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Abstract
A chordless cycle or hole in a graph G is an induced cycle of length at least 4. In the Hole Packing
problem, a graph G and an integer k is given, and the task is to find (if exists) a set of k pairwise
vertex-disjoint chordless cycles. Our main result is showing that Hole Packing is fixed-parameter
tractable (FPT), that is, can be solved in time f(k)nO(1) for some function f depending only on k.
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1 Introduction

The area of graph modification problems contains algorithmic tasks of the following form:
given a graph G, find the minimum number of allowed editing operations to make the graph
belong to a certain target graph class G. For example, if we allow only vertex deletions and
the target graph class is the set of edgeless graphs, forests, directed acyclic graphs, bipartite
graphs, then we get well-known Vertex Cover, Feedback Vertex Set, Directed
Feedback Vertex Set, Bipartite Deletion problems, respectively. Most of the natural
graph modification problems are NP-hard [21, 30, 31]. However, there is a large literature on
the fixed-parameter tractability of graph modification problems (see, e.g., [4, 8, 12,13,15]).
Several problems of this form are known to be solvable in time f(k)nO(1), where k is the
number of editing operations allowed (e.g., maximum number of vertices to be deleted) and
f is a computable function depending only on k [9].

Let us consider the G Vertex Deletion problem where, given a graph G and an integer
k, the task is to delete k vertices to make the graph belong to class G. If G is closed under
taking induced subgraphs, then there is a (finite or infinite) set F of obstructions such that a
graph is in G if and only if it does not have an induced subgraph isomorphic to a member of
F . Then G Vertex Deletion can be equivalently expressed as finding k vertices that cover
every induced copy of a member of F . For many natural graph properties, the obstruction
set F contains graphs that are simple to describe. For example, the problems Vertex
Cover, Feedback Vertex Set, Directed Feedback Vertex Set, and Bipartite
Deletion correspond to covering every edge, undirected cycle, directed cycle, and odd cycle,
respectively.

Given the interpretation of G Vertex Deletion as covering objects from the obstruction
set F , there is natural dual problem: in the F Packing problem a graph G and an integer k
are given, the task is to find k vertex-disjoint induced subgraphs isomorphic to members of F .
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In many cases, packing problems seem to be harder than the corresponding covering problems.
First of all, if the graph class G is recognizable in polynomial-time, then the covering problem
can be solved in nO(k) time by brute force, while there is no such immediate argument for the
packing problem, even when the class F consists of very simple objects, such as cycles. For
example, Directed Feedback Vertex Set is FPT [6], while the dual problem Directed
Cycle Packing is W[1]-hard [28] and it requires a highly nontrivial result to show that it is
polynomial-time solvable for fixed k [25]. Even when both problems are FPT, the techniques
behind the algorithms could be significantly different. Bipartite Deletion has a very
elegant elementary FPT algorithm using iterative compression [26], while the fixed-parameter
tractability of the dual problem Odd Cycle Packing required the use of sophisticated
techniques, including the introduction of odd minors [18, 19]. Another aspect from which
the packing problem proved to be more difficult is the existence of polynomial kernels. For
example, Feedback Vertex set (that is, covering cycles) admits a polynomial kernel [29],
while the dual problem of finding k vertex-disjoint cycles does not have a polynomial kernel,
under the standard complexity assumption NP 6⊆ coNP/poly [3].

There is a natural combinatorial question connecting the covering and packing problems.
A classic result of Erdős and Pósa [11] shows that if the maximum number of vertex-disjoint
cycles in graph G is k, then every cycle of G can be covered by O(k log k) vertices. A
similar question can be asked about other obstructions, connecting the packing and covering
problems: if the maximum number of disjoint obstructions from the set F is at most k,
then is it true that every obstruction can be covered by f(k) vertices for some function
f? A positive answer is known for example when F is the set of edges (easy), undirected
cycles going through a set S [17, 23], or directed cycles [25], but it is known that no such
Erdős-Pósa property holds for odd cycles [24]. Let us observe that, as the cases of odd
cycles and directed cycles show, even when the covering problem is FPT, the existence of
the Erdős-Pósa property does not give a good prediction on the fixed-parameter tractability
of the packing problem.

Chordal graphs. After this general introduction, let us turn our attention to chordal graphs,
the main topic of the current paper. A chordless cycle or hole in a graph G is an induced
cycle of length at least 4 (for brevity, we will use the term “hole” throughout the paper). A
graph is chordal if it does not contain any hole. Chordal graphs form a well-known class of
perfect graphs and it is known that a graph is chordal if and only if it can be represented as
the intersection graph of a set of subtrees of a tree [14]. Chordal graphs can be recognized in
linear time [27]. In the Chordal Vertex Deletion problem, a graph G and an integer k
are given, and the task is to find a set S of at most k vertices such that G− S is chordal.
While the problem can be solved in time nO(k) by trying every subset of size at most k and
then testing for chordality, it is also known to be FPT.

I Theorem 1 ([1, 5, 16,22]). Chordal Vertex Deletion is FPT.

Kim and Kwon gave a constructive proof showing that holes have the Erdős-Pósa property.

I Theorem 2 (Kim and Kwon [20]). There is a polynomial-time algorithm that, given a graph
G and integer k, produces either
1. a set of k + 1 disjoint holes, or
2. a set of O(k2 log k) vertices covering every hole.
Our main result concerns the Hole Packing problem, where given a graph G and an integer
k, the task is to find a set of k pairwise vertex-disjoint holes.

I Theorem 3 (Main Result). Hole Packing is FPT.
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Let us remark that it is known that Chordal Vertex Deletion admits a polynomial
kernel [1,16], while an easy reduction gives negative evidence for Hole Packing. Bodlaender
et al. [3] showed that the problem of finding k pairwise vertex-disjoint cycles does not admit
a polynomial kernel under the complexity assumption NP 6⊆ coNP/poly. If we subdivide
every edge of a simple graph, then every cycle has length at least 6, which means that the
holes of the new graph are in one-to-one correspondence with the cycles of the original graph.
Therefore, the result of Bodlaender et al. [3] immediately implies that Hole Packing has
no polynomial kernel, assuming NP 6⊆ coNP/poly. This can be seen as an indication that the
dual problem Hole Packing is more challenging than Chordal Vertex Deletion, and
it can be expected that more involved algorithmic ideas are needed for this problem.

Our techniques. To explain the main ideas and challenges behind the algorithm of The-
orem 3, let us briefly overview the Chordal Vertex Deletion algorithm of Marx [22]; our
algorithm mirrors the technical ideas from that result up to a certain point, but then it needs
to deviate from it significantly. When solving Chordal Vertex Deletion, the standard
technique of iterative compression [26] allows us to assume that we know a set W of k + 1
vertices such that G−W is chordal and furthermore we can assume that the solution S of
size k we are looking for is disjoint from W . If the size of the largest clique in G−W can be
bounded by a function of k, then the treewidth of the chordal graph G−W and hence also
the treewidth of the slightly larger (not necessarily chordal) G can be bounded by a function
of k. In this case, the problem can be solved on the graph G using standard algorithmic
techniques on graphs of bounded treewidth, for example, using Courcelle’s Theorem [7].

If G−W has a large clique K, then, intuitively, we want to argue that a large part of the
clique is not really important for the problem. More formally, we want to identify a vertex
v ∈ K such that removing k from G does not make the problem any easier. We say that v is
irrelevant if for every set of S of size at most k disjoint from W , if there is a hole in G− S,
then there is a hole in G− (S ∪ {v}) as well. The algorithm of Marx [22] marks a certain
number of vertices in K as important and then it is argued that every other vertex v ∈ K is
irrelevant in this sense. The proof is mostly a rerouting argument: if there is a hole going
through v in G− S, then it has to be shown that the hole can be modified to avoid v.

