and the finite
semantics. For this, assume µ(M)(s)(x) = µ(µ)(s)(x) for all s ∈ Stream and x ≤ κ(s). Then:

eval(M)(s↑.expr) = eval(M)(s↑.expr)

Upon closer inspection of Definition 27 : Sec. 4.4, Page 42one can see that there are only two expres-
sions for which the evaluation can diverge: sliding windows and offsets. For the latter,
the lemma cannot hold: it requires to access a statically unbounded amount of values.
Thus, we will prove a weaker version of the lemma and fix the problem in the next
section (Section 5.2 : Sec. 5.2, Page 57).

Lemma 16 (Stream Expression Equivalence with Finite Memory). The evaluation of an
expression via eval, which uses µ, is equivalent for the regular and the finite semantics. For
this, assume µ(M)(s)(x) = µ(µ)(s)(x) for all s ∈ Stream and x ≤ κ(s). Further, assume s↑.expr
does not contain any sliding window expressions.

eval(M)(s↑.expr) = eval(M)(s↑.expr)

53

5. Efficient Monitoring of RTLola

Proof. The only remaining expression kind that can prove problematic is an offset ex-
pression. Assume stream s↑j accesses s−k with offset n. The evaluation is defined as:

evals↑j
(M)(Offset(s−k) =

 µ(M)(s−k(x) if x = r2a(M,s−k , i,Layer(s↑j),n)∧ x ≥ 0

otherwise

We are only interested in the case accessing M. The offset x is defined in Equation 4.10
: Sec. 4.4, Page 42 as:

r2a(M,s−k , i,λ) = fempty(M,s−k)− 1−n+1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′)

= age(M,s−k)− 1−n+1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′) (5.1)

This follows from Lemma 14: Sec. 5.1, Page 52 .
Further, we know:

µ(M)(s−k)(x) =M[n↓ + k][age(M,s−k)− x]

=M[n↓ + k][age(M,s−k)− (age(M,s−k)− 1−n+1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′))]

(By Equation 5.1)

=M[n↓ + k][age(M,s−k)− age(M,s−k) + 1 +n−1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′)]

=M[n↓ + k][1 +n−1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′)]

For the lemma to hold, it suffices to show that 1+n−1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′) is no less than

0 and no greater than κ(s−k). The lower bound can be approximated as follows:

1 +n−1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′) ≥ 1 + 0−1∃λ′∈[λ,λ∗] : active(s−k ,i,λ

′) ≥ 1 + 0− 1 = 0

The upper bound makes use of the definition of κ(s−k) which is always strictly greater
than the greatest offset accessing s−k .

1 +n−1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′)

≤ 1 +κ(s−k)− 1−1∃λ′∈[λ,λ∗] : active(s−k ,i,λ
′)

≤ 1 +κ(s−k)− 1− 0

≤ κ(s−k)

Therefore, all accesses are valid, concluding the proof of the lemma.

These two lemmas allow us to prove Theorem 13: Sec. 5.1, Page 52 .

Proof of Theorem 13. Proof by induction on the relevant timestamp, i.e., on i ∈N.
1) Induction base: i = 0.

54

5.1. Offset Handling

Recall that x ≤ κ(s−k). Thus:

µ(Mλ
0)(s)(x) = # = µ(M

λ
0)(s)(x)

2) Induction hypothesis.
For all cycles up to an arbitrary i, memory accesses on the regular and the finite

memory configuration behave equivalently, i.e.:

µ(Mλ
i)(s)(x) = µ(M

λ
i)(s)(x) (5.2)

3) Induction step: i→ i + 1.
The induction step requires a nested induction on the evaluation layer λ ∈ {0, . . . ,λ∗}.

3.1) Induction base: λ = 0.
The lowest layer indicates that changes only occur for input streams. This is true for

both the regular and the finite semantics. Recall the definition of the regular semantics
(Definition 26 : Sec. 4.4, Page 41) for input stream s↓j .

µ(M0
i+1)(s↓j)(x) =

 eq.data[i] if x = fempty(M0
i , s

↓
j)

µ(M0
i)(s↓j)(x) otherwise

=

 M
0
i+1[j][0] if x = fempty(M0

i , s
↓
j)

µ(M0
i)(s↓j)(x) otherwise

(By Definition 31 : Sec. 5.1, Page 51)

=

 µ(M
0
i)(s↓j)(age(M

0
i , s

↓
j)) if x = fempty(M0

i , s
↓
j)

µ(M0
i)(s↓j)(x) otherwise

(By Definition 30 : Sec. 5.1, Page 51)

=

 µ(M
0
i)(s↓j)(x) if x = fempty(M0

i , s
↓
j)

µ(M0
i)(s↓j)(x) otherwise

(By Lemma 14 : Sec. 5.1, Page 52)

=

 µ(M
0
i)(s↓j)(x) if x = fempty(M0

i , s
↓
j)

µ(M
0
i)(s↓j)(x) otherwise

(By Equation 5.2 : Sec. 5.1, Page 55)

= µ(M
0
i)(s↓j)(x)

3.2) Induction hypothesis.
For a fixed cycle i + 1 and up to an arbitrary evaluation layer λ, memory accesses on

the regular and the finite memory configuration behave equivalently, i.e.:

µ(Mλ
i+1)(s)(x) = µ(M

λ
i+1(s)(x) (5.3)

55

5. Efficient Monitoring of RTLola

3.3) Induction step: λ→ λ+ 1.
In both the regular and the finite semantics, only output streams can be active in a

non-zero layer. Consider output stream s↑j .

µ(Mλ+1
i+1)(s↑j)(x) =

 evals↑j
(Mλ

i+1)(s↑j .expr) if x = fempty(Mλ
i+1, s

↓
j)

µ(Mλ
i+1)(s↓j)(x) otherwise

=

 evals↑j
(Mλ

i+1)(s↑j .expr) if x = fempty(Mλ
i+1, s

↓
j)

µ(Mλ
i+1)(s↓j)(x) otherwise

(By Lemma 16: Sec. 5.1, Page 53)

=

 M
λ+1
i+1 [j][0] if x = fempty(Mλ

i+1, s
↓
j)

µ(Mλ
i+1)(s↓j)(x) otherwise

(By Definition 31: Sec. 5.1, Page 51)

=

 µ(M
λ
i+1)(s↓j)(age(M

λ
i+1, s

↑
j)) if x = fempty(Mλ

i+1, s
↓
j)

µ(Mλ
i+1)(s↓j)(x) otherwise

(By Definition 30: Sec. 5.1, Page 51)

=

 µ(M
λ
i+1)(s↓j)(x) if x = fempty(Mλ

i+1, s
↓
j)

µ(Mλ
i+1)(s↓j)(x) otherwise

(By Lemma 14: Sec. 5.1, Page 52)

=

 µ(M
λ
i+1)(s↓j)(x) if x = fempty(Mλ

i+1, s
↓
j)

µ(M
λ
i+1)(s↓j)(x) otherwise

(By Equation 5.3: Sec. 5.1, Page 55)

= µ(M
λ
i+1)(s↓j)(x)

This concludes both induction steps and therefore the proof.

We would like to conclude that the finite memory representation is indeed finite.
However, so far, the name turns out to be a misnomer. Recall the type of M:

M ∈ (T ↓1
κ(s↓1) ×N)× · · · × (T ↓

n↓
κ(s↓

n↓
) ×N)× (T ↑1

κ(s↑0) ×N)× · · · × (T ↑
n↑
κ(s↑

n↑
) ×N)

The natural numbers represent the age of a stream, which is bounded by the length of
the run of the monitor, which in turn is unbounded. However, the age is not actually
required — it is a ghost register only necessary for the correctness proof.

Corollary 17. The correct computation of an RTLola specification without sliding windows
requires only a finite amount of memory; the amount can be computed statically.

Proof. An actual implementation accesses the memory configuration by offset, which is
0 for synchronous accesses and n of Offset(s−j ,n). Assume the accesser is s↑k and w.l.o.g.

56

5.2. Sliding Window Handling

the accessee is an input stream s−j = s↓j . A closer inspection of the memory access of the
finite memory configuration when evaluating the offset reveals the following:

µ(M)(s−j)(x) =M[j][age(M,s↓j)− x] (Definition 30 : Sec. 5.1, Page 51)

=M[j][age(M,s↓j)− r2a(M,s↓j , i,Layer(s↑k),n)] (Definition 27 : Sec. 4.4, Page 42)

=M[j][age(M,s↓j)− (fempty(M,s−j)− 1−n+1)] (Equation 4.10 : Sec. 4.4, Page 42)

=M[j][age(M,s↓j)− (age(M,s−j)− 1−n+1)] (Lemma 14 : Sec. 5.1, Page 52)

=M[j][1 +n−1]

Note that the actual indicator condition is irrelevant for the proof and thus omitted.
Evidently, both the age and the absolute offset are irrelevant for the evaluation; the
only information necessary is the offset and the result of the indicator function. The
former is a specification constant. The latter checks whether the accessed stream was
active in the current evaluation phase. This is a single bit of information.

Thus, the natural number in the finite memory configuration can be replaced by a
single bit for each stream; rendering the finite memory configuration actually finite.

|M | =

∑
i≤n↓

T ↓i ·κ(s↓i) + 1

+

∑
i≤n↑

T ↑i ·κ(s↑i) + 1

5.2. Sliding Window Handling

A sliding window expression aggregates all values that occurred within a certain time
frame. This allows for specifying interesting real-time properties such as

• How many articles were sold over the online shop in the last thirty seconds?

• Is our network target of a denial of service attack manifesting by a rapid increase
in incoming connections?

• Did the aircraft cover at least 15m per minute according to the GPS sensor data
during the entire mission?

• Is there a particular peak time where the server’s response time exceeds a thresh-
old?

The expressiveness, however, comes with a computational overhead and hefty impact
on the memory requirements. Computing a sliding window requires to keep track of
the arrival times of all data points that are subject to the aggregation. As soon as a value
is older than the specified window duration, it needs to be evicted so it is no longer

57

5. Efficient Monitoring of RTLola

taken into account. In an asynchronous model such as the one covered in this thesis,
there is no bound on the number of values occurring within this time frame. Ergo, the
required amount of memory is already unbounded merely to decide which values are
relevant for the window. Even if this problem were solved, some aggregations like the
median requires information about all data points to be computed.

This section presents a remedy for the worst case memory consumption by identify-
ing “nice” aggregations with a finite memory requirement and making use of periodic
stream computations to compute aggregations faster and with less memory.

5.2.1. Properties of Aggregation Functions

The most naïve implementation of a sliding window stores the entire input sequence
v1, . . . , vn and aggregates all qualifying values, e.g. γ(vk , . . . , vn). While this is a sound
approach, it requires to re-aggregate the entire sequence as soon as a new value arrives
even though the sequences only differ in a single value. The same problem occurs when
computing a running aggregation, i.e., computing a sequence of outputs r1, . . . , rn with
rk = γ(v1, . . . , vk) for any k ≤ n. For many commonly used aggregation functions, there
are efficient algorithms for the running aggregations.

As an example, consider the median, i.e. the element vi where exactly half of the
element in v1, . . . , vn are greater and half are less than vi . Using an algorithm often re-
ferred to as “median of medians” [60], the median can be computed in O(n). However,
using this method, the running median is in O(n2) because the intermediate results of
the median of medians computation are not easily reusable. However, when storing
all received values in a sorted data structure and just maintaining the order for each
new one, the running time decreases. Since insertion is possible in O(log2(n)), and n
elements need to be inserted, the overall running time amounts to O(n log2(n)).

Yet, this method neither has constant running time for each new value, nor constant
memory overhead. This can be solved with stronger requirement on the aggregation
function. An aggregation that is a list homomorphism allows for re-usable intermediate
aggregation results, resulting in a constant running time and constant memory require-
ments in the length of the input sequence.

