
Spatio-Temporal Model-Checking
of Cyber-Physical Systems

Using Graph Queries

Hojat Khosrowjerdi1(B), Hamed Nemati2, and Karl Meinke1

1 KTH Royal Institute of Technology, Stockholm, Sweden
hojatk@kth.se

2 Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany

Abstract. We explore the application of graph database technology to
spatio-temporal model checking of cooperating cyber-physical systems-
of- systems such as vehicle platoons. We present a translation of spatio-
temporal automata (STA) and the spatio-temporal logic STAL to seman-
tically equivalent property graphs and graph queries respectively. We
prove a sound reduction of the spatio-temporal verification problem to
graph database query solving. The practicability and efficiency of this
approach is evaluated by introducing NeoMC, a prototype implementa-
tion of our explicit model checking approach based on Neo4j. To evaluate
NeoMC we consider case studies of verifying vehicle platooning models.
Our evaluation demonstrates the effectiveness of our approach in terms
of execution time and counterexample detection.

1 Introduction

In cooperating cyber-physical systems-of-systems (CO-CPS) such as vehicle pla-
toons, with hard real-time and spatial requirements, even the slightest failure of a
service may be catastrophic and endanger lives. Severe consequences of such fail-
ures reinforce the need for developing rigorous analysis techniques to increase
the safety of CO-CPS. Recently, spatio-temporal verification [1–3] appears as
a promising technique to verify advanced autonomous services that incorporate
temporal and physical features to safely interact with the environment. The high
complexity of such systems, however, makes scalable static analysis computation-
ally challenging in practice. Therefore, to make safety certification practical, the
analysis of CO-CPS also needs dynamic techniques for ensuring correct and safe
functionality, such as model-based and learning-based testing.

There has been a large body of work related to specifying and verifying
real-time systems. Examples include Timed Automata [4] and Duration Calcu-
lus [5]. None of these formalisms, however, are sufficient for problems with spa-
tial requirements. We propose a new model checking approach based on spatio-
temporal automaton logic (STAL) [1] to analyze systems having both temporal
and spatial characteristics, e.g. CO-CPS. While several other works have also
addressed this problem [2,3,6,7], a distinguishing feature of our approach is
c© Springer Nature Switzerland AG 2020
W. Ahrendt and H. Wehrheim (Eds.): TAP 2020, LNCS 12165, pp. 59–79, 2020.
https://doi.org/10.1007/978-3-030-50995-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50995-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-50995-8_4

60 H. Khosrowjerdi et al.

the adoption of graph databases and graph queries [8] for model checking. This
enables us to gain advantages in terms of counterexample detection, analysis time
and memory consumption.

In [1], STAL was introduced as a requirements modeling language for sys-
tems of distributed dynamic objects, such as autonomous vehicles. (See Sect. 4).
STAL is based on a restricted subset of first-order linear temporal logic (FOLTL)
with dedicated real-valued spatial functions. To avoid undecidability problems
associated with infinite state spaces, STAL semantics is based on finite spatio-
temporal automata (STA) models. These properties of STAL make it a poten-
tially practicable logic for modeling safety requirements on CO-CPS such as
collision avoidance and safety envelopes.

A finite state STA can be machine learned (ML) using techniques of finite
automaton learning [9]. By combining ML with the model checking methods for
STAL presented here, we can implement learning-based testing (LBT) [10,11]
as a dynamical safety assurance method for CO-CPS.

However, there are several problems with using off-the-shelf model checkers
to check STAL properties. Most existing model checkers do not support FOLTL
which is essential to verify spatial properties directly on the model and without
manually crafting new model features. Additionally, ML-generated STA models
are large, flat and unstructured. This prevents many model checkers from opti-
mizing the search computation, or using compact internal representations of the
state space. We try to address these issues and show how the STAL model check-
ing problem can be soundly implemented by graph database search (Sect. 6). We
show the practicability of this approach (Sect. 7) by developing an explicit state
model checker, called NeoMC, using the graph database Neo4j and its declar-
ative query language Cypher [12,13] (Sect. 5). We apply our model checker to
large case studies and report the results in Sect. 7. Our benchmarking results
show the practicability and effectiveness of our approach in terms of counterex-
ample detection and execution time. Most importantly, NeoMC has enabled us
to model check requirements and models that are otherwise not efficiently struc-
tured to be verified using other available model checkers.

2 Overview

Figure 1 depicts an application of STAL model checking in a dynamical safety
assurance toolchain based on learning-based testing (LBT) [11]. LBT uses
active automaton learning [14] to reverse engineer a state machine model of
an SUT that can be guaranteed to be both complete and correct. This model is
learned iteratively as a sequence of increasingly larger and more accurate models
M0,M1, . . ., by alternating between active learning, model checking and equiv-
alence checking queries. After each iteration, the current model Mi is checked
to find potential discrepancies with respect to functional requirements on the
SUT. If each Mi is an STA then these requirements can be spatio-temporal
requirements formalized in STAL [1].

In LBT, requirements testing is implemented by the model checker to eval-
uate whether an inferred model Mi complies with the given requirements.

Spatio-Temporal Model-Checking of Cyber-Physical Systems 61

Fig. 1. LBT using graph queries. Fig. 2. Example property graph show-
ing part of a platoon state machine.

In this way, the model checker functions as the test oracle to generate pass
or fail verdicts.

One of our main goals in implementing a dedicated model checker for STAL
was to try to improve the performance of model checking for LBT. For this
purpose we can represent an STA model M as a property graph data model
GM in Neo4j [12] and we can model a STAL requirement φ using the high level
graph query language Cypher [13]. We can then use graph queries to search for
potential counterexamples in GM that falsify φ in M . Thus we can reduce model
checking to a query matching problem.

Neo4j is a high-performance graph database that stores data in graphs (rep-
resented as a key-value database) rather than in tables. Using graph represen-
tation, Neo4j is able to capture the inherent graph structure of data appear-
ing in applications such as geographic information systems (GIS), where data
paths and navigational patterns are important [15]. The data processing engine
in Neo4j utilizes index-free adjacency [16]. In this approach each node keeps
micro-indexing of its adjacent nodes, thus reducing the query response time
and making it independent of the total graph size. Neo4j is a fully transac-
tional directed graph database and allows assigning attributes (key/value pairs)
to nodes (vertices) and relationship (edges). It can efficiently handle connected
data and supports various data-types (e.g. floating point, integer, strings). This
makes Neo4j well suited for storing various types of automata models including
STA, since nodes can represent states and edges naturally represent transitions.

Cypher [12,13] is a graph query language capable of specifying graph patterns
between nodes that may span over arbitrary-length paths. Cypher is a declarative
language allowing users to express queries without a deeper understanding of the
underlying system. However, it is expressive enough to support complex query
patterns related to graph analytics [17]. A Cypher query takes a property graph
as the input and performs various computations on it, returning a table of values.

