Universal Composability is Secure Compilation

Marco Patrignani
Stanford University
CISPA Helmholz Center for
Information Security

Abstract

Universal composability is a framework for the specification
and analysis of cryptographic protocols with a strong com-
positionality guarantee: UC protocols remain secure even
when composed with other protocols. Secure compilation
studies whether compiled programs are as secure as their
source-level counterparts, no matter what target-level code
they interact with. Although at present these disciplines are
studied in isolation, we argue that there is a deep connection
between them whose exploration will benefit both.

This paper outlines the connection between universal com-
posability and robust compilation, the latest of secure com-
pilation theories. We show how to read the universal com-
posability theorem in terms of a robust compilation theorem,
and vice-versa. This, in turn, shows which element of one
theory corresponds to which element in the other. We be-
lieve this is the first step towards understanding how secure
compilation theories can be used in universal composability
settings, and vice-versa.

To better explain and clarify notions, this paper uses colours.
For a better experience, please print or view this paper in colour.

1 Introduction

Universal composability (UC) is a framework for the speci-
fication and analysis of cryptographic protocols with a key
guarantee about compositionality [6, 7]. Several variations
of UC exist [4, 11, 14, 17] but in this paper we focus on the
original model of Canetti [6]. If a protocol is proven UC, that
protocol behaves analogously to some high-level, secure-by-
construction ideal functionality no matter what the protocol
interacts with. As such, if that protocol is used within a
larger protocol, in order to reason about the latter, we can
replace the former protocol with its ideal functionality and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Riad S. Wahby
Stanford University

Robert Kiinnemann
CISPA Helmholz Center for
Information Security

just reason about the rest. In other words, UC protocols are
secure even when composed with other protocols.

Secure compilation (SC) is a discipline that studies how
to prove that a compiler from a source to a target language
preserves the security properties of source programs in the
target programs it produces. Several criteria for secure com-
pilation have been proposed in the literature, ranging from
relational, equivalence-based notions [1, 21] to more recent
notions based on preserving traces [2, 19, 20].

While these two worlds seem to deal with quite differ-
ent notions, we argue that they are deeply connected: both
worlds are concerned with abstract notions (ideal function-
alities, source programs) which are generally deemed se-
cure, and more concrete notions (protocols, target programs)
whose security must be proven against arbitrary opponents.
What’s more, proving that a protocol is UC, or that a com-
piler is secure, ensures that any attack at the concrete level
(attacker, target program context) can be simulated at the
abstract level (simulator, source program context).

We dig deeper into this analogy and show that there are
benefits to be gained for both worlds by understanding their
correspondence more deeply. After presenting UC and SC,
this paper briefly outlines those benefits.

1.1 Universal Composability

We begin by briefly sketching how the UC framework is
used. First, cryptographers craft a concrete cryptographic
protocol ~ of interest, for example, a key-agreement and mes-
sage transmission protocol like TLS [10]. In order to prove
that " is UC (" Fyc F), they must come up with an ideal func-
tionality F that (a) is secure by construction—in this example,
a secret channel—and (b) such that "~ is at least as secure as
F. What is key here is that the behaviour of ~ is given with
respect to malicious attackers A that try to violate the cryp-
tographic guarantees of . The ideal functionality, on the
other hand, exists in a secure world where it interacts with
“safe” attackers S that cannot break the ideal functionality.
Roughly speaking, a UC proof demonstrates that it is possi-
ble to reduce any A to some S, effectively showing that any
possible adversarial behaviour against ~ in the real world
is also possible against F in the secure world. Because the
secure world is secure by construction, the protocol must be
secure in the real world.

The behaviour of protocols, ideal functionalities and at-
tackers is observed by an environment Z that outputs a
boolean value 0/1 representing some abstract observation.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

Intuitively, if Z’s output is the same in both worlds, its obser-
vations of (', A) and (F, S) match. However, since protocols
deal with elements such as keys, which are guessable finite
bitstrings, allowing all possible attackers would break any
scheme. To sidestep this issue, Z’s outputs in the two worlds
must be the same except with very small probability (=), and
attackers must be polynomially bounded.
We can formalise UC as follows [6].

Definition 1.1 (UC (Informally)). " Fyc F L'vA, 33, VZ such
that A is poly-bound. Then the diagram holds.

0/1 0/1
0 4
VA Z

Q

/N

—>

/N

Fe—S

Bidirectional arrows (<) represent the ability to communi-
cate between two parties. =

A key result of UC is that we can reason about protocols
compositionally. Thus, if | Fyc F1 and we also have a larger
protocol that uses " inside (), then we can just
reason about the larger protocol using the ideal functionality
instead (F11). This simplifies the reasoning process: the

sub-part is secure, since it behaves like F;.

