
Measuring User Perception for Detecting Unexpected Access to
Sensitive Resource in Mobile Apps

Trung Tin Nguyen
CISPA Helmholtz Center for

Information Security
tin.nguyen@cispa.saarland

Duc Cuong Nguyen
CISPA Helmholtz Center for

Information Security
duc.nguyen@cispa.saarland

Michael Schilling
CISPA Helmholtz Center for

Information Security
michael.schilling@cispa.saarland

Gang Wang
University of Illinois at
Urbana-Champaign
gangw@illinois.edu

Michael Backes
CISPA Helmholtz Center for

Information Security
backes@cispa.saarland

ABSTRACT
Understanding users’ perception of app behaviors is an important
step to detect data access that violates user expectations. While
existing works have used various proxies to infer user expecta-
tions (e.g., by analyzing app descriptions), how real-world users
perceive an app’s data access when they interact with graphical
user interfaces (UI) has not been fully explored.

In this paper, we aimed to fill this gap by directly measuring
how end-users perceive app behaviors based on graphical UI el-
ements via extensive user studies. The results are used to build
an automated tool - GUIBAT (Graphical User Interface Behavioral
Analysis Tool) - that detects sensitive resource accesses that vio-
late user expectations. We conducted three user studies in total
(N=904). The first two user studies were used to build a semantic
mapping between user expectations of sensitive resource accesses
and the common graphical UI elements (N=459). The third user
study (N=445) was used to validate the performance of GUIBAT
in predicting user expectations. By comparing user expectations
and the actual app behavior (inferred by static program analysis)
for 47,909 Android apps, we found that 75.38% of the apps have
at least one unexpected sensitive resource access in which third-
party libraries attributed to 46.13%. Our analysis lays a concrete
foundation for modeling user expectations based on UI elements.
We show the urgent need for more transparent UI designs to better
inform users of data access, and call for new tools to support app
developers in this endeavor.

CCS CONCEPTS
• Security and privacy → Usability in security and privacy; •
Human-centered computing→ User studies; Graphical user in-
terfaces.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3437511

KEYWORDS
Android Security; User Interface; User Privacy; Permission; Unex-
pected Sensitive Resource Access; Usable Security
ACM Reference Format:
Trung Tin Nguyen, Duc Cuong Nguyen, Michael Schilling, Gang Wang,
and Michael Backes. 2021. Measuring User Perception for Detecting Un-
expected Access to Sensitive Resource in Mobile Apps. In Proceedings of
the 2021 ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’21), June 7–11, 2021, Hong Kong, Hong Kong. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3433210.3437511

1 INTRODUCTION
In recent years, efforts such as the General Data Protection Regu-
lation (GDPR) have been made to protect user privacy online [21].
A key principle of the regulation is transparency, i.e., users should
be well-informed regarding how their data is collected, used, and
shared [47]. For mobile applications (apps), however, achieving real
transparency of data access is still challenging due to the diverse
app types and the complex contexts of data usage.

Mobile platforms such as Android use a permission-based system
to regulate the access to sensitive data. However, in practice, users
are still in a disadvantaged position to protect their privacy. Due to
a lack of transparency, it remains unclear for the users when (for
example, when using which function of an app) a certain data access
takes place. Apps can often combine different granted permissions
to access permission-protected resources1 (referred to as "sensitive
resources") in ways that would surprise users [5, 10].

Researchers have worked to detect sensitive resource accesses
that violate user expectations, by matching user expectations and
apps’ actual behaviors. While app behavior can be inferred by an-
alyzing the app code, user expectation is much more difficult to
measure. Most existing works infer user expectation using certain
proxies such as app descriptions (i.e., users would expect apps to
behave the way described on the description page) [22, 56, 58]; Un-
fortunately, app description is too coarse-grained and not all users
would read app descriptions in practice. More recently, researchers
have started to look into another source of information that directly
shapes user expectations: user interface (UI) elements (e.g, texts
1In the Android platform, permission-protected resources are organized into groups
regarding the device’s capabilities or features. In this work, we focused on the dan-
gerous permission groups (i.e., Contact, Phone, Calendar, Camera, Location, Storage,
Microphone, SMS), since these permission groups deal with user-sensitive information.

https://doi.org/10.1145/3433210.3437511
https://doi.org/10.1145/3433210.3437511

and images) [2, 28, 68, 69]. However, while text descriptions are
self-explanatory with natural language meanings, visual images
(referred to as "icon") often convey information in non-verbal ways,
and the end-users interpret the meaning of an icon using their pre-
existing experience and knowledge [29, 67]. Existing works either
only look at textual UI elements (e.g, the text associated with the
button) to examine user expectations [2, 28], or try to predict the
intention of apps’ icon UI elements but without understanding how
real-world users perceive data access when they interact with such
graphical UI(s) [68, 69] — which we found less effective in detecting
data access that violates user expectations.

In this paper, we want to fill this gap by directly analyzing user
expectations and making them measurable. Particularly, we aim
to take into account the influence of all UI elements (icons and
texts) on users expectations and to build a tool (GUIBAT) that can
automatically detect violations of such expectations in mobile apps.
This leads us to the following research questions: (RQ1) Does the
output of GUIBAT reflect users’ expectations of apps’ sensitive resource
access? - and if it does - (RQ2) How widespread is sensitive resource
access that violates users’ expectations in the wild?

First, we conducted two user surveys to understand how end-
users perceive graphical UI(s), andwhat users’ expectations are (Sec-
tion 3). The goal was to build a mapping between user expectations
of sensitive resource accesses and apps’ icon UI elements. Then, we
built a new tool called GUIBAT that learns from users’ perception to
identify unexpected sensitive resource accesses (Section 4). More
specifically, using the study results, we trained a classifier to infer
user expectation from icons on the app’s UI. For text elements, we
followed similar Natural Language Processing approaches used in
prior works to examine user expectation [28, 49, 65] since text ele-
ments are self-explanatory with natural language meanings. Next,
we leveraged static program analysis to find the app’s actual ac-
cessed sensitive resources. Finally, a sensitive resource access is
considered unexpected if it is deviating from user expectations.

Our evaluations showed that GUIBAT significantly outperforms
prior works in terms of identifying user expectation of sensitive re-
source accesses when they interact with the app’s UI, and revealed
the deficient of text-based only approaches. More importantly, we
validated GUIBAT’s effectiveness with the third user study, our re-
sults showed that GUIBAT can accurately reflect users’ expectations
of sensitive resource accesses in apps. Thereby, we applied GUIBAT
on 100,000 Android apps to look at the landscape of unexpected
access to sensitive resources in the wild. GUIBAT identified 47,909
apps with UI elements accessing sensitive resources, and 75.38%
of the apps have at least one unexpected sensitive resource access.
Among these apps, 38.20% have unexpected sensitive resource ac-
cesses exclusively attributed by third-party libraries. We believe
that our results will shed new light on the transparency of sensi-
tive resource accesses in mobile apps. GUIBAT would (1) help to
inform end-users about unexpected access to sensitive resources
and (2) help app stores to better control the compliance of apps
to the transparency policies. In summary, we make the following
contributions:

• We for the first time performed two user studies to build a
semantic mapping between user expectations of sensitive
resource accesses and common apps’ icon UI elements. Our

results open a new perspective for identifying the relation
between users’ perception of icons and the associated sensi-
tive resource accesses. This can lead to better design of apps’
graphical UI and enhancement of transparency for access-
ing sensitive resources. More importantly, we showed that
prior works that predict the intention of apps’ icon UI ele-
ments without understanding how real-world users perceive
data access (e.g., relying on benign apps’ icon-to-permission
association), in large parts do not reflect user expectation.

• We built GUIBAT2 — a new tool that accounts users’ per-
ception for detecting unexpected sensitive resource accesses
in Android apps, based upon the knowledge gained from
two user studies and static control-flow analysis. We fur-
ther performed the third user study to validate that GUIBAT
can accurately reflect user perceptions of sensitive resource
accesses, and its efficiency that enables the large-scale study.

Our paper is organized as follows.We give an overview of related
work in Section 2, describe how we designed and conducted the
series of studies in Section 3, and how we built GUIBAT in Section 4.
We present our results in Section 5, and discuss our findings and
suggest actionable items in Section 6. Section 7 concludes our paper.

2 RELATEDWORK
Understanding and Supporting Users. Many studies showed that

users have low attention and comprehension rate to install-time
permission dialogs in Android apps [17, 32]. Further, with both
install-time and runtime permission mechanisms, users were often
surprised at many permissions that they have granted to their apps
and possible associated risks [5, 10, 31]. A number of tools were
developed to help users better manage their privacy. For example,
Roesner et al. proposed an access control gadget where permission
granting is built along with user actions [59]. Li et al. introduced
PERUIM that shows how permissions are used by different UI ele-
ments by combining static and dynamic analysis [37].

Detecting Unexpected Sensitive Resource Access. A related line of
work aims to detect sensitive resource accesses that deviate from
the app descriptions [22, 56, 58]. The idea is to use app descriptions
as a proxy for user-expected behavior. However, Yu et al. showed
that relying on the app description alone is not sufficient and could
lead to large errors [73]. Recently, researchers have started to use
app UIs as a proxy to study user expectations. They try to detect the
mismatches between expected sensitive resource access in the text
of UI elements and its actual accessed sensitive resources [2, 28].

Unfortunately, how users perceive data access when they inter-
act with icons which is one of the most important UI elements for
user interaction [20, 51], have been neglected in most research so
far. A key reason is that it is difficult to map graphical icons to user
expectations without actually performing user studies. Recently,
Xiao et al. built Icontent to identify expected sensitive resource
accesses of apps’ icons by manually labeling images on Google
Image. DeepIntent used benign apps’ icon-to-permission associa-
tion as the “norm”, and aimed to detect malicious apps that deviate
from the norm to detect malware [68]. However, both Icontent
and DeepIntent did not measure end-users’ expectations of icons.

2GUIBAT is available at https://github.com/ttincs/guibat.

https://github.com/ttincs/guibat

Obtain
Apps

Extract
icons

Obtain Apps and Icons

Filter out
similar and

identical icons

Random
sample

Sample Icon for User Studies

700,000
icons

First Study: Identifying
commonly known icons and
the associated functionality

Second Study: Identifying
user expectation of icons

and sensitive resource access

166,562
apps

97,733
icons

3,600
icons

76 group
of icons

Measuring Users’ Perception

Figure 1: Overview of the methodologies to measure user’s perception.

Different from the prior works, our first goal was to build a se-
mantic mapping between user expectations of sensitive resource
accesses and apps’ icon UI elements via extensive user studies. Sec-
ond, we aimed to take into account the influence of all UI elements
(icons and texts) on users expectations and to detect unexpected
sensitive resource accesses in mobile apps. Our results show that
even benign apps can have misleading UIs that lead to violation
of users’ expectation. More importantly, it shows that relying on
benign apps’ icon-to-permission association as the "norm" to detect
behavior discrepancy is not enough.

3 MEASURING USERS’ PERCEPTION
We aimed to build a comprehensive mapping between app icons
and their associated sensitive resource accesses in mobile apps.
Figure 1 gives an overview of our approach. We first developed a
crawler to obtain a large number of Android apps, and extracted
the icon UI elements from their apps’ UI (Section 3.1). Next, we
conducted a series of studies3 to measure how real-world users
perceive an app’s data access when they interact with such apps’
icons. More specifically, we divided our studies into two parts: one
is to identify commonly-known icons (e.g., icons are frequently used)
to users (Section 3.2), since it is practically impossible to study all
available icons of apps with users because icons are extremely
diverse in appearance, and not all icons are supposed to convey
meaning to users [13]; the other is to measure user expectation of
sensitive resource accesses of these icons (Section 3.3). Once we
had established the expectations of end-users between the app’s
icons and sensitive resource accesses, we leveraged this knowledge
to build GUIBAT which we describe in Section 4.