To solve the Hole Packing problem, let us observe that Theorem 2 allows us to assume
that we have a set W of O(k2 log k) vertices such that G−W is chordal: if the algorithm of
Theorem 2 terminates with Outcome 1, then we are done. If G−W has maximum clique size
bounded by function of k, then G has bounded treewidth and we can use standard techniques
to find a set of k vertex-disjoint holes. Thus our goal again is to argue that we can find an
irrelevant vertex v in a large clique K. But now our notion of irrelevant vertex is different:
for Chordal Vertex Deletion, a vertex needed to be irrelevant with respect to a deletion
set S of at most k vertices, while for Hole Packing, vertex v needs to be irrelevant with
respect to a set of k − 1 holes. Formally, now we can say that v is irrelevant if whenever G
has a set H of k disjoint holes, then there is such a set avoiding v. The set W splits H into
at most k induced paths. Therefore, we again need a rerouting argument: the induced path
going through v needs to be rerouted to avoid the other at most |W | − 1 induced paths.

Rerouting a path to avoid a bounded number of induced paths seems to be a significantly
more challenging task compared to avoiding a bounded number of vertices: the paths can
be arbitrarily long and we cannot bound the number of vertices they contain. However, it
is useful to observe that an induced path can contain at most two vertices from a clique.
Therefore, looking locally at a clique, avoiding a bounded number of induced paths is not
all that different from avoiding a bounded number of vertices. Indeed, it seems that we can
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reuse many of the technical ideas from [22] to Hole Packing (we found it convenient to use
somewhat different notation and streamlined some of the proofs, but we face essentially the
same difficulties and similar arguments are needed). However, we did not manage to fully
translate the approach to Hole Packing and to reduce the maximum clique size of G−W
(and hence the treewidth of G) to be bounded by a function of k. There is a particular
situation where no vertex of a large clique can be declared irrelevant under our definition;
Section 5 describes an example.

The first part of our algorithm uses these irrelevant vertex arguments to find a bounded-
treewidth subgraph of G that contains the solution, except a few vertices of the solution that
appear in a very specific situation (Section 3). This part of the proof uses ideas similar to the
Chordal Vertex Deletion algorithm of [22], with appropriate modifications to account
for induced paths. The main technical novelty of the paper appears in the way the problem
is treated after this step. We find a way of encoding the problem in a bounded-treewidth
labeled graph; however, for this to work, we need to leave the setting of the Hole Packing
problem and introduce a technical variant of the problem which we call Special Hole
Packing (Section 4). This problem involves finding k pairwise disjoint holes subject to
certain technical conditions on the labels of vertices used by the holes. We show that when
we move to this problem, then the large cliques can be reduced. Essentially, if there is
a vertex v in a large clique K, then we look at the subtree intersection representation of
the chordal graph G−W , and replace the subtree Tv representing v with a set of vertices
representing the leaves of Tv. Applying this operation to every vertex of every large clique
results in a graph with bounded treewidth. An appropriate choice of labeling, provided by
the Color Coding [2] method, ensures that the reduction results in an instance of Special
Hole Packing whose solution gives a solution to the original problem.

2 Preliminaries

We use standard graph-theoretic notation, see e.g. [10]. For background on parameterized
algorithms, see [9]. In this section, we only discuss notation and basic results related to
treewidth and chordal graphs.

Treewidth. A tree decomposition of a graph G is a pair (T,B) in which T is a tree and
B = {Bt | t ∈ V (T )} is a family of subsets of V (G) such that
1.

⋃
t∈V (T ) Bi = V (G);

2. for each edge e = uv ∈ E(G), there exists an t ∈ V (T ) such that both u and v belong to
Bt; and

3. the set of nodes {t ∈ V (T ) | v ∈ Bt} forms a connected subtree of T for every v ∈ V (G).
To distinguish between vertices of the original graph G and vertices of T in the tree
decomposition, we call vertices of T nodes and their corresponding Bi’s bags. The width of
the tree decomposition is the maximum size of a bag in B minus 1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all possible tree decompositions of G.

Sentences in Monadic Second Order Logic of Graphs (MSO) contain quantifiers, logical
connectives (¬, ∨, and ∧), vertex variables, vertex set variables, binary relations ∈ and =,
and the atomic formula E(u, v) expressing that u and v are adjacent. Courcelle’s Theorem
states that if a graph property can be described in this language, then this description can
be turned into an algorithm:
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I Theorem 4 (Courcelle [7]). If a graph property can be described as a formula φ in the
Monadic Second Order Logic of Graphs, then it can be recognized in time f(|φ|, tw(G)) ·
(|E(G)|+ |V (G)|) if a given graph G has this property.

Courcelle’s Theorem works also in the more general setting of relational structures. For our
purposes, it will be sufficient to know that the result can be extended in such a way that the
input graph G comes with a labeling λ : V (G)→ [c] of the vertices and the formula φ may
contain unary predicates C1(v), . . . , Cc(v), stating that vertex v has a label.

Chordal graphs. A chordless cycle or hole in a graph G is an induced cycle of length at
least 4. A graph is chordal if it does not contain any hole. It is well known that a graph
is chordal if and only if it can be represented as the intersection graph of subtrees of a
tree. That is, every chordal graph G can be represented by a tree T and a subtree Tv of T
corresponding to every v ∈ V (G) such that u, v ∈ V (G) are adjacent if and only if Tu and Tv
share at least one node in T . Equivalently, a graph G is chordal if and only if it has a tree
decomposition (T,B) where every bag Bt induces a clique G[Bt] for every t ∈ V (T ). Such a
tree decomposition is also called a clique tree decomposition. We will use the well-known
fact that if K is a clique in the chordal graph, then the clique tree decomposition contains a
node t with K ⊆ Bt.

The following lemma is straightforward:

I Lemma 5. Let x and y be two nonadjacent neighbors of v and let P be an x − y path
whose internal vertices are not in the closed neighborhood of v. Then the graph induced by
V (P ) ∪ {v} contains a hole.

Induced paths. Suppose that H is a collection of holes in a graph G and W is a set of
vertices that intersects each hole in H. Then W splits each hole in H into some number of
induced paths, that is, what remains from H is a collection of at most |W | induced paths.
This motivates the following definition.

I Definition 6. A set X of vertices of a graph G is a k-IP set if it has partition (X1, . . . , Xk′)
into k′ ≤ k classes such that each G[Xi] is an induced path (possibly of length 0, i.e., consisting
only of a single vertex).

Note that this definition allows the existence of arbitrary edges between Xi and Xj for i 6= j.
The first basic observation is that such a set has small intersection with a clique.

I Lemma 7. Let X be a k-IP set in a graph G and let K be a clique in G. Then X contains
at most 2k vertices of K.

Proof. Let (X1, . . . , Xk′) be a partition of X into induced paths. It is clear that an induced
path can contain at most two vertices of the clique K, hence |X ∩K| ≤ 2k′ ≤ 2k. J

The second observation is that a k-IP set can enter only a bounded number of components
after the removal of a clique (or, more generally, if the neighborhood of each resulting
component is a clique).

I Lemma 8. Let X be a k-IP set in graph G and let Y be a set of vertices such that it is
true for every component C of G− Y that the neighborhood of C in Y is a clique. Then X
intersects at most 2k components of G− Y .
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Proof. Let (X1, . . . , Xk′) be a partition of X into induced paths. We claim that each Xi

can intersect at most two components of G− Y . If Xi intersects three components, then it
is true for some component C that the induced path G[Pi] enters C from Y and then later
leaves C to Y . But the neighborhood of C in Y is a clique, contradicting the assumption
that G[Xi] is an induced path. Thus in total X can intersect at most 2k′ ≤ 2k components
of G− Y . J

3 Part 1: Treewidth reduction (almost)

Given an instance (G, k) of Hole Packing, an application of Theorem 2 gives us a set W of
O(k2 log k) vertices such that G−W is chordal. The main result of this section is a marking
procedure (Lemma 9) that identifies a bounded-treewidth part of the graph that almost
contains the solution. As G−W is chordal, every hole in G contains at least one vertex of
W . A special hole is a hole that contains exactly one vertex of W . The special vertices of a
special hole H going through w ∈W are the two neighbors of w in H. Note that, as every
hole has length at least 4, the two special vertices of a special hole are not adjacent.