Definition 32 (Homomorphism [61])
A list homomorphism γ : A∗→ B can be split into four components:Def. List

Homomorphism

• an unary function mapγ : A→ T lifting a single value into an intermediate repre-
sentation

• a unary finalization function finγ : T → B lowering an intermediate value to a
result

• an associative binary reduction function ◦γ : T ×T → T , i.e., (a◦γb)◦γc = a◦γ (b◦γc)

• a neutral element εγ ∈ T w.r.t. ◦γ , i.e. a ◦γ εγ = εγ ◦γ a = a for any a ∈ T .

58

5.2. Sliding Window Handling

The combination of these operations is equivalent to the immediate aggregation for
any sequence (v1, . . . , vn) ∈ An.

Theorem 18 (Meertens [61]). The aggregation of v1, . . .vn using a list homomorphism γ can
be broken into arbitrary sub-aggregations. Let (Ii)i≤k = ((xi,j)j≤|Ii |)i≤k for some k ∈ N be an
ordered partition (see Definition 6 : Sec. 3.2, Page 13) of the interval [1, . . . ,n].

γ(v1, . . . , vn) = finγ ((mapγ (x1,1)◦γ . . .◦γ x1,|I1|)◦γ . . .◦γ (mapγ (xk,1)◦γ . . .◦γ mapγ (xk,|I1|)))

This allows for arbitrary sub-aggregation of the input sequence. Moreover, when
computing the running aggregation, intermediate results can be stored. Suppose the
kth output is rk = finγ (mapγ (v1) ◦γ . . . ◦γ mapγ (vk)). The intermediate result ik used
as input for finγ can be re-used when a new value vk+1 arrives, so rk+1 = finγ (ik ◦γ
mapγ (vk+1)). Consequently, the memory consumption is bounded by the constant size
of type T .

Example 5.2.1. Many common aggregation functions are list homomorphisms:

Average with mapavg(v) = (v,1), finavg((s, c)) = s
c , (s1, c1)◦avg (s2, c2) = (s1 +s2, c1 +c2), and

εavg = (0,0). Here, the intermediate value sums all input values up and counts
them. The devision of both values yields the average.

Extrema with mapext(v) = v, finext(v) = v, a◦maxb = max(a,b) for maximization or a◦min
b = min(a,b) for minimization, and εmax = −∞ or εmin =∞.

Integration where the input values are tuples (v, t) ∈ A ×R+ of a value and its arrival
timestamp. The integration uses a trapezoid abstraction, illustrated in Figure 5.1,
where each intermediate value represents a section of the graph consisting the
left-most value and timestamp, the right-most value and timestamp, as well as
the overall volume. The neutral element εγ is a special ⊥ value with no semantics
other than being the neutral element. Then, map∫ ((p, t)) = (p, t,p, t,0), fin∫ (⊥) = 0

of the neutral element and fin∫ ((pL, tl ,pR, tR,V) = V , and lastly

(pL1 , t
L
1 ,p

R
1 , t

R
1 ,V1)◦∫ (pL2 , t

L
2 ,p

R
2 , t

R
2 ,V2) = (pL1 , t

L
1 ,p

R
2 , t

R
2 ,

1
2

(pR1 +pL2)(tL2 −t
R
1)+V1 +V2)

If either operand is ⊥, ◦∫ yields the other operand, if both are ⊥, the result is ⊥ as

well. Note that the binary reduction is associative and not commutative.

Variance is a statistical measure for the spread of a data set compared to their mean
value. For a sequence (xi)i≤n resulting from a random variable X with mean µ it
is defined as:

Var(X)B
1
n

n∑
i=1

(xi −µ)2

A naïve implementation requires two passes: the first computes the mean, the
second computes the sum of squares of differences. In 1962, Welford [62] found

59

5. Efficient Monitoring of RTLola

an iterative algorithm requiring only a single pass. This is a special case of the
parallel algorithm proposed by Chen et al. [63]. They split in the input sequence
around some 1 ≤ k ≤ n and compute the count, mean, and variance of each se-
quence separately. Assume nX is the count, VX is the Variance, and µX is the
mean of the lower or upper half of the sequence for X ∈ {L,U }. The reduction of
the homomorphism is then:

L ◦VarU = (L ◦Varn U,L ◦VarV U,L ◦Varµ U)

with

(nL,VL,µL) ◦Varn (nU ,VU ,µH) = nL +nH

(nL,VL,µL) ◦VarV (nU ,VU ,µH) = VL +VH + (µU −µL)2 nLnU
nL +nU

(nL,VL,µL) ◦Varµ (nU ,VU ,µH) = µL + (µU −µL)
nU

nL +nU

The other components of the homomorphism are mapVar(xi) = (1,0,xi), which is
the count, variance and mean for singleton sequences, finVar((n,V ,µ)) = V ex-
tracts the variance out of the triple, and εVar = (0,0,0) as neutral element.

Covariance The covariance of two random variables X and Y is defined as:

Cov(X,Y)B
1
n

n∑
i=1

(xi −µX)(yi −µY)

A similar approach is possible for computing the covariance. The idea remains
the same, only the reduction of the variance ◦VarV

needs to be replaced by ◦CovC
defined as follows:

(nL,CL,µL) ◦CovC
(nU ,CU ,µH) =

1
n

(nLnU +nUCU +nL(µL −µ)2 +nU (µU −µ)2)

4

List homomorphisms thus allow us to split the input sequence into arbitrary chunks
and pre-aggregate the content thereof into intermediate values before reducing them
to the final result. This especially enables an efficient computation of running aggrega-
tion.

5.2.2. Memory Reduction by Pre-Aggregation in Periodic Streams

The difference between running aggregations and sliding windows is that a sliding
window evicts certain values when their arrival time is sufficiently far in the past. This
decision requires access to the timestamps of all values affected by the sliding win-
dow. Since there is no limit on the size of the input sequence, the required memory is
unbounded.

60

5.2. Sliding Window Handling

t ∈R

R

s1

s2

s3

s4

s5

t1 t2 t3 t4 t5

Figure 5.1.: Illustration of the trapezoid abstraction. The underlying function is sam-
pled at time point (ti)1≤i≤5 with values (si)1≤i≤5. The abstraction computes
the area of a trapezoid between two samples, which are connected by a first-
order hold. Depending on the sampling, the approximation is arbitrarily
imprecise (s1 to s2) or almost exact (s2 to s3).

To get rid of this problem, recall the type inference rules for sliding window expres-
sions in Equation 4.7 : Sec. 4.3, Page 34: it requires a periodic pacing type. This affects the encompassing
output stream, requiring it to be a periodic stream. These are isochron, so the points in Isochronicity

time when the stream will be evaluated are know a priori. This entails that each point
of the real time axis can be mapped to a set of sliding windows to which they con-
tribute. This can be seen in Figure 5.2: In the example window, each value corresponds
to exactly two sliding window evaluations. The computation time of each of the two
evaluations is a priori fixed due to the isochronicity. As a result, the precise arrival time
of a value becomes irrelevant: if a sliding window of length 1s is evaluated with 1Hz,
a value arriving at t1 = 0.34s and a value arriving at t2 = 0.61s behave equivalently in
terms of eviction. Both are relevant up until t = 1s, inclusively, and irrelevant after-
wards because there will not be another evaluation until t = 2s. Note that the arrival
order can still have an impact on the aggregation functions when its reduction function
is not commutative such as ◦∫ .

To formalize and prove this observation, recall the semantics of the sliding window
expression from Definition 27 : Sec. 4.4, Page 42. It computes the number of relevant values using inwin
and aggregates the affected values.

We will divide the real timeline into a finite number of equal-sized chunks based
on the evaluation frequency of the window. The values occurring within one chunk

61

5. Efficient Monitoring of RTLola

are pre-aggregated and only the intermediate values are stored. When evaluating the
sliding window, all intermediate values are reduced and the result finalized.

Consider the window w = Window(s−j ,δ,γ) for a homomorphism γ : A∗ → B with
mapping mapγ : A→ T and π, lift(B) |= w for some frequency π. The number of chunks
chcw and the time each chunk represents chdw is then:

chcw B
lcm(δ,π−1)

π−1 chdw B gcd(δ,π−1)

Proposition 19. The set of chunks cover the entire duration of the window:

chcw · chdw = δ

Proof. Note that gcd(a,b) · lcm(a,b) = ab for any positive natural numbers a and b. To
see that this identity holds, consider the prime number decomposition of a and b.

a =
ka∏
i=1

p
xa,i
i b =

kb∏
i=1

p
xb,i
i

for natural numbers ka, kb, (ka,i)l≤ka , (kb,i)i≤kb and prime numbers (pi)i≤max(ka,kb). Assume
the following:

xy,i = 1 for i > ky and y ∈ {a,b} (5.4)

Then:

gcd(a,b) lcm(a,b) =
max(ka,kb)∏

i=1

p
max(xa,i ,xb,i)
i

max(ka,kb)∏
i=1

p
min(xa,i ,xb,i)
i

=
max(ka,kb)∏

i=1

p
max(xa,i ,xb,i)
i p

min(xa,i ,xb,i)
i

=
max(ka,kb)∏

i=1

p
max(xa,i ,xb,i)+min(xa,i ,xb,i)
i

=
max(ka,kb)∏

i=1

p
xa,i+xb,i
i

=
max(ka,kb)∏

i=1

p
xa,i
i p

xb,i
i

=

max(ka,kb)∏
i=1

p
xa,i
i

 ·

max(ka,kb)∏
i=1

p
xb,i
i

62

5.2. Sliding Window Handling

=

 ka∏
i=1

p
xa,i
i

 ·

 kb∏
i=1

p
xb,i
i

 (Equation 5.4)

= ab

Thus:

chcw ·chdw =
gcd(δ,π−1) lcm(δ,π−1)

π−1 =
δπ−1

π−1 = δ

We thus reserve chc chunks, each representing chd seconds of the time axis, see Fig-
ure 5.2. Similarly to the memory configuration, let Ω : W →N→ T be a window config-
uration, i.e., additional memory for each window. The first argument is the respective
window expression, the second argument identifies the chunk and is undefined for val-
ues greater than chc. Formerly, for every layer, the memory configuration was updated
according to the semantics. After λ∗ steps, the last memory configuration became the
starting point for the next relevant timestamp. Now, after evaluating a layer, an addi-
tional evaluation step concerning the window configuration takes place.

Definition 33 (Window Configuration Semantics)
The window configuration is updated whenever the target of the window is active in Def. Window

Configuration
Semantics

the respective layer. The first chunk of memory always represents the current point
in time on the real time axis. This invariant is maintained after each full evaluation
cycle. Thus, only the first chunk of memory is ever changed within the cycle. Assume
relevant timestamp t̂i .

Ω0
i (w)(1)B

 Ωi−1(w)(1) ◦γ mapγ (µ(M0
i)(s−j)(r2a(M0

i , s
−
j , i,0,0))) if active(s−j , i,0)

Ωi−1(w)(1) otherwise

For λ > 0 the only difference is that we copy over the value from the last layer rather
than the end of the last phase.

Ωλ
i (w)(1)B

 Ωλ−1
i−1 (w)(1) ◦γ mapγ (µ(M0

i)(s−j)(r2a(Mλ
i , s

−
j , i,λ,0))) if active(s−j , i,λ)

Ωλ−1
i−1 (w)(1) otherwise

All other parts of the memory do not change, so for k > 1:

Ωλ
i (w)(k)B

 Ωλ−1
i (w)(k) if λ > 1

Ωi−1(w)(k) otherwise

Lastly, if t̂i is a multiple of π−1 it marks the eviction of a chunk. Thus, all chunks get
shifted by one to the right. This deletes the content of the oldest chunk. The first one

63

5. Efficient Monitoring of RTLola

t ∈R+

c1

c2

c3

c4

1chdw 2chdw 3chdw 4chdw

Figure 5.2.: Illustration of a sliding window over the real time axis. The window has
type π,τ |= (s−i ,2π

−1,γ). Since the duration of the window is twice the pe-
riod of π−1, each data point of s−i is relevant for two window evaluations.

assumes the value of εγ , i.e., it gets reset.

