
Discovering Succinct Pattern Sets Expressing
Co-Occurrence and Mutual Exclusivity
Jonas Fischer

Max Planck Institute for Informatics and
Saarland University, Saarbrücken, Germany

fischer@mpi-inf.mpg.de

Jilles Vreeken
CISPA Helmholtz Center for Information Security,

Saarbrücken, Germany
jv@cispa.saarland

ABSTRACT
Pattern mining is one of the core topics of data mining. We consider
the problem of mining a succinct set of patterns that together ex-
plain the data in terms of mutual exclusivity and co-occurence. That
is, we extend the traditional pattern languages beyond conjunc-
tions, enabling us to capture more complex relationships, such as
replacable sub-components or antagonists in biological pathways.

We formally define this problem in terms of the Minimum De-
scription Length principle, by which we identify the best set of
patterns as the one that most succinctly describes the data. To
avoid spurious results—in sparse data mutual exclusivity is likely
just due to chance—we propose an efficient statistical test for 𝐾-
ary mutual exclusivity. As the search space for the optimal model
is enormous and unstructured, we propose Mexican, a heuristic
algorithm to efficiently discover high quality sets of patterns of co-
occurences and mutual exclusivity. Through extensive experiments
we show that Mexican recovers the ground truth on synthetic data,
and meaningful results on real-world data. Both in stark contrast
to the state of the art, that result in millions of spurious patterns.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
Pattern Set Mining, Mutual Exclusivity, Pattern Language, Interest-
ingness, MDL
ACM Reference Format:
Jonas Fischer and Jilles Vreeken. 2020. Discovering Succinct Pattern Sets
Expressing Co-Occurrence and Mutual Exclusivity. In Proceedings of the

26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3394486.3403124

1 INTRODUCTION
Whenever you encounter a polar bear in the wild, it may be com-
forting to know you do not additionally have to worry about being
attacked from behind by a penguin. Polar bears live in the arctic,
penguins live in the antarctic, and hence their presence is mutually

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403124

exclusive. While this common knowledge may be helpful in sur-
viving the arctic, discovering patterns of mutual exclusivity can in
general reveal valuable insight that goes well beyond what simple
associations or co-occurrences are able to express.

We are particularly interested in discovering a small, non-redundant
and easily interpretable set of patterns that together summarize
the data and clearly express the significant co-occurrences and mu-
tual exclusivity within. In supermarket basket analysis, patterns of
mutual exclusivity allow to express typical buying preferences of
customers, such as products of either the one or the other brand. By
combining information of mutual exclusivity with co-occurrences,
we can discover the ingredients of a fancy dinner with meat and its
vegetarian replacement.

While transaction data is the classic application for pattern min-
ing, the key motivation for this work comes from biology, in par-
ticular from single cell sequencing analysis. We consider binary
data where for each cell (transactions) we are given which genes
are active or which epigenetic features are present (items), and
want to gain insight in how these interact. The traditional task is
to discover groups of significantly co-activated genes, which are
of interest because such genes may be part of genetic pathways
or encode part of protein complexes. Patterns of co-occurrence
only tell part of the story, however. Genes with mutually exclu-

sive activation allow us additionally to discover e.g. antagonistic
relationships within pathways, such as gene co-activations that
are lethal, and exchangable sub-components in protein complexes,
slightly changing the function of the protein complex—analogous
to exchanging the bit of a screwdriver.

Things become even more interesting when we consider a pat-
tern language that additionally allows combinations of mutually
exclusivity and co-occurrence, as this enables us to discover and
succinctly describe a much larger class of possible interactions. For
example, we can then express that the co-activation of two genes A
and B is mutually exclusive with the co-activation of genes C, D and
E, or that we often see either gene A or B activated, but whichever
one it is, always together with one out of C, D, and E. Neither of
these interactions would be possible to capture with statements on
co-occurrence or mutual exclusivity alone, we truly need a pattern
language that includes both.

In this paper we define exactly such a pattern language, with
the goal to discover the set of patterns over this language that
together summarize the data best. We formalize this problem in
terms of the Minimum Description Length principle, which permits
a score such that it is robust against noise in the occurrences of
these patterns, and, can avoid spurious results through an efficient
statistical test for 𝐾-ary mutual exclusivity. As the combinatorial
problem of mining the best set of patterns does not lend itself

https://doi.org/10.1145/3394486.3403124
https://doi.org/10.1145/3394486.3403124

to efficient exact search, we propose Mexican, a highly efficient
bottom-up heuristic to discover good pattern sets from data.

We evaluate Mexican on both synthetic and real-world data. On
synthetic data we confirm that, unlike the state of that art, Mexican
is robust to noise and reconstructs the ground truth, and on a wide
range of real world datasets, we find that it discovers small sets
of patterns that we confirm to provide meaningful information.
For example, from real single cell sequencing data we discover
previously unknown patterns of mutual exclusivity that reflect
driving factors of local processes, and which can be confirmed with
results from the literature.

2 RELATEDWORK
Pattern mining is one of the core topics of data mining. The field
started with the seminal work by Agrawal and Srikant [1] on min-
ing frequent itemsets. An enormous amount of research effort was
focused on mining such patterns efficiently [12, 37] and summa-
rizing the set of all frequent patterns [4, 21, 26]. Frequency turned
out to be a bad measure of interestingness, leading to overly many
spurious and redundant results. The main idea to alleviate this is
to use statistical tests for individual patterns [7, 11, 25, 27, 28, 35]
or to use well-founded statistical methods for sets of patterns as a
whole [8, 9, 19, 34]. While both approaches have been shown to
yield high quality patterns, so far either are restricted to discovering
patterns and rules of conjunctions. In addition, our goal is to extract
meaningful patterns of mutual exclusivity and co-occurrence.

To the best of our knowledge, the task of mining (non-redundant,
significant) patterns of mutual exclusiveness has not yet been ex-
plored. There do however exist proposals to generalize pattern
mining towards richer boolean expressions, including disjunctions
[24, 33, 36], but these are again limited to frequency as a measure
of interestingness. Closer to our goal are approaches to mine as-
sociation rules with negative dependencies [2, 11], as whenever
we discover both 𝐴→ ¬𝐵 and 𝐵 → ¬𝐴, we can conclude mutual
exclusiveness between items𝐴 and 𝐵, i.e. infer𝐴 ×⃝ 𝐵. This gives us
the first baseline approach we will consider in the experiments, i.e.
we mine significant association rules using Kingfisher [11], and
post-process its results to identify patterns of mutual exclusivity.

Another related approach is that of mining low entropy sets [13],
which are itemsets for which the contingency table exhibits low
entropy. Low entropy sets hence generalize frequency, and can
detect any type of dependency, including mutual exclusivity. We
consider this as the second baseline, where we simply mine itemsets
with an entropy lower than 𝜏 , and post-process the result to identify
those that exhibit mutual exclusivity.

3 PRELIMINARIES
In this section we discuss preliminaries and introduce notation.

3.1 Notation
We consider binary transaction data. Let I be a set of items, e.g.
products for sale at a store. A transaction 𝑡 ∈ P(I) then corre-
sponds to the set of products a customer bought. A database 𝐷 over
I is a bag of transactions, e.g. the sales transactions in a month. In
general, 𝑋 denotes an itemset 𝑋 ⊆ I. We say that a transaction 𝑡
contains an itemset 𝑋 ⊆ I iff 𝑋 ⊆ 𝑡 .

D
at
a
𝐷

𝜎 𝑄
𝜎
¬𝑄

A B C D E F G
×⃝

∧⃝

A B

C

∧⃝

×⃝

D E

×⃝

F G

𝑄 :

𝑃 :

Figure 1:Toy database with example pattern forest. Left: Data-
base 𝐷 of items 𝐴, ...,𝐺 . Item presence is indicated by bars.
Transactionswhere pattern-subtree𝑄 holds are indicated by
𝜎𝑄 , the remainder of data where the tree does not apply by
𝜎¬𝑄 . Right: Pattern trees of database 𝐷 .

As we are interested in patterns of co-occurrence, mutual exclu-
sivity, as well as combinations thereof, we need a slightly richer
notation than usual in pattern mining. First, we need the projection
𝜋𝑋 (𝐷) of a database𝐷 onto an itemset𝑋 , which yields the intersec-
tion of each transaction 𝑡 ∈ 𝐷 with 𝑋 , i.e. 𝜋𝑋 (𝐷) = {𝑡 ∩𝑋 | 𝑡 ∈ 𝐷}.
Second, we need the selection 𝜎𝑐 (𝐷) of a logical condition 𝑐 over
database 𝐷 , which yields all transactions 𝑡 ∈ 𝐷 that satisfy 𝑐 , i.e.
𝜎𝑐 (𝐷) = {𝑡 ∈ 𝐷 | 𝑐 (𝑡) ≡ ⊤}. We call the number of transactions
where this condition holds, its support supp𝐷 (𝑐) = |𝜎𝑐 (𝐷) |.

We denote the logical 𝑘-ary AND by ∧⃝𝑐1,...,𝑐𝑘 . For a given trans-
action 𝑡 it resolves to ⊤ iff all the given conditions hold, i.e.

(∧⃝
𝑐1,...,𝑐𝑘 (𝑡) ≡ ⊤

) ↔ (∀𝑘𝑖=0𝑐𝑖 (𝑡) ≡ ⊤) . Analogue, we denote the logi-
cal 𝑘-ary XOR by ×⃝𝑐1,...,𝑐𝑘 , which resolves to⊤ iff exactly one of the
provided conditions holds, i.e.

