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Abstract: We show how a small subgroup confinement-like attack may be mounted on the Bitcoin
addresses generation protocol, by inspecting a special subgroup of the group associated to point
multiplication. This approach does not undermine the system security but highlights the importance
of using fair random sources during the private key selection.
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1. Introduction

Since its appearance in 2008 [1], Bitcoin (BTC) has been attracting a considerable attention from many
communities, embracing several different fields, such as cryptography, computer science, and finance [2].
Although it has seen the light as a decentralized digital currency, its underlying blockchain structure has
been rapidly adopted for diverse purposes [3,4]. Instances of its use, beyond modern cryptocurrencies,
are smart contracts [5], financial services [6], supply chain monitoring [7], and digital notarization [8].

The security of these distributed ledgers has been widely studied and usually relies on a mixture
of cryptographic and consensus-reaching algorithms [9]. In the renowned case of BTC, the consensus
is reached via a hashcash proof of work [10], while public (asymmetric) cryptography is employed
to ensure transactions legitimacy. In a nutshell, apart from some special cases, the owner of a bitcoin
is any person who can prove (following the BTC protocol) to own the private key associated to the
public address where that bitcoin has been previously sent.

Thus, it is crucial for such a cryptosystem to generate private keys that do not allow their
recovering from public information. In the BTC case, this depends on the difficulty of the Elliptic
Curve Discrete Logarithm Problem (ECDLP) and the preimage resistance of some hash functions.
However, if the keys are not uniformly distributed, there may be a (relatively) small portion of the
keyspace where they can be easily found (see, e.g., Reference [11]).

In this short note, we pursue the latter idea. In 2017, we conjectured that the key generation
algorithms used by some BTC wallets to select private keys were flawed, that is, there was a
non-negligible probability that some of the private keys would lie inside a small keyspace with
prescribed algebraic properties, which can be entirely inspected. To be more precise, given the size q of
the BTC curve, in 2018, we scanned a reasonably small subgroup of the multiplicative group (Z/qZ)∗,
actually finding (against all odds) a few public addresses corresponding to elements of such group.
Immediately after that, we devised a method to warn the anonymous bitcoin’s holders of this problem.
Then, we followed a prudent responsible disclosure behavior, not mentioning the current note publicly
until 2020 [12].
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This paper is organized as follows: we begin by recalling, in Section 2, the mathematical notions
employed for BTC address generation, while, in Section 3, the aforementioned group of weak private
keys is determined and analyzed. The method effectiveness and further possible work directions are
finally discussed in Section 4.

2. Preliminaries

2.1. Elliptic Curve Discrete Logarithm Problem

In this section, we recall some basic notions and facts about elliptic curves and their related discrete
logarithm problem. For a more detailed discussion of these topics, we refer to Reference [13,14].

Since we are here interested only in cryptographic applications of elliptic curves, we present this
celebrated mathematical object in its simplest version (as the short Weierstrass form of a non-singular
planar cubic). In the same spirit, in this short note the underlying field F may always be considered
finite [15]. Given a prime integer p, we will denote the prime field with p elements by Fp.

Definition 1 (Elliptic curve). Let F be a field of characteristic different from 2 and 3 and A, B ∈ F be elements
such that ∆ = 4A3 + 27B2 6= 0. The elliptic curve defined by A, B over F is the set

E = EA,B(F) = {(x, y) ∈ F× F | y2 = x3 + Ax + B} ∪ {O},

where O is called the point at infinity.

It is well-known that on an elliptic curve E one may define the chord-tangent point-addition law

+ : E× E→ E,

which makes E into an abelian group with O as the identity element, and with the inverses given by

−(x, y) = (x,−y).

This operation reflects the following geometric construction: given two points P1, P2 ∈ E, the point
P1 + P2 is the inverse of Q, the third point of intersection of the curve with line connecting P1 and P2.
When the underlying field F is finite, this construction still holds with a toric identification of F× F,
as in Figure 1.

Figure 1. Chord-tangent sum over finite fields.

The point at infinity is a formal point that may be considered to be vertically aligned with every
pair of inverse curve points.

The iterated sum of a given point naturally defines an action of Z on E, as follows.
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Definition 2 (Scalar multiplication). Let k be a positive integer and let P be a point on an elliptic curve.
We define k · P as

k · P = P + P + P + · · ·+ P︸ ︷︷ ︸
k

.