62 H. Khosrowjerdi et al.

3 Preliminaries

A Property Graph Model (PGM) is a directed labeled graph in which nodes and
edges have attributes, also called properties. A property is a pair of the form
(key,value). Values can be basic data types, such as strings and integers, or
composite, such as lists, maps and paths.

Let Σ be an alphabet, then Σ∗ denotes the set of all strings over the alphabet.
We let K ⊂ Σ∗ denote a finite set of property keys, and A ⊆ Σ∗ denotes a
possibly infinite set of variable names. We define node labels L and edge types
T as countably infinite sets of strings from Σ∗. Also, V is the set of values and
it contains:

– Node and edge identifiers.
– Base types: integers Z, real numbers R, and strings Σ∗.
– Booleans: B = {true, false}.
– null: denoting an undefined value.
– Lists: an empty or non-empty list of values list(v1, v2, ..., vm).
– Maps: an empty or non-empty set of (key, value) pairs.
– Paths: a sequence of node and edge identifiers (n0, e0, n1, ..., nk−1, ek−1, nk).

A property graph is an 8-tuple G = (N ,E,L,T, λ,Lab,Typ, Pnode, Pedge) consist-
ing of a set N ⊆ Σ∗ of node identifiers, and a set E ⊆ Σ∗ of directed edge
identifiers. We associate a label set to each node by the function Lab : N → 2L.
Similarly, we assign a type t ∈ T (or possibly null) to each edge by the function
Typ : E → T ∪{null}. Furthermore, λ : E → N ×N is the function which yields
the source and the target nodes for a given edge. Note that two edge identifiers
may have the same source/target nodes.

By a property we mean a pair p = (k, v) ∈ K × V consisting of a key k and
a value v. Then Pnode : N × K → V ∪ {null} is the property labelling function
for nodes which maps each node n and key k to the corresponding value (that
could be null). Similarly, Pedge : E × K → V ∪ {null} is the property labelling
function for edges which maps each edge e and key k to the corresponding value
(possibly null).

Example 1. Figure 2 exemplifies a property graph. In this example, there are
two nodes and one edge, namely n1, n2 and e1. The node’s label is “State” and
the edge type is “Next”. Node property keys are “Id”, “Name”, “Speed” and
“Distance” and the edge property keys are “Id” and “Pedal”. The value of the
each property is given below.

Spatio-Temporal Model-Checking of Cyber-Physical Systems 63

L = {State}
N = {n1, n2} Lab(n1) = {State} Lab(n2) = {State}

Pnode(n1, Id) = 21708 Pnode(n2, Id) = 21712

Pnode(n1, Name) = “S0” Pnode(n2, Name) = “S4”

Pnode(n1, Speed) = 0 Pnode(n2, Speed) = 4

Pnode(n1, Distance) = 5.0 Pnode(n2, Distance) = 6.0

T = {Next}
E = {e1} λ(e1) = (n1, n2) Typ(e1) = {Next}

Pedge(e1, Id) = 450 Pedge(e1, Pedal) = “a1”

Having defined a property graph, we define a path in such a graph as follows.
Let ni, nk ∈ N and ej ∈ E be node and edge identifiers of a property graph G.
A path w from ni to nk denoted by w = (ni →∗ nk) is a finite sequence of nodes
and edges (nieini+1...nk−1ek−1nk) such that ∀i ≤ j < k : λ(ej) = (nj , nj+1).

We use
∏size

type(G) to denote the set of all paths in G of length size and a
specific type in the input model. Then

∏
(G) denotes the set of all paths in

G (of any finite length). If w1 = (n0e0n1...ek−1nk) and w2 = (nkek...ei−1ni),
then we denote the order-preserving concatenation of w1 and w2 by w1.w2 =
(n0e0n1...ek−1nkek...ei−1ni).

In a graph database, to create, read and update property graphs, graph
queries are executed. A query μ ∈ Q takes a graph G as an input and returns a
table t ∈ T. This table provides parameter bindings that match the query to a
solution in the graph.

Let u = {a1 : v1, ..., an : vn} be an assignment(record) from variable names
{a1, ..., an} ⊂ A to values {v1, ..., vn} ⊂ V , and dom(u) denotes the domain of
u, i.e. dom(u) = {a1, ..., an}. A table t ∈ T is a multiset (bag) of assignments
that have a common domain A. In other words, tables are partial mappings from
names (columns) to values, without any specific ordering.

4 Spatio-Temporal Automaton Logic (STAL)

In [1] we presented a modal logic STAL suitable for describing the spatio-
temporal behavior of a spatially distributed dynamical system of objects, such
as autonomous vehicles or drones. Such systems have many dynamically chang-
ing properties such as object locations, distances and velocities. These properties
may be expressed using relative or absolute coordinates. Following classical New-
tonian physics, such properties are usually resolved into their vector components
along 1, 2 or 3 spatial dimensions as appropriate.

Formally, STAL is a quantifier-free fragment1 of first-order linear temporal
logic (FOLTL). The semantics of STAL can therefore be defined in a similar

1 To ensure decidability, STAL is syntactically restricted so that quantification over
data types is not allowed.

64 H. Khosrowjerdi et al.

way to FOLTL, in terms of a spatio-temporal automaton (STA) that interprets
the spatial operators of the logic. A key requirement for learning-based testing
(LBT) [11] is that spatio-temporal automata are amenable to machine learning
in finite time in much the same way as finite automata [9]. Successful LBT also
requires the existence of a decidable model checking problem and an efficient
model checking algorithm such as the one presented in this work.

STAL can be used to describe a dynamically changing environment of spa-
tially distributed objects by relativising spatio-temporal measurements to a dis-
tinguished object called the ego object. The ego object provides an origin and
point of reference in each dimension for every relative spatio-temporal property
(e.g. relative distance). Thus FOLTL provides an implicit temporal reference
to now, while the ego object provides the corresponding spatial reference to
here. Furthermore, by supporting the measurement of bounded relative prop-
erties, STA allow us to avoid infinite state automata models in many practical
situations. This means that both machine learning and model checking of spatio-
temporal automata can be achieved in finite time using regular inference and
explicit state space search methods.

Taking the common case of 2 orthogonal spatial dimensions, the x and y axes,
we can define a 2-dimensional2 STA to be the following algebraic structure:

A = (Σ,Q,Obj, q0, egoObj,
δ : Σ × Q → Q, angle : Q → [0, .., 360),
distx, disty, velx, vely : Obj × Q → R).