I Lemma 9. Let G be graph and W be a set of vertices such that G−W is chordal, and let
k be an integer. In polynomial time, we can find a set S ⊆ V (G) \W of vertices such that
the following holds:
1. If G has a set of k pairwise disjoint holes, then there is such a set H where every vertex

of every hole is in S ∪W , except possibly some of the special vertices of the special holes.
2. The maximum clique size in G[S] is 12(|W |+ 2)4.
The proof of Lemma 9 starts with S = V (G) \W and if G[S] contains a large clique K,
then it tries to identify a vertex v ∈ K that can be excluded from S without violating
Requirement 1. Towards this goal, the following lemma either finds a collection of paths that
are useful for creating holes going through K (Outcome 1), or marks a bounded-sized set M
of vertices that are somehow important in the clique and a path reaching the clique at a
vertex of K \M can be rerouted to reach the clique at some other vertex (Outcome 2).

I Lemma 10. Let K be a clique in a chordal graph G, A be a set of vertices, and k be
an integer. There is a polynomial-time algorithm that produces one of the following two
outcomes:
1. A collections P of paths such that

every path in P is a path of length at least one from A to K with exactly one vertex in
A,
the first endpoints of the paths in P form an independent set of A, and
if X is a k-IP set, then at least two of the paths in P are disjoint from X.

2. A subset M of K having size at most (2k + 1)(4k + 2) such that following holds: if P
is a path of length at least one from a ∈ A to v ∈ K \M having exactly one vertex in
A, and X is a k-IP set disjoint from V (P ), then there is a path P ′ from vertex a ∈ A to
a vertex of K such that P ′ is disjoint from X ∪ {v} and moreover V (P ′) \ V (P ) ⊆ K.
(Note that path P ′ can have length 0 and may contain more than one vertex from A.)

Proof. Let us consider a subtree representation of the chordal graph G over the tree T .
For every node x ∈ V (T ), let us denote by bag Bx the set of those vertices whose subtrees
contain x. Let U be the set of nodes y for which |By ∩K| > 2k + 1. It is easy to see that U
induces a connected subtree of T . Let subtrees T1, . . . , Tc be the components of T − U and
let Ci contain those vertices of G whose subtrees are completely contained in the subtree Ti.
Every Ti has a unique node wi that is adjacent to U . Let us observe that the neighborhood
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of every Ci is a clique: if a vertex v has a neighbor in Ci, but it is not itself in Ci, then the
subtree Tv has to contain a node of Ti and a node not in Ti. This is only possible if the
subtree Tv contains node wi and such vertices v form a clique.

For every 1 ≤ i ≤ c, let Mi ⊆ K be defined the following way. If for a vertex v ∈ K,
there is a path P iv of length at least one from a vertex of A to v such that P iv has exactly
one vertex in A and every vertex of P iv except v is in Ci, then we put v into Mi. For the rest
of the proof, let us fix such a path P iv for every vertex v ∈Mi. Let us observe that if v ∈Mi,
then the subtree of v contains a node of Ti and a node of U , hence it contains the node wi.
As wi 6∈ U by definition, there are at most 2k + 1 vertices of K whose subtree contains wi
and |Mi| ≤ 2k + 1 follows.

Let M =
⋃c
i=1 Mi. We consider two cases. If |M | > (2k + 1)(4k + 1), then we claim the

set of paths required by Outcome 1 exist. In this case, a simple greedy selection argument
shows the existence of a subset of t = 4k + 2 paths P i1v1

, . . . , P itvt of the paths defined above
such that the integers i1, . . . , it and the vertices v1, . . . , vt are all distinct. That is, if
we have already selected j ≤ 4k + 1 of these paths, then they together can block at most
(2k + 1)j ≤ (2k + 1)(4k + 1) vertices of M , hence we can add one more path P ij+1

vj+1 to our
collection. We claim that these paths satisfy the requirements. Path P ijvj starts in a vertex
of A ∩ Cij , whose subtree is fully contained in Tij . As i1, . . . , it are distinct integers, the
start vertices of these paths are independent vertices of A, as required. Let now X be a k-IP.
By Lemma 7, X contains at most 2k vertices of K, thus it can intersect at most 2k of the
vertices v1, . . . , vh. By Lemma 8, X can intersect at most 2k of the sets Ci1 , . . . , Cih : recall
that the neighborhood of each Cj is a clique. In summary, X contain at most 2k of vi1 , . . . ,
vit and intersects at most 2k of Cit , . . . , Cit , hence there are at least two values of j for
which X is disjoint from P

ij
vj , as required.

The second case is when |M | ≤ (2k + 1)(4k + 2). In this case, we show that M satisfies
the requirements of Outcome 2. Let P = p1, . . . , p` be a path as in the statement of the
lemma with ` ≥ 2, p1 = a ∈ A, and p` = v ∈ K \M and suppose that V (P ) is disjoint from
a k-IP set X. If p`′ ∈ K for some 1 ≤ `′ < `, then the subpath P ′ of P from a to p`′ satisfies
the requirements (this includes the case when a ∈ K; Outcome 2 allows that P ′ has length
0). If p`′ has more than 2k + 1 neighbors in K for some 1 ≤ `′ < `, then p`′ has a neighbor
v′ ∈ K \ (X ∪ {v}) (as |X ∩ K| ≤ 2k by Lemma 5). Then the path P ′ = p1, . . . , p`′ , v

′

satisfies the requirements. Suppose therefore that each vertex p`′ with `′ ∈ [` − 1] has at
most 2k + 1 neighbors in K. This implies that the subtrees corresponding to these vertices
do not intersect U and it follows that all these vertices are in the same set Ci. Now the path
P shows that v ∈Mi ⊆M , a contradiction. J

There is a particularly problematic special case that we handle in a separate lemma.
It concerns the case when a hole contains a single vertex v from a clique K and the two
neighbors of v are in W . It may seem like an easy, degenerate case (after all, rerouting
to avoid v means finding another common neighbor of the two neighbors of w in W ), but
actually it is relatively complicated to find a replacement of v without introducing unwanted
adjacencies.

I Lemma 11. Let G be a graph with two vertices wx and wy such that G − {wx, wy} is
chordal, let K be a clique in G− {wx, wy}, and let k be an integer. In polynomial time, we
can find a set M ⊆ K of at most (2k + 4)(2k + 1) vertices such that the following holds: If
X is a k-IP set, and H is a hole disjoint from X and with V (H) ∩W = {wx, wy} such that
H has a vertex v ∈ K \M adjacent to both wx and wy, then there is a hole H ′ disjoint from
X ∪ {v}.
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Proof. Let us consider a subtree representation of the chordal graph G over the tree T .
For every node x ∈ V (T ), let us denote by bag Bx the set of those vertices whose subtrees
contain x. Let us assume that T is a rooted at a node r and that subtree Tu for every u ∈ K
contains r. For a node x of T , let us define Cx ⊆ V (G) \ {w1, w2} the following way: a vertex
u is in Cx if the subtree Tu of u is fully contained in the subtree of T rooted at x. Observe
that the neighborhood of Cx (in G− {w1, w2}) is a clique: if u has a neighbor in Cx, but is
not itself in Cx, then Tu has to contain the parent node of x.

We say that path P is a good path if it is either a path of length 0 consisting a single
vertex adjacent to both wx and wy, or a path of length at least 1 where the unique vertex
adjacent to wx is one of the endpoints, and the unique vertex adjacent to wy is the other
endpoint. Observe that if P1 and P2 are two good paths that have no adjacent vertices, then
P1, P2, wx, wy together form a hole of length at least 4.