Ωi(w)(k)B

Ωλ∗
i (w)(k) if π−1 - t̂i

εγ if π−1
∣∣∣ t̂i ∧ k = 1

Ωλ∗
i (w)(k − 1) if π−1

∣∣∣ t̂i ∧ k > 1

As a result, the evaluation needs access to the window configuration as well as the
memory configuration.

Definition 34 (Sliding Window Access)
The evaluation of stream expressions remains as in Definition 27: Sec. 4.4, Page 42 except for window

accesses. Assume stream s↑k with evaluation frequency π accesses windoww with target
s−j , duration δ and aggregation γ which is a list homomorphism:

eval∗
s↑k

(M,Ω)(w)B finγ (Ω(w)(1) ◦γ . . . ◦γ Ω(w)(δπ))

Recall that by Definition 23: Sec. 4.4, Page 38 , every multiple of π−1 is a relevant timestamp. Moreover,
Definition 26: Sec. 4.4, Page 41 states that the window is only evaluated at exactly these points in time.

Theorem 20 (Correct Window Access). Let t̂i be the ith relevant timestamp with π−1
∣∣∣ t̂i

where pi is the pacing type of s↑k . Moreover, let Ω be computed as declared in Definition 33
and w = Window(s−j ,δ). Then, the memory efficient stream access yields the same value as
the semantics of RTLola dictate.

evals↑k
(M)(w) = eval∗

s↑k
(M,Ω)(w)

Proof. By Theorem 18: Sec. 5.2, Page 59 it suffices to show that Ω accounts for the latest inwinw(i) values
of s−j . By definition of relevant timestamps, we know that each of these events can be

64

5.2. Sliding Window Handling

assigned exactly one relevant timestamp t̂η with t̂i−δ < t̂η < t̂i . Ω consists of chc chunks,
each representing chd time units. By Proposition 19 : Sec. 5.2, Page 62, the chunks cover δ time units. So,
it remains to be shown that within δ time units, at most chc chunks get evicted. By
Definition 33, an eviction takes place for every relevant timestamp that is a multiple of
π−1, thus we require:

δ ≥ chcw ·π−1 =
lcm(δ,π−1)

π−1 ·π−1 = lcm(δ,π−1) ·π ·π−1 = lcm(δ,π−1)

This holds by definition of lcm.

Corollary 21 (Static Memory Bound for Sliding Windows). For a valid RTLola speci-
fication with homomorphic aggregations, there is a static bound on the amount of memory
required for window configurations.

Proof. Theorem 20 shows that the window configuration suffices to evaluate homomor-
phic sliding window aggregations correctly.

The number of sliding windows is a specification constant. The window con-
figuration for each window according to Definition 33 : Sec. 5.2, Page 63is a function with domain
{1, . . . ,chcw} ⊂ N for window w. chcw depends on δ, which is a specification constant,
and π, which can be computed prior to starting the monitor in terms of the type anal-
ysis. The function maps each of these natural numbers to a value of type T , i.e., the
intermediate value of the aggregation function’s unary mapping function. Since the
size of T is statically known, the window requires |T | ·chcw. Ergo, the size of the entire
window configuration is:

|Ω| =
∑
w∈W
|Tw| ·chcw

5.2.3. Efficient Eviction of Values

The efficient sliding window computation allows us to reduce the required memory to
a finite value with static bound. Yet, it entails a repetition of labor that can be eradi-
cated for some aggregation functions. Assume that the computation of a window with
aggregation function γ requires n intermediate values. Consider, for illustration, the
infinite sequence of intermediate values (vi)i∈N and assume the finalization function
coincides with the identity function. The kth and k + 1st computation of the sliding
window is thus:

rk = finγ (mapγ (vk−n) ◦γ mapγ (v(k+1)−n) ◦γ . . . ◦γ mapγ (vk)︸ ︷︷ ︸)

rk+1 = finγ (
︷ ︸︸ ︷
mapγ (v(k+1)−n) ◦γ . . . ◦γ mapγ (vk)◦γmapγ (vk+1))

(5.5)

65

5. Efficient Monitoring of RTLola

Evidently, most of the computation is the same, especially for large values of n. The
two points of difference are the addition of vk+1 for rk+1 and the exclusion of vk−n due
to eviction. The latter point is problematic: A homomorphism does not necessarily
provide a removal operation. Ideally, the binary reduction ◦γ would be invertible, i.e.,
if a◦γ b = c, we could split c into a and b retroactively. This is an extreme restriction on
◦γ because it requires the function to be injective, which many common functions such
as addition are not.

Fortunately, the computation has access to all intermediate values, including the
value to be evicted. Thus, full invertibility is not necessary; left-invertibility suffices.

Definition 35 (Left-Invertibility)
A binary function ◦ : A × B→ C is left-invertible if the right argument can be recon-Def.

Left-Invertibility structed based on the result and the first argument.

a ◦ b = c =⇒ c ◦−1 a = b

Example 5.2.2. The average is left-invertible with (s, c)◦−1
avg (sL, cL) = (s−sL, c−cL), count-

ing, summation and products are trivially left-invertible. Extrema and trapezoid inte-
gration, however, are not. 4

In the general example above (Equation 5.5), rk+1 can thus be computed based on rk
with the following formula:

rk+1 = (rk ◦−1
γ mapγ (vk−n)) ◦γ mapγ (vk+1)

More generally:

Theorem 22 (Correctness of Efficient Windows). Assume stream s↑k with evaluation fre-
quency π accesses window w with target s−j , duration δ, and list-homomorphic aggregation
γ , which has a left-invertible reduction function ◦γ . The access occurs at t̂i = nπ−1 for
n > 0 and t̂j = (n−1)π−1 is the last relevant timestamp in which the window was computed.
Lastly, assume that Ωj(w)(chc+1) contains the cached result of the last window access before
finalization, with the evicted value already removed.

Ωj(w)(chc + 1) = (Ωj(w)(1) ◦γ . . . ◦γ Ωj(w)(chc)) ◦−1
γ Ωj(w)(chc)

Then:

(Ωj(w)(chc + 1) ◦−1
γ Ωj(w)(1)) ◦γ Ωi(w)(chc) = evals↑k

(M,Ωi)(w)

Proof.

(Ωj(w)(chc + 1) ◦−1
γ Ωj(w)(1)) ◦γ Ωi(w)(chc)

66

5.3. Finite Memory Evaluation

= ((Ωj(w)(1) ◦γ . . . ◦γ Ωj(w)(chc)) ◦−1
γ Ωj(w)(1)) ◦γ Ωi(w)(chc)

(Def. Ωj(w)(δπ+ 1))

= (Ωj(w)(2) ◦γ . . . ◦γ Ωj(w)(chc)) ◦γ Ωi(w)(chc) (Def. ◦−1
γ)

= (Ωi(w)(1) ◦γ . . . ◦γ Ωi(w)(chc− 1)) ◦γ Ωi(w)(chc) (Def. Ω)

= Ωi(w)(1) ◦γ . . . ◦γ Ωi(w)(chc− 1) ◦γ Ωi(w)(chc) (Asso. ◦γ)

= eval∗
s↑k

(M,Ωi)(w) (Definition 34 : Sec. 5.2, Page 64)

= evals↑k
(M,Ωi)(w) (Theorem 20 : Sec. 5.2, Page 64)

This technique reduces the computational overhead linearly in the size of chc for
every cycle in which the window is evaluated. It increases the memory consumption
by the size of one intermediate value of γ . This accounts for the memorized last pre-
aggregated non-finalized value Ωj(w)(chc + 1).

In the following, eval∗ denotes the efficient window evaluation applying the left-
invertibility technique whenever possible.

5.3. Finite Memory Evaluation

This section will unite the last two section. We will incorporate the finite memory com-
putation from Section 5.1 : Sec. 5.1, Page 50for any expression but sliding windows with the techniques
detailed in Section 5.2 : Sec. 5.2, Page 57. The resulting evaluation function agrees with the semantics
and is realizable with finite memory. We will present a monitoring algorithm obeying
the memory bound.

5.3.1. Finite Memory Semantics

Theorem 23 (Finite Memory Monitoring). A valid RTLola specification can be accurately
evaluated with finite memory.

Proof. Corollary 17 : Sec. 5.1, Page 56shows that eval computes correct results for specifications without
sliding windows while requiring only a finite amount of memory. Moreover, Corol-
lary 21 : Sec. 5.2, Page 65shows that eval∗ computes sliding windows correctly with finite memory, utiliz-
ing window configurations. In combination, a memory efficient monitor uses eval∗ with
the finite memory configuration M. Notice that these two techniques modify disjoint
parts of the expression evaluation and are thus seamlessly compatible.

67

Chapter 6
RTLola in Practice

6.1. Syntactic Sugar

In this section, we will introduce a selection of syntactic sugar. These constructs are Syntactic Sugar

no extension to RTLola as any specification with syntactic sugar be transformed into a
valid “vanilla” RTLola specification. This transformation is called desugarization. Yet, Desugarization

desugarization and regular treatment is not always desirable: a special treatment may
significantly increase overall performance of the monitor.

Example 6.1.1. Consider, for example, the following specification featuring a discrete
window operation:

input a: Int8
output b: Int32 := a.aggregate(discrete: 1000000000, σ)

The output stream sums up the last 109 values of the input stream. This is syntactic
sugar for a specification that accesses the last 109 values of a one by one and sums up
the results. Each access is surrounded by a default operation with the neural element
w.r.t. the aggregation as alternative value.

input a: Int64
output b: Int64 :=
a
+ a.offset(by: -1).defaults(to: 0)
+ a.offset(by: -2).defaults(to: 0)
. . .
+ a.offset(by: -999999999).defaults(to: 0)

The benefits of syntactic sugar become immediately clear considering the length of
the desugarized specification. Apart from that, the monitor for the desugarized spec-
ification needs to perform 109 − 1 addition operations per evaluation step. A special
treatment similar to the aggregation described in Section 5.2 : Sec. 5.2, Page 57cannot reduce the mem-
ory consumption but significantly reduces the runtime overhead. Per evaluation cycle,
the new value of a needs to be added to the memoized sum and the 109 +1st value needs
to be evicted, amounting to a single subtraction. 4

69

6. RTLola in Practice

We will now list the most prominent syntactic sugar for RTLola and show the desug-
arization. Special treatment of these constructs is not always beneficial and remains an
implementation detail.

Infix notation The desugarized version in Example 6.1.1 already uses syntactic sugar
for the addition: infix notation. Strictly speaking, addition is a binary function that re-
quires prefix notation in “vanilla” RTLola. However, infix notation feels more natural
to most programmers and thus a crucial feature. Similarly to many modern1 object-
oriented programming languages like Scala, C++ and Rust, infix notation is reduced to
a base form. In Scala, for example, the expression 3+7 is desugarized to Int(3).+(Int(7)),
where + is a polymorphic class function of Int.

In general, any binary infix operator ◦ in an RTLola specification e1 ◦ e2 is trans-
formed into ◦(e1, e2). Operator precedence applies as usual, i.e., for two left-associative
operators ◦1 and ◦2 where ◦1 has precedence over ◦2, the expression e1 ◦1 e_2 ◦2 e3 be-
comes ◦1(e1, ◦2(e2, e3)). Appropriate precedence tables and their treatment have been
discussed thoroughly in literature, so the interested reader is referred to [64, 65, 66]2.

Remark 6.1.1 (Conditional Expressions). Note that the infix notation also applies to non-
binary operations such as conditional expressions, often referred to as ‘if-then-else’ expres-
sions. This is a ternary expression with three arguments: the boolean condition, the con-
sequence and the alternative. If the condition is true, the result of the consequence is the
result of the conditional expression; otherwise it is the result of the alternative. In imperative
programming languages, these expressions often have a lazy evaluation model, i.e., either
the consequence or the alternative is evaluated, not both. Each sub-expression can lead to
side effects when evaluated spuriously, special treatment is required. In RTLola, however,
there are no side effect as can be seen in the memory semantics in Definition 26: Sec. 4.4, Page 41 . An ex-
pression cannot assign values; only the evaluation of an entire stream expression is saved.
This functional style prevents side effects, allowing for computing both the consequence and
alternative without repercussions.