3.1 App and Icon Dataset
App Dataset. We built a crawler to crawl Android apps from the

Google Play store and successfully obtained about 600,000 apps.
Among them, we only selected apps that request dangerous permis-
sions because they access users’ sensitive data. Further, we used
the permission mappings of PScout [1] and Axplorer [4] to iden-
tify accessed sensitive resources of a given Android app. As the
Android’s permission documentation is incomplete, the combina-
tion of PScout and Axplorer provides a complete mapping from
Android version 2.2 up to 7.1. We only selected apps that declare at
least one dangerous permission and filtered out apps that are not
supported by PScout and Axplorer based on themin andmax SDK

3We compensated participants based on an average hourly wage of $14 (above US
minimum wage, https://www.dol.gov/general/topic/wages/minimumwage). More im-
portantly, all user studies in this work were approved by the ethical review board of
our university. Web access to the server was secured with an SSL certificate issued by
the university’s computing center, and all further access was restricted to the depart-
ment’s intranet and only made available to maintainers and collaborating researchers.
Participants could leave the studies at any time.

versions (min/max platform version to which the app is compatible).
Besides, apps that belong to game categories were excluded since
they have little to no UI elements or their UI is mainly made of
drawings on canvases, which are out of the scope for this work.
After filtering, our app dataset contains 166,562 apps.

Icon Dataset. From the 166,562 apps, we then leveraged existing
works [2, 19] to perform static analysis on both the UI layout files
and the app’s code to extract apps’ icons (see Section 4.1 on imple-
mentation details). This resulted in about 700,000 icons. To get an
overview of these icons, we then used perceptual hashing [74] for
filtering out identical and very similar icons at pixel levels — which
resulted in 97,733 dissimilar icons (see Appendix A.1.1 for details).

3.2 First Study: Identifying Commonly-Known
Icons and The Associated Functionality

We conducted this study online via Amazon Mechanical Turk
(MTurk)4 to determine which icons that are commonly-known and
familiar to users based on population stereotype [13] (e.g., an icon
known bymost of the participants is considered commonly-known).
We randomly selected 3,600 icons from our set of dissimilar icons,
and asked participants about their subjective feelings, if they have
any concrete expectation(s) of a given icon or a similar looking icon
(i.e., "Do you have a concrete expectation what could happen if you
press this icon or a similar symbol?"). The participant’s responses
are binary: "yes" and "no". To identify the careless respondents,
we used the instructed response items which is the most popular
form of attention check [44, 63], for example, items are embedded
with an obvious correct answer (e.g., "please select yes"). The sur-
vey was designed to ask each participant 90 icons and 10 more
attention check icons. This resulted in 40 batches. For each batch,
we tested with three different participants to examine whether an
icon is commonly-known. If a participant failed attention checks,
the corresponding batch would be re-conducted with another par-
ticipant. An icon was considered commonly-known to users if all
participants know it (i.e., 100% recognizable).

The survey lasted for 2 days and we collected valid responses
from 120 Turkers. Their median age is 31.5 years (65% male and
35% female, see Table 8 in Appendix A.2 for full demographics). We
identified 972 commonly-known icons and found that the majority
of surveyed icons (73%) are not linked to any concrete expectations
of users and therefore have no intrinsic meaning to them.

Identifying Associated Functionality. We then conducted a follow-
up survey to find the perceived function an icon represents. This
helps us not only group icons based on their functionality but
also quickly filter out icons that do not represent any functionality
(given that concrete expectations can only be formed if users are
4https://www.mturk.com/

Table 1: Icon groups and user expectation of sensitive re-
source accesses . An icon group hasmultiple similar looking
icons. The agreement rate is in parenthesis.

Icon group Icon group Icon group
Calendar (1.0) Calendar (0.89) Storage (0.88)

Contacts (1.0) Contacts (0.88) Storage (0.75)

Contacts (0.67)
SMS (0.67)

Contacts (0.67)
SMS (0.67) Storage (0.75)

Camera (1.0)
Storage (0.75)

Camera (1.0)
Storage (0.67)

Storage (0.75)
Microphone (0.67)

Location (1.0) Location (1.0) Storage (0.67)

Microphone (1.0) Phone (1.0) Storage (0.67)

SMS (0.75) Storage (1.0)
Camera (0.86)

somehow familiar with an object [43]). This would significantly
reduce the number of icons we need to study later. To do that, we
used the icon intuitiveness test to learn about users’ pre-existing
knowledge of known and familiar icons [50]. An icon was shown
to a group of participants without contexts (e.g., without textual
description). We asked participants to describe their understanding
of a given icon, and their expectations of what would happen if
they interact with it (i.e., Q1: What does this icon symbolize?, Q2:
What you would expect to happen if you interact with this icon or
an icon that has a similar symbol?). In this survey, we showed each
participant 10 icons, and for each icon, we also asked three different
participants to describe their interpretations (free-text responses).

The survey involved 294 participants and lasted 8 days. Partic-
ipants’ median age is 34 years (58.16% male, 41.50% female, see
Table 8 in Appendix A.2 for full demographics). We obtained 2,916
feedbacks for 972 commonly-known icons. After extracting users’
responses, we constructed a mapping between commonly-known
icons and the function they represent by performing description-
based icons clustering (see Appendix A.1.2 for details): (1) we first
clustered similar icons using textual descriptions of their visual
representation, since apps’ icons are extremely diverse in appear-
ance (e.g., icons representing the same camera object may look very
different); (2) we then further clustered these clusters of icons using
descriptions of their functions. In the first step, we identified 76
groups of icons from 972 commonly-known icons. Finally, we iden-
tified 44 groups of functions from 76 groups of icons. Our results
showed that although icons are extremely diverse in appearance,
users will have the same expectations about the associated func-
tionality if they represent the same object. This suggests that by
focusing on the most commonly-known icons, our technique could
cover most of the icons on which users have perception.

3.3 Second Study: Identifying User Expectation
of Icons and Sensitive Resource Access

We had at this point a set of commonly-known icons and their asso-
ciated functionalities. Our studies’ final step was to build a semantic
mapping between user expectations of sensitive resource accesses
and the apps’ icons. From 76 clusters of commonly-known icons,

we randomly selected 3 icons per cluster to conduct this study. Our
survey first provided the participants with an instruction page that
gave a detailed explanation of each sensitive resource to minimize
technical terms. We further asked participants an attention and
comprehension check question to see if the participants understand
these sensitive resources (see Appendix A.2.1 for details).

Afterward, we provided multiple choice answers, where the par-
ticipants could choose the sensitive resources that an icon could
associate with (i.e., "Which of the following sensitive resources that
you would expect this app to access to perform the function it rep-
resents?"). Each of the sensitive resources was accompanied by a
corresponding explanation taken from the Android system to lever-
age user prior experience. Participants could choose “NONE” if
no sensitive resource is expected. Also, we asked participants to
explain their answers (i.e., "Why would you think the above selected
sensitive resources are needed?"). This question helps us to see if
participants provide meaningful responses. To minimize the bias
introduced by a single participant for each icon, we asked three dif-
ferent participants. The survey involved 45 participants and lasted
for 3 days. Participants’ median age is 33 years (68.89% male and
31.11% female, see Table 8 in Appendix A.2 for full demographics).
Finally, we got 684 feedback on the commonly-known icons and
their related sensitive resources.

To build a comprehensive mapping between app icons and their
associated sensitive resource accesses, we based on the majority of
votes for the associated sensitive resources among the participants.
Specifically, for each cluster of icons, we calculated the agreement
rate on an associated sensitive resource (𝑅𝑖) by the number of votes
for 𝑅𝑖 divided by the total number of votes. We considered a cluster
of icons relating to 𝑅𝑖 if its agreement rate was at least 0.66 which
meets the standard of the icon recognition ISO 3864 [30] (i.e., 66.7%
for signs). Details of the icons and their agreement rates are listed in
Table 1. Specifically, we identified 20 groups of icons that associate
with sensitive resources from users’ perspective. In this study, we
found that one specific icon could be associated with more than one
sensitive resource from users’ perspective. For example, the icons
that represent a camera (see Table 1) can be associated withCamera
and Storage sensitive resources (e.g., explained by a participant
"It’s an icon of a camera so it’d have to access your camera to work,
and I think it’d have access to your storage to store the photos you
take with the app."). This suggests that approaches only consider
one-to-one mapping between icons and sensitive resources might
not correctly reflect users’ expectations (e.g., IconIntent [69]).

4 DETECTING UNEXPECTED SENSITIVE
RESOURCE ACCESS

So far, we have conducted two studies to establish a semantic map-
ping between common apps’ icons and user expectation of apps’
sensitive resource accesses. Recall that our goal is to have a fully au-
tomatic and scalable solution to detect unexpected sensitive resource
accesses based on user perception.We now leveraged the knowledge
gained from the two user studies to build GUIBAT that estimates
user expectation to detect unexpected sensitive resource accesses in
Android apps. Figure 2 presents the architecture of GUIBAT. For a
given app, GUI Extractor first extracts all the app’s UI elements (e.g.,
buttons, images), and their associated callbacks which handle users

Apps

GUIExtractor

Expected Sensitive
Resource Access Detector

Users’ Perceptions of Sensitive
Resource Access (Section 3.3)

Actual Sensitive Re-
source Access Detector

Unexpected
Sensitive

Resource
Access

D
etector

Texts
Icons

Callback

expected
SR

actual
SR

unexpected
SR

Figure 2: Overview of the GUIBAT’s architecture.

interaction with the app’s UI (Section 4.1). Then, using our study
results in Section 3.3, the Expected Sensitive Resource Access Detector
utilizes a classifier built on top of Natural Language Processing and
Image Recognition techniques to identify the app’s expected sensi-
tive resource accesses based on the texts and icons of the extracted
UI elements (Section 4.2), which we refer as expected SR. On the
other hand, for the corresponding extracted UI element, the Ac-
tual Sensitive Resource Access Detector leverages Static Control-flow
Analysis techniques to detect the app’s actual sensitive resource
accesses from sequences of callbacks by looking for permission-
protected API calls (Section 4.3), which we refer as actual SR. An
actual SR will be considered unexpected (referred to as unexpected
SR) by the Unexpected Sensitive Resource Access Detector (Section
4.4) if it is not contained in the expected SR.

In this section, we describe each component in details. We then
present how we designed and conducted the third user study to
validate GUIBAT’s results in Section 5.1.

4.1 GUI Extractor
This component aimed to identify the app’s UI elements and their
associated callbacks and to extract the associated graphical con-
tent (i.e., texts and icons) that comprise an app’s UI. Prior works
have proposed different approaches to analyze the app’s GUI (e.g.,
GATOR [60, 72], Backstage [2]). Among them, GATOR is a widely-
used static analysis toolkit for Android that analyzes an app’s UI by
providing an over-approximation algorithm to infer the relation-
ship between app’s callbacks and app’s UI elements [68, 69]. Further,
GATOR identifies both static layout files and dynamically generated
UI components. Moreover, the authors showed that it achieved
good precision, takes less computational memory. Therefore, to
discover the apps’ UI elements and their callbacks, we extended
GATOR with some improvements (i.e., better coverage and higher
precision, see Appendix A.1.3).