Let Z be the set of nodes of T with the following property: a node x is in Z if G[Cx]
contains a good path. By definition, Z induces a subtree of T rooted at r: if a node is in Z,
then all its ancestors are also in Z. Let `1, . . . , `t be the leaves of Z.

Let us consider first the case when T [Z] has at least 2k + 5 leaves. We claim that in this
case returning M = ∅ is a valid answer. As the sets C`1 , . . . , C`t are disjoint, nonadjacent,
and the neighborhood of each of them is a clique, Lemma 8 implies that the (k + 1)-IP set
X ∪ {v} can intersect at most 2k + 3 of the sets C`1 , . . . , C`t . This means that there are at
least two such sets that are disjoint from X; assume, without loss of generality that X ∪ {v}
is disjoint from C`1 and C`2 . By assumption, there are two good paths Pi for i = 1, 2 such
that Pi is in G[C`i ]. As there are no edges between P1 and P2, we have that P1, P2, wx, wy
together form a hole H ′ that is disjoint from X ∪ {v}.

Assume therefore that t ≤ 2k + 4. We construct M using the following procedure. For
every x ∈ Z, let Mx contain the vertices u ∈ K with the property that u is adjacent to both
w1 and w2, and moreover Tu does not contain x. Observe that Mx ⊆My if x is an ancestor
of y. Set M = ∅ initially. Let us consider the nodes of Z in a top down order, i.e., in a
nondecreasing ordering by the distance from the root r. When considering x ∈ Z, extend
M using vertices of Mx until either |M ∩Mx| ≥ 2k + 1 or Mx ⊆ M . This completes the
definition of M .

We claim that |M | ≤ (2k + 4)(2k + 1). Let the weight hx be the number of vertices
added to M when considering node x. We claim that the total weight of a node x and all its
ancestors is at most (2k + 1). To prove this, consider a node x such that the total weight
of its proper ancestors is h < 2k + 1, but h + hx > 2k + 1. Observe that the h vertices
added to M by the proper ancestors all appear in Mx and hence we should have added only
2k + 1− h < hx new vertices of Mx when considering node x, a contradiction. In particular,
the statement holds for the leaves of G[Z], hence it follows that the total weight (i.e., the
size of M) is at most t(2k + 1) ≤ (2k + 4)(2k + 1).

It remains to show that M satisfies the statement of the lemma. Observe that if we
remove v, wx, wy from the hole H, then what remains is a good path P . Let us choose x to
be node of T such that Cx contains P and x has maximum distance to the root r. This means
that the bag Bx contains a vertex of P , which also implies that Tv cannot contain x, that
is, v ∈ Mx. If |Mx| ≤ 2k + 1, then the construction of M ensures Mx ⊆ M , contradicting
v ∈ K \M . If |Mx| ≥ 2k + 2, then by Lemma 7, Mx contains a vertex v′ disjoint from the
k-IP set X and different from v. As P is in Cx and v′ ∈Mx, vertex v′ is not adjacent to any
vertex of P . Thus replacing v with v′ in the hole H results in a hole H ′ that is disjoint from
X ∪ {v}. J

We are now ready to prove the main result of the section, Lemma 9.



D. Marx 71:9

Proof (of Lemma 9). The set S = V (G) \W trivially satisfies Requirement 1. We show
that if S satisfies Requirement 1 and has a large clique violating Requirement 2, then
we can remove a vertex from S in a way that Requirement 1 remains satisfied. After
repeated applications of this argument, we eventually arrive to a set S that satisfies both
Requirements 1 and 2.

Suppose that S satisfies Requirement 1, but G[S] has a clique K of size greater than
12(|W |+ 2)4 (as G[S] is chordal, such a clique can be found in polynomial time). We define a
set M ⊆ K by invoking the procedure of Lemma 10 with different values for the parameters
(G,K,A, k) and then argue that removing from S any vertex v ∈ K \M does not violate
Requirement 1. We need some definitions first. For w ∈W , let Aw be the neighborhood of w
in S. For w1, w2 ∈W , let Aw1,w2 = Aw1 ∩Aw2 and Aw1,w2 = Aw1 \Aw2 . Let Kw1 = K∩Aw1 ,
Kw1 = K \Aw1 , Kw1,w2 = K ∩Aw1,w2 , and Kw1,w2 = K ∩Aw1,w2 .

The set M is the defined the following way. We invoke the algorithm of Lemma 10 with
various graphs and sets as listed below.
1. For every w ∈W , we invoke the procedure with (G[S],Kw, Aw, |W |+ 1) and we let Pw

be the set of paths in case of Outcome 1 and Mw be the resulting set in case of Outcome
2.

2. For every w1, w2 ∈ W with w1 6= w2, we invoke the procedure with (G[S \ Aw2 ],Kw2 ,

Aw1,w2 , |W |+ 1) and we let Pw1,w2 be the set of paths in case of Outcome 1 and Mw1,w2

be the resulting set in case of Outcome 2.
The setM is defined to be the union of all these setsMw andMw1,w2 (for all the values w and
(w1, w2) for which the algorithm of Lemma 10 terminated with Outcome 2). Additionally,
for every distinct w1, w2 ∈W , we extend M the following way:
1. We put arbitrarily 2|W |+ 1 vertices of Kw1,w2 into M or all such vertices, if fewer than

2|W |+ 1 such vertices exist.
2. We put arbitrarily 2|W |+ 1 vertices of Kw1,w2 into M or all such v
3. We extend M with the set returned by the algorithm of Lemma 11 for G[S ∪ {w1, w2}],

the clique K, and k = |W |.

To bound the size of M , let us observe that we invoke the algorithm of Lemma 10 exactly
|W |+ |W |(|W |−1) times, each time with parameter k = |W |+1. As each call returns a set of
size at most (2k + 1)(4k + 2), the total number of vertices in M obtained this way is at most
8(|W |+ 2)4. Additionally, we include at most |W |2(2(2|W |+ 1) + (2|W |+ 4)(2|W |+ 1)) ≤
4(|W |+ 2)4 vertices into M , resulting in at most 12(|W |+ 2)4 vertices in total. We assumed
that K has size greater than 12(|W |+ 2)4, hence there exists at least one vertex in K \M .

The rest of the proof is devoted to showing that Requirement 1 remains satisfied after
removing a vertex v ∈ K \M from S. If G has no k pairwise disjoint holes, then there is
nothing to show; otherwise, as let us fix a collection H of k pairwise disjoint holes such that
every vertex of these holes is in S ∪W , except possibly some of the special vertices. Let us
choose H such that the total number of vertices used from W is minimized.

If no hole goes through vertex v, then we are done. Otherwise, let H ∈ H be the hole
containing v. We may assume that v is not a special endpoint of H, otherwise S \ {v} still
satisfies Requirement 1. Let X be the union of the vertices in V (G) \W used by the holes in
H \ {H}. It is clear that X is a |W |-IP set: each hole uses at least one vertex of W and the
vertices of W split these holes into a collection of at most |W | induced paths. It also follows
that X ∪ {v} is a (|W |+ 1)-IP set.

As G−W is chordal, H contains at least one vertex of W . The following claim shows
that in the definition of M above, the set Mw was defined for every vertex w ∈ V (H) ∩W
(and the same is true for Mw,w′ for any w

′ ∈W ).
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B Claim 12. For every w ∈ V (H) ∩W ,
1. the set Mw is defined,
2. the set Mw,w′ is defined for every w′ ∈W with w′ 6= w.