If k = 0, we set 0 · P = O, while, when k < 0, we define k · P = |k|(−P).

Given a point P ∈ E, we denote by < P > the subgroup generated by P in E, i.e., all the points of
E that may be written as k · P for some k ∈ Z.

Problem 1 (ECDLP). Let E be an elliptic curve defined over a finite field F, and let P ∈ E be one of its points,
called the base-point. Finding the discrete logarithm of any Q ∈< P > amounts to finding an integer k ∈ Z
such that Q = k · P.

While computing a point-multiple is computationally easy, solving the discrete logarithm problem
is considered hard, except for few special cases [13]. For this reason, scalar multiplication over
elliptic curves is considered a valid one-way function, on which cryptographic protocols may be
designed. These objects own many other cryptographically desirable properties, for which we refer to
Reference [16].

In practical implementations, curves of large and prime size are considered. The point groups of
such curves are cyclic, so that each non-zero element is a proper generator and a valid base-point.

2.2. The Bitcoin Address Generation

The BTC system is based on public key encryption: in short, addresses are generated by public
keys, which are originated from private ones, withheld by users. All these steps are performed through
one-way functions, which are considered impossible to reverse in a feasible time.

2.2.1. Public Key Generation

In the BTC system, both private and public keys depend on an elliptic curve E , known as
Secp256k1, which belongs to the Standards for Efficient Cryptography Group [17]. The parameters of
E= EA,B(Fp) are

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1, A = 0, B = 7,

i.e., its affine points form the zero set of

y2 − x3 − 7 ∈ Fp[x, y].

The base-point is defined as P = (Px, Py), where

Px = 55066263022277343669578718895168534326250603453777594175500187360389116729240,

Py = 32670510020758816978083085130507043184471273380659243275938904335757337482424.

It may be verified that this curve is a cyclic group, of prime order

q = |E | = 115792089237316195423570985008687907852837564279074904382605163141518161494337;

thus, E is isomorphic to Zq via the mapping P 7→ 1.
A private key is any integer 1 ≤ k ≤ q− 1, so that the key space may be identified with Zq

∗.
The corresponding public key is the point k · P of E .
This curve may be visualized as a set of scattered points inside the Fp×Fp plane with a prescribed

base-point P, in which multiples generate the whole curve, as in the small example of Figure 2.
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Figure 2. E0,7(F43) with some multiples of the distinguished point P = (2, 12).

2.2.2. Address Generation

Given any public key Q = (Qx, Qy), the corresponding address may be computed by first
applying two hash functions consecutively, SHA-256 [18] and RIPEMD-160 [19], then adding an initial
byte and four final checksum bytes, and finally encoding the result to Base58 [20]. To sum up, the BTC
address is obtained from any public key (we are omitting a few details) by performing

Base58 (0 × 00 || RIPEMD-160( SHA-256 (c || Qx || Qy)) || checksum),

where ||means string concatenation, and c is a prescribed constant.
For the following discussion, it is important to notice that SHA-256 turns any input element into

a 256-bit string, while RIPEMD-160 squeezes it into a 160-bit string. Therefore, even if the final address
is 200-bit long, there may be, at most, 2160 ' 1048 distinct BTC addresses.

3. A Small Subgroup Attack

3.1. Subgroup Detection

Since private keys are elements of Zq
∗, a straight brute force attack to the Bitcoin system seems

infeasible, as inverting the map

φ : Zq
∗ −→ E, k −→ k · P

would imply solving an ECDLP instance.
However, there are few small subgroups H ≤ Zq

∗ that may be inspected, for which an exhaustive
computation of all the possible keys and corresponding addresses may be carried out. This way one
may compute the inverse of the restricted map

φ|H : H −→ G.

Since the keys are supposed to be uniformly distributed, there is no probabilistic argument
suggesting their presence in specific small subgroups. However, assuming that this is the case, we need
to choose a suitable subgroup. In this view, by considering the factorization of q− 1 into prime integers

q− 1 = 26 × 3× 149× 631× 107361793816595537︸ ︷︷ ︸
p1

× 174723607534414371449︸ ︷︷ ︸
p2

× 341948486974166000522343609283189︸ ︷︷ ︸
p3

, ,
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it is not difficult to test that the maximal subgroup of moderate size (i.e. that can today be checked
with an average computer) contains N elements, where

N = 26 × 3× 149× 631 = 18051648.