Here Σ = {σ1, . . . , σm} is a finite input alphabet, consisting of ordered key-
value pairs3 p = (k, v) ∈ K × V, Q = {q0, . . . , qn} is a finite set of states,
Obj = {o1, . . . , ok} is a finite set of objects, q0 ∈ Q is the distinguished initial
state, egoObj ∈ Obj is the distinguished ego object, δ : Σ × Q → Q is the
state transition function, angle : Q → [0, .., 360) gives the ego object orientation
relative to the x, y axes, distx, disty : Obj×Q → R are the relative object distance
functions along the x, y axes measured from the ego object for each state, and
velx, vely : Obj × Q → R are the absolute object velocity functions4 measured
along the x, y axes for each state.

Example 2. Figure 3 shows a simple STA consisting of three states q0, q1, q2. It
describes the movements of two vehicles in a platoon, namely leader and follower.
The leader is controlled by a driver using gas and brake pedals. Then, the input
alphabet Σ is a set consisting of σ0 = (Pedal, “gas”) and σ1 = (Pedal, “brake”).
Both vehicles are driving along the x axis. The follower object, which is the ego
object, tries to adapt its distance and speed to the leader object motion. This
example STA is two dimensional and all distances are measured along x and y
axes with respect to follower as the ego object. For all states of the automaton,
2 This definition clearly generalises to the n-dimensional case.
3 denoted as “(key,value)”.
4 Note: we can derive relative velocity from absolute velocity, and both measurements

are always bounded in practise.

Spatio-Temporal Model-Checking of Cyber-Physical Systems 65

the angle of the ego vehicle, the inter-vehicle distance along the y axis of the
ego object and the absolute vehicle velocities in the y dimension are zero. The
transition function δ is defined as follows. Initially (in state q0), the leader is 50
meters ahead of the follower along its x axis. This distance will be reduced to
20 and 10 meters if the leader accelerates (Pedal, gas) or brakes (Pedal, brake)
respectively. If the driver pushes the gas pedal, the speed of the leader increases
from zero to 50 km/h along the x axis. Should the brake pedal be pressed, the
leader speed drops to 30 km/h. At the same time, the ego vehicle tries to follow
this speed pattern at 48 km/h and 29 km/h.

The formal syntax of STAL is summarized in Fig. 4. In this Figure exp,
exp1 and exp2 are arithmetic expressions, and φ, φ1 and φ2 are arbitrary STAL
formulas. Let S denote the set of all STAL formulas.

Fig. 3. An example of an STA.

Fig. 4. Syntax of STAL.

For a given object o ∈ Obj, a STAL expression exp is either a floating
point constant c, a distance expression Distancex(o) or Distancey(o), a speed
expression Speedx(o) or Speedy(o), an angle expression Angle or a binary arith-
metic operation (+, −, ∗, /) applied to two subexpressions exp1, exp2.

An atomic STAL formula is either an input expression (input = σ) for σ ∈ Σ
or a pair of arithmetic expressions connected by an arithmetic relation (<, >, ≤,

66 H. Khosrowjerdi et al.

≥). A compound STAL formula φ may be built up from subformulas by means
of boolean operations (i.e. ¬, ∧, ∨, or →), and linear temporal operators (i.e.
next X, eventually F , or always G).

The semantics of STAL is defined in Fig. 5. To define the satisfiability relation
|= we write w = (α0, α1, ...) ∈

∏∞(A) to denote an infinite path in A and
we write its suffixes as wi = (αi, αi+1, ...) for i ≥ 0. Note that a path in a
spatio-temporal automaton is a sequence of input (σ) and state (q) pairs, i.e.
αi = (σi, qi). We use (αi →∗ αk) to indicate a path from qi to qk if ∀i ≤ j < k :
qj+1 = δ(σj , nj) and the last input σk = ε is an empty string.

Fig. 5. STAL semantics and its satisfiability relation over a path w of an STA A.

Fig. 6. Core syntax of Cypher for model checking

5 Cypher Syntax and Semantics

In this section we present a subset of the Cypher language which is sufficient for
interpreting STAL formulas. Cypher includes expressions, patterns, clauses, and

Spatio-Temporal Model-Checking of Cyber-Physical Systems 67

queries, which allow it to represent a data model represented as values, graphs
and tables. The syntax of Cypher is depicted in Fig. 6. We present keywords in
blue. The main concepts in Cypher are the notions of “pattern” and “pattern
matching”. The underlying data set for a query in Cypher is a property graph and
the response is a table providing bindings for all query parameters representing
solutions found in the property graph.

The MATCH clause denotes a matching function from tables to tables and may
introduce new rows (synonymous with records) with bindings of the matched
instances of the pattern in the queried graph. Similar to other query languages,
the WHERE clause in Cypher filters the results of this matching based on the valid
filter predicates. These predicates can be defined based on the properties of query
elements. For example, Match (n) WHERE n.k = value is a query to match all
nodes in a graph that satisfy the attribute restriction k = value for a property
p : (k, value) of a node n. The binary operations, bop, are the standard ones
and we use them to express the relation between two properties or properties
and literals. The keyword RETURN expresses the projection of the result.

For model checking purposes, Cypher expressions are used in the WHERE clause
to apply predicate conditions and filter search results. They also appear in the
RETURN statement, e.g., to define how a counterexample should be structured
and returned properly. Expressions can also be used in patterns to parameterize
node and edge properties during a pattern matching search.

Fig. 7. Cypher expression semantics.

68 H. Khosrowjerdi et al.

5.1 Cypher Patterns

Syntax. Cypher supports three types of patterns: node (χ), edge (ρ) and path
(π) patterns. In a path-based temporal logic such as FOLTL, path patterns can
be used to describe a counterexample as a path to a node or group of nodes
where some desired properties are violated. Patterns can be recursively defined
using the derivation rules in Fig. 6. In this figure f is any m-ary function in F
from values to values, e.g., All and Any, and exp.k returns a pair from a map
with a matching key k, i.e. vi = map((k1, v1), . . . , (ki, vi), . . .).ki. We use “?”
to denote optional (or “nullable”) types, for which null represents missing (or
None) values. Also “∗” denotes a range [d1, d2] with d1, d2 ∈N specified by the
optional len for the edge pattern ρ. The range is equal to [1,∞] if len is null or
[d, d], [d1,∞], [1, d2], [d1, d2] if other derivation rules are applied, respectively.

Definition 1 (Node Pattern). A node pattern χ has the form χ =
(a L? {P}?) where a ∈ N is a node name, L is an optional finite set of node
labels, and {P} is an optional partial mapping from property keys k to expres-
sions exp. For example (x), (x :State) and (x{Name : “S0”}) are node patterns.

Definition 2 (Edge Pattern). An edge pattern ρ has the form ρ = (a T ? I?
{P}? dir) where a ∈ E is an edge name, T is an optional edge type, I indicates
an optional range for the length of the edge between source/target nodes, P is
an optional partial mapping from property keys to expressions and dir ∈ {�,�}
indicates the direction.