Proof. If Mw was not defined, then the algorithm of Lemma 10 terminated with Outcome 1
on input (G[S],Kw, Aw, |W |+ 1), resulting in a set Pw of paths satisfying the requirements
of Outcome 1. This means that there are two paths P1, P2 ∈ Pw of length at least one that
are disjoint from the (|W | + 1)-IP set X ∪ {v}. For i = 1, 2, let ai ∈ Aw and zi ∈ K be
the endpoints of Pi. Now z1 and z2 either coincide or are adjacent in the clique K, thus
concatenating them gives a walk that contains an a1−a2 simple path P . From the conditions
on P1 and P2, we also know that a1 and a2 are independent and the internal vertices of P
are not in Aw, that is, not adjacent to w. Thus Lemma 5 shows that w and P form a hole
H ′ of length at least 4 disjoint from X ∪{v} and fully contained in S ∪W . Replacing H with
H ′ in H would give a collection of k holes satisfying Requirement 1, even if v is removed
from S, what we wanted to show.

In an analogous way, we can show that if the algorithm of Lemma 10 terminated with
Outcome 1 on input (G[S \Aw′ ],Kw′ , Aw,w′ , |W |+ 1), then there is a path of length at least
2 connecting two independent vertices of Aw,w′ in G[S \Aw] that is disjoint from X ∪ {v},
forming a hole with w. This proves the second statement. C

The set V (H) \W induces a set of at least one and at most |W | induced paths in G−W
(a path can consists of only a single vertex). Let P be the subpath of H that contains v.
Fixing an orientation of H, let wx, wy ∈ W be the previous and next vertices of H (note
that |V (H) ∩W | = 1 if and only if wx = wy). We try to reroute P to obtain a path P ′ that
avoids v. Then we replace P with P ′ in the hole H and try to obtain a hole H ′ that avoids
v, showing that there is a collection of k disjoint holes that satisfies Requirement 1 even if v
is removed from S. For this, we need to ensure that the new path P ′ is independent from
the rest of H in a certain way. Thus there are two challenges here: finding the rerouted path
P ′ that avoids v and ensuring that replacing P with P ′ results in hole.

The rest of the proof depends on the size V (H) ∩W . The most generic case is when
V (H)∩W has at least 3 vertices. In this case, we can use that H visits a third vertex wz ∈ H
different wx, wy and P is not adjacent to P ; then it is sufficient to ensure that P ′ is also not
adjacent to wy. The case |V (H) ∩W | = 2 is similar, but then we need different arguments
to ensure that H ′ is a hole. In the case |V (H) ∩W | = 1, an additional complication is that
wx = wy, hence the endpoints of P ′ need to be nonadjacent.

Case A: |V (H) ∩W | ≥ 3. Then wx 6= wy and there is at least one other wz ∈ V (H) ∩W
different from wx and wy. Our goal is to show that there is an Awx,wz −Awy,wz path P ′ in
G[S \Awz ] that is disjoint from X ∪ {v}. Assuming there is such a path P ′, let u1 and u2
be the two neighbors of wz on the hole H (note that u1, u2 6∈ P ). Replacing P with P ′ in
the hole H shows that that there is a u1 − u2 walk whose internal vertices are not adjacent
to wz (here we use that the endpoints of P ′ are adjacent to wx and wy, respectively, and
the vertices of P ′ are not adjacent to wz). Thus by Lemma 5, there is a hole disjoint from
X ∪ {v}.

The path P ′ is constructed as follows. We will construct two paths P ′x and P ′y in G[S\Awz ]
such that P ′x and P ′y are Awx,wz −Kwz and Awy,wz −Kwz paths, respectively, and they are
both disjoint from X ∪ {v}. As any two vertices of Kwz are adjacent, the concatenation of
the two paths gives a walk that can be simplified to the required path P ′.



D. Marx 71:11

The path P can be split into a path Px going from a vertex vx ∈ Awx,wz to v, and into
a path Py going from a vertex vy ∈ Awy,wz to v (now one or both of these paths can be of
length 0). We show how to construct P ′x; the construction of P ′y is analogous. If Px has
length at least one, then we use that, by Claim 12, Outcome 2 was the result of applying
Lemma 10 when defining Mwx,wz . As Px is a path from vx to v ∈ Kwz \M ⊆ Kwz \Mwx,wz

and it is disjoint from X, Outcome 2 guarantees the existence of a path P ′x from vx to Kwz

that is disjoint from X ∪ {v}. If Px has length 0, then vx = v is in Kwx,wz . When defining
the set M , we tried to put 2|W |+ 1 vertices of Kwx,wz into M . As v was not put into this
set, we have that M contains 2|W |+ 1 other vertices of Kwx,wz . As the |W |-IP set X can
contain at most 2|W | vertices of Kwz (Lemma 7), there is a vertex v′ ∈ Kwx,wz \X different
from v. Now the path P ′x of length 0 consisting of only v′ satisfies the requirements. Path
P ′y can be obtained in a similar way, completing our proof for the existence of the path P ′.

Case B: |V (H) ∩W | = 2. In this case, H −W consists of either only the path P , or
two paths P and P ∗. Note that if H −W consists of only P , then the two vertices in
wx, wy ∈ V (H) ∩W are adjacent and P has length at least two. Let us first handle the case
when P has length 0, i.e., it consist of a single vertex v adjacent to both wx and wy. Then
the fact that M includes the set returned by Lemma 11 for graph G[S ∪ {wx, wy}], clique K,
k = |W | implies that there is a hole H ′ disjoint from the |W |-IP set X and from v.

In the following, we assume that P has length at least 1 (which in particular implies that
P has no vertex adjacent to both wx and wy). If P ∗ exists, then we claim that no vertex
of P ∗ is adjacent to a vertex u ∈ K \ (X ∪Kwx,wy). Otherwise, without loss of generality,
assume that u is not adjacent to wx (the other case being symmetric). Let vx be an endpoint
of P adjacent to wx, and consider the subpath Q of P from v to vx. Let v∗x be an endpoint of
P ∗ adjacent to wx and consider the subpath Q∗ of P ∗ from v∗x to a vertex u∗ that is adjacent
to u. Now vx and v∗x are nonadjacent neighbors of wx (because the paths P and P ∗ are not
adjacent) and the walk Q∗u∗uvQ goes from v∗x to vx. Note that no internal vertex of this
walk is adjacent to wx (as we assumed that this is true for u). Therefore, there is a hole H ′
that is disjoint from the holes in H \ {H} (the only vertex possibly used by H ′ that is not
used by H is u ∈ K \X) and uses only one vertex of W , contradicting the minimal choice
of H.