(×⃝ 𝑐1,...,𝑐𝑘 (𝑡) ≡ ⊤
) ↔ (∃𝑗𝑐 𝑗 (𝑡) ≡

⊤ ∧ ∀𝑖≠𝑗𝑐𝑖 (𝑡) ≡ ⊥
)
. We connect conditions back to items 𝐼 ∈ I

by introducing the base case ∧⃝𝐼 (𝑡) ≡ ⊤ ↔ 𝐼 ∈ 𝑡 . Vice versa, it (𝑐)
gives us the itemset 𝑋 of all items involved in a condition 𝑐 . We
then have the projection of 𝐷 onto condition 𝑐 as 𝜋

it (𝑐) (𝐷).
To ease notation, we will write ⊙(𝑐1, . . . , 𝑐𝑘) wherever 𝑡 is clear

from context. In addition, we will directly use single items 𝐼 ∈ I as
conditions, instead of writing ∧⃝(𝐼). As an example, we will write
∧⃝(𝐴, 𝐵,𝐶) and ×⃝(𝐴, 𝐵,𝐶) to denote the co-occurence pattern resp.
the pattern of mutual exclusivity over 𝐴𝐵𝐶 .

We can express more complex patterns by using hierarchies of
conditions, e.g. we can express by ×⃝(∧⃝(𝐴, 𝐵), ∧⃝(𝐶, 𝐷)) that AND-
pattern 𝐴𝐵 holds mutually exclusively with AND-pattern 𝐶𝐷 . In
other words, a condition 𝑐 forms a pattern tree, with conditions
𝑐 ∈ { ×⃝, ∧⃝} as inner nodes, and items 𝐼 ∈ I as leafs. From now on,
we will use formulas, patterns, and pattern trees interchangably.

3.2 Minimum Description Length
The Minimum Description Length (MDL) principle [29] is a com-
putable and statisticallywell-founded approximation of Kolmogorov
complexity [18]. For given data 𝐷 , MDL identifies the best model
𝑀∗ in a given model classM as that model that yields the best
lossless compression. In one-part, or, refined MDL we consider the
length in bits of describing data 𝐷 using the entire model class,
𝐿(𝐷 | M), which gives strong optimality guarantees [10] but is
only feasible for certain model classes. In practice we hence often
use two-part MDL, which is defined as L(𝑀) + L(𝐷 | 𝑀). Here
L(𝑀) is the length of the description of the model, and L(𝐷 | 𝑀)

the length of the description of the data using𝑀 . We will use two-
part codes where we have to, and one-part codes where we can.
Note that in MDL we are only concerned with code lengths, not
actual codes. Since we are interested in measuring lengths in bits,
all logarithms are base 2, and we use 0 log 0 = 0.

4 THEORY
To solve our problem using MDL, we need to formally define a
model classM. As we use two-part codes, we will further need to
define a code length function that gives the number of bits needed to
describe a model, and a code length function that yields the number
of bits needed to describe the data at hand given a model. Before
we formally introduce our approach, we provide the intuitions of
the problem and how MDL naturally lends itself to solve it.

4.1 The Problem, informally
Given a database, our goal is to find a set of patterns that together
succinctly describe the data. Here, we are interested in patterns
that capture co-occurence as well as mutually exclusive relation-
ships in the data. These can be simple relationships, such as the
co-occurence of items 𝐴, 𝐵,𝐶 , captured by ∧⃝(𝐴, 𝐵,𝐶), or the mu-
tual exclusive occurence of them, captured by ×⃝(𝐴, 𝐵,𝐶). We are
also interested in more complex, nested relationships, e.g. two
item sets 𝑋 = {𝑋1, ..., 𝑋𝑖 } and 𝑌 = {𝑌1, ..., 𝑌𝑗 }, with items in 𝑋
co-occuring, and items in 𝑌 co-occuring, but 𝑋 and 𝑌 occuring mu-
tually exclusive, which results in ×⃝(∧⃝(𝑋1, ..., 𝑋𝑖), ∧⃝(𝑌1, ..., 𝑌𝑗)).
With 𝑋 = {𝐴, 𝐵}, 𝑌 = {𝐶} we show this pattern tree in Fig. 1.

We hence define a model 𝑀 ∈ M as a set of pattern trees P,
which we refer to as a pattern forest. We require that every 𝑀
always contains all singleton tree ∧⃝(𝐼) for all 𝐼 ∈ I. This gives
us the baseline encoding that ensures we can always model any
data 𝐷 over I. Wherever a non-singleton pattern tree in𝑀 holds,
however, we will transmit the corresponding data accordingly. As
an example, considering Fig. 1 again, we can succinctly transmit
where 𝐴, 𝐵,𝐶 hold by sending all transactions where pattern tree 𝑃
holds in one go, rather than sending this for each item individually.
This allows us to detect patterns even of low support, as if the
corresponding items co-occur sufficiently strongly, encoding them
together will reduce the code length.

Overall, we aim to find that model𝑀∗ ∈ M such that the overall
cost for the model and data is minimal.

4.2 MDL for Pattern Forests
We will now formalize an MDL score based on the intuition of
pattern forests above. First, we describe how to compute the model
costs and then define the cost of transmitting data given a model .

Encoding a Model. To transmit a model, we first send how many
pattern trees are there in our model𝑀 . We then send each pattern
tree along with the items used in each tree. Our model costs are
thus defined as

L

(
𝑀

)
= LN (|𝑀 |) +

∑
𝑃 ∈𝑀

(
log

(|I |
|it (𝑃) |

)
+ L𝑝𝑐 (|I|, 2)︸ ︷︷ ︸

NML code

+L𝐷 (𝑃)
)

+
∑
𝐼 ∈I

Lst (𝐼) ,

where the last term is the cost for the singleton stumps. We transmit
the number of trees in the forest using the MDL-optimal code LN (𝑛)
for integers𝑛 ≥ 1, which is defined as LN (𝑛) = log∗ 𝑛+log 𝑐0, where
log∗ (𝑛) = log𝑛+ log log𝑛+ ..., and 𝑐0 is a constant chosen such that
LN satisfies the Krafft-inequality [30]. To send an individual pattern
tree 𝑃 ∈ 𝑀 , we first transmit which items it (𝑃) ⊆ I are used in
the tree, which we do using a refined MDL code, in particular the
Normalized Maximum Likelihood (NML) code for multinomials.
This code consists of the cost of the data using an optimal prefix
code over the model class—the log multinomial—and the so-called
parametric complexity Lpc that optimally encodes the complexity
of this model class. For details we refer to Kontkanen et al. [16].
Once we know the relevant items, we proceed to transmit the actual
tree using L𝐷 (𝑃), which we define next.

We encode trees recursively, starting from the root. For every
node we have to use 1 bit to encode whether it is an internal node
or a leaf. If 𝑃 is a leaf, we are done, and have L𝐷 (𝑃) = 1. If 𝑃 is
an internal node, we have to additionally encode the type of the
operator (∧⃝, ×⃝), the number of children |ch(𝑃) |, and the items
it (𝑄) each child 𝑄 ∈ ch(𝑃) contains, after which we can recurse.

For an internal ∧⃝ node 𝑃 with children ch(𝑃) = {𝑄1, . . . , 𝑄𝑘 },
and 𝐷 ′ = 𝜎𝑃 (𝐷) that part of the data where 𝑃 holds,

L
𝐷 (
𝑃
)
= 2 + LN

(|ch(𝑃) |) + L𝑝𝑐 (|𝐷 |, 2) + ∑
𝑄𝑖 ∈ch(𝑃)

L
𝐷′ (𝑄𝑖)

+ Lpc
(|it (𝑃) |, |ch(𝑃) |) + log (|it (𝑃) |

|it (𝑄1) |, . . . , |it (𝑄𝑘) |

)
,

where the terms on the second line together encode the relevant
items per child. Analogue, whenever 𝑃 is an ×⃝ node, we have

L
𝐷 (
𝑃
)
= 2 + LN

(|ch(𝑃) |) + 𝑘∑
𝑖=1

(
L𝑝𝑐

(|𝐷 ′≥𝑘 |, 2)) + ∑
𝑄 ∈ch(𝑃)

L
𝐷′≥𝑘 (𝑞)

+ L𝑝𝑐
(|it (𝑃) |, |ch(𝑃) |) + log (|it (𝑃) |

|it (𝑄1) |, . . . , |it (𝑄𝑘) |

)
,

where 𝐷 ′≥𝑘 = 𝐷 \ (∪𝑘−1𝑗=1𝜎𝑄 𝑗
) that data excluding transactions

covered by children before𝑄𝑘 . Finally, for singleton trees 𝑃𝐼 we get
Lst

(
𝑃𝐼

)
= 1 + L𝑝𝑐

(|𝐷 |, 2) ,
where we use 1 bit to indicate the root is a leaf node, and the
parametric complexity L𝑝𝑐 for the log binomial over all rows.

Encoding the Data. To encode data 𝐷 using a model 𝑀 , we make
use of the information that the pattern trees 𝑃 ∈ 𝑀 provide about
the dependencies in the data. In particular, we use a pattern 𝑃 to
encode that part of the data where 𝑃 holds, while we encode the
remaining data using the singleton trees 𝑃𝐼 for each singleton 𝐼 ∈ I.
We will start with encoding the data for which a singleton tree 𝑃𝐼
holds, i.e., where 𝐼 is present. To do so we use optimal data-to-
model codes [18], which are essentially an index over a canonically
ordered enumeration,

L
𝐷 (
𝜋𝑃𝐼 (𝐷) | 𝑃𝐼

)
= log

(|𝐷 |
|𝜎𝑃𝐼 |

)
.