Definition 3 (Path Pattern), A path pattern π is a concatenation of node
and edge patterns of the form χ1ρ1χ2ρ2...χn.

Henceforth we write π = (n1) [e]��(n2) where n1, n2∈N and e∈E, instead of
π = χ1ρχ2 to denote the syntactic category pattern defined in Fig. 6. Using this
notation, patterns can encode paths as nodes and edges with arrows between
them to indicate the direction of a transition.

Semantics. The semantics of a pattern is the set of nodes, edges or paths
which satisfy its conditions. For example, the semantics of a path pattern π is
the path value �π�G,u ∈ V . Figure 7 shows the semantics of cypher expressions
where the semantics of an expression exp is a value �exp�G,u ∈ V determined
by G and u. For example, for a constant v ∈ V , a variable name a ∈ A and an
m-array function f ∈ F , the semantic values are �v�G,u = v, �a�G,u = u(a) and
�f(exp1, ..., expm)�G,u = f(�exp1�G,u, ..., �expm�G,u) respectively. The complete
semantics is given in [18].

Definition 4 (Path Value). A path value for a pattern π in G given the assign-
ment u which provides name bindings for π and G, is a set of paths w in G such
that, �π�G,u = {w ∈

∏
(G) | (w,G, u) |= π}.

For example, the pattern π = (n) [e]��(m) indicates a set of paths
{(n0e0n1)|n0, n1 ∈ N, e0 ∈ E} of length one in the graph G using the assignment

Spatio-Temporal Model-Checking of Cyber-Physical Systems 69

u = (n : n0, e : e0,m : n1), and n0, e0, n1 are any node and edge identifiers in
G with the relation λ(e0) = (n0, n1). Note that n0, n1 and e0 can be any nodes
and edges within the graph that satisfy this edge pattern.

Property 1. Let ρ be an edge pattern (a T ? I? {P}? dir), χ be a node pattern
(a L? {P}?), d1 ≤ i ≤ d2 and j ∈ {1, ..., i}, then a path w in a graph G satisfies
a pattern π (i.e., (w,G, u) |= π) if:

(n,G, u) |= χ ⇔ (n1...eini+1.w,G, u) |= χρπ ⇔

⎧
⎪⎪⎨

⎪⎪⎩

u(a) = n
L ⊆ Lab(n)
∀k ∈ K. and

�Pnode(n, k) = {P}.k�G,u = true

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n1,G, u) |= χ
(w,G, u) |= π
u(a) = list(e1, ..., ei)
Typ(ej) ∈ T
∀k ∈ K.

�Pedge(ej , k) = {P}.k�G,u = true

λ(ej) ∈
{

{(nj , nj+1)}; if dir is �

{(nj+1, nj)}; if dir is �

Example 3. Take the property graph G from Fig. 2 and assume a Cypher pattern
(x{Name : “S0”}) [y{Pedal:“a1”}]��(z), which is equivalent to:

π =

χ1
︷ ︸︸ ︷
(x null {Name :“S0”})

ρ
︷ ︸︸ ︷
(y null null {Pedal :“a1”} �)

χ2
︷ ︸︸ ︷
(z null null)

where χ1, χ2 and ρ are the node and edge patterns. Say u = (x :n1, y :e1, z :n2),
then one can show that (n1,G, u) |= χ1, (e1,G, u) |= ρ and (n2,G, u) |= χ2. Also,
for the path w = (n1e1n2) it holds that (w,G, u) |= π where π = χ1ρχ2.

Pattern Matching. Central to query satisfiability for a graph database is pattern
matching, which is the problem of finding all subgraphs that match a given
pattern. A match for a pattern is a function that maps variables to constants such
that when applied to the pattern, the result is in the original graph database.

For a node pattern χ = (a,L?, {P}?), let free(χ) = {a} be the set
of free variables of χ. Similarly, we define free variables of an edge pattern
ρ = (a, T ?, I?,P?, dir) by free(ρ) = {a}. Then, the free variables of a path pat-
tern π = χ1ρ1χ2ρ2...χn is defined to be the union of all free variables of individual
node and edge patterns occurring in it, i.e., free(π) = free(χ1)∪free(ρ1)∪ ...∪
free(χn). We define pattern matching as the function which searches a graph G
to find all paths p that satisfy a pattern π given a variable assignment u from
values to variables for the free variables of π, i.e. match(π,G, u) = �π�G,u.

For brevity, we drop u and write match(π,G) in the sequel. A Cypher match-
ing query μ ∈ Q can be defined as μ:: = MATCH pattern WHERE exp RETURN ret.
The semantics of this query is to call match(π,G), apply the predicate conditions
of WHERE to filter the search results and project the results:

�μ�G = �MATCH π WHERE exp�G = {w ∈ match(π,G) | �exp�G = true}

70 H. Khosrowjerdi et al.

Definition 5. We say a graph G satisfies a query μ if and only if there exists a
path w in G that is in the semantics of the query. That is:

G |= μ ⇐⇒ ∃w ∈
∏

(G) such that w ∈ �μ�G .

Graph pattern matching is a canonical NP-complete problem. Cypher allows
pattern definitions with infinitely many matches (e.g., loops). This makes Cypher
impractical in a homomorphism-based semantics [19]. For example, if G is a graph
consisting of a single node n, a single edge e from n to n (n → n), then patterns
like π = (n) [*]��(n) match G infinitely many times by iteratively traversing over
e if there is no restriction on the number of iterations. Thus, for i ≥ 0 there
exists a match that iterates i times over e in G. Cypher avoids this by using
an isomorphism-based semantics [8] to disallow repeating edges while traversing
edges in pattern matching. Hence, in the above example, the match function
only returns two matches, one for i = 0 and one for i = 1.

6 Spatio-Temporal Model Checking

Spatio-temporal model checking is a variant of classical model checking that
combines spatial reasoning with temporal reasoning. Given an STA model A, a
STAL formula φ ∈ S, and a path w ∈

∏
(A), model checking analyses whether

A,w |= ¬φ holds. If it does, the path w is returned as a counterexample to φ in
A. If no counterexample w can be found then model checking returns true, i.e.,
φ holds for all possible paths of A.

In traditional explicit state space model checking we usually construct a
product automaton from the automaton model and the requirement formula
and check this for voidness. By contrast, NeoMC uses pattern matching to find
counterexamples. For this we translate the requirement into a graph query (pat-
tern) and perform pattern matching on a graph model of the automaton to find
matches (i.e. counterexamples).

Since STAL is an extension of FOLTL, its model checking problem is similar
to that of FOLTL. Recalling the validity relation for an automaton and an LTL
formula we define validity for STAL formulas as follows.