If P has length at least 1, then it has an endpoint vx ∈ Awx,wy and an endpoint
vy ∈ Awy,wx . Then we proceed very similarly to Case A above. The path P can be split
into a path Px going from vertex vx ∈ Awx,wy to v, and into a path Py going from vertex
vy ∈ Awy,wy to v (one, but not both, of these paths can be of length 0). We construct
two paths P ′x and P ′y in G such that P ′x and P ′y are Awx,wy − K and Awy,wx − K paths,
respectively, and they are both disjoint from X ∪ {v}. If Px has length at least 1, then the
definition of Mwx obtained by Outcome 2 of Lemma 10 (which exists by Claim 12) shows
that a path P ′x disjoint from X ∪{v} exists, and moreover any vertex of P ′x not in V (Px) is in
Kwx . If Px is only a single vertex, vx = v and the definition of M includes at least 2|W |+ 1
vertices from Kwx,wy and there exists a vertex v′ ∈ Kwx,wy \ (X ∪ {v}). Path P ′y can be
constructed similarly. Putting together these two paths gives an Awx,wy −Awy,wx walk Q.
Observe that no vertex of Q is in Awx,wy : there is no such vertex in V (Px) ∪ V (Py) and the
new vertices we may introduce when defining P ′x or P ′y came from Kwy or from Kwx , hence
they cannot be in Awx,wy either. Therefore, walk Q has a simple Awx,wy −Awy,wx subpath
P ′ of length at least 1 whose internal vertices are disjoint from Awx and Awy . As P ′ was
constructed in such a way that any vertex of it not in V (P ) is in the clique K \ (X ∪Kwx,wy ),
our claim in the previous paragraph shows that P ∗ (if exists) is not adjacent to P ′. Thus
replacing wxPwy with wxP ′wy in the hole H shows the existence of a hole H ′ disjoint from
X ∪ {v}.
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Case C: |V (H)∩W | = 1. Let V (H)∩W = {w}. We again proceed similarly as in Case A,
but we use the fact v is not a special endpoint of H, that is, v is not an endpoint of P . The
path P can be split into a path Px going from a vertex vx ∈ Aw to v, and into a path Py
going from a vertex vy ∈ Aw to v; both paths have length at least 1 (as v is not a special
endpoint) and vx and vy are not adjacent. We will construct a vx−K path P ′x and a vy −K
path P ′y in G that are disjoint from X ∪ {v} and moreover vx and vy are the only vertices of
Aw on these paths. To construct P ′x, consider the set Mw, which was defined by Outcome 2
of Lemma 10 applied on (G[S],Kw, Aw, |W |+ 1) (by Claim 12, the set Mw is defined). As
Px has length at least 1 and v 6∈ Aw, the assumption v 6∈ K \Mw implies that there is a path
P ′x from vx to a vertex of K that is disjoint from X ∪ {v} and has exactly one vertex in Aw
(namely, vx). Moreover, any vertex of P ′x not in V (Px) is in Kw, it follows that vx is the only
vertex of P ′x in Aw, as required. Path P ′y can be constructed in a similar way. Then P ′x and
P ′y show that existence of a path P ′ from vx to vy with no internal vertices in Aw. Finally,
Lemma 5 applied on w and P ′ shows the existence of a hole H ′ disjoint from X ∪ {v}. J

4 Part 2: Special Hole Packing

Lemma 9 did not manage to fully reduce the treewidth of the Hole Packing instance. To
proceed, we introduce a generalization Hole Packing and show that in this generalization
it is possible to encode the original instance of Hole Packing in a way that the treewidth
is reduced to a function of size of the chordal deletion set W given in the input.

We define the Special Hole Packing problem the following way. The input is a
vertex-labeled graph G and two integers ` ≤ k. The possible labels of the vertices are 0,
i, or i∗ for i ∈ [`] (i.e., there are 2` + 1 different labels). The task is to find k pairwise
vertex-disjoint holes H1, . . . , Hk with the following additional conditions. For ` < i ≤ k,
every vertex of Hi should have label 0. For i ∈ [`], hole Hi should have exactly one vertex vi
with label i and every other vertex of Hi has label 0. Moreover, if v′i, v′′i are the neighbors of
vi in Hi, then there should exist a v′i − v′′i path Pi whose internal vertices have label i∗.

Using Courcelle’s Theorem (Theorem 4), it is not difficult to show that Special Hole
Packing is FPT with combined parameters k and the treewidth of G: it is routine to
describe the problem in Monadic Second Order Logic. A tedious but standard dynamic
programming algorithm can also show that running time 2poly(k+tw(G)) · n is also possible.

I Lemma 13. Special Hole Packing is FPT parameterized by k + tw(G).

The final part of the proof is to reduce Hole Packing to Special Hole Packing on a
bounded treewidth graph. The main idea is the following. We first use Lemma 9 to mark a
set S of vertices in the chordal graph G −W . We can assume that if a vertex v is not in
S ∪W , then it may only be used as a special vertex of a special hole. We treat such vertices
v as follows. Suppose that v is adjacent to wi and represented by a subtree Tv in the clique
tree decomposition of G−W . Let a1, . . . , at be the leaves of Tv. Then we “blow up” v: we
remove it and for each aj , we introduce a new vertex vj that is adjacent to wi and whose
representation in the clique tree decomposition is just the single node aj . We perform this
step for every v 6∈ S ∪W . Using easy transformations of the clique tree, we can ensure that
every node of the clique tree is the leaf of at most one subtree, hence we add at most one new
vertex at each node. This ensures that the resulting modified graph has bounded treewidth.

There are at least two obvious problems with this transformation. First, vertex v is
replaced by multiple vertices v1, . . . , vt and the solution may use more than one of them,
effectively using v in more than one hole. However, we can use the Color Coding [2] technique
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in a straightforward way to enforce that each vertex is used only in one hole as special vertex.
The second problem is that the transformation loses information about adjacency. Suppose
that we find a solution that contains a special hole Hi that consists of vertex wi and a path
P , where path P connects a newly introduced vertex vj with a vertex u (that is not adjacent
to vj). Now the orginial vertex v could be adjacent to u in the original graph, hence replacing
vj with v may not give a hole in the original graph. This is the point where the required
path Pi on vertices with label i∗ comes into play: we introduce these vertices in a way that
forces the vj − u path to “go away” from the tree Tv, making sure that it ends at a vertex u
that is not a neighbor of v. More precisely, we introduce a tree-like “scaffolding” with label
i∗ and then we break this scaffolding in a way that potential paths of label i∗ can touch only
the leaves of every such tree Tv.

We state the main result of the section as the fixed-parameter tractability of Hole
Packing parameterized by the size of a chordal deletion set given in the input.

I Lemma 14. Given a graph G, integer k, and vertex set W ⊆ V (G) such that G−W is
chordal, the Hole Packing instance (G, k) can be solved in time f(|W |)nO(1).

Proof. Let S be the set given by Lemma 9 and let us fix a hypothetical solution H of k
holes such that every vertex of every hole is in S ∪W , except perhaps some of the special
vertices. If w1, . . . , w` are distinct vertices from W , then we say that H is consistent with
the tuple (w1, . . . , w`) if each wi for i ∈ [`] is in a special hole and no other vertex of W is in
a special hole; in particular, this implies that there are exactly ` special holes. The algorithm
first guesses a tuple (w1, . . . , w`) with which H is consistent (as the order of the wi’s do not
matter, we have 2|W | different possibilities). In the following, let Hi ∈ H be the special hole
going through wi (note that each special hole uses exactly one vertex of W hence the Hi’s
are distinct).

Let λ : V (G)\ (W ∪S)→ [`] be an arbitrary labeling and let Xi be the set of vertices with
label i. We say that H is consistent with (λ;w1, . . . , w`) if it is consistent with (w1, . . . , w`)
and moreover the special endpoints of Hi are in Xi ∪ S. Observe that this definition puts a
requirement on the labeling of at most 2` vertices. Thus we can use Color Coding [2]: by
going through a 2`-perfect family of hash functions of size 2O(`) · n, we can assume that we
have a fixed (λ;w1, . . . , w`) with which the hypothetical solution H is consistent.

Given G and (λ;w1, . . . , w`), our goal is to obtain a labeled bounded-treewidth graph G′
and invoke the algorithm of Lemma 13 for Special Hole Packing on (G′, k). To define
G′, let us fix a clique tree decomposition of the chordal graph G−W . It will be convenient
to assume the following extra properties of the clique tree decomposition:
(P1) Every tree Tx has at least two vertices.
(P2) The maximum degree of T is at most 3.
(P3) If u and v are adjacent in T and one of them has degree 3, then Bu = Bv.
(P4) Every leaf of every subtree Tx is in a degree-2 node of T .
(P5) Every node of u is the leaf of at most one subtree Tx.
Property (P1) can be achieved by attaching a new leaf to each node u, having the same bag
Bu. Properties (P2) and (P3) can be achieved by replacing each node u of degree d ≥ 3 with
a binary tree having d leaves and each node having the same bag Bu. Then the neighbors
of u can be connected to the leaves of this tree. This replacement also ensures that every
leaf of every subtree Tx is in a node with degree at most 2. Therefore, Property (P4) can
be achieved simply by attaching a new node with empty bag to each leaf node of T (to
avoid that some Tx has a leaf in a degree-1 node). Property (P5) can be achieved by an
appropriate sequence of subdivisions at each edge of T .
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To construct G′, let us start with G[S ∪W ], let us assign label i to wi and label 0 to
every other vertex. For every i ∈ [`], we proceed the following way. We will add new vertices
to G′ and the way we are describing these new vertices is by adding new subtrees to the
clique tree decomposition of G−W (which defines how these new vertices are adjacent to
the vertices not in W ) and explicitly specifying how the new vertices are adjacent to W .
Note that G′ −W will be a chordal graph defined by this clique tree decomposition. First,
for every edge uv of T , we introduce a new vertex with label i∗ whose subtree consists of
nodes u and v. Next, for every vertex x ∈ Xi that is adjacent to wi, and for every leaf u of
Tx, we do the following. By (P1), subtree Tu has at least two vertices, thus u has a unique
neighbor v that is in Tx. We remove the vertex with label i∗ whose subtree consists of {u, v}
and introduce a new vertex with label 0 that is adjacent to wi and whose subtree consists of
only {u}. This completes the description of G′.