For a non-singleton pattern tree, things are slightly more involved.
First, we have to encode where the root node, i.e. the logical formula
for this tree, holds, after which we can recurse. We have two cases,
that of an ∧⃝ node, and that of an ×⃝ node. We start with the former,

where we consider data 𝐷 and a tree 𝑃 ∧⃝ with root node ∧⃝ with
children ch(𝑃) = {𝑄1, . . . , 𝑄𝑘 }. We first encode for which of the
|𝐷 | transactions 𝑃 holds, after which we can recurse for each child
𝑄 only for that part of the data 𝐷 ′ = 𝜎𝑃∧⃝ (𝐷) where 𝑃 ∧⃝ holds,

L
𝐷 (
𝜋𝑃∧⃝ (𝐷) | 𝑃 ∧⃝

)
= log

(|𝐷 |
|𝜎𝑃∧⃝ |

)
+

𝑖∑
𝑘=1

L
𝐷′ (𝜋𝑄𝑘

(𝐷 ′) | 𝑄𝑘
)
,

where 𝜋𝑃 (𝐷) is the projection of data 𝐷 on pattern 𝑃 . Analogue,
for a pattern tree 𝑃 ×⃝ with an ×⃝ as root node, we iteratively encode
where each child holds, while actively using information about
already transmitted children. We have

L
𝐷 (
𝜋𝑃×⃝ (𝐷) | 𝑃 ×⃝

)
=

𝑖∑
𝑘=1

((
𝐷 ′≥𝑘
|𝜎𝑄𝑘
|

)
+ L𝐷′≥𝑘 (

𝜋𝑄𝑘
(𝜎𝑃×⃝) | 𝑄𝑘

))
.

where 𝐷 ′≥𝑘 = 𝐷 \ (∪𝑘−1𝑗=1𝜎𝑄 𝑗
) that data excluding data covered by

children before 𝑄𝑘 . Importantly, this encoding is independent of
the order in which we iterate over the children (see Apx. A.4).

As an example, consider Fig. 1, where we would like to encode
data for pattern 𝑃 . Following to the equation above, for an ×⃝ pat-
tern we first encode for each children where they hold, and then
recurse, which yields log

(|𝐷 |
|𝜎𝑄 |

)
bits for identifying transactions of

𝑄 and log
(|𝜎¬𝑄 |
|𝜎𝐶 |

)
bits for identifying transactions of the leaf𝐶 . The

recursion on the ∧⃝ child 𝑄 yields 0 bits, as we already identified
the corresponding transactions with the code for the root node. The
same is the case when we recurse on the leaf nodes.

Putting all together, we now send for each pattern tree where it
holds and transmit the remaining data with singleton trees,

L

(
𝐷 | 𝑀)

=
∑
𝑃 ∈𝑀

(
L
𝐷 (
𝜋𝑃 (𝐷) | 𝑃

)) +∑
𝐼 ∈I

(
L
𝐷 (
𝜋𝐼 (𝐷) | 𝐼

))
,

where the last term corresponding to the singleton trees only trans-
mits transactions that are not covered by a pattern, i.e. we consider
a modified transaction multiset 𝜎 ′𝐼 (𝑡) = {𝑡 ∈ 𝐷 | 𝐼 ∈ 𝑡 ∧ (∀𝑃 ∈
𝑀. 𝐼 ∉ 𝜋𝑃 (𝑡))} . With the above, we have a lossless encoding for a
dataset 𝐷 given a model𝑀 .

4.3 The Problem, formally
With the scores above, we can now formally state the problem.

Problem 1 (Minimal Pattern Forest Problem). Given a data-

base 𝐷 over items I, find the smallest set of pattern trees 𝑀 that

minimizes the total description length

L

(
𝐷,𝑀

)
= L

(
𝑀

) + L(𝐷 | 𝑀)
.

Although our defined model encoding allows for arbitrary hier-
archies over ×⃝ and ∧⃝, we can apriori reject certain combinations
because we know they will not be insightful. For example, if a node
and its children are all ∧⃝, we can obtain a much simpler model
without loss by merging these nodes into a single ∧⃝ node. We can
hence safely exclude directly nested ∧⃝ nodes from our search.

We also exclude pattern trees with directly connected ×⃝ nodes—
not for reasons of inefficiency, but rather because we are not inter-
ested in what these represent. Consider, for example a nested ×⃝
pattern such as ×⃝(𝐴, ×⃝(𝐵,𝐶)). Rather than expressing that one of
either 𝐴, 𝐵, or 𝐶 holds, which is what we are explicitly interested

in, this pattern expresses that an odd number of its items is true.
Although arguably an interesting statement to discover in data, it
is not mutual exclusivity and hence not what we are after.

Overall, we therefore enforce alternating layers of operators, that
is a children of ×⃝ can only be a ∧⃝ or a leaf, and a children of ∧⃝ can
only be ×⃝ or a leaf. To keep all discovered patterns interpretable,
we restrict ourselves in practice to pattern trees of depth at most 2.

Discovering the exact solution to the Minimal Pattern Forest

Problem requires the enumeration of all possible sets of pattern
trees, for the simple reason that our score does not exhibit any
trivially exploitable structure such as convexity, monotonicity, or
sub-modularity. However, the model space is of size

|M| =
|I |/2∑
𝑘=1

|I |∑
𝑖=2𝑘

(|I |
𝑖

) ∑
𝑙1+..+𝑙𝑘=𝑖
𝑙1,..,𝑙𝑘 ≥2

(
𝑖

𝑙1, .., 𝑙𝑘

)

·
𝑘∏
𝑗=1

2
𝑙 𝑗 /2∑
𝑚=0

∑
ℎ1,..,ℎ𝑚≥2

2𝑚≤ℎ1+..+ℎ𝑚≤𝑙 𝑗

(
ℎ1 + .. + ℎ𝑚
ℎ1, .., ℎ𝑚

) (
𝑙 𝑗 − (ℎ1 + .. + ℎ𝑚)

)
! ,

a detailed derivation can be found in Appendix A.1. It is thus prac-
tically infeasible to enumerate this search space.

Hence, we resort to heuristics.

4.4 The Chance of Being Exclusive
Before we present our algorithm we first discuss the issue of spuri-
ous discoveries. That is, especially in sparse data, we are very likely
to find that two or more items are perfectly mutually exclusive
but just so by chance. To rule out that we include such spurious
patterns in a model, we introduce a statistical test that supplements
our MDL score, that is able to rule out patterns in a model that are
likely to arise by chance. Formally, we want a statistical test that
yields the likelihood of seeing an MDL gain similar or better than
observed for a given ×⃝ pattern over itemset 𝑋 , assuming indepen-
dence between the items 𝐼 ∈ 𝑋 . It turns out that the MDL gain for
a two item pattern ×⃝(𝐴, 𝐵) is monotone in the joint count.

Theorem 4.1 (Monotonicity of gain). For items 𝐴, 𝐵 with

marginals 𝑛𝐴, 𝑛𝐵 and joint 𝑛𝐴𝐵 , the MDL gain of adding ×⃝(𝐴, 𝐵) to
the model𝑀 is smaller than for any 𝑛′𝐴𝐵 < 𝑛𝐴𝐵 .

Proof. Proof postponed to Appendix A.2. □

By this theorem we hence know that any datasets for 𝐴, 𝐵 with
similar or better gain are exactly those datasets with smaller or
equal joint count.

For the simple case of two variables, we can obtain an exact
p-value through Fisher’s exact test. Fisher’s exact test leverages
the fact that an observed joint count with fixed marginal counts
follows a hypergeometric distribution, hence we can compute the
exact p-value by

𝑝∗2 =

𝑛𝐴𝐵∑
𝑖=0

(𝑛𝐴
𝑖

) (𝑛−𝑛𝐴
𝑛𝐵−𝑖

)(𝑛
𝑛𝐵

) ,

where 𝑛𝑋 is the number of rows that contain 𝑋 . For given signifi-
cance thresholds 𝛼 , this yields an exact test to decide for the simple
case of 2-ary ×⃝ pattern if it is significant or not—and which allows
evaluating the influence of noise on mutually exclusivity over 𝐴, 𝐵.

0 2 4 6 8 10

−5

−4

−3

−2

−1

𝛼 = 0.001

% noise

lo
g𝑝
∗

(a) Exact p-value 𝑝∗ for experiments of 2-ary ×⃝ with varying levels of
noise in the data. Significance threshold 𝛼 is given as dashed line, 25%
and 75% quantiles are indicated by the red band.

−3
00

−2
50

−2
00

−1
50

−1
00 −5
0 0

−300

−250

−200

−150

−100

−50

0 𝛼 = 0.001

𝛼
=
0.
00
1

log𝑝∗

lo
g𝑝

0

200

400

600

800

1,000

m
in
(𝑛
𝐴
,𝑛
𝐵
,𝑛
𝐶
)

(b) Approximate p-values 𝑝 against exact p-values 𝑝∗ for experiments
of 3-ary ×⃝ with varying margins. Minimum margin for an experi-
ment is indicated by color.

Figure 2: Sensitivity of Fisher’s exact test regarding noise (left) and evaluation of the p-value approximation (right).