Tuples A tuple is a statically determined list of values. The value types of each entry
may differ while the pacing type needs to be the same. Tuples can be constructed
with the parenthesis operator. The projection function π extracts single values from
the tuple. The desugarized specification transforms the tuple stream into a series of
streams. The projection then selects the appropriate stream.

Example 6.1.2. The following specification constructs a tuple stream and accesses the
entries separately with the tuple projection.

input first: Int8
input second: Bool
output tuple: (Int8, Bool) := (first, second)

1Hereby, we want to acknowledge any future reader who is smirking about a long-dead language being
called “modern”.

2The publications dates are already an indication that this is not a recent problem.

70

6.1. Syntactic Sugar

output extract_fst: Int8 := π(c, 1)
output extract_snd: Bool := π(c, 2)

Desugarization first transforms the parenthesis operator into a function call, i.e., output
tuple: (Int8, Bool):= create_tuple(first, second). Further desugarization then yields:

input first: Int8
input second: Bool
output tuple_1: Int8 := first
output tuple_2: Bool := second
output extract_fst: Int8 := tuple_1
output extract_snd: Bool := tuple_2

4

More formally, the desugarization consists of several steps, applied successively until
no further replacement takes place.

1. Any output stream s↑i containing the create_tuple function is split into m output
streams s↑iη for each η ∈ {1, . . . ,m} where the function expression is replaced by the

ηth argument to create_tuple. Assume s↑i is has name a. The new streams then have
name a_1, up to a_m.

2. Functions of arity n defined on tuples of length `1, . . . , `n are transformed into
(
∑n
i=1 `i)-ary functions. The sub-expression for the kth argument is replaced by `k

sub-expressions, each accessing one of the created streams for the tuple.

3. Any stream accessing s↑i is split in the same fashion s↑i is split. The ηth variant
accesses a_η.

4. Tuple projection expressions are replaced by sub-expressions accessing the re-
spective split stream.

Elaborate Triggers In vanilla RTLola, triggers are always synchronous lookups tar-
geting an output stream. This restriction can be lifted, allowing for general expressions
in a trigger. The concrete syntax thus becomes:

trigger e "msg"

Here, e is any expression of value type Bool. The desugarization creates a new output
stream s↑i with stream expression e and value type annotation Bool. This, however, still
limits triggers in that the expression needs to have an event-type. Thus, the concrete
syntax also allows for an explicit pacing type annotation:

trigger @nHz e "msg"

In this case, the annotation is moved to the fresh output stream:

output a: Bool @nHz := e
trigger a "msg"

71

6. RTLola in Practice

Conservative Sliding Windows Sliding windows provide a way to check lower
bounds on streams. Consider the following specification:

input heart_beat: Bool
output num_beats: Int8 @1Hz := heart_beat(over: 5s, count)
trigger num_beats < 100

The input stream heart_beat produces a value whenever a heart beat is detected. If the
number of heart beats in the last 5s drops below 100, the patient’s heart rate is below 20.
This alarming situation constitutes a violation of the specification, triggering an alarm.
However, even a healthy albeit low resting heart rate of 55 triggers an alarm at the
beginning of a monitor execution. This is because num_beats is computed every second
and all present values of the last 5s get counted. If the number of existing values is
only around 50 because the execution started 1s ago, a trigger goes off. This can be
prevented if the window is only evaluated after the entire duration of the window has
already passed at least once.

A variation of the sliding window operation provides this functionality. Rather than
calling the first argument over, it is called over_exactly. This operation returns an op-
tional value, requiring a default value for the first evaluations of the window when the
duration has not passed, yet. It turns out, the variation is also just syntactic sugar. The
example above turns into the following desugarized specification for the default value
dft:

input heart_beat: Bool
output num_beats: Int8 @1Hz := heart_beat(over: 5s, count)
output num_beats_full: Int8 @1Hz := if time < 5 then dft else num_beats
trigger num_beats_full < 100

Here, time is an implicit stream containing the execution time of the monitor.
More formally, if an output stream s↑i with name a computes a sliding window with

the new semantics, default value dft and window duration δ, another output stream s↑i′
with the fresh name a_full is created. The new output stream mimics the pacing type
of s↑i and has the stream expression if time < δ then dft else a. Any stream access to s↑i
is replaced by an access to s↑i′ .

6.1.1. Type Omission

Type annotations indicate the shape of a data point. For input streams this is necessary
to correctly identify how to interpret an input event. If the monitor receives a 32 bit
wide event without information on what kind of value to expect, the same bit string
can either represent 17.4 or 1099641651. For outputs, however, most types can be
determined based on their expression. Consider the following specification:

input a: Float32
output b := a

The value type of b needs to be at least as restrictive as a Float(32) because it accesses
a synchronously, so both Float(32) and Float(64) are valid candidates. In contrast to
that, the pacing type is uniquely defined as {s↓1}. Thus, the specification contains a type

72

6.1. Syntactic Sugar

choice, a concept already discussed in Remark 4.3.2 : Sec. 4.3, Page 36. By choosing the least restrictive
choice, an explicit type annotation for b is not required to complete the type check.

It turns out, most of the types in an RTLola specification can be omitted without
hindering the type analysis. This is because many expressions contain elements that
narrow down the result type without requiring explicit type annotation. Consider, for
example, a sliding window expression with a counting aggregation. The type of the
aggregation is polymorphic:

count < T > : T ∗→N

The resulting value thus cannot be a floating point number or a boolean value. Simi-
larly, a conditional function is of type:

ite < T > : B× T × T → T

The first argument thus needs to resolve to a boolean value, and the second and third
argument need to have the same type. Consider the following specification:

output s := if a.hold().defaults(to: false) then b else c.aggregate(over 3s, using: count)

Even without any further information on the streams a, b, or c we can deduce a lot of
information:

• a is of value type Bool to be adequate for the conditional expression.

• b is of value type UInt(X) for some valid X because its type needs to be compatible
with the result of the aggregation.

• c also has an unsigned integer type that is at least as wide as b because of the type
restrictions of the conditional.

• s is a periodic type because its expression contains a sliding window.

• b is periodic as well, because s accesses it synchronously. Moreover, its frequency
needs to be a multiple of s’s frequency.

Type inference is an old and extensively studied field with relevance for both elderly
languages like ML and modern ones like Rust and Swift. On of the most commonly
used inference algorithms was presented by Roger Hindley in 1969 [67]. The interested
reader can find more details there.

6.1.2. Full Syntax

The BNF for the full syntax including all of the syntactic sugar constructions can be
found in the Appendix, Section A.2 : Sec. A.2, Page 86.

73

6. RTLola in Practice

6.2. Case Studies

Prior work on Lola and its extensions already applied the approach on network traf-
fic [68, 4, 55] and unmanned aerial vehicles [69, 55]. In this theses, we present case
studies from two different areas based on simulated or synthetic data.

In the first one we revise the case study for unmanned aerial vehicles presented by
Adolf et al. [69]. They used Lola and thus lacked real-time components and aggrega-
tions. The former can be used to detect inconsistent timing in modules of the aircraft.
These inconsistencies are indicators for deteriorating system health and can trigger
compensation methods such as switching over to a spare module. Aggregations on the
other hand allow for specifying complex properties such as a cross validation of differ-
ent modules.

The second case study is concerned with monitoring medical cyber-physical sys-
tems, exemplified by implantable cardioverter-defibrillators (ICD) and responsive
neurostimulators (RNS). ICDs are implants that monitor a patient’s cardiac rhythm.
Superficially speaking, it detects arrhythmias in which the heart does not follow its
regular pattern. As a result, it cannot properly in- nor deflate and transitions into a
state of ventricular fibrillation, resulting in a failure of pumping blood through the
body. In such a case, the ICD triggers an electrical impulse that essentially stops the
heart. This is supposed to stabilize the heart rhythm.3 While arrhythmia detection is
possible in theory, it proves hard in practice. This is due to strong variations in the
heart cycle among different patients and natural variations e.g. induced by physical
exertion. For this reason, specifying arrhythmias in languages without adequate prim-
itives is extremely tedious. To make matters worse, misclassification by the ICD has
dire consequences: False negatives, i.e., not detecting arrhythmias, can result in lethal
cardiac arrest. False positives, i.e., administering shocks to a heart in a normal rhythm,
leads to considerable pain in the best case, and fibrillation with subsequent cardiac
arrest in the worst case. This indicates the importance of additional safety measures
in the shape of a runtime monitor. We will investigate to which extend the respective
properties can be expressed conveniently in RTLola.

The second kind of medical devices we discuss are responsive neurostimulators
(RNS). These are implantable devices for patients suffering from drug resistant epilepsy.
The devices monitors the electrophysiology (EEG) of the patient’s brain via two leads
that are inserted into the brain tissue [70]. The procedure is known as a cortical elec-
troencephalogram. When the onset of an epileptic seizure is recognized based on
abnormal brain activity, the implant administers mild electrical impulses. In many
patients, this can prevent seizures entirely [71]. As opposed to the ICD, false positives,
i.e. administering impulses due to misclassification, is not harmful.4 The critical point
behind this example is that the time between classification and response is only ap-

3This is contrary to popular believe that the shock “restarts the heart”. A cardiac arrest resulting from a
loss of heart function, i.e., the absence of impulses triggering the heart contraction, cannot be fixed by
“shocking” the patient with a defibrillator.

4This holds true for short-term misclassification. The effects of long lasting administration of impulses
is — to the best of our knowledge — not sufficiently studied.

74

6.2. Case Studies

proximately 3ms. Thus, there are strong timing constraints on the monitor for the RNS
implant.

A common theme between all of these case studies is that there are hard requirements
on the monitor — albeit to a different extend. The deployment of a monitor requires
that it has low cost and resource consumption. Moreover, the correct behavior is safety
critical: misjudgment leads to crashes, cardiac arrest or seizures.

In the following, we will present and discuss specifications for these case studies, as
well as experimental results for running time and memory consumption. For this, we
use an implementation of the language presented here, called StreamLab

5 [72].

Remark 6.2.1 (On Medical and Avionic Accuracy). The topics covered in this section are
strongly simplified, glossing over a lot of details. Especially in the realm of medicine, we do
not claim that the descriptions of the diseases are accurate. Rather, they are simplifications
that allows us to break down the complex topic to a level that makes it presentable in this
thesis. Accurate specifications require a consideration of a myriad of corner cases that vary
from patient to patient and from aircraft to aircraft. Moreover, we want to shift the focus to
the language rather than details about epilepsy or flight control.

6.2.1. Helper Macros

For the specifications in the upcoming sections, we use macros, i.e. domain specific
syntactic sugar as follows:

δ(s) ≡ (s - s.offset(by: -1).defaults(to: s))
∇(s) ≡ δ(s) / (if δ(time) = 0 then 1 else δ(time)

∇n(s) ≡ ∇(∇n−1(s))

The first expression, δ(s), computes the difference between the current and the last
reading of stream s and defaults to 0 if s only has a single value. The second expression,
∇(s), differentiates s discretely. The conditional sub-expression guarantees that the
denominator is non-zero in the first evaluation phase when δ(time) is 0. The last macro
applies the discrete derivation n times for some specification-time constant n ∈N.

6.2.2. Unmanned Aerial Vehicles

The input data for this case study was generated with the state-of-the-art software-in-
the-loop framework ArduPilot6 using the drone autopilot ArduCopter7. The simula-
tions generated a trace of 432.961 input events containing the longitude (lon), latitude
(lat), wind direction (wnd_dir), and wind speed (wnd_spd). The trace was annotated with
valid and spurious command signals afterwards.

The full specification for the unmanned aerial vehicles can be found in Figure 6.1.
It consists of the declarations for input streams (lines 1–4) in correspondence to the
generated log data.