Second, to extract texts and icons, we followed similar approaches
used in prior works [2, 68]. Specifically, GUI Extractor first stati-
cally parses the app’s UI layout file5 (i.e., layout files are in XML to
define app’s UI), and then uses the XML text-related attributes (e.g.,
android:text, android:title) to extract UI texts, and image-related
attributes (e.g., android:drawable, android:icon) to extract UI icons.
Further, by analyzing app’s byte-code, GUI Extractor extracts UI
texts and icons that are dynamically created at runtime by identifiy-
ing the used of text-related APIs (e.g., setText(), setTooltipText()), or
image-related APIs (e.g., setImageResource(), setIcon()).GUI Extractor
further extracts additional information that are shown to users after
5https://developer.android.com/guide/topics/ui/declaring-layout

(a) Camera, Storage (b) Location, Storage (c) Contacts, Phone,
Storage

Figure 3: Example of expected sensitive resource accesses.

they press on the app’s UI elements. It first finds all the instantia-
tions of Toast, Snackbar, Dialog and AlertDialog objects which allow
an app to send feedback messages to end-users. Then it extracts
the text message based on the used API (e.g., Toast.makeText). For
example, clicking on a button shows the "Start recording" text.

4.2 Expected Sensitive Resource Access
Detector

After having all the extracted UI elements of a given app, we want
to automatically detect if they represent any sensitive resource
accesses from users’ perspective. Our idea is based on the intu-
ition that an app’s UI (i.e., presented as texts and icons) depicts the
user’s expectation of app’s behavior [28]. More importantly, we can
not treat a UI element as a stand-alone element on a screen as an
app activity’s UI may be comprised of different UI elements, and
their expected SR can complement each other. Therefore, from each
extracted UI element, GUIBAT’s Expected Sensitive Resource Access
Detector first uses GUI Extractor to extract the contextual informa-
tion (the texts and icons of the surrounding UI elements) where the
UI element is represented. Then, it performs icons classification,
in combination with the acquired user perception (Section 3) to
automatically identify the expected SR of icons. Additionally, we
also leverage prior works to identify expected SR in texts [28, 49, 65].

Examples of expected SR (according to our user studies) are de-
picted in Figure 3. In Figure 3(a) the expected SR is accessing Cam-
era, Storage represented by a gallery icon (see Table 1). In Figure
3(b) the expected SRs are Location represented by the Use current
location text (see Table 2), and Storage represented by the Save
text with a floppy disk icon. Finally, in Figure 3(c) the expected SRs
are Contacts represented by Contacts text with the human icon,
and Phone represented by Call text with the phone icon.

4.2.1 Icon Classifier. This component aimed to identify user ex-
pected sensitive resource accesses based on apps’ icons. To this end,
we used Convolutional Neural Networks (CNNs), which is a deep
learning model that achieves state-of-the-art results in image recog-
nition challenges, and widely used in image classification tasks
[24]. We abstained from using perceptual hashing [74] because it
can only identify identical or very similar looking images, while

Figure 4: ROC curves of the 10-Fold cross-valication.

our goal is to maximize the robustness of GUIBAT in identifying 20
groups of icons in Table 1, a more challenging classification task.

Our Icon Classifier is a multi-class CNN classifier. Given an input
(i.e., an icon), the Classifier produces the probability of this icon
associating with the 20 groups of icons in Table 1. To determine
whether a given icon is associated with sensitive resources (from
user perspectives), we first use the Icon Classifier to predict the prob-
abilities for 20 groups of icons. If the icon’s prediction result has the
highest confidence probability at group𝑖 , and also its probability
is higher than 0.99, we then consider that the icon is associated
with the corresponding sensitive resource6. Our user studies have
already collected a labeled dataset reflecting user-perceived associ-
ation between icons and sensitive resource accesses. As such, we
expect the Classifier to capture user expectations of icons.

Constructing Training Dataset. For each icon group in Table 1,
we manually selected 500 similar icons based on the similarity of
their visual feature from our icon dataset. The manually labeling
method helps us enrich the generalization of the Icon Classifier.
An icon is considered similar to one of the sensitive related icons
in Table 1 if it represents the same object (e.g., camera). Each la-
beled icon was reviewed by two volunteers independently. If there
was a disagreement between the two volunteers, we would ask an-
other volunteer to join the discussion. If an agreement could not be
reached, we simply excluded that icon. Further, our dataset as any
real dataset contains noisy data such as icons with different sizes,
or icons with different formats (e.g., RGB, RGBA) which potentially
lead to low-quality models. Therefore, the following preprocessing
methods were applied to obtain a quality training dataset [34, 68]:
(1) resizing icons to 128x128 pixels (which is most common icon
size); (2) converting the RGBA to RGB without affecting the im-
age’s content. Finally, our training dataset has 10,000 labeled icons
pertaining to sensitive resources across 20 groups of icons.

Training. We employed a self-training method to leverage unla-
beled data at scale, which has been widely used in image processing
[61, 62, 70]. Specifically, we first implemented the SimpleNet ar-
chitecture, a light-weighed deep CNN architecture that achieves
high precision [24]. Then we trained the SimpleNet model on the
labeled dataset. We used it as a "teacher" to generate pseudo labels

6We exclude the icons that could not be mapped to any group in Table 1 (probability <
0.99). If an icon has the same probability for 2 groups (or more), we consider it to be
associated with the corresponding sensitive resources behind these groups.

Table 2: Sensitive Related Keywords.

Sensitive
Resources

Keywords

Calendar calendar, calender, event, reminder, meeting, schedule, agenda
Contacts contact, account, call
Camera take picture, camera, capture, scan
Location location, map, gps, track
Microphone microphone, recording, record, audio, voice, mic
Phone call, telephone
SMS sms, mms, send, incoming, voicemail
Storage storage, sd card, file, save

on 700,000 unlabeled icons. Subsequently, we trained a larger Sim-
pleNet on the combination of labeled and pseudo labeled icons to
produce more “student” data. We iterated this process by putting
back the "student" into the "teacher" data. During this process, we
kept increasing the size of the "student" data to improve perfor-
mance. This iterative process was stoppedwhen the size of "student"
data became stable (i.e., our final training dataset has 46,578 labeled
icons across 20 groups of icons).

When putting back the "student" data to the training dataset,
our training dataset became imbalanced among some classes which
could significantly affect the classifier’s performance. Therefore,
we first leveraged the Cost Sensitive Learning method in which
the weights of each class (calculated based on sample frequencies)
are integrated into the cost function [25]. Further, to reduce over-
fitting and to build a quality image classifier, we employed data
augmentation technique that helps diversitize our training dataset
which is randomly zooming into images, and the zoom ranges from
0 to 10% of the original images [14].

Evaluation. To validate our "teacher" model, the k-Fold cross
validation was selected, together with k = 10 as this was shown to
be the best method for cross validation by prior work [33]. Further,
to evaluate themodel, we used the area under the curve (AUC) of the
receiver operating characteristic (ROC) [23]. The AUC is the most
commonly used for evaluation of imbalanced data classification
[12, 57], where the area near up to 1.0 represents a perfect model,
and the area of 0.5 represents a random guessing model. Figure 4
shows the AUC values for 10-Fold cross validation. Our classifier
has an AUC’s mean value of 0.9944.

4.2.2 Identifying Expected Sensitive Resource Accesses in Texts. This
component aimed to identify the user-expected sensitive resource
access based on texts of UI elements, since in different UI contexts,
similar icons may reflect different intentions [68]. From the ex-
tracted texts of UI elements7, we followed prior works [49, 65] to
rely on keywords to map texts to expected SR. Most of the visible
texts on UI elements are short (combination of verbs, or nouns) but
they are self-explanatory. Therefore, we first collected security and
privacy relevant keywords from existing works [49, 65], then we
manually examined the Android documentation8 regarding the
permission-protected resources to expand the keyword list. The fi-
nal list is shown in Table 2. Given an input text 𝑡 (i.e., a list of words),
GUIBAT first uses a set of Natural Language Processing techniques

7The embedded texts in iconswe are also extracted usingOptical Character Recognition
(OCR) techniques (https://github.com/tesseract-ocr/tesseract).
8https://developer.android.com/reference/android/Manifest.permission

to preprocess 𝑡 : normalizing and lemmatizing, removing generic
stop words [26, 40, 65]. Then by searching the sensitive related
keywords (see Table 2) in 𝑡 , GUIBAT can identify the corresponding
expected SR.

4.3 Actual Sensitive Resource Access Detector
To detect actual sensitive resource accesses of apps’ UI elements,
we first leveraged GATOR to build the control-flow graph (CFG) that
includes all the reachable API calls from a UI element’s callbacks.
We further extended this component to support multi-threading
(e.g., AsyncTask.execute) which was not covered by default. GATOR
was then used to expand the built CFG by analyzing the inter-
component communication (ICC) (e.g., permission-protected APIs
may be triggered via services or broadcast receivers), since many
of the vulnerabilities and malicious behavior in Android apps ad-
dressed in the literature are related to the ICC mechanism [35, 52,
53]. After identifying all reachable API calls, we used PScout and
Axplorer to find out which API is permission-protected APIs (i.e.,
sensitive resources) [1, 4]. Accesses of content providers where apps
can access sensitive resources were also detected by querying the
content provider with URIs. For instance, by providing the URI con-
tent "content://com.android.contacts" to the ContentResolver.Query
method, the app can access user contacts.

We further leveraged LibScout [3] to identify actual SR of third-
party libraries (i.e., providing the information of 501 commonly used
libraries). Additionally, to cover cases of unknown third-party code
that LibScout could not identify, we extended its implementation
to identify libraries using app package name as a heuristic [2, 36, 49].
It is not practical to build a CFG, which includes all of the reachable
code statements due to execution time. Therefore, we needed to
find a threshold to limit the depth of the CFG analysis counting
from a callback. In our experiments, we randomly selected and
analyzed 10,000 apps from the app dataset. With a maximum depth
of 350 calls from the corresponding callback we could successfully
identifies 96.52% of the accessed sensitive resources of app’s UI
elements (see Figure 8 in Appendix A.1.4 for details).

Evaluation. To evaluate the precision of GUIBAT on mapping ac-
tual SR to app’s UI elements, we first randomly selected 200 Android
apps from 32 categories (i.e., predefined categories on Google Play),
and used dynamic analysis to extract runtime actual SR of each
app’s UI element. Specifically, we used the dynamic instrumenta-
tion toolkit Frida9 to instrument the Android system to monitor
access of sensitive resources while running the app by logging
at each permission-protected API calls and URI queries, and used
DroidBot [38] an automatic event generation tool, to simulate user-
interaction with the apps (performs best in comparison with similar
tools [6]). This way, we could automatically create ground truth
for apps’ UI elements and their actual SR. In this experiment, we
limited the automated analysis time to 30 minutes for each app. As
the results, we successfully identified 1,284 UI-sensitive resources
mappings. Then we used GUIBAT’s Accessed Sensitive Resource De-
tector to extract app’s UI elements that access sensitive resources
from these apps, and compare its results with the ground truth.
The average precision and recall of GUIBAT is 90.19% and 96.65%

9https://frida.re/

(a) unexpected SR:Phone (b) unexpected SR:Storage

Figure 5: Unexpected SR of a benign app (on Play Store).

respectively. We did not calculate the recall of this component for
the whole apps, because it is practically impossible to calculate how
manymapping relations are missed by GUIBAT as there is no ground
truth available, and due to the limitation of dynamic analysis which
can not guarantee all the app code are analyzed.