Definition 6. A |= φ ⇐⇒ � ∃w ∈
∏

(A) such that A,w |= ¬φ

So STAL formulas are interpreted over infinite linear sequences of states
(paths) and have linear counterexamples [20]. It follows that a counterexample
of a specification φ ∈ S is an infinite path w ∈

∏∞(A) such that A,w �|= φ or
A,w |= ¬φ. One can show that w, as a counterexample to φ, can, w.l.o.g, be
restricted to paths of the form x.yω [21]. Such a path is called a “lasso” and
denoted by � in this paper. A lasso consists of a finite prefix path x followed by
an infinite loop over a finite suffix path y [20].

Lasso counterexamples are mainly counterexamples to liveness properties [22]
which have a close relationship with infinite words over finite automata [23].

Spatio-Temporal Model-Checking of Cyber-Physical Systems 71

(i) Node property keys are “Id”, “Name”, “Angle”, “Speed x” oi, “Speed y” oi,
“Distance x” oi and “Distance y” oi for all oi ∈ Obj .

(ii) For all property keys ki of σi ∈ Σ pairs, edge property keys are “Id” and “input” ki.
(iii) For all qi ∈ Q there exists ni ∈ N such that Pnode(ni, “Name”) = “qi”.
(iv) For all key-value pair (ki, vi) of σi ∈ Σ, qi and qi+1=δ(σi, qi) there exists ei ∈E such

that λ(ei) = (ni, ni+1) and Pedge(ei, “input” ki) = vi.
(v) For all qi and oi ∈ Obj then:

-Pnode(ni, “Speed x” oi) = velx(oi, qi),
-Pnode(ni, “Speed y” oi) = vely(oi, qi),
-Pnode(ni, “Distance x” oi) = distx(oi, qi)
-Pnode(ni, “Distance y” oi) = disty(oi, qi)
- and Pnode(ni, “Angle”) = angle(qi).

Fig. 8. Translation rules to convert an STA model A to its corresponding property
graph GA.

For example, the formula GF (φ) specifies that the state property φ must hold
infinitely often along an infinite path w. Clearly, a counterexample to this formula
is an infinite path on which from some point on, φ does not hold. Intuitively, for
a lasso counterexample w = x.yω, this means φ never holds in the loop suffix,
i.e., A, yω �|= φ.

As with FOLTL, not all STAL counterexamples are infinite. Certain formulas
have finite length counterexamples, i.e. satisfiability depends only on a finite
prefix of a path. Examples are safety properties [22] which specify unsafe behavior
that should never happen. An invariant is the simplest example of a safety
property, i.e. a formula of the form G(φ), where φ has no modal operators. For
invariants, a counterexample is a finite path where the last state violates φ. We
can model check an STA A against a STAL formula φ ∈ S as follows:

1) Translate A to a property graph G.
2) Negate the requirement formula φ and translate this into a path pattern

compatible with the target representation, e.g., a lasso pattern.
3) Execute a query to find matches for the pattern inside the property graph,

i.e., a MATCH query in Cypher.
4) Return the results of pattern matching, if these exist, as paths, otherwise

return true.

6.1 Soundness of Model Checking

The expressiveness of Cypher as a declarative query language is equivalent to
a subset of first-order logic with transitive closure [18,24]. This enables Cypher
to capture complex structural conditions and dependencies of STAL, and makes
Neo4j a powerful platform for model checking. Thus we can translate a given
STAL formula into a lasso graph query such that when evaluated over a graph
representation of an STA model A, the query matches identify counterexamples.

Let GA = (N ,E,L,T, λ,Lab,Typ, Pnode, Pedge) be a graph representation of
an STA A = (Σ,Q,Obj, q0, egoObj, δ, angle, distx, disty, velx, vely) obtained by

72 H. Khosrowjerdi et al.

applying the rules in Fig. 85. For any path w ∈
∏

(A) in A we let w ∈
∏

(GA)
denote the isomorphic copy6 of w in the property graph GA.

Then Theorem 1 establishes the soundness of our model checking approach.

Theorem 1. For any STAL formula φ there exists a Cypher query μφ =
Trans(φ) such that for every lasso path w = x.yω ∈

∏
(A) A,w |= φ ⇔ w ∈

�μφ�G.

To prove Theorem 1, we first define the translation function Trans : S → Q
that converts a STAL formula φ ∈ S to a Cypher query μφ. Since our approach
to STAL model checking is to search for lasso counterexamples, Trans coverts a
given STAL formula into a lasso query which is composed of a lasso pattern

π� = (n{Name:“q0”}) [e1*0..]��(m) [e2*1..]��(m)

and a WHERE condition, i.e.

μφ = Trans(φ) = MATCH π� WHERE condition(w, φ).

In the condition condition(w,φ) the path w is a generic solution to the struc-
tural lasso pattern π� that must be further filtered by the WHERE condition to
satisfy the formula φ. Thus from Sect. 5.1, it follows that �μφ�G ⊆ �π��G . Since
the Cypher structure of the lasso pattern is fixed, we need only define the Cypher
expression condition(w,φ) inductively based on the structure of the STAL for-
mula φ. The base case is where φ is atomic and does not include any modal
operators.

Let w = (α0, α1...) and wi = (αi, αi+1...) where αi = (σi, qi) and σi = (ki, vi)
for i ≥ 0. Notice that if w is a lasso then so is each wi. Suppose A,w |= φ then
we define Trans as follows:

Base Case. Since no modality is involved, the condition of φ must hold for
the initial state α0 ∈w, i.e., A, (null, q0) |= φ. Similarly in w ∈ �Trans(φ)�G , the
condition of φ must hold for the initial state n0 of w. We define condition(w, φ)
for an atomic φ below.

A,w |= (exp1bopexp2) ⇐⇒ �exp1�α0
bop �exp2�α0

≡
w ∈ �μφ = MATCH π� WHERE condition(w, (exp1bopexp2))�G

where condition(w, (exp1bopexp2)) = (n0.exp1bop n0.exp2)

A,w |= (input = σ) ⇐⇒ �input = σ�α0 ≡
w ∈ �μφ = MATCH π� WHERE condition(w, (input = σ))�G

where condition(w, (input = σ)) = (e0.input k = v)

Inductive Case. For arbitrary formulas φ, ψ ∈ S such that w |= φ, w ∈
�Trans(φ)�G , we define below Trans for ¬φ, φ∧ψ, φ∨ψ, X(φ), F (φ), G(φ) cases.