To do so, we generate data of 𝑛 = 1000 transactions, where we
plant a perfect ×⃝ pattern with margins 𝑛𝐴 = 𝑛𝐵 = 100, 𝑛𝐴𝐵 = 0,
and vary the level of noise. In particular, we add noise by flipping
{0.01, 0.11, ..., 10} % entries uniformly at random. For each noise
level we generate 100 folds, measure the 𝑝-value, for which we
report the median and 25% to 75% quantile range in Figure 2a. We
see that already at very modest amounts of noise (2%) the observed
gains could just as well be by chance, and clearly illustrates the
need for a statistical test.

However, while with Fisher’s exact test we have a test for the
case of 2 variables, there is no hypergeometric distribution we can
use for three variables—we have to resort to plain combinatorics,
and enumerate all possibilities of observing data with the given
marginals, given by

𝑝∗3 =

𝑛𝐴𝐵∑
𝑖=0

𝑛𝐴𝐶∑
𝑗=0

𝑛𝐵𝐶∑
𝑘=0

𝑛𝐴𝐵𝐶∑
𝑙=0

(
𝑛

𝑛A

) (
𝑛𝐴
𝑛AB

) (
𝑛AB
𝑛ABC

) (
𝑛 − 𝑛A
𝑛B − 𝑛AB

) (
𝑛B − 𝑛AB
𝑛BC − 𝑛ABC

)
(
𝑛 − 𝑛A − 𝑛B + 𝑛AB

𝑛C − 𝑛BC − 𝑛AC + 𝑛ABC

) (
𝑛A − 𝑛AB
𝑛AC − 𝑛ABC

)
/
((
𝑛

𝑛A

) (
𝑛

𝑛B

) (
𝑛

𝑛C

))
.

While somewhat doable for patterns of three items and small joint
counts, this quickly becomes infeasible otherwise: if we generalize
this formula to𝐾-ary XOR, the number of sums grows to 2𝐾 −𝐾 −1,
while the number of terms in each summation grows to 2𝐾 −1. That
is, the computational complexity of just computing the p-value for
𝐾-ary XOR grows exponentially in𝐾 . As we are explicitly interested
in arbitrary sized sets of mutually exclusive items, we hence need an
alternative solution. To this end, we present a good approximation1
for the p-value of 𝐾-ary XOR, for which the computation time is
independent of 𝐾 .

Suppose we know that for a 3-ary XOR 𝐴𝐵𝐶 that ×⃝(𝐴, 𝐵) is
significant for a given significance threshold 𝛼 under 𝑝∗2 . Then,
we can use an adaptation of Fisher’s exact test to approximate 𝑝∗3 ,

1We refer to it Fischer’s inexact test.

by treating 𝐴𝐵 as a new item that we call ×⃝𝐴𝐵 . Furthermore, we
denote by 𝑛𝐴𝐵 the number of rows that contain both𝐴 and 𝐵 hence
are not mutually exclusive. We then get an approximation by

𝑝3 =
𝑛𝐴𝐵𝐶∑
𝑖=0

(𝑛×⃝𝐴𝐵
+𝑛𝐴𝐵

𝑖

) (𝑛−𝑛×⃝𝐴𝐵
−𝑛𝐴𝐵

𝑛𝐶−𝑖
)(𝑛

𝑛𝐶

) .

More generally, for two sets of variables 𝑋,𝑌 for which we know
×⃝(𝑋) and ×⃝(𝑌) is significant, the p-value of ×⃝(𝑋 ∪𝑌) is approxi-
mated by

𝑝 =

𝑛
𝑋𝑌∑
𝑖=0

(𝑛
𝑋

𝑖

) (𝑛−𝑛
𝑋

𝑛
𝑌
−𝑖

)(𝑛
𝑛
𝑌

) ,

where 𝑛𝑋 = |{𝑡 ∈ 𝐷 | (𝑡 ∩𝑋) ≠ ∅}| is the number of rows where at
least one of the items of 𝑋 is present. Note that we thus essentially
condensed 𝑋 and 𝑌 each in a new item 𝑋 and 𝑌 . Since we are now
working on the case of two variables again, Theorem 4.1 applies
and we can leverage the fact that the gain is monotone in the joint
count. Furthermore, we can use the following recursive definition
of terms 𝑞𝑖 – the 𝑖-th term in the summation – that drastically
reduces numerical instabilities for large 𝑛,

𝑝0 =

(𝑛−𝑛
𝑋

𝑛
𝑌

)(𝑛
𝑛
𝑌

) ,

𝑝𝑖 = 𝑝𝑖−1 ·
(𝑛𝑋 − 𝑖) (𝑛𝑌 − 𝑖)

(𝑖 + 1) (𝑛 − 𝑛𝑋 − 𝑛𝑌 + 𝑖 + 1)
.

We provide a proof of this recurrence in Appendix A.3.
To explore how well we approximate the true p-value, we gener-

ate data with 𝑛 = 500,𝑚 = 3, vary the marginal densities for each
of the three variables in {5, 10, ..., 100}, the joints between each of
the two variables in {0, 5, 10, 15} and the full joint in steps of 2 up to
the minimum pairwise joint. This leaves us with a total of 144000
experiments covering the space of very sparse to dense dataset
margins and combinations of those. In our tests, 𝑝3 shows to be a

good, slightly more conservative approximation of 𝑝∗3 that deviates
from the exact value only if an item 𝐼 has low support 𝑛𝐼 in the
order of ten rows (see Fig. 2b), while computation is on average
200 times faster. Knowing that with larger 𝐾-ary XOR the running
time increases exponentially for the exact test, while our approxi-
mation remains constant regarding 𝐾 , we get a good, computable
approximation that allows us to prune for insignificant mutually
exclusive patterns. While due to multiple hypothesis testing issues
that plague every significant pattern mining approach, we cannot
claim significance of the ×⃝ patterns, we can leverage this test as a
powerful filtering technique to prevent many spurious patterns to
be even considered in the model.

5 MEXICAN
To discover high quality pattern forests in practice, we propose
the Mexican algorithm,2 which leverages heuristics to efficiently
explore the search space. To discover patterns representing mutual
exclusivity and co-occurrences that are easily interpretable, we
restrict the depth of pattern trees to 2 and alternating operators
between layers. The Mexican algorithm can however be trivially
adapted to discover patterns of arbitrary depth 𝑑 .

5.1 Merging Trees
The main idea of Mexican is that, instead of enumerating all pos-
sible models, we iteratively refine the current model by combining
pattern trees in the current model. We do so as follows.

Mexican starts with a model𝑀 that only consists of singleton
trees. We can combine two singleton trees𝐴 and 𝐵 by introducing a
new root, yielding ×⃝(𝐴, 𝐵) and ∧⃝(𝐴, 𝐵) as candidate pattern trees.
A pattern tree ×⃝(𝐴, 𝐵) and a singleton 𝐶 we can combine in the
following two ways. We either merge 𝐶 into the XOR, and have
×⃝(𝐴, 𝐵,𝐶), or we create a new conjunctive node with both patterns
as children, i.e. we have ∧⃝(×⃝(𝐴, 𝐵),𝐶). Analogue, a pattern tree
∧⃝(𝐴, 𝐵) and singleton 𝐶 we can again either merge, and have
∧⃝(𝐴, 𝐵,𝐶), or combine under a new mutual exclusivity root node,
and have ×⃝(∧⃝(𝐴, 𝐵),𝐶).

If we have two pattern trees with root nodes of the same type,
e.g. ∧⃝(𝐴, 𝐵) and ∧⃝(𝐶, 𝐷), resp. ×⃝(𝐴, 𝐵) and ×⃝(𝐶, 𝐷), we can ei-
ther merge them and obtain ∧⃝(𝐴, 𝐵,𝐶, 𝐷) resp. ×⃝(𝐴, 𝐵,𝐶, 𝐷), or
combine them by introducing a new root node of the alternate
kind, and have ×⃝(∧⃝(𝐴, 𝐵), ∧⃝(𝐶, 𝐷)) resp. ∧⃝(×⃝(𝐴, 𝐵), ×⃝(𝐶, 𝐷)).
Overall, we require that the depth of the new tree is ≤ 2, and that
operators alternate along a path from root to leaf.

Summarizing the above, we create candidate patterns from pairs
of pattern trees 𝑃 and 𝑅 as follows:
• Make 𝑅 and 𝑃 children of a new root 𝑟 ∈ { ×⃝, ∧⃝}
• Make 𝑅 a new child of 𝑃
• Merge 𝑅 with existing child 𝑄 of 𝑃
– if 𝑟𝑜𝑜𝑡 (𝑅) = 𝑟𝑜𝑜𝑡 (𝑄), add children of 𝑅 to children of 𝑄
– if 𝑄 is singleton, make 𝑄 child of 𝑅, and 𝑅 child of 𝑃
• Merge 𝑅 and 𝑃 that have same root operator

We thus obtain an algorithm mergeTrees(𝑀) that given a current
model𝑀 yields a set of candidate patterns to refine𝑀 . Although
heuristic, this scheme does explore large parts of the relevant search

2for summarizing using Mutual EXclusIve and Conjunctive pAtterN s

Algorithm 1:Mexican
input :Dataset 𝐷 , Significance threshold 𝛼
output :Heuristic approximation to the optimal model𝑀∗

1 𝑀 ← I ; // Initialize model with singletons
2 do
3 C ← mergeTrees(𝑀) ; // Generate candidates
4 𝑀 ′ ← 𝑀 ;
5 Δ′ ← 0;
6 for 𝑃 ∈ C do
7 Δ← L(𝐷,𝑀 ⊕ 𝑃) − L(𝐷,𝑀) ; // Compute gain
8 𝑝 ← 0;
9 if root (𝑃) = ×⃝ then // If candidate is XOR
10 𝑝 ← 𝑝 of P ; // Compute p-Value
11 if Δ < Δ′ and 𝑝 < 𝛼 then // Update current best
12 𝑀 ′ ← 𝑀 ⊕ 𝑃 ;
13 Δ′ ← Δ;

14 𝑀 ← 𝑀 ′ ; // Update best model
15 while L(𝐷,𝑀) decreases;
16 return𝑀

space: intuitively, a conjunction specifies that items usually co-
occur, and hence that all subsets of these items usually co-occur,
and similarly so for mutual exclusive patterns. This is captured by
the idea of our bottom-up search.