5http://stream-lab.eu
6http[://ardupilot.org/
7http://ardupilot.org/copter/

75

http://stream-lab.eu
http[://ardupilot.org/
http://ardupilot.org/copter/

6. RTLola in Practice

Lines 6–7 check that the GPS module provides data in a frequency of at least 5Hz by
counting the number of events from the lat stream for one second. If the value drops
below 5, the trigger raises an alarm. Note that the sliding window for the lower bound
is a conservative one: the first second of the mission, the window expression does not
yield a result. This avoids spurious warnings at the beginning of the execution when
the GPS did not have a chance to generate five data points, yet.

Lines 9–11 cross validate the GPS module against the velocity generated by the iner-
tia measurement unit (IMU). For this, gps_dist computes the traveled distance using the
Pythagorean theorem. A more realistic specification would use the haversine formula
to account for the curvature of the earth. This example, however, uses the simplified
version disregarding the resulting inaccuracy. The stream gps_velo then computes the
velocity based on the GPS readings by differentiating the distance discretely. Lastly, the
trigger compares the GPS velocity against the IMU velocity. If the deviation exceeds a
threshold, an alarm is raised.

Lines 13-16 and Lines 18-24 check for spurious slow-down and hover maneuvers,
respectively. For this, the specification checks whether a maneuver was executed, and
if so, it checks whether the respective command was given within the last 5s. For this,
the specification computes a sliding window over the boolean command stream with
an existential quantification as aggregation function. The detection of a slow-down is
straight-forward: if the velocity was high before and dropped below a threshold, the
aircraft is decelerating. The detection of a hover phase checks the spatial progress of
the aircraft. Hereby, it distinguishes between a deliberate standstill and one that results
from strong headwind. For the headwind detection, the current flight direction dir is
computed as the inverse tangent of the latitude divided by the longitude. The wind is
considered a headwind if the flight and wind direction are sufficiently similar and the
wind speed sufficiently high. A hovering phase then manifests as a time in which there
is no headwind and the covered distance, i.e., the integral of the velocity, is sufficiently
low. Lastly, the trigger condition is analogous to the one for the slow-down detection.

Evaluating the entire specification with StreamLab takes 1.42s for the aforemen-
tioned 432.961 input events, which induced 865.920 relevant timestamps. Broken
down, this means that the evaluation of a single relevant timestamp amounted to
1435ns. The monitor consumed 15.55MB memory; in addition to the memory con-
figuration, this includes the internal representation of the specification, the program
code and parts of the C standard library. The reason for this is that the monitor is im-
plemented in rust, which is statically linked against the C standard library. The stack
size remained below 1kB, which shows that a) the call depth is shallow and b) there is
little allocation during the execution. In fact, after the initialization there is no dynamic
allocation anymore resulting in a constant heap size.

In conclusion, this case study shows that even complex specifications such as "A time
frame with little spatial progress despite non-malicious wind conditions must be pre-
ceded by a hovering command" can be expressed in an understandable way in RTLola.
The resulting monitor evaluates events in the realm of microseconds with manageable
memory overhead.

76

6.2. Case Studies

1 input lat, lon, velo, time: Float64
2 input slow_down_cmd: Bool
3 input hover_cmd: Bool
4 input wnd_dir, wnd_spd : Float32
5
6 output gps_freq @1Hz := lat.aggregate(over_exactly: 1s, using: count).defaults(to: 5)
7 trigger gps_freq < 5 "GPS frequency less than 5 Hz"
8
9 output gps_dist := sqrt(δ(lon)^2 + δ(lat)^2)

10 output gps_velo := ∇(gps_dist)
11 trigger abs(gps_velo - velo) > 0.1 "Conflicting measurements for velocity."
12
13 output fast := velo > 700
14 output slow_down := fast.offset(by:-1).defaults(to:false) ∧ ¬fast
15 trigger @1Hz ¬slow_down_cmd.aggregate(over: 5s, using: ∃)
16 ∧ slow_down.hold().defaults(to: false) "Spurious Slow-Down."
17
18 output dir := arctan(δ(lat)/δ(lon))
19 output headwind := abs(wnd_dir - dir) < 0.2 ∧ wnd_spd > 10.0

20 output hovering @1Hz := velo.aggregate(over: 5s, using:
∫
) < 0.5

21 ∧ ¬headwind.hold().defaults(to: false)
22 trigger @1Hz ¬hover_cmd.aggregate(over: 5s, using: ∃)
23 ∧ hovering.hold().defaults(to: false)
24 "Spurious Hovering. Path planner hung up?"

Figure 6.1.: Specification for the unmanned aerial vehicle case study. The triggers de-
tect low sampling rates in the GPS module, deviations in location approxi-
mations, and spurious slow down and hovering phases.

77

6. RTLola in Practice

6.2.3. Medical Cyber-Physical Systems

Unfortunately, there is no accessible simulation framework for medical data qualita-
tively comparable to ArduPilot. So this case study uses synthetic data, which is suffi-
cient as a proof of concept.

Cardiac Arrhythmia

We start by discussing the specification for detecting cardiac arrhythmia, in particular
ventricular fibrillation (V-fib). For this, consider the electro cardiogram (EKG) of a
regular sinus rhythm in Figure 6.2a. The rhythm consists of five clearly distinguishable
phases. The key factors for the specification are the extrema, indicated in green, which
can be recognized by a zero crossing in the derivation of the signal. Note that the
detection of roots is insufficient due to the expected turning point between phase S
and T. We present a simplified anomaly detection algorithm that yields an indicator of
an arrhythmia. For a reliable analysis, several such criteria need to be monitored and
the classification checks whether a sufficient amount of them are met. The presented
method identifies the extrema that indicates phase switches and checks their potential
in relation to the extrema of other phases. If, for example, the local extremum of the T
phase exceeds the potential of the extremum of the R phase, one of the two phases were
irregular. Upon inspection of the arrhythmic EKG in Figure 6.2b, one can see that such
comparisons between peeks will fail because the wave does not follow the expected
phase pattern.

The specification in Figure 6.3 computes these comparisons. The cop (change of po-
tential) stream contains the first derivative of the potential. Lines 6–8 determine the
point in time when a zero crossing takes place. The stream state contains the current
state. Note that we write P–T for readability, they stand for the integer values 0–4,
respectively. local_extreme is a stream that is 0.0 unless a zero crossing took place in
the same evaluation cycle, in which case it contains the extreme value. Lines 19 and
20 use this information to compute the greatest and least value over the last 2s. This
assumes that the patient has a heart rate of approximately 60. In a realistic scenario,
the specification would have to take the heart rate into account and adapt its outputs
accordingly.

The arrhythmia detection then checks whether a zero_crossing took place. If so, it
further checks the current phase using the state stream and compares the extreme value
against the computed time-bounded extrema. Lastly, the trigger counts the number of
detected pattern violations and raises an alarm if seven out of the estimated ten heart
beats exhibit arrhythmic behavior.

Monitoring the specification with StreamLab yields similar results to the first case
study: On average, each one of the 808.000 relevant timestamps required 1420ns, the
stack size never exceeded 1kB. The required memory, however, decreased to 11.09MB
due to the lower amount of less memory-intense sliding windows: for comparison,
an integral window requires approximately four times the amount of memory of an
extremum-aggregation.

78

6.2. Case Studies

P

Q

R

S

T

t

V

(a) The EKG of a regular sinus rhythm.

t

V

(b) The EKG of an irregular cardiac rhythm.

Figure 6.2.: EKGs for a regular sinus rhythm (left) and an arrhythmia resulting in V-
fib (right). The local extrema of the signals and thus zero crossings of the
derivative are marked in green. The five phases P through T of the regular
heartbeat are clearly distinguishable in the sinus rhythm. In the arrhythmic
case, the phases become indistinct.

Drug-Resistant Epilepsy

The last example presented in this thesis is concerned with the detection and preven-
tion of epileptic seizures. Figure 6.4 shows the characteristic electroencephalogram
(EEG) of a seizure patient. The measured potential underlies natural fluctuation. Dur-
ing the onset of a seizure, the amplitude of the fluctuation rises significantly. The im-
planted responsive neurostimulator administers electric impulses upon detection of
the abnormal increase. The short flat line followed by a spike in the EEG indicate the
stimulation. If the brain wave does not normalize afterwards, additional impulses can
be administered until the seizure ceases. This effectively prevents a seizure: the pat-
tern shown in Figure 6.4 typically spans less than 20ms. For comparison, the average
reaction time to auditory stimuli is around 150ms [73].

The specification for monitoring the implant can be found in Figure 6.5. While the
implant has two leads, we simplify the specification by only considering one, the Corti-
cal Strip Lead (CSL). In addition, the monitor gets two boolean inputs from the implant,
one indication that it rec(ognized) an onset, and one indicating the administration of
a stim(ulation). The specification first computes the absolute jerk, i.e. the third deriva-
tive, of the measured potential. Intuitively speaking, a high jerk represents an unsteady
signal. In addition to that, we compute the long-term average jerk over 2000s as refer-
ence value and the short-term average jerk over 2ms. If the short-term average exceeds
the long-term average by a margin of ε, an unsteady signal is detected. Lines 10–13
now monitor the response of the implant: it checks whether an onset recognized by
the monitor was not detected by the implant and whether a recognized onset was not
followed by stimulation.

79

6. RTLola in Practice

1 input potential: Float64
2 input time: Float64
3
4 output cop := ∇(potential)
5
6 output pos_to_neg := (sign(cop.offset(by: -1).defaults(to: 0.0) = 1) ∧ sign(cop) = -1
7 output neg_to_pos := (sign(cop.offset(by: -1).defaults(to: 0.0) = -1 ∧ sign(cop) = 1
8 output zero_crossing := neg_to_pos ∨ pos_to_neg
9

10 output state :=
11 if zero_crossing
12 then (state.offset(by: -1).defaults(to: P) + 1) % 5
13 else state.offset(by: -1).defaults(to: P)
14
15 output local_extreme :=
16 if zero_crossing
17 then potential.offset(by: -1).defaults(to: 1.0)
18 else 0.0
19 output bounded_max @1Hz :=
20 local_extreme.aggregate(over: 2s, using: max).defaults(to: 0.0)
21 output bounded_min @1Hz :=
22 local_extreme.aggregate(over: 2s, using: min).defaults(to: 0.0)
23
24 output arrhythmic := zero_crossing ∧
25 (
26 (state = P ∨ state = T) ∧ local_extreme > bounded_max.hold().defaults(to: 0)
27 |
28 state = R ∧ local_extreme < bounded_max.hold().defaults(to: 0.0) * 0.7
29 |
30 (state = Q ∨ state = S) ∧ local_extreme > bounded_min.hold().defaults(to: 0.0)
31)
32
33 trigger @10Hz arrhythmic.aggregate(over_exactly: 10s, using: sum).defaults(to: 0) > 7

"Irregular heart beat detected."

Figure 6.3.: A specification detecting cardiac arrhythmia via comparing extrema of the
measured potential.

80

6.2. Case Studies

t

V

Figure 6.4.: An EEG showing the onset of an epileptic seizure. The short flat line fol-
lowed by a spike indicates a neural stimulation as countermeasure against
the seizure.

1 input CSL: Float64
2 input rec, stim: Bool
3
4 output jerk := abs(∇3(CLS))
5
6 output avg_long @100mHz := jerk.aggr(over: 2000s, using: avg)
7 output avg_short @1kHz := jerk.aggr(over: 2ms, using: avg)
8 output spike @1kHz := avg_short > avg_long.hold() + ε
9

10 trigger @1kHz spike ∧ ¬rec.aggr(over: 2ms, using: ∃)
11 "seizure not recognized"
12 trigger @1kHz rec.aggr(over: 5ms, using: ∃) ∧ ¬stim.aggr(over: 3ms, using: ∃)
13 "stimulation not triggered"

Figure 6.5.: Specification monitoring a responsive neurostimulator based on the poten-
tial measured with the Cortical Strip Lead.