4.4 Unexpected Sensitive Resource Access
Detector

The final step in our work-flow (see Figure 2) is to find unexpected
access to sensitive resources in a given app. Specifically, GUIBAT
first identifies the user expectation of sensitive resource accesses
from the apps’ UIs (expected SR), then the actually accessed sensi-
tive resources (actual SR) using Expected Sensitive-Resource Access
Detector, and Actual Sensitive-Resource Access Detector respectively.
An actual SR is considered unexpected if it is not contained in
the expected SR. For example, in Figure 5 (a), when users click on
the highlighted button, the app then accesses both Location, and
Phone (e.g., to get the unique user’s device ID such as the IMEI)
sensitive resources. GUIBAT detects an unexpected SR since Phone
sensitive resource is not expected in any related context, e.g., on the
surrounding UI elements, or in the feedback message at the bottom
of the screen when users click on this button. Similarly, in Figure
5 (b), GUIBAT identifies the Send SMS as an unexpected SR, since it
accesses user’s phone Storage in addition to SMS while no further
information is provided on this screen.

5 RESULTS
In this section, we present our results regarding the research ques-
tions stated in Section 1. Our results show that GUIBAT is superior
than prior works on detecting unexpected SR with users’ expecta-
tions. After that, we used GUIBAT to analyze a representative sample
of 100,000 Android apps for unexpected SR.

5.1 RQ1: Does the output of GUIBAT reflect
users’ expectations of apps’ sensitive
resource access?

To answer RQ1, we carried out a further user study and tested users’
actual expectations while interacting with an app. The goal was

to check whether GUIBAT’s output reflects these expectations. The
main hypothesis was: If our tool works as intended, sensitive resource
access classified by GUIBAT as “unexpected” should be less expected
by users than the one classified as “expected”.

However, previous work showed that other variables might also
influence users’ perception, attitudes, and expectations in the con-
text of mobile apps. Particularly, the following factors have been
primarily identified: 1) the users’ individual characteristics (e.g., gen-
der, age, whether the persons have computer science background,
or which mobile operating system people use) [20]; 2) the apps’
characteristics (e.g., which sensitive resources the app uses) [10, 49];
and 3) the user perception of the app descriptions [22, 56, 58]. To
ensure that such effects do not overshadow our results, and, to
be able to test whether GUIBAT provides added value compared to
these known influential factors of user expectations, we included
them in our study design as well.

Study Design and Procedure. The goal of our study was to simu-
late the users’ interaction with an app as close to reality as possible.
However, it was also important to cover different types of apps and
different sensitive resources to be as representative as possible in
our evaluation. After balancing these two goals, we decided on a
survey design in which participants were shown an app, and then
mentally put themselves (with the help of the app description and
screenshots) in the situation that they were using this app.

We first presented participants the description of an app retrieved
from Google Play. After reading the description, participants could
select from a list of 8 sensitive resources (e.g., or none of them)
those they expected the app to access. Participants were then asked
to explain briefly why they thought the app needed the selected
resources (see Q1 and Q2 in Appendix A.2.2). This step prepared
participants to put themselves in the situation of using the app, as it
is the same information they see in Google Play before downloading
and installing an app. This setup also allowed us to measure the
effect of the app descriptions on the users’ expectations of sensitive
resource accesses and to control for this effect. Next, we asked
participants to imagine that they were using the app and showed
them a concrete screenshot taken from the corresponding app. For
all actual SR that are detected by GUIBAT, participants should then
indicate on a 7-point Likert scale to what extent they expect the
app to access these resources (see Q3 in Appendix A.2.2). We then
asked participants to what extent they feel comfortable with the
accessing of these resources (on a 7-point Likert scale) (see Q4
in Appendix A.2.2). Lastly, we collected demographic data of our
participants, including questions about their predominantly used
mobile operating system and their background in computer science.

Selection of Apps. We randomly selected 1,000 apps from the
app dataset that was already used to extract the icons during the
development of GUIBAT. Then we used DroidBot [38] to simulate
user-interaction and automatically took screenshots of these apps.
We limited the time for the dynamic analysis to 10 minutes for each
app. Using this setting, DroidBot successfully analyzed 977 apps
(97.7% of the total apps). Among 977 apps, we successfully extracted
screenshots of unexpected SR in 311 apps by using GUIBAT. In a final
step, we manually filtered out apps that were not in English or
that were protected by FLAG_SECURE whose UI was not shown on
screenshots. This resulted in a final set of screenshots of N apps =

Table 3: Detected sensitive resource accesses in our sample.

Number of Sensitive Resource Accesses
Expected Unexpected

Phone 19 104
Location 55 89
Storage 130 76
Contacts 118 16
Camera 22 13
Microphone 33 8
Calendar 18 1
SMS 108 0
Total 503 307

243 apps in which GUIBAT identified a total of 810 cases of sensitive
resource access (see Table 3).

Survey. The survey lasted 6 days and 486 Turkers had partici-
pated (for each of the selected apps, we surveyed with two partici-
pants). After collecting all the responses, we removed 41 careless
responses based on attention checks. Participants’ median age is
34 years (41.35% male, 57.98% female, and 0.67% others, see Table
8 in Appendix A.2 for full demographics). Since we have included
gender as a potential influencing factor in our analyses and only
3 persons indicated a non-binary gender, we unfortunately had to
exclude these answers, since the model calculation based on such
few data points would have been very error-prone. In the end, our
final sample included N total = 1,444 individual expectation ratings
for sensitive resource access given by Nusers = 442 participants and
based on N apps = 243 apps.

Data Analysis. To analyze the effects of all the variables listed
at the beginning of this section, we used a regression approach
that predicts participants expectations regarding sensitive resource
accesses. Since each participant in our survey indicated his/her
expectation for several types of sensitive resource access, these
data points are not independent from each other. The same applies
to the data from any particular app, which was always presented
to several participants. To account for this fact, we designed our
analysis as a multi-level approach and included these two grouping
aspects of our data as random effects in our model. In concrete terms,
this means that the intercept of our regression function is not fixed
for all persons and all apps, but can vary freely. Since we measured
the expectations of our participants regarding sensitive resource
accesses with a 7-point Likert scale, we used an ordinal regression
based on a cumulative link model with a logit linkage function and
flexible thresholds between the categories. This regression method
provides a regression function as well as ordered thresholds that
describe the six category boundaries between the values of our
7-point Likert scale. In an iterative process, we specified different
regression models and compared them using the Akaike informa-
tion criterion (AIC), as well as direct comparisons of the goodness
of fit using Chi2-tests to find the model with the best trade-off
between complexity and fit to the empirical data [27, 42].

Results of the Evaluation. We started with a base model without
any independent variables and without the random effects and
added successively the following effects/predictors in the next steps:

(1) the random effects
(2) the users’ individual characteristics

Table 4: Final regressionmodel predicting users’ expectation
regarding sensitive resource accesses.

Estimate (b) SE z value p
Users’ characteristics
Computer background (Yes) 0.384 0.223 1.722 0.090
Age -0.007 0.009 -0.881 0.379
Gender (Male) -0.190 0.180 -1.058 0.290
Used devices (iPhone) -0.547 0.179 -3.061 0.002
Apps’ characteristics
Contacts 1.061 0.455 2.331 0.002
SMS 1.565 0.466 3.362 0.001
Phone 1.618 0.503 3.388 0.001
Microphone 2.078 0.478 4.131 <0.001
Location 2.087 0.465 4.492 <0.001
Storage 2.621 0.456 5.751 <0.001
Camera 2.647 0.519 5.099 <0.001
Users’ expectations based on app description
Expected access (Yes) 3.637 0.173 21.046 <0.001
GUIBAT
Detected as unexpected SR -0.569 0.145 -3.930 <0.001
Thresholds for category boundaries

1|2 2|3 3|4 4|5 5|6 6|7
1.980 2.756 3.354 4.004 4.787 5.775

Used devices (Baseline=Android); Sensitive resources (Baseline=Calendar); GUIBAT (Base-
line=expected SR); SE = Std. Error=; significant p-values are printed bold.

(3) the apps’ characteristics
(4) the users’ expectations based on the description
(5) the classification based on GUIBAT
(6) the interaction of the previous variables
The results of this process showed that every more complex

models up to step 5 could explain the empirical data significantly
better than the preceding/simpler model (see Table 10 in Appen-
dix A.2 for the goodness of fit of each relevant step in the model
building process). The interaction effects (step 6) do not add any
further value and therefore Model 5, which explains 63.5% of the
empirical variance is the final model for our analysis. Thereby,
the significant difference between the model without the predictor
based on GUIBAT’s output (Model 4) and with this predictor (Model
5) shows that our tool can explain the variance of user expecta-
tions regarding sensitive resource accesses beyond the effects on
which previous research has focused on. Table 4 presents the final
regression model’s results, including the estimates and standard
errors of the predictors, as well as the 6 thresholds of the Likert
scales category boundaries. The proportional odds assumption as
a prerequisite for a cumulative linking model was fulfilled for all
predictors.

Our results showed that among the users’ characteristics only
the mobile operating system that people use predominantly had a
significant effect on users expectations (b = -.55, p = .002). Partic-
ularly, iOS users were significantly less likely to expect that apps
use sensitive resources than Android users. We further found differ-
ences in the prevalence of expectations regarding access to different
types of sensitive resources. Thus, for instance, access to the Calen-
darwas significantly less likely expected by users than access to all
other sensitive resources, and was therefore picked as the baseline
category in the regression model (ball others = 1.06–2.65, pall others
≤ .002). This results are in line with prior work that shows that
users do not consider all permission to be equally sensitive [10, 49].

We also found that expectations regarding sensitive resource
accesses based on app descriptions had an impact on the expected

access to sensitive resources during app usage. If participants ex-
pected access to a certain sensitive resource based on the descrip-
tion, they were also more likely expecting access to this sensitive
resource during their further interaction with the app (b = 3.64, p
< .001). This is in line with prior work and particularly supports
the basic assumptions of research that analyzes the descriptions
and links this content to the users’ expectations [22, 56, 58].

Most importantly, however, we found a significant effect of the
predictor that represents the output of our tool. If sensitive resource
access was classified by GUIBAT as unexpected, participants signifi-
cantly less likely expected an app to behave in such a way, than if
the sensitive resource access was classified as expected (b = -0.57,
p < .001). This result supports the hypothesis that GUIBAT works
as intended. Thereby, this conclusion is also supported by the re-
sults of the model comparison process, which showed that our tool
can explain the users’ expectations significantly beyond previously
considered influencing factors (such as app description).

5.2 RQ2: How widespread is sensitive resource
access that violates users’ expectations in
the wild?

To explore the status quo of unexpected SR in the wild (RQ2), we
utilized GUIBAT to perform a large-scale analysis on Android apps
collected from Google Play. The run-time of GUIBAT’s static anal-
ysis depends on the complexity of the analyzed apps, hence it is
not practically feasible to analyze all apps with-in a reasonable
amount of time. Therefore, we randomly selected 100,000 apps10
(see Section 3.1) and ran GUIBAT on each app for 5 minutes, and then
terminated it if no results were outputted. As the result, GUIBAT suc-
cessfully analyzed 89,371 (89,37% of 100,000) apps. Among 89,371
apps, GUIBAT detected that only 60,485 (67.68% of 89,371) apps trig-
ger permission-protected API calls. This means that not all declared
permissions are actually used (i.e., over-privileged apps). Further,
GUIBAT identified 656,110 UI elements belonging to 47,909 (79,21%
of 60,485) apps that access sensitive resources.