1.2 Robust Compilation

Recent developments in secure compilation have created a
set of criteria that preserve classes of hyperproperties (read,
arbitrary program behaviours [8]) dubbed robust compila-
tion [2]. These criteria (like previous secure compilation
criteria [1, 5, 19, 21]) are robust, i.e., they talk about arbitrary
target-level attackers that compiled code is linked against.
Our candidate from the robust compilation set is Robust
Hyperproperty-Preserving Compilation (RHC), whose for-
mal definition is given below. A compiler satisfying RHC
produces compiled code that upholds the same hyperprop-
erties as its source-level counterpart. Informally, a compiler
satisfies RHC if, no matter what target-level program con-
text (VA) the compiled code ([P]) is linked against (><)! the
target behaviour (~~1) can also be reproduced (~1) by the
source program (P) linked with (<) a source-level program
context (JA). Formally, RHC is defined as follows:

def

Definition 1.2 (RHC). [-] + RHC = VP, A.3JA.Vt.
A< [P]~t & A Pt =]

To make the connection with UC clearer, below is a dia-
grammatic representation of RHC. We invite the reader to
compare it with the UC diagram presented before.

1We do not use the more conventional programming-language notation for
plugging a program in a context, namely A [P], to draw a neater analogy
with UC. Effectively, these two notations are equivalent: A[P] and A >« P.

Marco Patrignani, Riad S. Wahby, and Robert Kiinnemann

1.3 A Bridge Between Two Worlds

At this point, we start to see a connection between the two
worlds: it looks like all elements from each system exist in
the other. We capture this intuition in the table below.

| e | SC |
protocol [P] compiled program
concrete attacker A target context
ideal functionality F|P source program
simulator S|A source context
environment, output Z, 0/1 1, ~ trace, semantics
communication o | linking
probabilistic equiv. r| = trace equality
human translation * — F | [-]: P — P compiler

While most of this table should, at this point, not be surpris-
ing, we want to focus on the final line, since our primary
insights revolve around it.

While decades of work has yielded automated tools to
generate binaries for our computers in the form of compilers,
the same is far from true for cryptographic protocols—and
devising ideal functionalities for complex cryptographic pro-
tocols by hand is a tedious and error-prone process. But the
above analogy suggests that secure compilation may point
the way towards generating concrete cryptographic proto-
cols from high-level specifications, much like binaries are
created from high-level programming languages. This would
have a plethora of benefits, a few of which we list below.
First, secure compilation for cryptography would open the
development of new cryptographic protocols to a broad audi-
ence. Second, having compilers for cryptographic protocols
would let us draw upon years of knowledge in proof mecha-
nisation, both to mechanise UC proofs and to automate the
secure implementation of cryptographic protocols (along the
lines of CompCert [16] and CakeML [13]).

Finally, UC proofs are often very complex, and that com-
plexity is in fact a major hurdle for widespread adoption of
the framework. For example, it took years and several unsuc-
cessful attempts to prove results for cryptographic primitives
as seemingly basic as digital signatures [3] and symmetric en-
cryption [15] (a particular challenge is the definition of poly-
nomial runtime bounds [12]). Fortunately, recent advances
in proving compilers secure have given us well-understood
proof techniques called backtranslations [2, 9, 18, 20]—and
we believe these techniques can be employed to rigorously
and automatically generate UC proofs.

On the other side, reasoning about composition for securely-
compiled programs may lead to new insights for SC. Con-
sider some securely-compiled code [P1]* linked with other
securely compiled code [P2]®. What this entails at the level

Universal Composability is Secure Compilation

of the resulting program [P1]* > [P2]® is unknown, because
each compiled program may be proven secure in the sense
of preserving a distinct class of hyperproperties. We believe
that insights from the UC world will help us reason about
securely-compiled program composition.

Conference’17, July 2017, Washington, DC, USA

Acknowledgements: This work was partially supported by
the German Federal Ministry of Education and Research (BMBF)
through funding for the CISPA-Stanford Center for Cybersecurity
(FKZ: 13N150762).

References

(1]

[2

—

3

—

[4

—

(5

—

[6

—

[7

—

8

[t

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Martin Abadi. Protection in programming-language translations. In
ICALP’98, pages 868—883, 1998.

Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco
Patrignani, and Jérémy Thibault. Journey beyond full abstraction:
Exploring robust property preservation for secure compilation. In
2019 IEEE 32th Computer Security Foundations Symposium, CSF 2019,
June 2019.