Evaluating a synthetic event sequence with StreamLab showed that — despite the
stringent time constraints — the monitor was able to keep up: evaluating a single event
took around 3µs. This is considerably higher than for the other case studies despite
the specification’s shorter length. The reason behind this is the ratio of duration and
evaluation frequency in the sliding window expressions. They lead to a significantly
greater amount of intermediate values that need to be managed and aggregated. This
also impacts the memory consumption: the intermediate values and bookkeeping data
structures add a little less than 3MB to the total required memory of 14.02MB. If this
overhead exceeds the available resources of the implant, reducing the durations of the
windows or evaluation frequency also reduces the required memory. Especially the
long-term average allows for some adjustments without loss of correctness.

81

Chapter 7
Final Remarks and Future
Directions

This thesis presented formal semantics for the specification language RTLola coupled
with an evaluation algorithm. The main advantages of the language is the expressive-
ness that allows to specify complex properties in an understandable way, and static
guarantees on the running time and memory overhead. With these advantages we pro-
pose to use monitors for RTLola specifications in combination with complex, unver-
ified control structures. This especially includes machine learned controllers. They
grow ever more popular but their reasoning remains too convoluted to be understood
by humans. However, detailed understanding is not necessary when the confidence in
the runtime behavior is sufficiently high while a trusted component monitors the be-
havior. In case of an emergency, a verified, inefficient safety controller can take over
and stabilize the system execution.

This might pave the way towards certifiable autonomous controllers for vehicles as
well as new kinds of medical implants. In both of these fields, the certifiability plays
a crucial role and it is yet unclear how to achieve it with learned components. Despite
that, their outstanding performance is too convincing to pass up on. So runtime moni-
toring with RTLola can be the connecting link between efficiency and certifiability.

However, for this, the subject of traceability needs to be discussed for RTLola. A
monitor is traceable if their decision making is evident without detailed knowledge
about the implementation. The current implementation of StreamLab, however, is an
interpreter for RTLola specifications. Interpretation is abstract, which hinders trace-
ability. A compilation to FPGA [55] is the first step in this direction, but a thorough
investigation of compilation-based approaches is still necessary.

In addition to that, the language is not yet complete. State machines play a huge
role in the development of complex systems. Without special syntax, however, their
encoding in RTLola leaves a lot to be desired. Similarly, domain specific constructs
can simplify specifications significantly. For this, a library-based approach offers itself:

83

7. Final Remarks and Future Directions

through including a library e.g. for network monitoring or avionics, specific functions
and macros become accessible. Moreover, activation conditions are an interesting con-
cept for future iterations of RTLola. An activation condition is a condition on the
current state of the monitor that indicates whether a stream should be extended or not.
While this thesis discussed the basic, type-based form of activation conditions, boolean
conditions evaluated during runtime are also an option. This way, a stream can forgo
being evaluated if certain criteria are not met. Therefore, the stream essentially filters
itself.

In conclusion, we consider RTLola a valuable tool for the development of safety-
critical systems and we will strive to extend the framework on the theoretical side as
well as deploy it in real-world applications.

84

Appendix A
Appendix

A.1. BNF for the Concrete Syntax

〈spec〉 ::= 〈input-list〉 〈output-list〉 〈trigger-list〉

〈input-list〉 ::= 〈input〉 〈input-list〉 | ε

〈output-list〉 ::= 〈output〉 〈output-list〉 | 〈output〉

〈trigger-list〉 ::= 〈trigger〉 〈trigger-list〉 | ε

〈input〉 ::= ‘input’ 〈name〉 ‘:’ 〈vtype〉

〈output〉 ::= ‘output’ 〈name〉 ‘:’ 〈vtype〉 := 〈expr〉
| ‘output’ 〈name〉 ‘:’ 〈vtype〉 ‘@’ 〈ptype〉 := 〈expr〉

〈trigger〉 ::= ‘trigger’ 〈name〉 ‘"’〈msg〉‘"’

〈vtype〉 ::= ‘Bool’ | ‘Int’〈int-width〉 | ‘UInt’〈int-width〉 | ‘Float’〈fl-width〉

〈int-width〉 ::= 8 | 16 | 32 | 64

〈fl-width〉 ::= 32 | 64

〈ptype〉 ::= 〈number〉 ‘Hz’

〈expr〉 ::= 〈name〉(〈expr-list〉)
| 〈name〉‘.offset(by:’ 〈integer〉 ‘)’
| 〈name〉‘.defaults(to:’ 〈expr〉 ‘)’
| 〈name〉
| 〈name〉‘.hold()’
| 〈name〉‘.aggregate(over:’ 〈integer〉‘s, using:’ 〈name〉‘)’

85

A. Appendix

〈expr-list〉 ::= 〈expr〉 〈expr-list〉 | ε

〈name〉 ::= 〈letter〉〈alphanum〉*

〈letter〉 ::= a–z | A–Z

〈digit〉 ::= 0–9

〈integer〉 ::= 〈digit〉 | 〈digit〉〈integer〉

〈alphanum〉 ::= 〈letter〉 | 〈digit〉

A.2. BNF for the Sugarized Syntax

〈spec〉 ::= 〈declaration list〉 〈output〉 〈declaration list〉

〈declaration-list〉 ::= 〈declaration〉 〈declaration-list〉 | ε

〈declaration〉 ::= 〈input〉 | 〈output〉 | 〈trigger〉

〈input〉 ::= ‘input’ 〈name〉 ‘:’ 〈vtype〉

〈output〉 ::= ‘output’ 〈name〉 ‘:’ 〈vtype〉 ‘@’ 〈ptype〉 := 〈expr〉
| ‘output’ 〈name〉 ‘:’ 〈vtype〉 := 〈expr〉
| ‘output’ 〈name〉 ‘@’ 〈ptype〉 := 〈expr〉
| ‘output’ 〈name〉 := 〈expr〉

〈trigger〉 ::= ‘trigger @’ 〈ptype〉 〈expr〉 〈trig-msg〉
| ‘trigger’ 〈expr〉 〈trig-msg〉

〈trig-msg〉 ::= ‘"’〈msg〉‘"’ | ε

〈vtype-list〉 ::= 〈vtype〉 〈vtype-list〉 | ε

〈vtype〉 ::= 〈avtype〉 | (〈vtype-list〉)

〈avtype〉 ::= ‘Bool’ | ‘Int’〈int-width〉 | ‘UInt’〈int-width〉 | ‘Float’〈fl-width〉

〈int-width〉 ::= 8 | 16 | 32 | 64

〈fl-width〉 ::= 32 | 64

〈ptype〉 ::= 〈number〉 ‘Hz’

86

A.2. BNF for the Sugarized Syntax

〈expr〉 ::= 〈name〉.〈name〉(〈expr-list〉)
| 〈name〉‘.offset(by:’ 〈integer〉 ‘)’
| 〈name〉‘.defaults(to:’ 〈expr〉 ‘)’
| 〈name〉
| 〈name〉‘.hold()’
| 〈name〉‘.aggregate(over:’ 〈integer〉‘s, using:’ 〈name〉‘)’
| ‘if’ 〈expr〉 ‘then’ 〈expr〉 ‘else’ 〈expr〉
| 〈expr〉 〈binop〉 〈expr〉
| 〈unop〉 〈expr〉

〈binop〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘&’ | ‘|’ | ‘=’ | ‘>’ | ... 〈unop〉 ::= ‘-’ | ‘!’ | ...

〈expr-list〉 ::= 〈expr〉 〈expr-list〉 | ε

〈name〉 ::= 〈letter〉〈alphanum〉*

〈letter〉 ::= a–z | A–Z

〈digit〉 ::= 0–9

〈integer〉 ::= 〈digit〉 | 〈digit〉〈integer〉

〈alphanum〉 ::= 〈letter〉 | 〈digit〉

Here, <msg> can be any sequence of symbols excluding double quotation marks (");

87

Bibliography

[1] J. S. Bell. 1964. On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika,
1, 195–200. doi: 10.1103/PhysicsPhysiqueFizika.1.195.

[2] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, 46–57. doi: 10.1109/SFCS.1977.32. https://doi.org/10.1109/
SFCS.1977.32.

[3] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime veri-
fication for LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20, 4, 14:1–14:64.
doi: 10.1145/2000799.2000800.

[4] Peter Faymonville. 2019. Monitoring with Parameters. PhD thesis. Saarland Uni-
versity, Saarbrücken, Germany. https://publikationen.sulb.uni-saarland.de/
handle/20.500.11880/27458.

[5] Howard Barringer, David E. Rydeheard, and Klaus Havelund. 2010. Rule systems
for run-time monitoring: from Eagle to RuleR. J. Log. Comput., 20, 3, 675–706.
doi: 10.1093/logcom/exn076.

[6] Martin Roesch. 1999. Snort: lightweight intrusion detection for networks. In
LISA 1999. David W. Parter, editor. USENIX, 229–238. isbn: 1-880446-25-1.

[7] Doron Drusinsky. 2000. The temporal rover and the ATG rover. In SPIN Model
Checking and Software Verification, 7th International SPIN Workshop, Stanford, CA,
USA, August 30 - September 1, 2000, Proceedings (Lecture Notes in Computer Sci-
ence). Klaus Havelund, John Penix, and Willem Visser, editors. Volume 1885.
Springer, 323–330. isbn: 3-540-41030-9. doi: 10 . 1007 / 10722468 \ _19. https :
//doi.org/10.1007/10722468_19.

[8] Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh Viswa-
nathan. 1999. Runtime assurance based on formal specifications. In Proceedings
of the International Conference on Parallel and Distributed Processing Techniques
and Applications, PDPTA 1999, June 28 - Junlly 1, 1999, Las Vegas, Nevada, USA.
Hamid R. Arabnia, editor. CSREA Press, 279–287. isbn: 1-892512-15-7.

89

https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/2000799.2000800
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27458
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27458
https://doi.org/10.1093/logcom/exn076
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/10722468_19

Bibliography

[9] Bernd Finkbeiner and Henny Sipma. 2004. Checking finite traces using alternat-
ing automata. Formal Methods in System Design, 24, 2, 101–127. doi: 10.1023/B:
FORM.0000017718.28096.48. https://doi.org/10.1023/B:FORM.0000017718.
28096.48.

[10] Orna Kupferman and Moshe Y. Vardi. 2001. Model checking of safety properties.
Formal Methods in System Design, 19, 3, 291–314. doi: 10.1023/A:1011254632723.
https://doi.org/10.1023/A:1011254632723.

[11] Klaus Havelund and Grigore Rosu. 2002. Synthesizing monitors for safety prop-
erties. In Tools and Algorithms for the Construction and Analysis of Systems, 8th
International Conference, TACAS 2002, Held as Part of the Joint European Confer-
ence on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings (LNCS). Joost-Pieter Katoen and Perdita Stevens, editors. Vol-
ume 2280. Springer, 342–356. isbn: 3-540-43419-4. doi: 10.1007/3-540-46002-
0_24. https://doi.org/10.1007/3-540-46002-0_24.

[12] Ron Koymans. 1990. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2, 4, 255–299. doi: 10.1007/BF01995674. https://doi.org/
10.1007/BF01995674.

[13] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-
tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-
Tolerant Systems, Joint International Conferences on Formal Modelling and Analy-
sis of Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and
Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004,
Proceedings (LNCS). Yassine Lakhnech and Sergio Yovine, editors. Volume 3253.
Springer, 152–166. isbn: 3-540-23167-6. doi: 10.1007/978-3-540-30206-3_12.
https://doi.org/10.1007/978-3-540-30206-3_12.

[14] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin,
Garvit Juniwal, and Sanjit A. Seshia. 2017. Robust online monitoring of sig-
nal temporal logic. Formal Methods in System Design, 51, 1, 5–30. doi: 10.1007/
s10703-017-0286-7. https://doi.org/10.1007/s10703-017-0286-7.