GUIBAT detected 386,285 (58.88% of 656,110) UI elements from
36,115 (75.38% of 47,909) apps that access at least one sensitive
resource which is not expected by end users. Figure 6 shows the
distribution of unexpected SR by sensitive resources as well as the
attribution to the unexpected SR (i.e., by app or by third-party li-
braries). We see that storage sensitive resource has the highest
number of unexpected SR accounting for 44.50% (221,536) of the
total unexpected SR, followed by location, and phone resources,
accounting for 32.01%, and 15.50% respectively. The unexpected SR
pertaining to these three sensitive resources contribute to 92.01%
of the total unexpected SR. More importantly, third-party library is
the contributing factor to the high number of unexpected SR with
43.03% of Storage, 62.71% of Location, and 38.53% of Phone.

To study to which extent third-party libraries contribute to the
unexpected SR of apps and found 178,206 (46.13% of 386,285) UI
elements from 17,674 apps that have unexpected SR from third-
party libraries. Per apps, 38.20% of 36,115 apps have unexpected SR
that are exclusively attributed by third-party libraries. We see that
location, phone, and storage sensitive resources have the highest
number of unexpected SR caused by using third-party library APIs
10These apps declare at least one dangerous permission in the apps’ manifest file.

0 50,000 100,000 150,000 200,000 250,000 300,000
Frequency of accesses

storage

location

phone

contacts

camera

microphone

calendar

sms

Se
ns

iti
ve

 r
es

ou
rc

es

56.97%
43.03%

221,536 (44.5%)

37.29%
62.71% 159,361 (32.01%)

61.47%
38.53% 77,177 (15.5%)

79.08%
20.92% 24,184 (4.86%)
82.1%

17.9% 7,094 (1.43%)
69.91%
30.09% 5,763 (1.16%)
98.9%
1.1% 1,455 (0.29%)
99.76%
0.24% 1,232 (0.25%)

Source of Unexpected SR
Total
App Code
Library Code

Figure 6: Distribution of unexpected SR among sensitive re-
sources in 36,115 apps. Attribution of app code and library
code sum up to 100% in each sensitive resources.

0 20,000 40,000 60,000 80,000 100,000
Frequency of accesses

facebook
startapp

mopub-interstitial
com.ksmobile.base

flurry-analytics
org.xwalk.core

universal-image-loader
com.appbrain

com.revmob
com.ansca.coronaT

hi
rd

 p
ar

ty
 li

br
ar

ie
s 63,355 (27.18%)

54,481 (23.38%)
21,554 (9.25%)

14,472 (6.21%)
11,569 (4.96%)

9,253 (3.97%)
7,328 (3.14%)

3,583 (1.54%)
3,564 (1.53%)
3,366 (1.44%)

Sensitive resources
storage
location
phone
contacts

camera
microphone
calendar
sms

Figure 7: Top 10 libraries with unexpected SR.

(see Figure 7). A prior work of Book et al. showed that location and
phone sensitive resources have constantly been the most frequently
used of advertisement libraries [11]. We found that among the top
10 libraries that contribute to the total unexpected SR of the phone,
location, storage sensitive resources, the majority of them are
advertising and analytic libraries (see Figure 7).

6 DISCUSSION
6.1 GUIBAT Compares to Prior Works
To see how effective GUIBAT is in identifying unexpected SR, we
compare GUIBAT with the most recent work on detecting intention-
behavior discrepancy namely DeepIntent, and with text-based
only approaches.

Compare with DeepIntent. We applied GUIBAT on the dataset that
DeepIntent took as the ground truth to train their icon-behavior
classifier. The dataset contains 7,691 data points that were ex-
tracted from a set of benign apps, and each data point is a triple
of <icon,text,actual_SR>. We found that 22.91% (1,020 out of 4,452)
of the data points are unexpected SR11. All of these unexpected SR
were then manually verified independently by two of the authors
(disagreements were excluded) based on our user study results

11We filtered out data that was out of scope for this work (e.g., icons have embedded
foreign languages).

Table 5: Distribution of expected SR on icons/texts.

Number of UI elements
w/o Contexts w/ Contexts

Exclusively by Texts 177,022 225,702
Exclusively by Icons 18,740 58,181
Both Texts & Icons 11,594 146,561
Total 207,356 430,444

(whether the actual SR are justified by the associated icons/texts),
and we found that 958 of them (93.92% of 1,020) indeed are unex-
pected SR (see Table 11 in Appendix A.2 for examples). However, it
is unknown why apps make these unexpected SR due to not having
the app’s code or app’s name of these data points. Determining the
root cause for such unexpected SR is outside the scope of this paper.
Our results show that relying on benign apps’ icon-to-permission
association as the "norm" to detect behavior discrepancy is not
enough. There are actual SR (in this case, 22.91%) of benign apps
that were previously considered normal by DeepIntent but are
unexpected by users.

Besides, to show the effectiveness of our Icon Classifier in iden-
tifying icons and their associated sensitive resource accesses, we
compared it with the icon-only classifier of DeepIntent12. We first
ran the icon-only classifier on our labeled dataset that reflects user
perception of sensitive resource accesses (see Section 4.2.1). This
resulted in a low accuracy (AUC=0.50, see Table 9 in Appendix
A.2 for the details). Further, for a fair comparison, we ran our Icon
Classifier and the icon-only classifier on an "unseen" dataset. To
create the labeled unseen dataset we followed the approach used
in IconIntent [69]. Specifically, to obtain icons belonging to each
sensitive resource, sensitive resource name (e.g., “camera”) together
with the keyword "icon" were used to search for icons from Google
Image. The top 100 results were then downloaded. This resulted
in 800 images in total. Images that were not icons were then fil-
tered out, resulted in 657 labeled icons. On this unseen dataset, our
Icon Classifier significantly outperforms the DeepIntent’s icon-
only classifier in identifying sensitive resource related icons when
taking user perception into account (details are included in Table 9,
Appendix A.2). In particular, our Icon Classifier achieved an AUC
value of 0.88, while the icon-only had an AUC value of 0.51. Our
results indicate that approaches without considering how end users
perceive app’s data access is less effective in detecting sensitive
resource accesses that violate user expectations.

Compare with text-based only approach. In Table 5, when we con-
sider the contexts where UI elements are represented (e.g., including
surrounding UI elements), among UI elements that advertise their
sensitive resources usage, 47.56% are advertised using icons. This
shows that relying solely on textual UI elements would result in
a severely high number of false positive (i.e., sensitive resource
accesses that are represented on UI but missed by the text-based
detectors). Text-based only approaches [2, 28] did not cover such UI
elements, hence their analysis would miss a significant portion of
UI elements (e.g., about 47.56%) affecting the final results. Further,
GUIBAT also identified 28,145 UI elements (which access sensitive
12For a fair comparison, we trained these classifiers multiple times (K=10) based on
the provided source code (https://github.com/deepintent-ccs/DeepIntent) to achieve
the authors’ reported performance.

resources) that associate with icons on UI screens that comprise
solely of icons (i.e., no textual UI elements were presented) from
6,730 apps (14.06% of apps in our dataset). This means, text-based
only approaches would completely miss such screens, hence the
analysis results of the corresponding apps (e.g., 14.06%) would be
affected.

6.2 Transparency of Sensitive Resources Access
GUIBAT revealed that 36,115 apps (75.38% of 47,909) have at least
one unexpected SR. This is a non-negligible number given its impli-
cations to user’s privacy. Further, this shows that even seemingly
benign apps (i.e., apps from Google Play) can have misleading UIs
that lead to unexpected SR. Users already expressed concerns about
the permissions they grant to apps, and the most common per-
missions that users worried about and were uncomfortable after
they granted apps access to were storage, phone, and location
[10, 49]. This is also the same set of sensitive resources that were
most frequently associated with unexpected SR. Besides, Micinski
et al. showed that user actions such as pressing a button could be
interpreted as authorization [45]. Thus, it is important to inform
users whether such actions would lead to unexpected SR.

Further, in the third study (see Section 5.1), we have observed
a significant correlation (z = 19.7, p < 0.001) between the users’
expectation and comfort ratings. In other words, users’ expectations
of apps’ actual SR are directly connected to their subjective feelings.
Users are uncomfortable when an app’s actual SR is not expected
on the app’s UI (inline with a prior study [39]). Tools like GUIBAT
could support users in making decision to protect their privacy by
learning about app’s unexpected SR.

GUIBAT can also help developers to self-assess the informative-
ness of their apps’ UIs. Future work can look into building new tools
to support developers in this endeavor (e.g., by suggesting changes).
Besides, developers may also use privacy policies to inform users
about their access to sensitive user data. However, privacy poli-
cies are often long and complicated that is difficult for users to
understand [54]. Further, in practice, the majority (71%) of apps
lack privacy policy even though they are obligated to have one [76].
Hence, they would have a limited impact if only a few users would
actually read and understand the privacy policy.

Runtime permission. The goal of using runtime permission is to
improve the permission decision-making and avoid undermining
users’ expectations [16]. It enables apps to embed their permission
requests in contexts, so that the end-users can understand better.
Our analysis found 21,843 apps with runtime permission (60.48%
of 36,115 apps) that have at least one unexpected SR. We found a
significant difference (Kruskal-Wallis, 𝜒2 = 197.99,𝑑 𝑓 = 1, 𝑝 < .001)
between the number of unexpected SR of apps with install-time
permission (mean = 10.99) and of apps with runtime permission
(mean = 10.05). This suggests that apps with runtime permissions
have significantly smaller numbers of unexpected SR. However, we
believe that the runtime permission is not the panacea for resolving
the transparency issues of accessing sensitive data. Particularly, in
this analysis, the effect size of runtime permissions is negligible
(𝑒𝑝𝑠𝑖𝑙𝑜𝑛 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 0.00413). An app behavior may defy users’
expectations, depending on whether the app provides users enough

semantics to justify the access — not merely whether the app was
authorized to receive data the first time it asked for it [55].

6.3 The Impact of Third-party Libraries
GUIBAT revealed that 38.20% of apps have unexpected SR that are
exclusively attributed by third-party libraries. This suggests that
developers should be extra careful about the actual SR by libraries.
More specifically, developers should be informed when they use
an API that accesses sensitive resources. Library developers should
also provide information on what the library does, which sensitive
resources will be accessed under which conditions. Future work
can further analyze libraries to provide permission-protected API
mappings. This could put app developers in a better position in
informing their users about the apps’ permission access. Central
repositories such as Jcenter and Maven also play an important
role in making permission accesses of libraries more transparent.
For example, these central repositories can enforce third-party
libraries to follow a permission-transparency policy, e.g., having an
explanation for usages of permission-protected API(s).