5.2 Algorithm
Putting together the candidate generation strategy and the MDL
code length definitions, we arrive at Mexican, for which we give
the pseudocode in Algorithm 1. Starting with the set of all singleton
trees as initial model (line 1), we iteratively refine our model by
generating a set C of candidate pattern trees using mergeTrees
(line 3), from which we find the pattern 𝑃 that gives the best gain
Δ = L(𝐷,𝑀 ⊕ 𝑃) − L(𝐷,𝑀) in terms of our previously defined
MDL score (line 7). In case the candidate is an ×⃝ pattern, we also
compute the p-Value estimate 𝑝 (line 9, 10) and filter it out if it is
above the signifance threshold 𝛼 (line 11). We add the pattern 𝑃
with the highest gain to the model,𝑀 ⊕ 𝑃 , while removing all non-
singleton patterns that were used to construct 𝑃 from𝑀 (line 12).
If there is no candidate that would decrease the current codelength,
we terminate and return the current best model (line 15, 16).

5.3 Complexity
Normally, we analyze the complexity of an alogrithm in terms of the
size of the input. Here, the theoretical worst case time complexity
in terms of the input size is exponential in the number of items.
However, if we only consider small models – which is what MDL
ensures – this statement is neither insightful nor a tight bound.
Thus, we will analyze the complexity in terms of the size of the
discovered model rather than the input. The following theorems
capture complexity properties of Mexican in terms of the number
of found patterns 𝑘 , a proof of which can be found at Apx. A.5.

Theorem 5.1 (#Candidates of Mexican). Given that we mine 𝑘
pattern trees, with at most 𝑙 leafs each, for a given dataset𝐷 , Mexican

evaluates at most 𝑂 ((𝑘 · 𝑙 +𝑚)2𝑙2) candidates per iteration.
It now remains to include the number of iterations, which results

in the following time complexity of Mexican.

Theorem 5.2 (Runtime of Mexican). Given that we mine 𝑘
pattern trees with at most 𝑙 leafs each for a given dataset 𝐷 , the
runtime of Mexican is in 𝑂 (𝑘 · 𝑙 · (𝑘 · 𝑙 +𝑚)2𝑙2).

Proof. From Th. 5.1 and the observation that in each iteration
one of the tree grows by at least 1 in the number of leafs because
of the pairwise merge, we know that there are at most 𝑘 · 𝑙 merges
possible. Otherwise we would get a tree that is larger than any tree
in the final model. □

6 EXPERIMENTS
We empirically evaluate Mexican on both synthetic data with
known ground truth as well as on real world data. For that, we
implemented Mexican in C++. There is no direct competitor that
is able to mine mutually exclusive patterns, we instead compare
to the two closest cousins. The first method that we compare to is
an implementation for mining low entropy patterns, LEminer [13].
To compare to LEminer, we postprocessed the results to extract
patterns where at least some subset of features has few overlapping
transactions with the rest of the features, which can be seen as
mutual exclusive patterns over itemsets. The second method is an
adaptation of Kingfisher that derives mutual exclusive patterns
from statistically significant association rules [11]. We reimple-
mented Kingfisher in C++, such that it scales to larger datasets
and processed the results to merge rules 𝐴→ ¬𝐵 and 𝐵 → ¬𝐴 to
×⃝(𝐴, 𝐵). Note that Kingfisher is only able to find rules with single
items in the consequent, hence we can only mine for mutual ex-
clusive feature pairs. We want to emphasize at this point that both
methods LEminer and Kingfisher were originally not designed to
discover patterns of mutual exclusivity and the comparison is thus
slightly unfair. However, these methods come closest to what we
do. All experiments were carried out single-threaded on Intel Xeon
E5-2643 v3 machines with 256GB RAM running Linux. Mexican
finishes within seconds to minutes on all synthetic and real data,
with the exception of the single cell and Instacart data, for which it
needs hours, due to the large width respectively height of the data
sets. The code and all data is available online.3

6.1 Synthetic data
As a sanity check, we first consider data without any structure. We
generate data sets of size 1000×100 with𝑑% 1s that are set uniformly
at random, and report the average number of found patterns across
10 folds for each method. We show the results in Fig. 3a, and see
that while Mexican recovers the ground truth in all cases but one,
its competitors Kingfisher and LEminer, discover up to millions
of spurious patterns.4

3http://eda.mmci.uni-saarland.de/mexican/
4Note that similar behaviour of state-of-the-art methods based on frequency or statis-
tical testing on pure noise have also been reported regarding conjunctive patterns [8]

Kf Le Mexican

Dataset 𝑛 𝑚 #×⃝ #⊙𝑘 #∧⃝ #×⃝ #⊙𝑘
Accidents 340𝐾 468 38𝐾 216𝑀∗ 1 34 6
DLQ 10𝐾 4.2𝐾 830𝐾 34𝑀∗ 10 130 4
DNA 1.3𝐾 392 20𝐾 1𝐵∗ 114 0 0
Mammals 2.2𝐾 121 5𝐾 198𝐾 4 15 12
SC 65 20.2𝐾 63𝑀 0∗ 131 500 41
Instacart 2.6𝑀 1236 - - 1 95 3
Table 1: Reported are number of rows 𝑛 and columns 𝑚 in
data set and number of found AND and XOR patterns #∧⃝,
#×⃝, and nested patterns #⊙𝑘 for Kingfisher (Kf), LEminer
(Le), and Mexican. By * we indicate the forced termination
of LEminer after either 1 Billion patterns were mined, or
>500GB of disk space was consumed. Resulting numbers are
patterns returned on termination, hence a lower bound.

Simple patterns. To evaluate whether these methods can recover
ground truth beyond pure noise, we generate data where we plant
10 pure ×⃝, respectively pure ∧⃝ patterns over at most 5 items in
data with 𝑛 = 10000 rows. We add noise to this data by flipping 0.1%
of the entries – an average of 10 entries per column – uniformly at
random, ensuring that ×⃝ patterns are not spurious (see also Fig. 2a).

We generate 10 datasets for each of the two setups, and record
the number of patterns each method discovers. We find that on
average Kingfisher reports hundreds, and LEminer more than
a million patterns for each of the two experiments. In contrast,
Mexican recovers the 10 patterns in the ∧⃝ data exactly, and on
average 7.6 patterns for the ×⃝ data. As on data without noise it
does recover all patterns, this is likely due to the (strong) effect of
noise on the significance of ×⃝ patterns of higher arity.

Nested Patterns. Next, we investigate how well Mexican performs
on data that contains more complex patterns, in particular including
nested logical formulas, we plant 𝑘 ∈ {5, 7, ..., 80} pattern trees into
𝑛 = 10000 rows. We draw uniformly at random 𝑐 ∈ {2, 3, 4} children
for the root. For each of those children we draw up to 2 nodes as
their children. We then draw an operator 𝑜 ∈ {∧⃝, ×⃝} for each inner
node. For each pattern tree we draw rows fromN(500𝑥, 10𝑥), where
𝑥 is the maximum number of children of any ×⃝ subtree, or 1 if none
exists, to avoid overly sparse features.We then partition the rows for
each ×⃝ subtree according to amultinomial over the children. Finally,
we apply noise as in the previous experiment. We run each of the
methods, and report the number of discovered patterns in Figure
3b. We see that, Kingfisher and LEminer discover thousands up
to billions of patterns, whereas Mexican recovers models that are—
both in numbers, as well as upon close inspection—very close to
the ground truth.

6.2 Real-World Data
To evaluate Mexican on real data, we look at six different bina-
rized datasets over different domains. We consider data on Belgian
traffic Accidents, lemmatized words from abstracts of Deep Learn-
ing and Quantum Computing papers on ArXiv (DLQ) [6], DNA
amplification data [22], European Mammals [20], and Single Cell

http://eda.mmci.uni-saarland.de/mexican/

0 5 10 15 20 25 30 35 40 45 50

100
101
102
103
104
105
106
107
108
109

%1s in the data

#
M
in
ed

Pa
tte

rn
s

Mexican Kingfisher
LEminer

(a) Patterns found in pure noise data of different sparsity.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

100
101
102
103
104
105
106
107
108
109

True Patterns

#
M
in
ed

Pa
tte

rn
s

Ground Truth Mexican
Kingfisher LEminer

(b) Patterns found in synthetic data with planted patterns. Numbers
of LEminer are a lowerbound as each runwas terminated after 1hour.

Figure 3: Synthetic data Left: #Patterns found in pure noise data. Right: #Patterns found in data with planted patterns.