[15] Dejan Nickovic and Oded Maler. 2007. AMT: A property-based monitoring tool
for analog systems. In Formal Modeling and Analysis of Timed Systems, 5th Interna-
tional Conference, FORMATS 2007, Salzburg, Austria, October 3-5, 2007, Proceed-
ings, 304–319. doi: 10.1007/978-3-540-75454-1_22. https://doi.org/10.
1007/978-3-540-75454-1_22.

[16] David A. Basin, Felix Klaedtke, Samuel Müller, and Eugen Zalinescu. 2015. Mon-
itoring metric first-order temporal properties. J. ACM, 62, 2, 15:1–15:45. doi:
10.1145/2699444. https://doi.org/10.1145/2699444.

[17] David A. Basin, Srdjan Krstic, and Dmitriy Traytel. 2017. AERIAL: almost event-
rate independent algorithms for monitoring metric regular properties. In RV-
CuBES 2017. An International Workshop on Competitions, Usability, Benchmarks,
Evaluation, and Standardisation for Runtime Verification Tools, September 15, 2017,

90

https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444

Bibliography

Seattle, WA, USA (Kalpa Publications in Computing). Giles Reger and Klaus
Havelund, editors. Volume 3. EasyChair, 29–36. http://www.easychair.org/
publications/paper/sgWQ.

[18] Marc Boule and Zeljko Zilic. 2008. Automata-based assertion-checker synthesis
of PSL properties. ACM Trans. Design Autom. Electr. Syst., 13, 1, 4:1–4:21. doi:
10.1145/1297666.1297670. https://doi.org/10.1145/1297666.1297670.

[19] Anat Dahan, Daniel Geist, Leonid Gluhovsky, Dmitry Pidan, Gil Shapir, Yaron
Wolfsthal, Lyes Benalycherif, Romain Kamdem, and Younes Lahbib. 2005. Com-
bining system level modeling with assertion based verification. In 6th Interna-
tional Symposium on Quality of Electronic Design (ISQED 2005), 21-23 March
2005, San Jose, CA, USA, 310–315. doi: 10.1109/ISQED.2005.32. https://doi.
org/10.1109/ISQED.2005.32.

[20] Ping Hang Cheung and Alessandro Forin. 2007. A c-language binding for PSL.
In Embedded Software and Systems, [Third] International Conference, ICESS 2007,
Daegu, Korea, May 14-16, 2007, Proceedings, 584–591. doi: 10.1007/978-3-540-
72685-2_54. https://doi.org/10.1007/978-3-540-72685-2_54.

[21] Rodolfo Pellizzoni, Patrick O’Neil Meredith, Marco Caccamo, and Grigore Rosu.
2008. Hardware runtime monitoring for dependable cots-based real-time em-
bedded systems. In Proceedings of the 29th IEEE Real-Time Systems Symposium,
RTSS 2008, Barcelona, Spain, 30 November - 3 December 2008, 481–491. doi: 10.
1109/RTSS.2008.43. https://doi.org/10.1109/RTSS.2008.43.

[22] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang Nguyen,
and Dejan Nickovic. 2015. From signal temporal logic to FPGA monitors. In 13.
ACM/IEEE International Conference on Formal Methods and Models for Codesign,
MEMOCODE 2015, Austin, TX, USA, September 21-23, 2015, 218–227. doi: 10.
1109/MEMCOD.2015.7340489. https://doi.org/10.1109/MEMCOD.2015.7340489.

[23] Patrick Moosbrugger, Kristin Y. Rozier, and Johann Schumann. 2017. R2U2:
monitoring and diagnosis of security threats for unmanned aerial systems. For-
mal Methods in System Design, 51, 1, 31–61. doi: 10.1007/s10703-017-0275-x.
https://doi.org/10.1007/s10703-017-0275-x.

[24] Patrick Moosbrugger, Kristin Y. Rozier, and Johann Schumann. 2017. R2U2:
monitoring and diagnosis of security threats for unmanned aerial systems. For-
mal Methods in System Design, 51, 1, 31–61. doi: 10.1007/s10703-017-0275-x.
https://doi.org/10.1007/s10703-017-0275-x.

[25] Klaus Havelund, Doron Peled, and Dogan Ulus. 2017. First order temporal
logic monitoring with BDDs. In FMCAD 2017. Daryl Stewart and Georg Weis-
senbacher, editors. IEEE, 116–123. isbn: 978-0-9835678-7-5. doi: 10 . 23919 /
FMCAD.2017.8102249.

91

http://www.easychair.org/publications/paper/sgWQ
http://www.easychair.org/publications/paper/sgWQ
https://doi.org/10.1145/1297666.1297670
https://doi.org/10.1145/1297666.1297670
https://doi.org/10.1109/ISQED.2005.32
https://doi.org/10.1109/ISQED.2005.32
https://doi.org/10.1109/ISQED.2005.32
https://doi.org/10.1007/978-3-540-72685-2_54
https://doi.org/10.1007/978-3-540-72685-2_54
https://doi.org/10.1007/978-3-540-72685-2_54
https://doi.org/10.1109/RTSS.2008.43
https://doi.org/10.1109/RTSS.2008.43
https://doi.org/10.1109/RTSS.2008.43
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.23919/FMCAD.2017.8102249
https://doi.org/10.23919/FMCAD.2017.8102249

Bibliography

[26] David A. Basin, Matús Harvan, Felix Klaedtke, and Eugen Zalinescu. 2011.
MONPOLY: monitoring usage-control policies. In RV 2011 (LNCS). Sarfraz Khur-
shid and Koushik Sen, editors. Volume 7186. Springer, 360–364. isbn: 978-3-642-
29859-2. doi: 10.1007/978-3-642-29860-8_27.

[27] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. 2004.
Rule-based runtime verification. In VMCAI 2004 (LNCS). Bernhard Steffen and
Giorgio Levi, editors. Volume 2937. Springer, 44–57. isbn: 3-540-20803-8. doi:
10.1007/978-3-540-24622-0_5.

[28] Klaus Havelund. 2015. Rule-based runtime verification revisited. STTT, 17, 2,
143–170. doi: 10.1007/s10009-014-0309-2.

[29] Normann Decker, Martin Leucker, and Daniel Thoma. 2016. Monitoring modulo
theories. STTT, 18, 2, 205–225. doi: 10.1007/s10009-015-0380-3.

[30] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Thang Nguyen, and Dejan Nickovic.
2018. Quantitative monitoring of STL with edit distance. Formal Methods in Sys-
tem Design, 53, 1, 83–112. doi: 10.1007/s10703-018-0319-x.

[31] Bernd Finkbeiner and Hazem Torfah. 2017. The density of linear-time proper-
ties. In ATVA 2017 (LNCS). Deepak D’Souza and K. Narayan Kumar, editors.
Volume 10482. Springer, 139–155. isbn: 978-3-319-68166-5. doi: 10.1007/978-
3-319-68167-2_10.

[32] Hazem Torfah and Martin Zimmermann. 2018. The complexity of counting mod-
els of linear-time temporal logic. Acta Inf., 55, 3, 191–212. doi: 10.1007/s00236-
016-0284-z.

[33] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Ry-
deheard. 2012. Quantified event automata: towards expressive and efficient run-
time monitors. In FM 2012 (LNCS). Dimitra Giannakopoulou and Dominique
Méry, editors. Volume 7436. Springer, 68–84. isbn: 978-3-642-32758-2. doi: 10.
1007/978-3-642-32759-9_9.

[34] Ramy Medhat, Borzoo Bonakdarpour, Sebastian Fischmeister, and Yogi Joshi.
2016. Accelerated runtime verification of LTL specifications with counting se-
mantics. In RV 2016 (LNCS). Yliès Falcone and César Sánchez, editors. Vol-
ume 10012. Springer, 251–267. isbn: 978-3-319-46981-2. doi: 10.1007/978-3-
319-46982-9_16.

[35] Simone Silvetti, Laura Nenzi, Ezio Bartocci, and Luca Bortolussi. 2018. Signal
convolution logic. In ATVA 2018, 267–283. doi: 10.1007/978-3-030-01090-4_16.

[36] Corto Mascle, Daniel Neider, Maximilian Schwenger, Paulo Tabuada, Alexander
Weinert, and Martin Zimmermann. 2018. From ltl to rltl monitoring: improved
monitorability through robust semantics. CoRR, abs/1807.08203. arXiv: 1807.
08203. http://arxiv.org/abs/1807.08203.

92

https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1007/978-3-319-68167-2_10
https://doi.org/10.1007/978-3-319-68167-2_10
https://doi.org/10.1007/s00236-016-0284-z
https://doi.org/10.1007/s00236-016-0284-z
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-319-46982-9_16
https://doi.org/10.1007/978-3-319-46982-9_16
https://doi.org/10.1007/978-3-030-01090-4_16
https://arxiv.org/abs/1807.08203
https://arxiv.org/abs/1807.08203
http://arxiv.org/abs/1807.08203

Bibliography

[37] Paulo Tabuada and Daniel Neider. 2016. Robust linear temporal logic. In CSL
2016 (LIPIcs). Jean-Marc Talbot and Laurent Regnier, editors. Volume 62. Schloss
Dagstuhl - LZI, 10:1–10:21. isbn: 978-3-95977-022-4. doi: 10.4230/LIPIcs.CSL.
2016.10.

[38] Tzanis Anevlavis, Daniel Neider, Matthew Phillipe, and Paulo Tabuada. 2019.
Evrostos: the rLTL verifier. In HSCC 2019. Necmiye Ozay and Pavithra Prab-
hakar, editors. ACM, 218–223. isbn: 978-1-4503-6282-5. doi: 10.1145/3302504.
3311812.

[39] David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zalinescu. 2015.
Monitoring of temporal first-order properties with aggregations. Formal Methods
in System Design, 46, 3, 262–285. doi: 10.1007/s10703-015-0222-7.

[40] Takumi Akazaki and Ichiro Hasuo. 2015. Time robustness in MTL and expres-
sivity in hybrid system falsification. In CAV 2015 (LNCS). Daniel Kroening and
Corina S. Pasareanu, editors. Volume 9207. Springer, 356–374. isbn: 978-3-319-
21667-6. doi: 10.1007/978-3-319-21668-3_21.

[41] Houssam Abbas, Alena Rodionova, Ezio Bartocci, Scott A. Smolka, and Radu
Grosu. 2017. Quantitative regular expressions for arrhythmia detection algo-
rithms. In CMSB 2017 (LNCS). Jérôme Feret and Heinz Koeppl, editors. Vol-
ume 10545. Springer, 23–39. isbn: 978-3-319-67470-4. doi: 10 . 1007 / 978 - 3 -
319-67471-1_2.

[42] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. 2016. Regular program-
ming for quantitative properties of data streams. In ESOP 2016 (LNCS). Peter
Thiemann, editor. Volume 9632. Springer, 15–40. isbn: 978-3-662-49497-4. doi:
10.1007/978-3-662-49498-1_2.

[43] Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny Sipma. 2005. Collect-
ing statistics over runtime executions. Form. Meth. in Sys. Des., 27, 3, 253–274.
doi: 10.1007/s10703-005-3399-3.

[44] Sylvain Hallé. 2016. When RV meets CEP. In RV 2016 (LNCS). Yliès Falcone and
César Sánchez, editors. Volume 10012. Springer, 68–91. isbn: 978-3-319-46981-
2. doi: 10.1007/978-3-319-46982-9_6.

[45] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. 2010. Copilot:
A hard real-time runtime monitor. In RV 2010 (LNCS). Howard Barringer, Yliès
Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore
Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors. Volume 6418. Springer, 345–
359. isbn: 978-3-642-16611-2. doi: 10.1007/978-3-642-16612-9_26.

[46] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. 1987. Lustre:
A declarative language for programming synchronous systems. In POPL 1987.
ACM Press, 178–188. isbn: 0-89791-215-2. doi: 10.1145/41625.41641.