We claim that G′ has treewidth at most 12(|W |+2)2 +4|W |. The graph G[S] is a chordal
graph with maximum clique size 12(|W |+ 2)4, hence each bag contains at most that many
vertices. For every i, we introduce at most 3 new vertices with label i∗ in each bag (as
(P2) requires that every node of T have degree at most 3). Furthermore, as each node of T
contains the leaf of at most one subtree Tx by (P5), we may introduce at most one new vertex
with label 0 in each bag. Therefore, G′−W has a clique tree decomposition where every bag
has size at most 12(|W |+ 2)2 + 3|W |+ 1. This means that G′ −W has treewidth at most
12(|W |+ 2)2 + 3|W | and hence G′ has treewidth at most 12(|W |+ 2)2 + 4|W |. Therefore,
by Lemma 13, we can solve Special Hole Packing for (G′, k) in time f(|W |) · nO(1).
The following claim shows that in case we find a solution to this Special Hole Packing
instance, then it allows us to find k disjoint holes in G.

B Claim 15. Given a solution for the Special Hole Packing instance (G′, k), we can
construct in polynomial time a set of k pairwise vertex-disjoint holes in G.

Proof. Let H ′1, . . . , H ′k be the solution of the Special Hole Packing instance (G′, k). We
show first that for i > `, hole H ′i in G′ is a hole in G as well. Recall that for i > `, hole H ′i
contains only vertices of label 0. The only potential problem is that H ′i contains a vertex x∗
that do not appear in G, but was added during the construction of G′. But recall that every
such vertex x∗ was defined by introducing a subtree Tx∗ containing only a single node u of T
and x∗ was also made adjacent to a single wj for some j ∈ [`]. Thus the neighbors of x∗ is
wj plus a clique, which means that any hole going through x∗ has to go through wj as well.
As wj is the only vertex with label j, we have that H ′j has to contain it and hence hole H ′i
for i > ` does not contain wj . This shows that H ′i is a hole in G as well.

Consider now the hole H ′i for some i ∈ [`] and the path Pi that connect neighbors x, y
of wi in H ′i and whose internal vertices are labeled i∗. This hole may contain vertices not
present in G, but the argument in the previous paragraph shows that there are at most two
such vertices: x and y. We show that if these vertices are not present in G, then they can be
replaced by vertices in Xi, resulting in a hole Hi of G.

As x and y are not adjacent, there is a path p1p2 . . . pt in T with t ≥ 1 such that p1 is
the only vertex of the path in Tx and pt is the only vertex of the path in Ty. For every
j ∈ [t− 1], the construction of G′ involved introducing an i∗-labeled vertex zj whose subtree
is exactly {pj , pj+1}. It is clear that the path Pi consists of the vertices x, z1, . . . , zt, y:
there is no other way of connecting x and y with a simple path whose internal vertices have
label i∗. If x is not a vertex of G, then x was introduced in the construction of G′ because
there is a vertex x0 ∈ Xi that is adjacent to wi and p1 is the leaf of the subtree Tx0 ; let us
replace x with x0 in the hole H ′i. Similarly, if y is not part of G, then y can be replaced by a
vertex y0 ∈ Xi that is adjacent to wi and whose subtree Ty0 contains pt. We have to verify
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that the hole Hi obtained by replacing x with x0 and/or y with y0 is indeed a hole. First,
V (Tx) ⊆ V (Tx0) (as Tx contains only node p1), hence x0 is adjacent to every neighbor of
x. Therefore, we only need to verify that no unwanted new edge appears in Hi after the
replacement. The crucial point here is that p2 is not in Tx0 : in that case, we would have
removed vertex z1 during the construction of G′. Thus p1 is the only node of Tx0 on the
path p1, . . . , pt. Similarly, if y is replaced by y0, then pt is the only node of Ty0 on this path.
It is easy to see that the subtree of every vertex of V (H ′i) \ {wi} contains a node from this
path and therefore if, e.g., x0 is adjacent to such a vertex, then already x was adjacent to
that. Thus after the replacements, we indeed obtain a hole Hi in G. Performing this step for
every i ∈ [`] gives a set H1, . . . , H`, H ′`+1, . . . , H ′k of holes. The disjointness of these holes
follow from the disjointness of H ′1, . . . , H ′k and from the fact that V (Hi) \ V (H ′i) is in Xi,
and these vertices cannot be used by any hole other than Hi. C

Conversely, the (contraposition of the) following claim shows that if the answer to the
Special Hole Packing instance is no, then we know that there is no set of disjoint holes
consistent with our current choice of (λ;w1, . . . , w`).

B Claim 16. If G has a set H of pairwise disjoint holes consistent with (λ;w1, . . . , w`), then
Special Hole Packing for (G′, k) has a solution.

Proof. Let H1, . . . , Hk be disjoint holes in G such that Hi for i ∈ [`] is a special hole going
through vertex wi. For special hole Hi where vertices x and y are the neighbors of wi, we
define the gap size of Hi to be the distance of Tx and Ty in T . As x and y are not adjacent,
the gap size is positive. Let us choose H1, . . . , Hk such that the sum of gap sizes is minimum
possible.

For i > `, the vertices of Hi are contained in S∪W , hence they are also holes in G′ as well
with every vertex having label 0. Consider now the special hole Hi for i ∈ [`] and suppose it
has the form wixx

′Py′y where P is an x′ − y′ path (with x′ = y′ if Hi has length 4).
As x and y are not adjacent, there is a path p1p2 . . . pt in T with t ≥ 1 such that p1 is the

only vertex of the path in Tx and pt is the only vertex of the path in Ty. Observe that this
means that the gap size of Hi is exactly t− 1. It easy to see that every bag Bpi for i ∈ [t]
contains at least one vertex of the path P . By (P4), the leaves are in degree-2 nodes, hence
there is a unique vertex p0 before p1 and a unique vertex pt+1 after pt. For every j ∈ [t− 1],
the construction of G′ involved introducing an i∗-labeled vertex zj whose subtree is exactly
{pj , pj+1}. We argue that none of these vertices zj were removed during the construction
of G′. Recall that zj was removed if there was a vertex q ∈ Xi that is adjacent to wi and
either Tq has a leaf in pj+1 and Tq contains pj , or Tq has a leaf in pj and Tq contains pj+1.
We show that if a zj was removed during the construction of G′, then Hi can be replaced
with another hole that has strictly smaller gap size and is still disjoint from the rest of the
holes. This would contradict the minimality of the choice of H.