RNA-sequencing (SC) data [3]. Data dimensions and results are
reported in Tab. 1. These results show that Mexican is able to
retrieve succinct, hence interpretable, sets of patterns, where the
other methods discover orders of magnitude more patterns than
there are rows and columns in the data. Furthermore, these results
show that our method scales up to many thousands of features and
millions of rows. Both Kingfisher and LEminer are not able to
process Instacart. Examining the results of Mexican by operator
type, we observe that Mexican for some data sets discovers many
×⃝ patterns, especially sparse data such as Instacart, whereas other
data that has highly correlated margins, such as DNA, yields more
∧⃝ patterns. When appropriate, Mexican discovers also more com-
plex, nested patterns that describe the data well, which we examine
further below. The experiments further show that Mexican is fast
despite the theoretically challenging problem, taking only seconds
for DNA andMammals, up to hours on data of very high dimension-
ality or sample size, such as Instacart and SC. So far, we focused on
the pattern set size, which is a good indicator of accessibility of the
sets to a human expert, however does not provide any qualitative
statement about the results. In the following we examine the quality
of pattern sets for DLQ, and SC.

DLQ data. For the DLQ dataset we find informative patterns that
capture the discrepancies between papers of the two communi-
ties. By observing that discovered patterns reflect classical word
co-occurences, such as ∧⃝(monte, carlo) or ∧⃝(nearest, neighbour),
and the XOR pattern ×⃝(∧⃝(deep, learning), quantum) that sum-
marizes how the data was generated, it is clear that Mexican is
able to infer patterns that capture main properties of the data.
Close inspection of the patterns further reveals that we are able
to retrieve more subtle distinctions between the Deep Learning
and Quantum Computing fields, such as ×⃝(adversarial, free), or
×⃝(stochastic, superposition). Furthermore,Mexican discovers larger
patterns that might indicate subdomains within Deep Learning or
QuantumComputing, such as ×⃝(operation, radiation, autoencoder),
or ×⃝(layer, atom, cryptography, hamiltonians, reality, remote).

Single Cell Data. Finally, we look at the case of the single cell se-
quencing data set. Single cell sequencing is a recent breakthrough

in genetics that can be compared to that of deep learning in machine
learning: it enables to measure genetic and epigenetic features for
a separate, single cells instead of cell batches that were measured
previously. Hence, instead of analysing only global averages over
all cell states, we can now obtain the state of each cell individually,
and thus capture the patterns underlying cellular dynamics. The
major challenge of such data is the large number of features as
we are interested in analyzing all (several tens of thousands of)
genes. Furthermore, there is only a limited understanding of the
whole gene regulatory system. This is both a limitation in terms
of how we can validate but also an opportunity to suggest new
relationships derived from our discoveries.

For the SC data, many patterns discovered by Mexican reflect
distinct local mechanisms within the cellular life5 One example is
the pattern ∧⃝(IMPDH2,UMPS). Both of these genes are essential
for the synthesis of building blocks of the DNA and thus are key
for cell proliferation. In particular, UMPS is responsible for the final
two steps of pyrimidine synthesis, a buildung block for certain
nucleotids (the N in DNA) [17]. IMPDH2 catalyzes a crucial step in
the synthesis of the nucleotide Guanine [5]. Due to its direct effect
on the supply of Guanine and thus the rate of cell proliferation,
IMPDH2 is also used as drug target for e.g. cancer treatment [23].

Another example is ×⃝(ZNF692, BRF1) for which we can hy-
pothesize an anthagonistic role of the two genes influencing gene
regulation. In particular, ZNF692 encodes a protein that acts as
a transcriptional repressor [15], while BRF1 is a component of
RNAPolIII, responsible for the transcription of genes [14].

Finally, with the pattern ×⃝(RP11.446E9.1, SETD1B,MIOX), we
can suggest novel relationships between genes. MIOX is related to
the Polyol metabolism, and is tightly regulated by DNA methyla-
tion in its promoter [32]. SETD1B, on the other hand, is part of a
complex modifying Histone proteins [31]. These modifications are
known epigenetic markers for gene regulation. Thus, the Lysine
modification introduced by SETDB1 might play a repressive role in
the regulation of MIOX, an interesting subject of further study.

5Please note that due to the history of discovery, many genes have been assigned more
than one name. The aliases can be looked up at e.g. https://www.genecards.org/.

https://www.genecards.org/

These findings show that Mexican discovers a succinct set of
patterns that characterise cellular mechanisms, and thus can be
leveraged to guide future research by suggesting potential relation-
ships as subject for further investigations.

7 DISCUSSION AND CONCLUSION
We considered the problem of discovering patterns of co-occurence
and mutual exclusivity. In particular, we proposed a pattern lan-
guage over logical conjunctions and mutual exclusivity, and defined
the goal of discovering succinct and non-redundant sets of patterns
over this language that together generalize the data.

We defined the problem in terms of the Minimum Description
Length principle, and as the resulting score does not lend itself for
efficient exact search, we proposed an effective heuristic approach
called Mexican to efficiently approximate the optimal solution. To
filter out spurious results, we proposed a computationally efficient
statistical test approximation for 𝐾-ary mutual exclusivity.

With the among the state of the art unique ability of discovering
both co-occurrences as well as mutual exclusive relationships, we
show that Mexican gives an extended view on the distribution of
the data by conducting experiments with synthetic and real world
data. On synthetic data, we showed that Mexican is able to recover
the ground truth without picking up on noise, where the state-of-
the-art methods discovered millions of patterns even when there
are none. Through experiments on real data we confirmed that
Mexican consistently returns succinct pattern sets interpretable by
human experts, scaling up to millions of rows and thousands of fea-
tures. Close inspection revealed that patterns Mexican discovered
are indeed meaningful and correspond to domain knowledge.

One major application of a pattern language equipped with mu-
tual exclusivity is biological data on the gene regulatory system,
where such patterns could indicate replacable sub-components or
antagonistic players in a pathway. To showcase the efficacy of Mex-
ican in this domain, we considered a case study on single cell RNA
sequencing data. The discovered patterns reflect local cellular mech-
anisms that we validated with the literature, but also suggest new
relationships of genes about only little is known so far, which could
be subject to further experiments.

Although Mexican meets the goals we set for this work and
yields highly encouraging results, our ultimate goal is to summarize
data in terms of patterns of arbitrary logical statements—that is, in-
cluding negations, disjunctions, rules, etc. Each of these extensions
alone are far from trivial, and the development of a single approach
that incorporates all will make for engaging future work.

REFERENCES
[1] R. Agrawal, T. Imielinksi, and A. Swami. 1993. Mining association rules between

sets of items in large databases. In SIGMOD. ACM, 207–216.
[2] M.-L. Antonie and O. R. Zaïane. 2004. Mining Positive and Negative Association

Rules: An Approach for Confined Rules. In PKDD. Springer, 27–38.
[3] F. B. Ardakani, K. Kattler, K. Nordström, N. Gasparoni, G. Gasparoni, S. Fuchs, A.

Sinha, M. Barann, P. Ebert, J. Fischer, B. Hutter, G. Zipprich, C. D. Imbusch, B.
Felder, J. Eils, , B. Brors, T. Lengauer, T. Manke, P. Rosenstiel, J. Walter, and M. H.
Schulz. 2018. Integrative analysis of single-cell expression data reveals distinct
regulatory states in bidirectional promoters. Epigen. & chrom. 11, 1 (2018), 66.

[4] T. Calders and B. Goethals. 2002. Mining all Non-Derivable Frequent Itemsets. In
PKDD. 74–85.

[5] S. F. Carr, E. Papp, J. C. Wu, and Y. Natsumeda. 1993. Characterization of human
type I and type II IMP dehydrogenases. J. Biol. Chem. 268, 36 (1993), 27286–27290.

[6] S. Dalleiger and J. Vreeken. 2020. Explainable Data Decompositions. AAAI.

[7] T. De Bie. 2011. Maximum entropy models and subjective interestingness: an
application to tiles in binary databases. Data Min. Knowl. Disc. 23, 3 (2011),
407–446.

[8] J. Fischer and J. Vreeken. 2019. Sets of Robust Rules, and How to Find Them.
Springer.

[9] J. Fowkes and C. Sutton. 2016. A Subsequence Interleaving Model for Sequential
Pattern Mining. In KDD.

[10] P. Grünwald. 2007. The Minimum Description Length Principle. MIT Press.
[11] W. Hämäläinen. 2012. Kingfisher: an efficient algorithm for searching for both

positive and negative dependency rules with statistical significance measures.
Knowl. Inf. Sys. 32, 2 (2012), 383–414.

[12] J. Han, J. Pei, and Y. Yin. 2000. Mining frequent patterns without candidate
generation. In SIGMOD. ACM, 1–12.

[13] H. Heikinheimo, J. K. Seppänen, E. Hinkkanen, H. Mannila, and T. Mielikäinen.
2007. Finding low-entropy sets and trees from binary data. In KDD. 350–359.

[14] Y. J. Hsieh, T. K. Kundu, Z. Wang, R. Kovelman, and R. G. Roeder. 1999. The
TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA poly-
merase III machinery and contains a histone-specific acetyltransferase activity.
Mol. Cell. Biol. 19, 11 (1999), 7697–7704.

[15] E. Inoue and J. Yamauchi. 2006. AMP-activated protein kinase regulates PEPCK
gene expression by direct phosphorylation of a novel zinc finger transcription
factor. Biochem. Biophys. Res. Commun. 351, 4 (2006), 793–799.

[16] P. Kontkanen and P. Myllymäki. 2007. A linear-time algorithm for computing
the multinomial stochastic complexity. Inf. Process. Lett. 103, 6 (2007), 227–233.

[17] J. Krungkrai, N. Wutipraditkul, P. Prapunwattana, S. R. Krungkrai, and S.
Rochanakij. 2001. A nonradioactive high-performance liquid chromatographic
microassay for uridine 5’-monophosphate synthase, orotate phosphoribosyltrans-
ferase, and orotidine 5’-monophosphate decarboxylase. Anal. Biochem. 299, 2
(2001), 162–168.