93

https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-67471-1_2
https://doi.org/10.1007/978-3-319-67471-1_2
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/s10703-005-3399-3
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1145/41625.41641

Bibliography

[47] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. 2005. LOLA:
runtime monitoring of synchronous systems. In 12th International Symposium on
Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005, Burlington,
Vermont, USA. IEEE Computer Society, 166–174. isbn: 0-7695-2370-6. doi: 10.
1109/TIME.2005.26. https://doi.org/10.1109/TIME.2005.26.

[48] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. 1987. Lustre:
A declarative language for programming synchronous systems. In Conference
Record of the Fourteenth Annual ACM Symposium on Principles of Programming
Languages, Munich, Germany, January 21-23, 1987. ACM Press, 178–188. isbn: 0-
89791-215-2. doi: 10.1145/41625.41641. https://doi.org/10.1145/41625.
41641.

[49] Nicolas Halbwachs. 2005. A synchronous language at work: the story of lustre.
In 3rd ACM & IEEE International Conference on Formal Methods and Models for
Co-Design (MEMOCODE 2005), 11-14 July 2005, Verona, Italy, Proceedings, 3–11.
doi: 10.1109/MEMCOD.2005.1487884. https://doi.org/10.1109/MEMCOD.2005.
1487884.

[50] Gérard Berry and Georges Gonthier. 1992. The esterel synchronous program-
ming language: design, semantics, implementation. Sci. Comput. Program., 19, 2,
87–152. doi: 10.1016/0167-6423(92)90005-V. https://doi.org/10.1016/0167-
6423(92)90005-V.

[51] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. 2005. LOLA:
runtime monitoring of synchronous systems. In 12th International Symposium on
Temporal Representation and Reasoning (TIME 2005), 23-25 June 2005, Burlington,
Vermont, USA. IEEE Computer Society, 166–174. isbn: 0-7695-2370-6. doi: 10.
1109/TIME.2005.26. https://doi.org/10.1109/TIME.2005.26.

[52] Lukas Convent, Sebastian Hungerecker, Torben Scheffel, Malte Schmitz, Daniel
Thoma, and Alexander Weiss. 2018. Hardware-based runtime verification with
embedded tracing units and stream processing. In Runtime Verification - 18th
International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Pro-
ceedings (Lecture Notes in Computer Science). Christian Colombo and Martin
Leucker, editors. Volume 11237. Springer, 43–63. isbn: 978-3-030-03768-0. doi:
10.1007/978-3-030-03769-7_5. https://doi.org/10.1007/978-3-030-03769-
7_5.

[53] Felipe Gorostiaga and César Sánchez. 2018. Striver: stream runtime verifica-
tion for real-time event-streams. In Runtime Verification - 18th International Con-
ference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings (Lecture
Notes in Computer Science). Christian Colombo and Martin Leucker, editors.
Volume 11237. Springer, 282–298. isbn: 978-3-030-03768-0. doi: 10.1007/978-
3-030-03769-7_16. https://doi.org/10.1007/978-3-030-03769-7_16.

94

https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1109/MEMCOD.2005.1487884
https://doi.org/10.1109/MEMCOD.2005.1487884
https://doi.org/10.1109/MEMCOD.2005.1487884
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16

Bibliography

[54] Marcel Maltry. 2017. FPGA-based Monitoring for Stream Specification Languages.
Master’s thesis. Saarland University, (July 2017).

[55] Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah.
2019. FPGA stream-monitoring of real-time properties. In ESWEEK-TECS special
issue, International Conference on Embedded Software EMSOFT 2019, New York,
USA, October 13 - 18.

[56] Florian-Michael Adolf, Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer,
and Christoph Torens. 2017. Stream runtime monitoring on UAS. In RV 2017
(LNCS). Shuvendu K. Lahiri and Giles Reger, editors. Volume 10548. Springer,
33–49. doi: 10.1007/978-3-319-67531-2_3.

[57] Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah.
2017. Real-time stream-based monitoring. CoRR, abs/1711.03829. arXiv: 1711.
03829. http://arxiv.org/abs/1711.03829.

[58] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah.
2016. A stream-based specification language for network monitoring. In RV 2016
(LNCS). Yliès Falcone and César Sánchez, editors. Volume 10012. Springer, 152–
168. isbn: 978-3-319-46981-2. doi: 10.1007/978-3-319-46982-9_10.

[59] Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah.
20019. On the similarities of aircraft and humans: monitoring cps with stream-
lab. In CyberCardia Medical CPS Workshop at ESWEEK’19,

[60] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert
Endre Tarjan. 1973. Time bounds for selection. J. Comput. Syst. Sci., 7, 4, 448–
461. doi: 10.1016/S0022-0000(73)80033-9. https://doi.org/10.1016/S0022-
0000(73)80033-9.

[61] Lambert Meertens. 1986. Algorithmics : towards programming as a mathemati-
cal activity. In Towards programming as a mathematical activity. Mathematics and
computer science. (January 1986), 289–334.

[62] Author(s) B. P. Welford and B. P. Welford. 1962. Note on a method for calculating
corrected sums of squares and products. Technometrics, 419–420.

[63] T. F. Chan, G. H. Golub, and R. J. LeVeque. 1982. Updating formulae and a pair-
wise algorithm for computing sample variances. In COMPSTAT 1982 5th Sympo-
sium held at Toulouse 1982. H. Caussinus, P. Ettinger, and R. Tomassone, editors.
Physica-Verlag HD, Heidelberg, 30–41. isbn: 978-3-642-51461-6.

[64] Vaughan R. Pratt. 1973. Top down operator precedence. In Conference Record
of the ACM Symposium on Principles of Programming Languages, Boston, Mas-
sachusetts, USA, October 1973. Patrick C. Fischer and Jeffrey D. Ullman, editors.
ACM Press, 41–51. doi: 10.1145/512927.512931. https://doi.org/10.1145/
512927.512931.

95

https://doi.org/10.1007/978-3-319-67531-2_3
https://arxiv.org/abs/1711.03829
https://arxiv.org/abs/1711.03829
http://arxiv.org/abs/1711.03829
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1145/512927.512931
https://doi.org/10.1145/512927.512931
https://doi.org/10.1145/512927.512931

Bibliography

[65] Edsger W. Dijkstra. 1961. Algol 60 translation : An Algol 60 translator for the x1
and Making a translator for Algol 60. Technical report 35. Mathematisch Cen-
trum, Amsterdam. http://www.cs.utexas.edu/users/EWD/MCReps/MR35.PDF.

[66] Klaus Samelson and Friedrich L. Bauer. 1960. Sequential formula translation.
Commun. ACM, 3, 2, 76–83. doi: 10.1145/366959.366968. https://doi.org/10.
1145/366959.366968.

[67] R. Hindley. 1969. The principal type-scheme of an object in combinatory logic.
Trans. Amer. Math. Soc, 146, (December 1969), 29–60.

[68] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah.
2016. A stream-based specification language for network monitoring. In Run-
time Verification - 16th International Conference, RV 2016, Madrid, Spain, Septem-
ber 23-30, 2016, Proceedings (LNCS). Yliès Falcone and César Sánchez, editors.
Volume 10012. Springer, 152–168. isbn: 978-3-319-46981-2. doi: 10.1007/978-
3-319-46982-9_10. https://doi.org/10.1007/978-3-319-46982-9_10.

[69] Florian-Michael Adolf, Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer,
and Christoph Torens. 2017. Stream runtime monitoring on UAS. In Runtime
Verification - 17th International Conference, RV 2017, Seattle, WA, USA, September
13-16, 2017, Proceedings, 33–49. doi: 10.1007/978-3-319-67531-2_3. https:
//doi.org/10.1007/978-3-319-67531-2_3.

[70] Felice T. Sun, Martha J. Morrell, and Robert E. Wharen. 2008. Responsive cortical
stimulation for the treatment of epilepsy. Neurotherapeutics, 5, 1, (January 2008),
68–74. issn: 1878-7479. doi: 10.1016/j.nurt.2007.10.069. https://doi.org/
10.1016/j.nurt.2007.10.069.

[71] Christianne N. Heck, David King-Stephens, Andrew D. Massey, Dileep R. Nair,
Barbara C. Jobst, Gregory L. Barkley, Vicenta Salanova, Andrew J. Cole, Michael
C. Smith, Ryder P. Gwinn, Christopher Skidmore, Paul C. Van Ness, Gregory K.
Bergey, Yong D. Park, Ian Miller, Eric Geller, Paul A. Rutecki, Richard Zimmer-
man, David C. Spencer, Alica Goldman, Jonathan C. Edwards, James W. Leiphart,
Robert E. Wharen, James Fessler, Nathan B. Fountain, Gregory A. Worrell, Robert
E. Gross, Stephan Eisenschenk, Robert B. Duckrow, Lawrence J. Hirsch, Carl
Bazil, Cormac A. O’Donovan, Felice T. Sun, Tracy A. Courtney, Cairn G. Seale,
and Martha J. Morrell. 2014. Two-year seizure reduction in adults with medically
intractable partial onset epilepsy treated with responsive neurostimulation: final
results of the rns system pivotal trial. Epilepsia, 55, 3, 432–441. doi: 10.1111/epi.
12534. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.12534.
https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.12534.

[72] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger,
Marvin Stenger, Leander Tentrup, and Hazem Torfah. 2019. Streamlab: stream-
based monitoring of cyber-physical systems. In Computer Aided Verification -
31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,

96

http://www.cs.utexas.edu/users/EWD/MCReps/MR35.PDF
https://doi.org/10.1145/366959.366968
https://doi.org/10.1145/366959.366968
https://doi.org/10.1145/366959.366968
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1016/j.nurt.2007.10.069
https://doi.org/10.1016/j.nurt.2007.10.069
https://doi.org/10.1016/j.nurt.2007.10.069
https://doi.org/10.1111/epi.12534
https://doi.org/10.1111/epi.12534
https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.12534
https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.12534

Bibliography

2019, Proceedings, Part I, 421–431. doi: 10 . 1007 / 978 - 3 - 030 - 25540 - 4 \ _24.
https://doi.org/10.1007/978-3-030-25540-4_24.

[73] Pritesh Gandhi, Pradnya Gokhale, Hemant Mehta, and Chinmay Shah. 2013. A
comparative study of simple auditory reaction time in blind (congenitally) and
sighted subjects. Indian journal of psychological medicine, 35, (July 2013), 273–7.
doi: 10.4103/0253-7176.119486.

[74] 12th International Symposium on Temporal Representation and Reasoning (TIME
2005), 23-25 June 2005, Burlington, Vermont, USA, (2005). IEEE Computer Soci-
ety. isbn: 0-7695-2370-6. http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=9856.

[75] Christian Colombo and Martin Leucker, editors. Runtime Verification - 18th In-
ternational Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceed-
ings, volume 11237 of Lecture Notes in Computer Science, (2018). Springer. isbn:
978-3-030-03768-0. doi: 10.1007/978-3-030-03769-7. https://doi.org/10.
1007/978-3-030-03769-7.

[76] Yliès Falcone and César Sánchez, editors. RV 2016, volume 10012 of LNCS,
(2016). Springer. isbn: 978-3-319-46981-2. doi: 10.1007/978-3-319-46982-9.

[77] POPL 1987, (1987). ACM Press. isbn: 0-89791-215-2.

97

https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.4103/0253-7176.119486
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9856
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9856
https://doi.org/10.1007/978-3-030-03769-7
https://doi.org/10.1007/978-3-030-03769-7
https://doi.org/10.1007/978-3-030-03769-7
https://doi.org/10.1007/978-3-319-46982-9

	Introduction
	RTLola by Example

	Related Work
	Preliminaries
	Notation
	Basic Definitions
	Lola

	An Understandable Specification Language
	Concrete Syntax
	Dependency Graph
	Type System
	Semantics

	Efficient Monitoring of RTLola
	Offset Handling
	Sliding Window Handling
	Finite Memory Evaluation

	RTLola in Practice
	Syntactic Sugar
	Case Studies

	Final Remarks and Future Directions
	Appendix
	BNF for the Concrete Syntax
	BNF for the Sugarized Syntax