5 In this figure, ni ∈ N , ei ∈ E, L = { “State”}, T = {“Next”}, Lab(ni) = “State” and
Typ(ei) = “Next”.

6 By the construction rules of Fig. 8, GA is essentially structurally isomorphic to A.

Spatio-Temporal Model-Checking of Cyber-Physical Systems 73

• cases (¬φ), (φ ∧ ψ) and (φ ∨ ψ):

Trans(¬φ) ≡ MATCH π� WHERE NOT condition(w, φ)
Trans(φ ∧ ψ) ≡ MATCH π� WHERE condition(w, φ) AND condition(w, ψ)
Trans(φ ∨ ψ) ≡ MATCH π� WHERE condition(w, φ) OR condition(w, ψ)

• case X(φ): According to the semantics of STAL,

A,w |= X(φ) ⇐⇒ A,w1 |= φ ≡
w ∈ �μφ = MATCH π� WHERE condition(w1, φ)�G

• case F (φ): The semantic of the eventually operator F concerns a finite path
from a state qi to a reachable state qj where φ holds. Therefore,

A,w |= F (φ) ⇐⇒ ∃j ∈ N : A,wj |= φ ≡
w ∈ �μφ = MATCH π� WHERE Any(ni, ei in �π��G WHERE condition(wi, φ))�G

The Any function is a list predicate with boolean output which ensures that
at least one element of a given list satisfies the conditions of its WHERE clause.
Note that the index i of Any(ni, ei . . .) is a position index and the Any function
is actually a loop that breaks when the condition is satisfied.

• case A,w |= G(φ): Evaluating an always operator G requires to verify φ on an
infinite path and for a lasso path w = x.yω, φ must be valid for all states and
transitions of the lasso. Therefore all nodes of a lasso path w should satisfy
the WHERE conditions of φ. In Cypher, the All function is a list predicate
with boolean output which ensures that all elements of a given list satisfy
the conditions of its WHERE clause. Note that the index i of All(ni, ei . . .) is
a position index and the All function is actually a loop without any break
condition.

A,w |= G(φ) ⇐⇒ ∀i ∈ N : A,wi |= φ ≡
w ∈ �μφ = MATCH π� WHERE All(ni, ei in �π��G WHERE condition(wi, φ))�G

Example 4. To clarify the translation procedure, below we provide two examples.

(i) A,w |= GF (φ) → GF (ψ): This is a conjunction of GF and FG operators.
If this formula is satisfiable by a lasso path w = x.yω, then either all states
of y must not satisfy φ, or at least one state of y must satisfy ψ.

A, w |= GF (φ) → GF (ψ) ≡ FG(¬φ) ∨ GF (ψ)
⇐⇒ (i, j ∈ N, ∃i. ∀j, i ≤ j. wj �|= φ) ∨ (i, j ∈ N, ∀i. ∃j, i ≤ j. wj |= ψ) ≡
w ∈ �μφ = MATCH π� WHERE

Any(ni, ei in �π��G WHERE All(nj , ej in �π��G WHERE NOT condition(wi+j , φ)))
OR All(ni, ei in �π��G WHERE Any(nj , ej in �π��G WHERE condition(wi+j , φ)))�G

(ii) A,w |= GFX(φ): One of the complex structures is the combination of the
liveness GF and the next X operators. However, the translation to a lasso
query is straightforward.

A, w |= GFX(φ) ⇐⇒ i, j ∈ N, ∀i. ∃j, i ≤ j. wj+1 |= φ ≡
w ∈ �μφ = MATCH π� WHERE All(ni, ei in �π��G WHERE Any(nj , ej in �π��G WHERE

condition(wi+j+1, φ)))�G

74 H. Khosrowjerdi et al.

Having defined the translation Trans, the proof of Theorem 1 is straightfor-
ward and relies on the definition of w, w ∈ �μφ�G .

7 NeoMC Implementation and Evaluation

Figure 9 shows the architecture of our Neo4j-based model checker NeoMC that
checks STAL formulas against STA models. As we have seen in Sect. 6, to check a
STAL formula, NeoMC first converts an STA model to a Neo4j property graph.
Then, it negates the formula and converts it into a Cypher pattern and uses
this to perform a pattern matching query. If the query matches any paths in the
graph, counterexamples are returned. Otherwise the verdict true is returned.

The Neo4j database (DB) is a stand-alone Java application that can be
instantiated through the Neo4j API. It is responsible for performing all database
queries and populating the results. The communication between NeoMC and the
database is carried out over a TCP connection known as a “Bolt url”.

Fig. 9. Architecture of NeoMC integrated with Neo4j DB

To evaluate NeoMC we constructed a number of large STAs by machine
learning using the platooning simulator of [25] to simulate a distributed multi-
object dynamical system. These STAs ranged in size from 1 K to 71 K states.
The largest STA had about 1.5 million transitions.

Our specific case study is a two vehicle platoon consisting of a leader (the
ego object) and a follower. The leader is under manual control, and the follower
is autonomously controlled using a cooperative adaptive cruise control (CACC)
algorithm [25] for longitudinal control. The simulator accepts two input signals to
control the brake and throttle of the lead vehicle. These continuous inputs were
discretized to 10 different levels. In total, there were 21 discretized input values,
called Pedal values. The outputs of the simulator used to construct the STA
models were the speed of the leader and the relative distance between leader and
the follower in the x dimension only, i.e., Speedx(leader) and Distancex(follower),
denoted by Speedx and Distancex.

To benchmark NeoMC on the STAs derived from the platooning simula-
tion, we defined a set of spatio-temporal requirements on the platooning vehicles

Spatio-Temporal Model-Checking of Cyber-Physical Systems 75

themselves using STAL. Some of these requirements are presented in Table 1. A
positive Pedal value in the table means pressing the lead vehicle gas pedal and
a negative value means braking pedal level. Case (1) is to capture a near colli-
sion and means: “The distance between the follower and the lead vehicles should
never be less than five meters. Case (2) means: “Gassing up the lead vehicle
should eventually result in a speed greater than 30 km/h”, and Case (3) means
that, “Eventually the leader speed should stay at a high speed value greater than
70 km/h if the gas pedal is nearly fully pressed infinitely often”.

Benchmarking tests of NeoMC were performed on an Ubuntu 16.4 LTS
machine with Intel Core i5-6260U ×4 running at 1.80 GHz and 16Gb available
RAM.

Table 2 summarizes our benchmark results for NeoMC model checking based
on 10 different sized STA models and 7 different STAL requirements. Table 2
shows both the number of counterexamples found (lhs) and the execution time

Table 1. Platoon requirements in STAL.