Such a group may be easily produced by considering any primitive element t of Zq, such as t = 7,
and considering the element g = tp1×p2×p3 , which generates the subgroup

H =< g >= {gi | 1 ≤ i ≤ 18051648}.

Indeed, we summarize in the following theorem two well-known results.

Theorem 1. Let F be a field. Then, any finite subgroup G ≤ F∗ is cyclic. Moreover, for every positive integer
M dividing |G|, there is a unique subgroup H ≤ G such that |H| = M.

3.2. Subgroup Inspection

The group H as previously defined has less than 20 millions elements; therefore, we were able to
straightforwardly construct, in a few days, the BTC addresses originated by all private keys k ∈ H and
to check whether they have appeared in the BTC blockchain since its creation until 2018.

We recall that an address appears in the blockchain whenever it receives any amount of bitcoin.
Note that the number of addresses in the BTC blockchain does not correspond to the number of actual
BTC users, as modern wallets handle many different addresses for each user.

With this procedure, we found 4 BTC addresses, in which private keys belong to H:

1. 1PSRcasBNEwPC2TWUB68wvQZHwXy4yqPQ3,
2. 1B5USZh6fc2hvw2yW9YaVF75sJLcLQ4wCt,
3. 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm,
4. 1JPbzbsAx1HyaDQoLMapWGoqf9pD5uha5m.

Two of them, (3) and (4), came from the trivial keys 1 and −1, and they might have been
generated on purpose, but the remaining two addresses appear to be legit. In particular, a blockchain
inspection (Reference [21], 2018) suggests that one of them (2) has been used as temporary address for
moving a small amount of bitcoins, while the other (1) has probably been used as a personal address,
since its owner has stored some bitcoins there for 4 years.

To show that the private key of address (1) was really recovered, we used three of our addresses

A. 1FCuka8PYyfMULbZ7fWu5GWVYiU88KAU9W,
B. 1NChjA8s5cwPgjWZjD9uu12A5sNfoRHhbA,
C. 1695755gMv3fJxYVCDitMGaxGu7naSXYmv,

and we performed tiny transactions from each of them, as shown in Figure 3.

A

1

B

C

A

T1

T1

T2
T3

T3

Figure 3. Transactions summary.

These operations may be easily verified through any blockchain explorer, such as Reference [21],
by searching for their transaction IDs:
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T1. 69ad7033376cea2bbea01e7ef76cc8d7bc028325e9179b2231ca1076468c1a1e,
T2. 1dd5c256a1acc81ea4808a405fd83586ea03d8b58e29a081ebf3d0d95e77bf63,
T3. b722c77dcdd13c3616bf0c4437f2eb63d96346f74f4eeb7a1e24c1a9711fc101.

4. Discussion and Conclusions

Although our approach has found only few addresses that may be generated by secret keys in
the considered subgroup, it is worth noting that this outcome is still unexpected. At the time of our
analysis (June 2018), there were about

M = 4.5× 108.

BTC addresses that have appeared in the blockchain [21]. We have inspected

N = 18, 051, 648

addresses of those generated from the secret keys in H. As we have already noticed in Section 2.2,
the number of possible distinct addresses is, at most,

R = 2160,

which we may assume to be all existent under the assumption of uniform distribution of the considered
hash functions (SHA-256 and RIPEMD-160). Therefore, the expected probability of finding at least a
BTC address in the blockchain from a random sampling performed N times was

1−
N−1

∏
i=0

(
1− N

R− i

)
' 5.6× 10−33.

We conclude that, if the BTC private keys had been generated in a random manner, we would not
have found any addresses.

There may be many reasons why such an unlikely event has occurred. Probably it depends on the
pseudo-random algorithms (or their implementations) used by wallets to generate user’s addresses.
Our 2017 conjecture started from this obvious fact from group theory: if g ∈ H ≤ G, then ga ∈ H for
all a. Therefore, if private keys are obtained via iterated powers, once the wallet gets a key inside a
subgroup, all the other keys will be in the same.

As for future research lines, it might be interesting to realize such an approach on different
cryptocurrencies, or to examine other algebraic structures that may be associated to the private key
space, such as special cosets of H.
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