[18] M. Li and P. Vitányi. 1993. An Introduction to Kolmogorov Complexity and its

Applications. Springer.
[19] M. Mampaey, J. Vreeken, and N. Tatti. 2012. Summarizing Data Succinctly with

the Most Informative Itemsets. ACM TKDD 6 (2012), 1–44. Issue 4.
[20] T. Mitchell-Jones. 1999. Societas Europaea Mammalogica. http://www.european-

mammals.org. (1999). http://www.european-mammals.org
[21] F. Moerchen, M. Thies, and A. Ultsch. 2011. Efficient mining of all margin-closed

itemsets with applications in temporal knowledge discovery and classification
by compression. Knowl. Inf. Sys. 29, 1 (2011), 55–80.

[22] S. Myllykangas, J. Himberg, T. Böhling, B. Nagy, J. Hollmén, and S. Knuutila. 2006.
DNA copy number amplification profiling of human neoplasms. Oncogene 25, 55
(2006), 7324–7332.

[23] R. Naffouje, P. Grover, H. Yu, A. Sendilnathan, K. Wolfe, N. Majd, E. P. Smith,
K. Takeuchi, T. Senda, S. Kofuji, and A. T. Sasaki. 2019. Anti-Tumor Potential
of IMP Dehydrogenase Inhibitors: A Century-Long Story. Cancers (Basel) 11, 9
(2019).

[24] A. A. Nanavati, K. P. Chitrapura, S. Joshi, and R. Krishnapuram. 2001. Mining
Generalised Disjunctive Association Rules. In CIKM. ACM, 482–489.

[25] L. Papaxanthos, F. Llinares-López, D. A. Bodenham, and K. M. Borgwardt. 2016.
Finding significant combinations of features in the presence of categorical co-
variates. In NIPS. 2271–2279.

[26] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. 1999. Discovering Frequent
Closed Itemsets for Association Rules. In ICDT. ACM, 398–416.

[27] L. Pellegrina, M. Riondato, and F. Vandin. 2019. SPuManTE: Significant Pattern
Mining with Unconditional Testing. In KDD. ACM, 1528–1538.

[28] L. Pellegrina and F. Vandin. 2018. Efficient Mining of theMost Significant Patterns
with Permutation Testing. In KDD. 2070–2079.

[29] J. Rissanen. 1978. Modeling by shortest data description. Automatica 14, 1 (1978),
465–471.

[30] J. Rissanen. 1983. A Universal Prior for Integers and Estimation by Minimum
Description Length. Annals Stat. 11, 2 (1983), 416–431.

[31] D. C. Schultz, K. Ayyanathan, D. Negorev, G. G. Maul, and F. J. Rauscher. 2002.
SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltrans-
ferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB
zinc-finger proteins. Genes Dev. 16, 8 (2002), 919–932.

[32] I. Sharma, R. K. Dutta, N. K. Singh, and Y. S. Kanwar. 2017. High Glucose-
Induced Hypomethylation Promotes Binding of Sp-1 to Myo-Inositol Oxygenase:
Implication in the Pathobiology of Diabetic Tubulopathy. Am. J. Pathol. 187, 4
(2017), 724–739.

[33] Y. Shima, S. Mitsuishi, K. Hirata, and M. Harao. 2004. Extracting Minimal and
Closed Monotone DNF Formulas. In DS. Springer, 298–305.

[34] J. Vreeken, M. van Leeuwen, and A. Siebes. 2011. Krimp: Mining Itemsets that
Compress. Data Min. Knowl. Disc. 23, 1 (2011), 169–214.

[35] G. I. Webb. 2010. Self-sufficient itemsets: An approach to screening potentially
interesting associations between items. ACM TKDD 4, 1 (2010), 1–20.

[36] M. Zaki, N. Ramakrishnan, and L. Zhao. 2010. Mining Frequent Boolean Expres-
sions: Application to Gene Expression and Regulatory Modeling. IJKDB 1 (09
2010), 68–96.

[37] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. 1997. New algorithms for fast
discovery of association rules. In KDD.

http://www.european-mammals.org

A THEORETICAL RESULTS
A.1 Size of the model space
The size of the model space is given by

|M| =
|I |/2∑
𝑘=1

|I |∑
𝑖=2𝑘

(|I |
𝑖

) ∑
𝑙1+..+𝑙𝑘=𝑖
𝑙1,..,𝑙𝑘 ≥2

(
𝑖

𝑙1, .., 𝑙𝑘

)

·
𝑘∏
𝑗=1

2
𝑙 𝑗 /2∑
𝑚=0

∑
ℎ1,..,ℎ𝑚≥2

2𝑚≤ℎ1+..+ℎ𝑚≤𝑙 𝑗

(
ℎ1 + .. + ℎ𝑚
ℎ1, .., ℎ𝑚

) (
𝑙 𝑗 − (ℎ1 + .. + ℎ𝑚)

)
! .

In order of terms in the first line, the first sum indicates the
number of trees in a model, the second sum the number of items
covered by these trees, the first binomial the number of subset of
this size, the third sum together with the first multinomial indicates
the possible partitionings of this item subset over the trees. In the
second line we describe the number of trees possible, given by
the first product, and then multiply by 2, which is the number of
ways we can fix the operators. We then have to go over all different
tree shapes. For that, we first sum over all the possible number of
inner nodes in the tree. The second sum in the second line together
with the first multinomial gives the partition of items over the
leafs of these inner nodes. The last term gives the combinations of
distributing the remaining items over the leafs that are children of
the root.

A.2 Monotonicity result
Theorem A.1 (Monotonicity of gain). For features 𝐴, 𝐵 with

marginals 𝑛𝐴, 𝑛𝐵 and joint 𝑛𝐴𝐵 , the MDL gain of adding ×⃝(𝐴, 𝐵) to
the model𝑀 is smaller than for any 𝑛′𝐴𝐵 < 𝑛𝐴𝐵 .

Proof. Wewill show that theMDL costs for a joint count𝑛𝐴𝐵+1
is the cost for joint count 𝑛𝐴𝐵 plus some log 𝜖 > 0. We will start
off with the MDL costs, given by the costs of transmitting transac-
tions covered by the XOR pattern and transmitting the transactions
where 𝐴, 𝐵 overlap using the singleton code. The model costs can
be ignored as they are the same for different joint counts of the
same pattern. Hence, we get

log
(

𝑛

𝑛A − 1

)
+ log

(
𝑛 − 𝑛A + 1
𝑛B − 1

)
+ 2 · log

(
𝑛

𝑛AB + 1

)
(1)
= log

(
𝑛A

𝑛 − 𝑛A + 1

(
𝑛

𝑛A

))
+ 2 · log

(
𝑛 − 𝑛AB
𝑛AB + 1

(
𝑛

𝑛AB

))
+ log

(
𝑛 − 𝑛A + 1
𝑛B − 1

(
𝑛 − 𝑛A
𝑛B − 2

))
(2)
= log

(
𝑛A

𝑛 − 𝑛A + 1

(
𝑛

𝑛A

))
+ 2 · log

(
𝑛 − 𝑛AB
𝑛AB + 1

(
𝑛

𝑛AB

))
+ log

(
𝑛 − 𝑛A + 1
𝑛B − 1

𝑛B
𝑛 − 𝑛A − 𝑛B + 1

𝑛B − 1
𝑛 − 𝑛A − 𝑛B + 2

(
𝑛 − 𝑛A
𝑛B

))
(3)
= log

(
𝑛

𝑛A

)
+ log

(
𝑛 − 𝑛A
𝑛B

)
+ 2 · log

(
𝑛

𝑛AB

)
+ log

(
𝑛A𝑛B (𝑛 − 𝑛AB)2

(𝑛 − 𝑛A − 𝑛B + 1) (𝑛 − 𝑛A − 𝑛B + 2) (𝑛AB + 1)2︸ ︷︷ ︸
=𝜖

)
.

For equality (1), we use thewell known equations (𝑛
𝑘−1

)
= 𝑘
𝑛−𝑘+1

(𝑛
𝑘

)
and

(𝑛
𝑘

)
= 𝑛
𝑘

(𝑛−1
𝑘−1

)
to change the 𝑛, respectively 𝑘 of the binomial

coefficient by 1. Equality (2) is a recursive application of the first
binomial coefficient equation. Equality (3) is essentially reordering
and cancelling out terms and pulling the 2 into the logarithm. Start-
ing with the costs of transmitting the data using the pattern with
joint count 𝑛𝐴𝐵 − 1 we thus arrived at the costs of transmission
costs for the pattern with joint 𝑛𝐴𝐵 plus some log 𝜖 . It remains to
show that 𝜖 ≥ 1.

We will now bound each of the terms in the denominator of 𝜖 by
one of the numerator terms from above. Assume that 𝑎) 𝑛𝐴, 𝑛𝐵 ≥ 1,
𝑏) 𝑛𝐴 > 𝑛𝐴𝐵 , and 𝑐) 𝑛𝐵 > 𝑛𝐴𝐵 . Then we get

𝑛𝐴
𝑏)
≥ 𝑛𝐴𝐵 + 1, 𝑛𝐵

𝑐)
≥ 𝑛𝐴𝐵 + 1 ,

𝑛 − 𝑛𝐴𝐵
𝑏)
≥ 𝑛 − 𝑛𝐴 + 1

𝑎)
≥ 𝑛 − 𝑛𝐴 − 𝑛𝐵 + 2 > 𝑛 − 𝑛𝐴 − 𝑛𝐵 + 1 .