Michael Backes and Dennis Hofheinz. How to break and repair a
universally composable signature functionality. In International Con-
ference on Information Security, pages 61-72. Springer, 2004.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reac-
tive simulatability (RSIM) framework for asynchronous systems. Inf.
Comput., 205(12):1685-1720, 2007. doi: 10.1016/j.ic.2007.05.002. URL
https://doi.org/10.1016/j.ic.2007.05.002.

William J. Bowman and Amal Ahmed. Noninterference for free. In
ICFP. ACM, 2015.

Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings of the 42Nd IEEE Symposium on
Foundations of Computer Science, FOCS 01, pages 136—, Washington,
DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1390-5. URL
http://dl.acm.org/citation.cfm?id=874063.875553.

Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of
universally composable security for standard multiparty computation.
Cryptology ePrint Archive, Report 2014/553, 2014. https://eprint.iacr.
org/2014/553.

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Jour-
nal of Computer Security, 18(6):1157-1210, 2010. doi: 10.3233/
JCS-2009-0393. URL https://www.cs.cornell.edu/~clarkson/papers/
clarkson_hyperproperties_journal.pdf.

Dominique Devriese, Marco Patrignani, Frank Piessens, and Steven
Keuchel. Modular, Fully-abstract Compilation by Approximate Back-
translation. Logical Methods in Computer Science, Volume 13, Issue 4,
October 2017.

Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi,
and Jorg Schwenk. Universally composable security analysis of tls. In
International Conference on Provable Security, pages 313-327. Springer,
2008.

Dennis Hotheinz and Victor Shoup. GNUC: A new universal com-
posability framework. Cryptology ePrint Archive, 2011. URL http:
//eprint.iacr.org/.

Dennis Hofheinz, Dominique Unruh, and Jérn Miiller-Quade. Polyno-
mial runtime and composability. Journal of Cryptology, 26(3):375-441,
2013.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. CakeML: a verified implementation of ML. In 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 179-192. ACM, 2014. ISBN 978-1-4503-2544-8. doi:
10.1145/2535838.2535841. URL https://cakeml.org/popl14.pdf.

Ralf Kiisters. Simulation-Based Security with Inexhaustible Interactive
Turing Machines. In Computer Security Foundations Workshop, pages
309-320. IEEE Computer Society, 2006.

Ralf Kiisters and Max Tuengerthal. Universally composable symmetric
encryption. In 2009 22nd IEEE Computer Security Foundations Sympo-
sium, pages 293-307. IEEE, 2009.

Xavier Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363-446, 2009. URL http://dx.doi.org/10.
1007/s10817-009-9155-4.

https://doi.org/10.1016/j.ic.2007.05.002
http://dl.acm.org/citation.cfm?id=874063.875553
https://eprint.iacr.org/2014/553
https://eprint.iacr.org/2014/553
https://www.cs.cornell.edu/~clarkson/papers/clarkson_hyperproperties_journal.pdf
https://www.cs.cornell.edu/~clarkson/papers/clarkson_hyperproperties_journal.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
https://cakeml.org/popl14.pdf
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1007/s10817-009-9155-4

Conference’17, July 2017, Washington, DC, USA

(17]

(18]

Ueli Maurer. Constructive cryptography - A new paradigm for se-
curity definitions and proofs. In Sebastian Médersheim and Catus-
cia Palamidessi, editors, Theory of Security and Applications - Joint
Workshop, TOSCA 2011, Saarbriicken, Germany, March 31 - April 1,
2011, Revised Selected Papers, volume 6993 of Lecture Notes in Com-
puter Science, pages 33-56. Springer, 2011. ISBN 978-3-642-27374-
2. doi: 10.1007/978-3-642-27375-9_3. URL https://doi.org/10.1007/
978-3-642-27375-9_3.

Max S. New, William J. Bowman, and Amal Ahmed. Fully abstract
compilation via universal embedding. In International Conference on
Functional Programming, pages 103-116. ACM, 2016.

Marco Patrignani, Riad S. Wahby, and Robert Kiinnemann

[19]

[20]

[21]

Marco Patrignani and Deepak Garg. Secure Compilation and Hyper-
properties Preservation. In Proceedings of the 30th IEEE Computer
Security Foundations Symposium CSF 2017, Santa Barbara, USA, CSF
2017, 2017.

Marco Patrignani and Deepak Garg. Robustly safe compilation. In
Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, ESOP’19, 2019.

Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches
to secure compilation a survey of fully abstract compilation and related
work. ACM Comput. Surv., 51(6):125:1-125:36, January 2019.

https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3

	Abstract
	1 Introduction
	1.1 Universal Composability
	1.2 Robust Compilation
	1.3 A Bridge Between Two Worlds

	References