Let α be the largest integer ≤ t such that there is a vertex in x∗ ∈ Xi ∪ {x} whose
subtree has a leaf in pα and contains pα−1. Vertex x shows that α is well-defined and at
least 1. Furthermore, vertex y shows that α cannot be t: by (P5), node pt is the leaf of
only Ty and this subtree does not contain pt−1. Let β ≥ α be the smallest integer such that
there is a vertex in y∗ ∈ Xi ∪ {y} whose subtree has a leaf in pβ and contains pβ+1. Vertex
y shows that β is well-defined and β ≤ t. Furthermore, we have that β 6= α, as otherwise
both x∗ and y∗ would have a leaf at the same node (and they are distinct vertices). Now
β > α implies that x∗ and y∗ are not adjacent. It can be also observed that vertex zj with
α ≤ j ≤ β − 1 was not removed: removing it because of a subtree with leaf in pj+1 and
containing pj would contradict the maximality of α; removing it because of a subtree with
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leaf in pj and containing pj+1 would violate the minimality of β. Therefore, if α = 1 and
β = t, then none of z1, . . . , zt−1 was removed, what we wanted to show. Otherwise, there is
an x∗ − y∗ path whose internal vertices are in V (P ) (as every bag Bpα , . . . , Bpβ contains
a vertex of P ). Then Lemma 5 implies that there is a hole H∗i going through x∗, wi, and
y∗. This hole is disjoint from the other holes in H \ {Hi}: vertices in V (H∗i ) \ V (Hi) are
from Xi, and consistency of H with (λ;w1, . . . , w`) means that only Hi could use vertices
from Xi. Now the gap size of H∗i is β − α < t− 1, strictly smaller than the gap size of Hi,
contradicting the minimal choice of H. This completes the proof that all of the vertices z1,
. . . , zt−1 are in G′.

Let us show now the existence of a hole H ′i required by the Special Hole Packing
problem. If x, y ∈ S, then they are present in G′ with label 0, hence Hi is a hole in G′

with every vertex except wi having label 0. Then Pi = xz1 . . . zt−1y is a path with internal
vertices labeled i∗, as required. Otherwise, suppose that x 6∈ S. As H is consistent with
(λ;w1, . . . , w`), this is only possible if x ∈ Xi. As x is adjacent to wi and p1 is a leaf of Tx,
we have introduced a vertex x∗ that is adjacent to wi and whose subtree consists of only p1.
Let us observe that x∗ is adjacent to x′: this follows from the fact that the induced path
xx′Py′y connects x and y, hence the subtree Tx′ should contain a node of the component
of T − V (Tx) that contains Ty. As V (Tx∗) ⊆ V (Tx), vertex x∗ cannot be adjacent to any
vertex that is not a neighbor of x. Let us replace x with x∗; in a similar way, if y 6∈ S, then
we can replace it with an appropriate vertex y∗ that is adjacent to wi and y′. Then the
resulting hole H ′i is a hole in G′ where every vertex except wi has label 0. Furthermore, the
two neighbors of wi in H ′i can be connected by a path Pi whose internal vertices are z1, . . . ,
zt−1, as required in the definition of Special Hole Packing. C

In summary, we can solve Hole Packing the following way. We enumerate every
possibility for (w1, . . . , w`) and every mapping λ in a 2`-perfect family of hash functions.
For each choice of (λ;w1, . . . , w`), we construct the graph G′ and solve the Special Hole
Packing instance (G′, k) using the algorithm of Lemma 13. If it returns a solution, then
Claim 15 allows us to turn this into a solution of Hole Packing. The correctness of the
algorithm follows from the fact if there is a set H of k pairwise disjoint holes, then at some
point we reach a tuple (λ;w1, . . . , w`) with which H is consistent. At this point, Claim 16
shows that the Special Hole Packing instance (G′, k) has a solution, and hence our
algorithm indeed returns a solution for Hole Packing. J

To prove our main result Theorem 3, let us invoke the algorithm of Theorem 2 on the
Hole Packing instance (G, k). If it returns a set of k + 1 disjoint holes, then we are done.
Otherwise, we can assume that we have a set W of O(k2 log k) vertices such that G−W is
chordal. Then we can use Lemma 14 to solve the problem in time f(|W |)nO(1) = f ′(k)nO(1).

5 A difficult situation

The set S computed by Lemma 9 does not necessarily cover the special vertices of the special
holes. If we could ensure that set S covers every vertex of the solution, then we could
immediately apply Courcelle’s Theorem and we would not need the arguments in Section 4.
This raises the question whether we could improve the proof of Lemma 9 in such a way.

Of course, a solution can use at most 2k vertices from a clique, so a large clique certainly
has a vertex v not needed for a solution. Therefore, technically speaking, we can prove a
variant of Lemma 9 without the extra condition for the special vertices: using our algorithm
for Hole Packing, we can find a set k disjoint holes and we can set S to be the vertices of
these holes. A better question is whether we can prove the inductive rerouting argument in
the proof of Lemma 9 without the extra provision for the special vertices. Notice that the
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proof of Lemma 9 shows the following: if a hole of the solution goes through a vertex v 6∈ S
of a large clique, then we can reroute that hole without modifying any of the other holes.
Therefore, the question is whether we can find a vertex in a large clique that is irrelevant for
the existence of a hole, even after the deletion of a set of other holes.

I Question 17. Let G be a graph and W a set of vertices such that G−W is chordal and
let K be a clique in G−W . We say that v ∈ K is irrelevant if whenever H is a collection of
disjoint holes1 in G such that G−(

⋃
H∈H V (H)) contains a hole, then G−(

⋃
H∈H V (H)∪{v})

contains a hole as well. Is there a function f such that every clique K of G−W having size
at least f(|W |) contains an irrelevant vertex?

We construct a simple example that gives a negative answer to this question. Therefore,
when trying to declare a vertex v as irrelevant, we cannot argue just by rerouting the hole
going through v in the solution: we may need to reroute some other holes of the solution as
well. This shows that a version of Lemma 9 without the provision for the special vertices
would require a proof of very different flavor.

We define first a chordal graph G0 the following way. Let the tree T contain nodes x0,
. . . , xn+1 forming a path and let yi be a degree-1 neighbor of xi for i ∈ [n]. We define
chordal graph G0 as the intersection graph of subtrees of T :

For i ∈ [n], vertex ai ∈ V (G0) corresponds to a subtree with nodes {xi−1, xi, xi+1, yi}.
For 3 ≤ i ≤ n−2, vertex bi ∈ V (G0) corresponds to a subtree with nodes

⋃
j∈[n]{xj , yj}\

{yi}.
For i ∈ [n], vertex ci ∈ V (G0) corresponds to a subtree with node {yi}.

Observe that the ai’s form a path P , the bi’s form a clique K and the ci’s form an independent
set I. Graph G is defined by adding three new vertices w1, w2, w3 to G0, making w1 and w2
adjacent to I, and making w3 adjacent to K ∪ I.

Let us choose an arbitrary 3 ≤ i ≤ n−2. Consider the holes H1 = w1c1a1a2 . . . ai−1ci−1w1
and H2 = w2ci+1ai+1ai+2 . . . ancnw2. We claim that H3 = w3ciaibiw3 is the only hole in
G− (V (H1) ∪ V (H2)), showing that bi is not an irrelevant vertex. As G− {w1, w2, w3} is
chordal, such a hole has to go through a w3 and then contain two nonadjacent neighbors
of w3. As K is a clique, this means that hole H contains cj for some j ∈ [n]. Consider the
neighbor of cj in H different from w3. This vertex cannot be from K (as it cannot be a
neighbor of w3), hence aj is the only possible neighbor of cj . Hole H1 uses the vertices a1,
. . . , ai−1, while hole H2 uses the vertices ai+1, . . . , an, which leaves only ai, and i = j follows.
Therefore, hole H contains vertices w3ciai, which can be completed to a hole only by vertex
bi (the only vertex of K not adjacent to ci), as claimed. As this argument holds for every
3 ≤ i ≤ n − 2, none of the n − 4 vertices of the clique K are irrelevant. The construction
is valid for arbitrary large n and we have |W | = 3, which rules out the possibility that the
function f of Question 17 depending only on |W | exists.
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