6.4 Limitations and Future Work
Similar to any other static analysis approaches, GUIBAT is over-
approximation in identifying associated callbacks of UI elements.
Besides, while LibScout is resilient against common obfuscation
techniques (e.g., identifiers renaming, API hiding), it would fail
when apps leverage more advanced obfuscation techniques (e.g.,
package flattening, class repackaging). Hence, this would affect our
results in attributing the source of unexpected SR in apps. Future
work could adopt more advanced de-obfuscation tools [8, 71] to pre-
process these obfuscated apps. Note that Wemker et al. showed that
only 24.92% apps on Google Play are obfuscated by developers [66].
Specifically related to UI, apps could also obfuscate their UI e.g., by
using UIObfuscator [75]. This would affect our results in statically
extracting UI elements. Future work could look into developing
de-obfuscators that address the challenges that UIObfuscator in-
troduces, for example, by removing invisible layout from view
hierarchies, resolving Java reflection [7], and dynamically instru-
menting and analyzing apps to unveil apps’ UI. Especially, with
the techniques used in GUIBAT, we could build an icon classifier
that learnt from the unobfuscated apps (majority of apps on Google
Play [66]), and combine it with dynamic analysis (and instrumenta-
tion techniques) to analyze the UI of obfuscated apps.

Further, we did not consider UI elements on webviews or other
dynamic app content, which would potentially affect the number
of the identified UI elements. These limitations might affect the
precision of GUIBAT in detecting the unexpected SR. Besides, we
did not consider sensors permission as only 0.09% (319 of 600,000)
of apps in our dataset request this permission. In our analysis,
we did not consider inter-app interaction (e.g., an app can launch
another app). For such cases, users have to choose the provider apps
(receiving intent) explicitly. Thus, further analysis of such providers
are needed. This would affect the number of false positive in our
analysis. We leave these challenges for future work.

To examine the coverage of the icons in our studies, we extended
our Icon Classifier with the results of the first studies (see Section
3.2) to identify all commonly-known icons in our dataset (700,000

icons). With the confidence probability higher than 0.5 (random
guessing), the Extended Icon Classifier successfully identified 72.35%
of the icons across 76 groups of commonly-known icons. Applying
the Extended Icon Classifier on the Material Design Icons [18], we
successfully identified 83.22% of the icons (352 of 423). We focused
on the commonly-known icons (72.35%), and ignored icons that
users have not seen before since it is not possible to formulate
user’s mental models of such icons. This limits us from studying
the user’s perception of not yet seen icons. Thereby, our detection
result can only serve as a lower-bound of unexpected SR in mobile
apps. Further, our studies were conducted online which might suffer
from opt-in bias and the inherent bias from MTurk’s users.

In this paper, we referred to prior works [49, 65] and Android’s
documentation to create themapping for sensitive related keywords
(see Table 2). This mapping might be incomplete, and hence, could
limit GUIBAT in identifying expected SR of textual UI elements. One
alternative approach would be to build the mapping by mining the
app dataset and then picking the most common keyword associated
with actual SR. However, even with a complete mapping, the text-
based detector is deficient for identifying expected SR of UI elements
that comprise solely of icons (14.06% of apps in our dataset).

Finally, an interesting direction for future work is to identify the
root causes of the unexpected SR in mobile apps, e.g., by conducting
an in-depth study with developers and end users to characterize
the identified unexpected SR.

7 CONCLUSION
In this paper, we proposed GUIBAT - a new tool that learns from
users’ perception to detect unexpected SR in Android apps. Our
evaluations showed that GUIBAT correctly reflects users’ expecta-
tions, and revealed the deficient of prior work. Having applied on
a set of 47,909 apps, GUIBAT identified that 75.38% of apps have at
least one unexpected SR. Further, GUIBAT also revealed that 46.13%
of the unexpected SR were attributed by third-party libraries. We
showed the urgent need for more transparent UI designs to better
inform users of data access, and called for new tools to support app
developers in this endeavor.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback and our shepherd Mu Zhang at the University of Utah for
his guidance in the shepherding process.

REFERENCES
[1] KWY Au, YF Zhou, Z Huang, and D Lie. 2012. PScout: Analyzing the Android

Permission Specification. In CCS.
[2] V Avdiienko, K Kuznetsov, I Rommelfanger, A Rau, A Gorla, and A Zeller. 2017.

Detecting Behavior Anomalies in Graphical User Interfaces. In ICSE-C.
[3] M Backes, S Bugiel, and E Derr. 2016. Reliable Third-Party Library Detection in

Android and Its Security Applications. In CCS.
[4] M Backes, S Bugiel, E Derr, P McDaniel, D Octeau, and S Weisgerber. 2016.

On Demystifying the Android Application Framework: Re-Visiting Android
Permission Specification Analysis. In USENIX Security.

[5] R Balebako, J Jung, W Lu, LF Cranor, and C Nguyen. 2013. "Little Brothers
Watching You": Raising Awareness of Data Leaks on Smartphones. In SOUPS.

[6] L Bao, TD B Le, and D Lo. 2018. Mining sandboxes: Are we there yet?. In SANER.
[7] P Barros, R Just, S Millstein, P Vines, W Dietl, M d’Amorim, and MD Ernst. 2015.

Static Analysis of Implicit Control Flow: Resolving Java Reflection and Android
Intents (T). In ASE.

[8] B Bichsel, V Raychev, P Tsankov, and M Vechev. 2016. Statistical deobfuscation
of android applications. In CCS.

[9] R Bonett, K Kafle, K Moran, A Nadkarni, and D Poshyvanyk. 2018. Discovering
Flaws in Security-Focused Static Analysis Tools for Android using Systematic
Mutation. In USENIX Security.

[10] B Bonné, ST Peddinti, I Bilogrevic, and N Taft. 2017. Exploring decision making
with Android’s runtime permission dialogs using in-context surveys. In SOUPS.

[11] T Book, A Pridgen, and DS Wallach. 2013. Longitudinal Analysis of Android Ad
Library Permissions. In MOST.

[12] NV Chawla. 2005. Data Mining for Imbalanced Datasets: An Overview.
[13] HI Cheng and PE Patterson. 2007. Iconic hyperlinks on e-commerce websites.

Applied Ergonomics (2007).
[14] F Chollet. 2016. Building powerful image classification models using very little

data. Retrieved December 13 (2016).
[15] SR Choudhary, A Gorla, and A Orso. 2015. Automated Test Input Generation for

Android: Are We There Yet?. In ASE.
[16] AP Felt, S Egelman, M Finifter, D Akhawe, DA Wagner, et al. 2012. How to Ask

for Permission. HotSec (2012).
[17] AP Felt, E Ha, S Egelman, A Haney, E Chin, and D Wagner. 2012. Android

Permissions: User Attention, Comprehension, and Behavior. In SOUPS.
[18] Flaticon. 2020/04/30. Material. https://www.flaticon.com/packs/material-design.
[19] GATOR. 2018/08. GATOR. http://web.cse.ohio-state.edu/presto/software/gator/.
[20] C Gatsou, A Politis, and D Zevgolis. 2011. From icons perception to mobile

interaction. In FedCSIS.
[21] GDPR. 2020/11/02. The EU General Data Protection Regulation. https://gdpr.eu/.
[22] A Gorla, I Tavecchia, F Gross, and A Zeller. 2014. Checking App Behavior Against

App Descriptions. In ICSE.
[23] JA Hanley and BJ McNeil. 1982. The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology (1982).
[24] SH HasanPour, M Rouhani, M Fayyaz, and M Sabokrou. 2016. Lets keep it simple,

Using simple architectures to outperform deeper and more complex architectures.
CoRR (2016).

[25] H He and EA Garcia. 2009. Learning from Imbalanced Data. TKDE (2009).
[26] A Hotho, S Staab, and G Stumme. 2003. Ontologies improve text document

clustering. In ICDM.
[27] JJ Hox, M Moerbeek, and R Van de Schoot. 2017. Multilevel analysis: Techniques

and applications.
[28] J Huang, X Zhang, L Tan, PWang, and B Liang. 2014. AsDroid: Detecting Stealthy

Behaviors in Android Applications by User Interface and Program Behavior
Contradiction. In ICSE.

[29] S Isherwood. 2009. Graphics and semantics: The relationship between what is
seen and what is meant in icon design. In EPCE.

[30] International Standards Organization (ISO). 1984. International standard for
safety colours and safety signs: ISO 3864.

[31] J Jung, S Han, and DWetherall. 2012. Short Paper: Enhancing Mobile Application
Permissions with Runtime Feedback and Constraints. In SPSM.

[32] PG Kelley, S Consolvo, LF Cranor, J Jung, N Sadeh, and D Wetherall. 2012. “A
Conundrum of Permissions: Installing Applications on an Android Smartphone.
In FC.

[33] R Kohavi. 1995. A Study of Cross-validation and Bootstrap for Accuracy Estima-
tion and Model Selection. In IJCAI.

[34] A Krizhevsky, I Sutskever, and GE Hinton. 2012. Imagenet classification with
deep convolutional neural networks. In NIPS.

[35] L Li, TF Bissyand, M Papadakis, S Rasthofer, A Bartel, D Octeau, JK, and L Traon.
2017. Static analysis of android apps: A systematic literature review. IST (2017).

[36] L Li, TF Bissyandé, J Klein, and Y Le Traon. 2015. An Investigation into the Use
of Common Libraries in Android Apps. In Technique Report.

[37] Y Li, Y Guo, and X Chen. 2016. PERUIM: Understanding Mobile Application
Privacy with permission-UI Mapping. In UbiComp.

[38] Y Li, Z Yang, Y Guo, and X Chen. 2017. DroidBot: A Lightweight UI-guided Test
Input Generator for Android. In ICSE-C.

[39] J Lin, S Amini, J I Hong, N Sadeh, J Lindqvist, and J Zhang. 2012. Expectation
and purpose: understanding users’ mental models of mobile app privacy through
crowdsourcing. In Ubicomp.

[40] RTW Lo, B He, and I Ounis. 2005. Automatically building a stopword list for an
information retrieval system. In DIR.

[41] K Mao, M Harman, and Y Jia. 2016. Sapienz: Multi-objective Automated Testing
for Android Applications. In ISSTA.

[42] P McCullagh. 1980. Regression models for ordinal data. Journal of the Royal
Statistical Society: Series B (Methodological) (1980).

[43] S McDougall and S Isherwood. 2009. What’s in a name? The role of graphics,
functions, and their interrelationships in icon identification. Behavior research
methods (2009).

[44] AW Meade and SB Craig. 2012. Identifying careless responses in survey data.
Psychological methods (2012).

[45] K Micinski, D Votipka, R Stevens, N Kofinas, ML Mazurek, and JS Foster. 2017.
User Interactions and Permission Use on Android. In CHI.

[46] GA Miller. 1995. WordNet: a lexical database for English. COMMUN ACM (1995).
[47] N Momen, M Hatamian, and L Fritsch. 2019. Did App Privacy Improve After the

GDPR? IEEE Secur Priv (2019).

https://www.flaticon.com/packs/material-design
http://web.cse.ohio-state.edu/presto/software/gator/
https://gdpr.eu/

[48] K Moran, M Tufano, C Bernal-Cárdenas, M Linares-Vásquez, G Bavota, C Ven-
dome, M Di Penta, and D Poshyvanyk. 2018. MDroid+: A Mutation Testing
Framework for Android. In ICSE.

[49] DC Nguyen, E Derr, M Backes, and S Bugiel. 2019. Short Text, Large Effect:
Measuring the Impact of User Reviews on Android App Security & Privacy. In
SP.

[50] J Nielsen and D Sano. 1995. SunWeb: User interface design for Sun Microsystem’s
internal web. Computer Networks and ISDN Systems (1995).

[51] D Norman. 2014. Things that make us smart: Defending human attributes in the
age of the machine.

[52] D Octeau, D Luchaup, MDering, S Jha, and PMcDaniel. 2015. Composite constant
propagation: Application to android inter-component communication analysis.
In ICSE.