Req STAL formula φ Cypher query μ = Trans(¬φ)

(1) G¬(Distancex < 5) WHERE m.Distance x < 5

(2) FG(Pedal > 0) → FG(Speedx > 30) WHERE Any(ni, ei in �π��G WHERE

All(nj , ej in �π��G WHERE ei+j.input Pedal>0))

AND All(ni, ei in �π��G WHERE Any(nj , ej in �π��G
WHERE NOT ni+j.Speed x>30))

(3) GF (Pedal > 7) → GF (Speedx > 70) WHERE All(ni, ei in �π��G WHERE

Any(nj , ej in �π��G WHERE ei+j.input Pedal>7))

AND Any(ni, ei in �π��G WHERE All(nj , ej in �π��G
WHERE NOT ni+j.Speed x>70))

(4) G(Pedal > 0 → X(acc∗ > 0)) WHERE Any(ni, ei in �π��G WHERE ei.input Pedal>0

AND NOT ni+1.Speed x - ni.Speed x>0)

(5) G(Pedal < 0 → X(acc < 0)) WHERE Any(ni, ei in �π��G WHERE ei.input Pedal<0

AND NOT ni+1.Speed x - ni.Speed x<0)

(6) G¬(Pedal = −10 → WHERE Any(ni, ei in �π��G WHERE NOT ei.input Pedal=-10

(Next(Speedx) − Speedx) > 0) OR ni+1.Speed x - ni.Speed x < 20))

(7) G¬(Speedx > 120) WHERE m.Speed > 120

∗ The Leader acceleration.

Table 2. Number of identified counterexamples and the execution time for model
checking of requirements in Table 1 for different model sizes (1.1 K–71 K states). Here
ε means the execution time is less than 0.5 s.

Req #Counterexamples on K-state models Execution Time∗ (in seconds)

1.1 1.7 2.1 2.5 3.4 4 7.8 12.6 25 71 1.1 1.7 2.1 2.5 3.4 4 7.8 12.6 25 71

(1) 8 4 2 5 7 7 28 28 100 35 ε ε ε ε ε ε 1 1 3 1

(2) 0 0 0 0 0 0 0 0 0 0 3 4 5 6 8 9 39 40 102 784

(3) 0 0 0 0 0 15 1 1 16 0 2 3 4 5 7 9 25 41 107 793

(4) 1 1 1 1 1 2 6 6 11 1 ε ε ε ε ε ε ε ε 1 1

(5) 27 32 43 64 98 100 100 100 100 57 ε ε ε ε ε ε ε ε ε 1

(6) 0 0 0 0 0 0 0 2 0 8 ε ε ε ε ε ε ε ε 1 1

(7) 0 0 0 0 0 0 0 0 0 0 ε ε ε ε ε ε ε ε 1 ε

76 H. Khosrowjerdi et al.

in each case (rhs). We limited the maximum number of counterexamples to 100
to make the table concise and readable. In general, as the learned model grows
in size, more violations of a requirement can be observed, because the model
captures more execution paths with bad sequences of states. Table 2 shows that
the execution time increases linearly with respect to model size.

We were unable to easily compare NeoMC performance with existing model
checkers. One reason is that we could not find an efficient and scalable rep-
resentation of large STA models for tools such as NuXMV [26], Spin [27] and
LTSmin [28]. These tools parse the input models into their internal data rep-
resentation and as the models grow in size, they either fail to read the files or
construct the state space efficiently. Even for a medium size STA of 4k states,
the model parsing times of Spin and the model checking time of NuXMV are
beyond any acceptable figures. The memory usage of NuXMV is huge, of the
order of tens of Gigabytes. Spin also consumes a lot of memory to generate
its internal verifier. Only the built-in symbolic format (i.e. ETF) of LTSmin
matches the STA models and quickly performs the model checking. However,
the ETF format only works for symbolic datatypes and does not support FO
STAL expressions and formulas.

8 Related Work

There is a large body of work on spatio-temporal logic. A rather complete list
of related work in this area is provided in [1]. Verification of spatial and tem-
poral modalities is studied in different domains such as in biochemistry [29],
biology [30,31] and air traffic management [32]. Research on spatio-temporal
model checking is often tailored to specific applications. SpaTeL [6] uses statis-
tical model checking to estimate the probability of events in networked systems
that relate different regions of space at different times. Statistical model checking
has also been applied to collective adaptive systems where spatio-temporal prop-
erties expressed in STLCS [33] are verified against discrete, geographical models
of a smart public transportation system [34]. In [7] a shape calculus based spatio-
temporal model checking is introduced for the verification of a real-time railroad
crossing system. A second order model checker is used to perform reachability
checks on BDDs representing transition relations.

Verification of vehicle platooning is also studied by Kamali et al. [2] where
timed and untimed automata models of a spatial controller are model checked
using AJPF and UPPAAL. Schwammberger [3] introduced MLSL logic to verify
safety of traffic maneuvers. Similarly to STAL, MLSL is using the snapshot con-
cept which captures the state of objects at a given moment in time. However,
our work differs from [2,3]. While they tried to verify safety of controller algo-
rithms using timed-automata models in UPPAAL, our model checking technique
is developed to verify a learned behavior of CO-CPSs using graph queries. Also,
AJPF does not support temporal analysis and is resource-heavy, whereas graph
databases scale with ease. The most closely related work to ours is [24] which
used declarative graph queries for the verification of CPSs. They developed a

Spatio-Temporal Model-Checking of Cyber-Physical Systems 77

runtime monitoring for railway systems against spatial requirements expressed in
a 3-valued logic, but, this work lacks exhaustive verification and model checking.

9 Conclusions

We have proposed an approach to spatio-temporal model checking based on
using the graph database Neo4j and its declarative query language Cypher. We
have established the theoretical soundness of this approach, and implemented
and evaluated it on a large case study. NeoMC shows that query solving for
Cypher is an efficient way to implement model-checking. To the best of our
knowledge, our work is the first attempt to apply graph database technology to
model checking. Furthermore, Neo4j enabled us to quickly prototype a model
checker for STAL that was scalable to large models. The efficiency of NeoMC is
partly due to efficient search algorithms employed in modern graph databases,
and also the fact that we could avoid constructing large product automata.

Acknowledgments. This research has been supported by KTH ICT-TNG project
STaRT (Spatio-Temporal Planning at Runtime), as well as the German Federal Min-
istry of Education and Research (BMBF) through funding for the CISPA-Stanford
Center for Cybersecurity (FKZ: 13N1S0762).