It follows that 𝜖 ≥ 1, which complestes the proof. □

A.3 Fisher’s recurrence
We now proof by induction that the following recurrence relation
holds for the terms 𝑝𝑖 of the summation in 𝑝

𝑝0 =

(𝑛−𝑛
𝑋

𝑛
𝑌

)(𝑛
𝑛
𝑌

) ,

𝑝𝑖 = 𝑝𝑖−1 ·
(𝑛𝑋 − 𝑖) (𝑛𝑌 − 𝑖)

(𝑖 + 1) (𝑛 − 𝑛𝑋 − 𝑛𝑌 + 𝑖 + 1)
.

Proof. Induction base. Assume 𝑛𝑋𝑌 = 0. Obviously holds as 𝑝0
is the the original equation.
Induction step. Assume that the equation holds for 𝑖 . Then we get(

𝑛𝑋
𝑖 + 1

) (
𝑛 − 𝑛𝑋
𝑛𝑌 − 𝑖 − 1

)
/
(
𝑛

𝑛𝑌

)
=
𝑛𝑋 − 𝑖
𝑖 + 1

(
𝑛𝑋
𝑖

) (
𝑛 − 𝑛𝑋
𝑛𝑌 − 𝑖 − 1

)
/
(
𝑛

𝑛𝑌

)
=
𝑛𝑋 − 𝑖
𝑖 + 1

𝑛𝑌 − 𝑖
𝑛 − 𝑛𝑋 − 𝑛𝑌 + 𝑖 + 1

(
𝑛𝑋
𝑖

) (
𝑛 − 𝑛𝑋
𝑛𝑌 − 𝑖

)
/
(
𝑛

𝑛𝑌

)
by using the well known identity for binomials

(𝑛
𝑘

)
= 𝑛−𝑘+1

𝑘

(𝑛
𝑘−1

)
.
□

A.4 Order independence of XOR
For the length of the encoding for an XOR node of a pattern tree,
or more precisely for the encoding of the transaction that this tree
encodes, it does not matter in which order we send the children.
We will prove it for the case of 3 children, the case for an arbitrary
number of 𝑙 children follows the same reasoning.

Theorem A.2. Given a node 𝑃 = ×⃝(𝑖, 𝑗, 𝑘) with corresponding

margins 𝑛𝑖 , 𝑛 𝑗 , 𝑛𝑘 of the children, it does not matter in which order

we send where the children hold using L𝐷′
(
𝜋𝑃 (𝐷 ′) | 𝑃

)
.

Proof. We essentially need to show that we can flip the children
order without changing the cost, for that assume a new order 𝑃 =

×⃝(𝑘, 𝑖, 𝑗), then we show that

log
(
𝑛

𝑛𝑖

)
+ log

(
𝑛 − 𝑛𝑖
𝑛 𝑗

)
+ log

(
𝑛 − 𝑛𝑖 − 𝑛 𝑗

𝑛𝑘

)
!
= log

(
𝑛

𝑛𝑘

)
+ log

(
𝑛 − 𝑛𝑘
𝑛𝑖

)
+ log

(
𝑛 − 𝑛𝑖 − 𝑛𝑘

𝑛 𝑗

)
.

We use the definition of the binomial with factorials, use the stan-
dard rules for logarithmic arithmetic to pull the binomials apart,
and then add new terms that add up to 0 to derive the equation
above.

log 𝑛!
(𝑛 − 𝑛𝑖)!𝑛𝑖 ! + log

(𝑛 − 𝑛𝑖)!
(𝑛 − 𝑛𝑖 − 𝑛 𝑗)!𝑛 𝑗 ! + log

(𝑛 − 𝑛𝑖 − 𝑛 𝑗)!
(𝑛 − 𝑛𝑖 − 𝑛 𝑗 − 𝑛𝑘)!𝑛𝑘 !

= log(𝑛!) −((((((log((𝑛 − 𝑛𝑖)!) − log(𝑛𝑖 !) +((((((log((𝑛 − 𝑛𝑖)!)
−((((((((log((𝑛 − 𝑛𝑖 − 𝑛 𝑗)!) − log(𝑛 𝑗 !) +((((((((log((𝑛 − 𝑛𝑖 − 𝑛 𝑗)!)
− log((𝑛 − 𝑛𝑖 − 𝑛 𝑗 − 𝑛𝑘)!) − log(𝑛𝑘 !)
+ log((𝑛 − 𝑛𝑘)!) − log((𝑛 − 𝑛𝑘)!)︸ ︷︷ ︸

=0
+ log((𝑛 − 𝑛𝑖 − 𝑛𝑘)!) − log((𝑛 − 𝑛𝑖 − 𝑛𝑘)!)︸ ︷︷ ︸

=0

= log 𝑛!
(𝑛 − 𝑛𝑘)!𝑛𝑘 !

+ log (𝑛 − 𝑛𝑘)!
(𝑛 − 𝑛𝑖 − 𝑛𝑘)!𝑛𝑖 !

+ log (𝑛 − 𝑛𝑖 − 𝑛𝑘)!
(𝑛 − 𝑛𝑖 − 𝑛 𝑗 − 𝑛𝑘)!𝑛 𝑗 !

The other permutations as well as the case for more than 3 children
follow the exact same resoning. □

A.5 Mexican candidate evaluations
Here, we provide the proof for how many candidates Mexican
generates and evaluates in one iteration, given that the final result
are 𝑘 pattern trees with maximum 𝑙 leafs each.

Theorem A.3 (#Candidates of Mexican). Given that we mine 𝑘
pattern trees, with at most 𝑙 leafs each, for a given dataset𝐷 , Mexican

evaluates at most 𝑂 ((⌊ 𝑘𝑙2 ⌋ +𝑚)2𝑙2) candidates per iteration.
Proof. In a given iteration, we can have at most𝑚 singletons

and 𝑘 ′ = ⌊ 𝑘𝑙2 ⌋ pattern trees that together form a model. The term
𝑘 ′ is the upper bound that we get when we divide the trees in the
final model into trees of size 2, which is the smallest possible tree as
otherwise we would have a singleton. We can merge each tree with
any other tree resulting in (𝑘 ′ +𝑚) (𝑘 ′ +𝑚 − 1)/2 tree pairs to look
at. Without making further assumptions on the shape or content
of the tree, we have to assume that we can merge one tree in any
leaf or inner node of the other tree. There are at most 𝑙 leafs and at
most ⌊𝑙/2⌋ + 1 inner nodes, using the constraint that a tree has at
most depth 2. For each merge, including merging under a new root
or as a new child, we can use two different operators. This gives at

most (𝑘 ′ +𝑚) (𝑘 ′ +𝑚 − 1) · 2 · (2 · (𝑙 + (⌊𝑙/2⌋ + 1) + (⌊𝑙/2⌋ + 1)) + 1)
candidates. □

B EXPERIMENTS
B.1 Program calls

Mexican. To rule out exploring unreasonable patterns, we con-
strain Mexican to candidates with a minimum overlap of 50% for
∧⃝, resp. a maximum overlap of 10% for ×⃝. Furthermore we set the
minimum support to 0.1% of the number of rows in the data and a
conservative significance threshold 𝛼 = 0.001. To keep the results
interpretable for the SC data, we set a minimum support threshold
for a pattern to 3.

Kingfisher. We set a minimum confidence of 50% for the rule
mining and a minimum support of 0.1% of the number of rows
in the data and a conservative significance threshold 𝛼 = 0.001,
similar to Mexican.

LEminer. To somewhat limit the number of patterns that LEm-
iner finds, we set the maximum number of bits to 1.5 and the
dependency threshold to 0.7 and only mine attribute sets (-s).

B.2 Data preprocessing
B.2.1 DLQ data. The arXiv data base was queried with keywords
Deep Learning, respectively Quantum Computing to retrieve paper
abstracts. Words in all abstracts were lemmatized, and words that
are not nouns, verbs or adjectives got removed. Five thousand
abstracts of each of the two categories were put together in a data
set. The words of all abstracts were treated as bag of words and
encoded as separate binary columns, words with a support of less
than 10 were removed from the bag.

B.2.2 Instacart. The Instacart dataset originally has many items
of the same type but different vendors (e.g. tens of different toilet
papers), while transactions are usually very short. This makes the
data very sparse, driving the support for even small patterns down
to single digits, which in context of a database with more than 2
million rows is nothing. Hence we decided to process the data by
hand to summarize similar items into buckets, and focussing on the
food data. We provide the processed data set online under TODO.

B.2.3 Single Cell Data. The original single cell data was processed
to have a transcript level normalization, by using the established
TPM (Transcripts Per Million) values. Furthermore, we carried out
a per cell normalization, setting the 75% quantile of gene expression
levels to 0, the upper quantile to 1, as common in the literature.
Columns containing only zeroes were removed and the resulting
data was converted into a transaction file format.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Minimum Description Length

	4 Theory
	4.1 The Problem, informally
	4.2 MDL for Pattern Forests
	4.3 The Problem, formally
	4.4 The Chance of Being Exclusive

	5 Mexican
	5.1 Merging Trees
	5.2 Algorithm
	5.3 Complexity

	6 Experiments
	6.1 Synthetic data
	6.2 Real-World Data

	7 Discussion and Conclusion
	References
	A Theoretical results
	A.1 Size of the model space
	A.2 Monotonicity result
	A.3 Fisher's recurrence
	A.4 Order independence of XOR
	A.5 Mexican candidate evaluations

	B Experiments
	B.1 Program calls
	B.2 Data preprocessing