[53] D Octeau, P McDaniel, S Jha, A Bartel, E Bodden, J Klein, and Y Le Traon. 2013.
Effective inter-component communication mapping in android: An essential step
towards holistic security analysis. In USENIX Security.

[54] A Oltramari, D Piraviperumal, F Schaub, S Wilson, S Cherivirala, TB Norton,
NC Russell, P Story, J Reidenberg, and N Sadeh. 2017. PrivOnto: A semantic
framework for the analysis of privacy policies. Semantic Web (2017).

[55] X Pan, Y Cao, X Du, B He, G Fang, R Shao, and Y Chen. 2018. FlowCog: Context-
aware Semantics Extraction and Analysis of Information Flow Leaks in Android
Apps. In USENIX Security.

[56] R Pandita, X Xiao, W Yang, W Enck, and T Xie. 2013. WHYPER: Towards
Automating Risk Assessment of Mobile Applications. In SEC.

[57] RC. Prati, GEAPA Batista, and MC Monard. 2004. Class Imbalances versus Class
Overlapping: An Analysis of a Learning System Behavior. In MICAI.

[58] Z Qu, V Rastogi, X Zhang, Y Chen, T Zhu, and Z Chen. 2014. Autocog: Measuring
the description-to-permission fidelity in android applications. In CCS.

[59] F Roesner, T Kohno, A Moshchuk, B Parno, HJ Wang, and C Cowan. 2012. User-
Driven Access Control: Rethinking Permission Granting in Modern Operating
Systems. In SP.

[60] A Rountev and D Yan. 2014. Static Reference Analysis for GUI Objects in Android
Software. In CGO.

[61] T Salimans, I Goodfellow, W Zaremba, V Cheung, A Radford, and X Chen. 2016.
Improved techniques for training gans. In NIPS.

[62] H Scudder. 1965. Probability of error of some adaptive pattern-recognition
machines. IEEE Transactions on Information Theory (1965).

[63] MK Ward and SB Pond III. 2015. Using virtual presence and survey instructions
to minimize careless responding on Internet-based surveys. Computers in Human
Behavior (2015).

[64] Joe H Ward Jr. 1963. Hierarchical grouping to optimize an objective function.
Journal of the American statistical association (1963).

[65] T Watanabe, M Akiyama, T Sakai, and T Mori. 2015. Understanding the Inconsis-
tencies between Text Descriptions and the Use of Privacy-sensitive Resources of
Mobile Apps. In SOUPS.

[66] D Wermke, N Huaman, Y Acar, B Reaves, P Traynor, and S Fahl. 2018. A Large
Scale Investigation of Obfuscation Use in Google Play. In ACSAC.

[67] S Wiedenbeck. 1999. The use of icons and labels in an end user application
program: an empirical study of learning and retention. Behaviour & Information
Technology (1999).

[68] S Xi, S Yang, X Xiao, Y Yao, Y Xiong, F Xu, H Wang, P Gao, Z Liu, F Xu, et al.
2019. DeepIntent: Deep Icon-Behavior Learning for Detecting Intention-Behavior
Discrepancy in Mobile Apps. In CCS.

[69] X Xiao, X Wang, Z Cao, H Wang, and P Gao. 2019. IconIntent: automatic identifi-
cation of sensitive UI widgets based on icon classification for Android apps. In
ICSE.

[70] Q Xie, E Hovy, MT Luong, and QV Le. 2019. Self-training with Noisy Student
improves ImageNet classification. arXiv preprint arXiv:1911.04252 (2019).

[71] L Xue, H Zhou, X Luo, L Yu, D Wu, Y Zhou, and X Ma. 2020. PackerGrind: An
Adaptive Unpacking System for Android Apps. IEEE Trans. Softw. Eng. (2020).

[72] S Yang, D Yan, HWu, Y Wang, and A Rountev. 2015. Static Control-flow Analysis
of User-driven Callbacks in Android Applications. In ICSE.

[73] L Yu, X Luo, C Qian, and S Wang. 2016. Revisiting the Description-to-Behavior
Fidelity in Android Applications. In SANER.

[74] C Zauner. 2010. Implementation and benchmarking of perceptual image hash
functions. (2010).

[75] H Zhou, T Chen, H Wang, L Yu, X Luo, T Wang, and W Zhang. 2020. UI Obfus-
cation and Its Effects on Automated UI Analysis for Android Apps. In ASE.

[76] S Zimmeck, Z Wang, L Zou, R Iyengar, B Liu, F Schaub, S Wilson, N Sadeh, S
Bellovin, and J Reidenberg. 2017. Automated analysis of privacy requirements
for mobile apps. In NDSS.

A APPENDIX
A.1 Methodology
A.1.1 Identifying Identical or Similar Icons. To identify whether
two icons are identical or very similar, pHash technique was used

[74], and a hamming distance value of less than 11 between 2 icons
is considered as similar. To select this threshold, we first randomly
selected 1,000 dissimilar icons (i.e., 1,000 categories) by compar-
ing their exact pHash value. For each category, we applied four
transformations techniques (see Table 6) to generate more samples,
resulted in 8,400 icons across 1,000 categories. Then, we clustered
these icons into the same group with different hamming distance
thresholds (ranging from 0 to 50). For example, with the threshold
is 5, two icons are considered in the same group if their hamming
distance is less than or equal 5. To select the best threshold for
identifying very similar icons, we considered at the tradeoff be-
tween the quality of the clustering against the number of clusters.
A measure that allows us to make this tradeoff is normalized mutual
information or NMI (i.e., a number between 0 and 1), and a higher
value is better. After running this evaluation 10 trials, we chose the
value of 11 for the hamming distance threshold as the NMI’s score
reached its peak at 0.88.

Table 6: The transformation techniques that are used.

Name Range Notes
Zoom 0-0.3 Float range for random zoom
Rotation 0-30 Degree range for random rotations
Width shift 0-0.2 Float range for random horizontal shift
Height shift 0-0.2 Float range for random vertical shift

A.1.2 Description-based Icons Clustering Module. To analyze nat-
ural language text from user responses, we applied several text
preprocessing methods. These methods are broadly classified into
three tasks: (1) text preprocessing, (2) feature extraction, (3) cluster
analysis. Here are the details.

We first applied the following widely-used text preprocessing
techniques [26, 40, 65]: correcting misspelling by the autocorrect13
(e.g., "imagec" to "image"); normalizing and lemmatizing all words,
e.g., removing punctuations, converting letters to lowercase and
reducing the inflectional forms of a word (e.g., "sent", and "sending"
to “send”); and removing generic stop words such as “are” and
“the” ; lastly we employed the term-based sampling approach [40]
to create our domain-specific stop words list (taking top 50 words
that have the least weighted) so that we could additionally remove
words that are not generic stop words but are commonly used in
user responses from our survey (e.g., "icon", "symbol", "button").

Then, using the preprocessed texts of user responses, we adopted
the bag-of-words model to convert each user response into a text
feature vector as follows. Let𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛} be a set of all unique
terms in the corpus of user responses. A text feature of vector
of the 𝑖𝑡ℎ user response is denoted as 𝑡𝑖 = {𝑡1, 𝑡2, ..., 𝑡𝑘 }. For ex-
ample, the raw text is "I would expect it to take a photo", after
applying the preprocessing, the generated preliminary text vec-
tor is {”𝑝ℎ𝑜𝑡𝑜”}. Further, to resolve the problem of synonyms, we
employed the hypernym strategy (hypdepth = 5), which is sug-
gested by Hotho et al. [26] to enrich the text vectors with concepts
from the Wordnet [46]. Specifically, we added to each term of the
feature vectors all subconcepts of the 5 levels below it in the Word-
net corpus, after that, we performed word stemming on all terms
13https://github.com/phatpiglet/autocorrect/

Table 7: The evaluating results of GUIBAT and Gator 3.5 on a
set of 34 apps. V=Views. C=Callbacks. (+)=New. (-)=Removed.

App GUIBAT/GATOR 3.5
GUIBAT’s Refinement

upon GATOR

V C (+) V (+) C (-) C
AardDictionary 1.4.1 218/218 105/105 0 0 0
FTP Server 1.0.4 14/0 25/0 14 25 0
Battery Circle 1.4.1 30/30 7/19 0 0 12
LolcatBuilder 0.2.1 9/1 5/0 8 5 0
SpriteMethodTest 2.0a 4/4 0/0 0 0 0
Alarm Clock 1.4.1 46/40 20/32 6 2 14
Manpages 0.2.1 13/13 7/7 0 0 0
Auto Answer 1.4.1 10/0 8/0 10 8 0
RandomMusicPlayer 2.0a 9/9 6/6 0 0 0
AnyCut 1.4.1 15/15 5/5 0 0 0
HNDroid 1 65/62 105/106 3 0 1
DivideAndConquer 1 1/1 0/0 0 0 0
Photostream 2.0a 7/2 0/0 5 0 0
Multi SMS 0.2.1 47/47 30/30 0 0 0
World Clock 2.0a 24/24 12/18 0 0 6
Ringdroid 2.0a 34/34 56/68 0 0 12
Yahtzee 2.0a 30/30 12/12 0 0 0
aagtl 2.8.11 60/60 44/44 0 0 0
WhoHasMyStuff 2.0a 40/40 58/58 0 0 0
Mirrored 0.2.1 30/21 15/15 9 0 0
WeightChart 2.0a 65/32 115/21 33 100 6
ADSdroid 1.4.1 6/6 2/2 0 0 0
myLock 0.2.1 33/16 3/9 17 0 6
LockPatternGenerator 0.2.1 19/10 19/13 9 6 0
MunchLife 0.2.1 20/14 20/19 6 1 0
CountdownTimer 1.0.31 45/35 8/10 10 0 2
NetCounter 0.1.1 28/20 10/6 8 4 0
TippyTipper 2.0a 95/83 28/188 12 0 160
BaterryDog 1.4.1 15/15 32/32 0 0 0
Dialer2 1 55/45 57/57 10 0 0
DalvikExplorer 2.11 134/134 126/126 0 0 0
Blokish 2.2 38/32 13/13 6 0 0
ZooBorns 2.0a 12/12 8/8 0 0 0
Wordpress_394 2.0a 46/40 21/30 6 3 12
Total 1,317/1,145 982/1,059 172

(15.02%
of 1,145)

154 231
(21.81%
of 1,059)

(e.g., "location" and "locating" to "locat"). For instance, with the
preliminary text vector above, the final text feature vector will be
{”𝑝ℎ𝑜𝑡𝑜”, ”𝑝ℎ𝑜𝑡𝑜𝑔𝑟𝑎𝑝ℎ”, ”𝑒𝑥𝑝𝑜𝑠𝑢𝑟”, ”𝑝𝑖𝑐𝑡𝑢𝑟”, ”𝑝𝑖𝑐”}. To this end, we
converted each term, in the text vector to numeric one by using the
term-frequency inverse document-frequency (TF-IDF). The TF-IDF
value for each element was calculated as:

𝑡 𝑓 𝑖𝑑 𝑓 (𝑡, 𝑑) = 𝑡 𝑓 (𝑡, 𝑑) ∗ 𝑖𝑑 𝑓 (𝑡) = 1 + 𝑁

1 + 𝑑 𝑓 (𝑑, 𝑡)
where 𝑡 refers to the selected term, 𝑑 refers to the text vector,

𝑡 𝑓 is the absolute frequency of a term, i.e., 𝑡 𝑓 (𝑡, 𝑑) is the number
of times a term 𝑡 occurs in a given 𝑑 , 𝑖𝑑 𝑓 is the term’s inverse
document frequency, N is the number of text lists in the corpus,
and 𝑑 𝑓 (𝑑, 𝑡) returns the number of text lists that contain the target
term 𝑡 . Lastly, the agglomerative hierarchical clustering was used
to identify which icons are commonly known by users and the
function these icons represent. Specifically, Ward’s method was
used [64], and the similarity score or distance between two vectors
is calculated by cosine similarity:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (®𝑣𝑖 , ®𝑣 𝑗) = 𝑐𝑜𝑠 (®𝑣𝑖 , ®𝑣 𝑗) =
®𝑣𝑖 . ®𝑣 𝑗

∥ ®𝑣𝑖 ∥.∥ ®𝑣 𝑗 ∥
To this end, we first clustered similar icons using textual descrip-

tions of their visual representation. We then further clustered these
clusters of icons using descriptions their functions. In the first step,
we identified 77 groups of icons from 972 commonly-known icons.