References

1. Khosrowjerdi, H., Meinke, K.: Learning-based testing for autonomous systems
using spatial and temporal requirements. In: Proceedings of the 1st Interna-
tional Workshop on Machine Learning and Software Engineering in Symbiosis,
MASES@ASE 2018, Montpellier, France, 3 September 2018, pp. 6–15 (2018).
https://doi.org/10.1145/3243127.3243129

2. Kamali, M., Linker, S., Fisher, M.: Modular verification of vehicle platooning with
respect to decisions, space and time. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS
2018. CCIS, vol. 1008, pp. 18–36. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12988-0 2

3. Schwammberger, M.: An abstract model for proving safety of autonomous urban
traffic. Theor. Comput. Sci. 744, 143–169 (2018). https://doi.org/10.1016/j.tcs.
2018.05.028

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

5. Chaochen, Z., Hoare, C., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991). http://www.sciencedirect.com/science/article/pii/
002001909190122X

6. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC 2015, Seattle, WA, USA, 14–16 April 2015, pp. 189–198 (2015). https://
doi.org/10.1145/2728606.2728633

https://doi.org/10.1145/3243127.3243129
https://doi.org/10.1007/978-3-030-12988-0_2
https://doi.org/10.1007/978-3-030-12988-0_2
https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.1016/0304-3975(94)90010-8
http://www.sciencedirect.com/science/article/pii/002001909190122X
http://www.sciencedirect.com/science/article/pii/002001909190122X
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1145/2728606.2728633

78 H. Khosrowjerdi et al.

7. Quesel, J.-D., Schäfer, A.: Spatio-temporal model checking for mobile real-time
systems. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS,
vol. 4281, pp. 347–361. Springer, Heidelberg (2006). https://doi.org/10.1007/
11921240 24

8. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of modern query languages for graph databases. ACM Comput. Surv. 50(5),
68:1–68:40 (2017). http://doi.acm.org/10.1145/3104031

9. Bennaceur, A., Hähnle, R., Meinke, K. (eds.): Machine Learning for Dynamic Soft-
ware Analysis: Potentials and Limits. LNCS, vol. 11026. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8

10. Meinke, K., Niu, F.: A learning-based approach to unit testing of numerical soft-
ware. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS,
vol. 6435, pp. 221–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16573-3 16

11. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5 11

12. Webber, J.: A programmatic introduction to neo4j. In: Conference on Systems, Pro-
gramming, and Applications: Software for Humanity, SPLASH 2012, Tucson, AZ,
USA, 21–25 October 2012, pp. 217–218 (2012). https://doi.org/10.1145/2384716.
2384777

13. Francis, N., et al.: Cypher: an evolving query language for property graphs. In: Pro-
ceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, 10–15 June 2018, pp. 1433–1445 (2018).
http://doi.acm.org/10.1145/3183713.3190657

14. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, (2010). iv + 417 pages, Machine Translation, vol. 24,
no. 3–4, pp. 291–293, 2010. https://doi.org/10.1007/s10590-011-9086-9

15. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 11–139 (2008). https://doi.org/10.1145/1322432.1322433

16. Robinson, I., Webber, J., Eifrem, E.: Graph Databases: New Opportunities for
Connected Data, 2nd edn. O’Reilly Media Inc., Sebastopol (2015)

17. Hölsch, J., Schmidt, T., Grossniklaus, M.: On the performance of analytical and
pattern matching graph queries in neo4j and a relational database. In: Proceedings
of the Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT 2017),
Venice, Italy, 21–24 March 2017 (2017). http://ceur-ws.org/Vol-1810/GraphQ
paper 01.pdf

18. Francis, N., et al.: Formal semantics of the language cypher. CoRR, vol.
abs/1802.09984 (2018). http://arxiv.org/abs/1802.09984

19. Junghanns, M., Kießling, M., Averbuch, A., Petermann, A., Rahm, E.: Cypher-
based graph pattern matching in gradoop. In: Proceedings of the Fifth
International Workshop on Graph Data-management Experiences & Systems,
GRADES@SIGMOD/PODS 2017, Chicago, IL, USA, 14–19 May 2017, pp. 3:1–3:8
(2017). http://doi.acm.org/10.1145/3078447.3078450

20. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

21. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths
(extended abstract). In: 24th Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, USA, 7–9 November 1983, pp. 185–194 (1983). https://
doi.org/10.1109/SFCS.1983.51

https://doi.org/10.1007/11921240_24
https://doi.org/10.1007/11921240_24
http://doi.acm.org/10.1145/3104031
https://doi.org/10.1007/978-3-319-96562-8
https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1007/978-3-642-16573-3_16
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1145/2384716.2384777
http://doi.acm.org/10.1145/3183713.3190657
https://doi.org/10.1007/s10590-011-9086-9
https://doi.org/10.1145/1322432.1322433
http://ceur-ws.org/Vol-1810/GraphQ_paper_01.pdf
http://ceur-ws.org/Vol-1810/GraphQ_paper_01.pdf
http://arxiv.org/abs/1802.09984
http://doi.acm.org/10.1145/3078447.3078450
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/SFCS.1983.51
https://doi.org/10.1109/SFCS.1983.51

Spatio-Temporal Model-Checking of Cyber-Physical Systems 79

22. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985). https://doi.org/10.1016/0020-0190(85)90056-0

23. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the Symposium on Logic in
Computer Science (LICS 1986), Cambridge, Massachusetts, USA, June 16–18,
1986, pp. 332–344 (1986)

24. Búr, M., Szilágyi, G., Vörös, A., Varró, D.: Distributed graph queries for runtime
monitoring of cyber-physical systems. In: Russo, A., Schürr, A. (eds.) FASE 2018.
LNCS, vol. 10802, pp. 111–128. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89363-1 7

25. Meinke, K.: Learning-based testing of cyber-physical systems-of-systems: a pla-
tooning study. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol.
10497, pp. 135–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66583-2 9

26. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 22

27. Holzmann, G.J.: The SPIN Model Checker - Primer and Referencemanual.
Addison-Wesley, Boston (2004)

28. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

29. Chiarugi, D., Falaschi, M., Hermith, D., Olarte, C.: Verification of spatial and
temporal modalities in biochemical systems. Electr. Notes Theor. Comput. Sci.
316, 29–44 (2015). https://doi.org/10.1016/j.entcs.2015.06.009

30. Parvu, O., Gilbert, D.R.: Automatic validation of computational models using
pseudo-3D Spatio-temporal model checking. BMC Syst. Biol. 8, 124 (2014).
https://doi.org/10.1186/s12918-014-0124-0

31. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci,
E.: Learning and detecting emergent behavior in networks of cardiac myocytes.
Commun. ACM 52(3), 97–105 (2009). https://doi.org/10.1145/1467247.1467271

32. de Oliveira, Í.R., Cugnasca, P.S.: Checking safe trajectories of aircraft using hybrid
automata. In: Anderson, S., Felici, M., Bologna, S. (eds.) SAFECOMP 2002. LNCS,
vol. 2434, pp. 224–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45732-1 22

33. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6 24

34. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. STTT
20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1016/j.entcs.2015.06.009
https://doi.org/10.1186/s12918-014-0124-0
https://doi.org/10.1145/1467247.1467271
https://doi.org/10.1007/3-540-45732-1_22
https://doi.org/10.1007/3-540-45732-1_22
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/s10009-018-0483-8

	Spatio-Temporal Model-Checking of Cyber-Physical Systems Using Graph Queries
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Spatio-Temporal Automaton Logic (STAL)
	5 Cypher Syntax and Semantics
	5.1 Cypher Patterns

	6 Spatio-Temporal Model Checking
	6.1 Soundness of Model Checking

	7 NeoMC Implementation and Evaluation
	8 Related Work
	9 Conclusions
	References