However, we filtered out one group that contains icons whose (par-
ticipant) responses were not comprehensible (i.e., this group was
also considered an outlier by hierarchical clustering). Finally, we
identified 44 groups of functions from 76 groups of icons.

A.1.3 Improving GATOR. We leveraged GATOR and further over-
came the following limitations:

(1) GATOR does not consider some important Android UI compo-
nents which leads to missing app’s UI elements along with their
associated callbacks in app’s GUI model (Navigation Drawer, Pref-
erence, and Fragment). Richard et al. showed that 91% of popular
apps contain fragment code in their apps which indicates that Frag-
ment is widely used [9]. GUIBAT additionally considers these UI
components; (2) GATOR’s static reference analysis that maps app’s
UI elements to their callbacks introduce over-approximation due to
the over-approximate of variable mappings (e.g., incorrectly map
a UI element to multiple callbacks). To be more precise, GUIBAT,
on the other hand, further strictly on object id (of UI elements) to
correctly map callback methods to UI elements.

Evaluation. We selected an Android benchmark suite from the
work of Choudhary et al. [15] which is widely used by other static
and dynamic analysis [41, 48]. It contains 68 open source Android
apps. We filtered out those apps that are not supported by GUIBAT
such as apps in the games category, which resulted in 43 apps. Then
we ran GUIBAT and GATOR on 43 apps to generate app’s GUI models.
Among these 43 apps, those apps that have less than 200 callbacks
were chosen for a comprehensive manual examination, resulted
in 34 apps. From 34 apps, we compare the number of extracted UI
elements, and the number of extracted callback methods between
GATOR and GUIBAT. If there are any differences between the results
of GUIBAT and GATOR, we manually verify the differences (see Table
7). In general, GUIBAT is better than GATOR in GUI analysis as the
following: (1) in 14 (41.17%) apps, both GUIBAT and GATOR have
identified the same number of UI elements and their callbacks; (2)
GUIBAT correctly has removed 231 (21.81% of 1,059) of the callback
methods that are made-up by the over approximation of GATOR;
(3) GUIBAT successfully identified the Preference UI component
and their associated callbacks in 20 apps which GATOR missed. In
particular, there are 172 (15.02% of 1,145) components that GUIBAT
identified while GATOR could not.

A.1.4 Identifying threshold to limit the depth of the CFG analysis.
Figure 8 provides details on the relative cumulative distribution of
the different values of the depth of our CFG analysis.

96.52%

0

20

40

60

80

100

0 100 200200 350350 500500 650 800 950

Depth level of CFG

R
C

F
 (

%
)

Figure 8: Relative cumulative frequency (RCF) of accessed
sensitive resources depth level of CFG in 10,000 apps.

Table 8: Demographics of participants from our studies.

Study 1.1 Study 1.2 Study 2 Study 3
Number of participants 120 294 45 445
Gender
Female 42 (35.0%) 122 (41.5%) 14 (31.11%) 258 (57.98%)
Male 78 (65.0%) 171 (58.16%) 31 (68.89%) 184 (41.35%)
Other 0 1 (0.34%) 0 2 (0.45%)
No answer 0 0 0 1 (0.22%)
Age group
18–30 52 (43.33%) 103 (35.03%) 17 (37.78%) 155 (34.83%)
31–40 43 (35.83%) 117 (39.8%) 23 (51.11%) 173 (38.88%)
41–50 14 (11.67%) 47 (15.99%) 3 (6.67%) 66 (14.83%)
51–60 6 (5.0%) 17 (5.78%) 1 (2.22%) 39 (8.76%)
61–70 5 (4.17%) 8 (2.72%) 1 (2.22%) 11 (2.47%)
>=71 0 2 (0.68%) 0 1 (0.22%)
Computer science background
Yes 25 (20.83%) 69 (23.47%) 12 (26.67%) 76 (17.08%)
No 95 (79.17%) 225 (76.53%) 33 (73.33%) 369 (82.92%)
Primary phone
Android 44 (36.67%) 199 (67.69%) 31 (68.89%) 275 (61.80%)
iPhone 75 (62.5%) 93 (31.63%) 14 (31.11%) 170 (38.20%)
Other 1 (0.83%) 2 (0.68%) 0 0
Education level
Less than high school 0 1 (0.34%) 0 1 (0.22%)
High school graduate 19 (15.83%) 31 (10.54%) 5 (11.11%) 38 (8.54%)
Some college, no degree 32 (26.67%) 65 (22.11%) 13 (28.89%) 87 (19.55%)
Associate’s degree 9 (7.5%) 38 (12.93%) 2 (4.44%) 56 (12.58%)
Bachelor degree 51 (42.5%) 128 (43.54%) 17 (37.78%) 189 (42.47%)
Master degree 6 (5.0%) 29 (9.86%) 7 (15.56%) 59 (13.26%)
Ph.D 1 (0.83%) 1 (0.34%) 0 6 (1.35%)
Graduate/prof. degree 2 (1.67%) 1 (0.34%) 1 (2.22%) 8 (1.80%)
Others 0 0 0 1 (0.22%)
Ethnicity
White/Caucasian 91 (75.83%) 218 (74.15%) 30 (66.67%) 333 (74.83%)
Black/African American 9 (7.5%) 33 (11.22%) 6 (13.33%) 42 (9.44%)
Asian 11 (9.17%) 22 (7.48%) 5 (11.11%) 41 (9.21%)
Hispanic/Latino 4 (3.33%) 12 (4.08%) 1 (2.22%) 17 (3.82%)
Native American/Alaska 1 (0.83%) 2 (0.68%) 1 (2.22%) 3 (0.67%)
Native Hawaiian/Pacific
Islander 0 0 0 1 (0.22%)
Middle Eastern 1 (0.83%) 0 0 1 (0.22%)
Other 3 (2.5%) 7 (2.38%) 2 (4.44%) 7 (1.57%)

Table 9: The AUC score of GUIBAT’s Icon Classifier and
DeepIntent’s models.

Sensitive Resources
"unseen" dataset from

Google Image
GUIBAT’s Icon
Training Dataset

GUIBAT DeepIntent
icon-only

DeepIntent
icon-only

Camera 0.93 0.51 0.49
Calendar 0.98 - -
Contact 0.85 0.61 0.52
Location 0.94 0.55 0.55
Microphone 0.92 0.53 0.55
Phone 0.97 0.40 0.42
SMS 0.70 0.47 0.50
Storage 0.75 0.50 0.55
Average 0.88 0.51 0.50

Table 10: Model comparison based on Goodness of fit.

AIC logLik df p
Base model 4,853.8 -2,420.9
+ Random effects 4,798.8 -2,391.4 2 <0,001
+ Users’ characteristics 4,785.2 -2,380.6 4 <0,001
+ Apps’ characteristics 4,624.3 -2,293.1 7 <0,001
+ Users’ expectations based

on app description 3,957.7 -1,958.9 1 <0,001
+ GUIBAT 3,944.2 -1,951.1 1 <0,001
+ Interaction 3,945.4 -1,950.7 1 0.369
All regression models listed above predict the users’ expectations regarding apps’
sensitive resource access; AIC = Akaike Information Criterion; df = degree of
freedom; logLik = log likelihood; p quantifies statistical significance; significant
p-values are printed bold.

Table 11: Example of unexpected SR that are detected by
GUIBAT from DeepIntent’s benign training dataset.

Icons Texts Actual SR Unexpected SR
by GUIBAT

tencent enter purchas btn
take pictur

Camera, Location,
SMS

Location, SMS

time search Location Location

default user icon Location Location

holder mic Contacts, SMS Contacts, SMS

post float letter refresh
system friend topic new
subject normal

Location Location

to to leg menu save Contacts, Location,
SMS, Microphone

Contacts, Location,
SMS, Microphone

A.2 Results
A.2.1 User Study 2: Instruction Page. In mobile apps, sensitive
resources are the resources that involve your private information,
or could potentially affect your stored data or the operation of
other apps. For example, your contacts is a sensitive resource. In
this study, we focus on the following sensitive resources: Contacts:
involve the contacts information such as modify your contacts, find
accounts on the device, read your contacts, etc; Phone: involve the
telephone features such as read call log, read phone status, access your
phone number, directly call phone numbers, write call log, reroute
outgoing calls, etc; Calendar: involve calendar information such as
read calendar events, add or modify calendar events, etc; Camera:
access the camera such as taking pictures and videos, turning the
flashlight on, etc; Location: access device location such as precise
location (GPS and network-based), approximate location (network-
based), etc; Storage: involve the storage such as read the contents (e.g.,
photos, media, or files) of your device, modify or delete the contents
of your SD card, etc; Microphone: access the microphone such as
record audio, etc; SMS: involve SMS information such as read your
text messages (SMS or MMS), receive text messages, send and view
SMS messages, read cell broadcast messages, etc.
Q. A mobile app that accesses the camera to take photos and then
saves them to SD card in your phone, what are sensitive related
functions that the app involves?

A.2.2 User Study 3. Main Questions:
Q1. Which of the following sensitive resources would you expect
this app to access? (a list of 8 sensitive resources and their descriptions)
Q2. Please explain briefly why in your opinion the app requires the
sensitive resources you have selected (Free text).
Q3. To serve the app’s functionality on the current screen, on a scale
from 1 to 7 howmuch do you expect this app to access the following
data? (a list of sensitive resources that are detected by GUIBAT)
Q4. Suppose you are pressing the highlighted function (red rec-
tangle), how much do you feel comfort letting this app to access
the following data? (a list of sensitive resources that are detected by
GUIBAT)

	Abstract
	1 Introduction
	2 Related Work
	3 Measuring Users' Perception
	3.1 App and Icon Dataset
	3.2 First Study: Identifying Commonly-Known Icons and The Associated Functionality
	3.3 Second Study: Identifying User Expectation of Icons and Sensitive Resource Access

	4 Detecting Unexpected Sensitive Resource Access
	4.1 GUI Extractor
	4.2 Expected Sensitive Resource Access Detector
	4.3 Actual Sensitive Resource Access Detector
	4.4 Unexpected Sensitive Resource Access Detector

	5 Results
	5.1 RQ1: Does the output of GUIBAT reflect users' expectations of apps' sensitive resource access?
	5.2 RQ2: How widespread is sensitive resource access that violates users’ expectations in the wild?

	6 Discussion
	6.1 GUIBAT Compares to Prior Works
	6.2 Transparency of Sensitive Resources Access
	6.3 The Impact of Third-party Libraries
	6.4 Limitations and Future Work

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Methodology
	A.2 Results

