
Up2Dep: Android Tool Support to Fix Insecure
Code Dependencies

Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel
CISPA Helmholtz Center for Information Security

{duc.nguyen,erik.derr,backes,bugiel}@cispa.saarland

ABSTRACT

Third-party libraries, especially outdated versions, can introduce
and multiply security & privacy related issues to Android appli-
cations. While prior work has shown the need for tool support
for developers to avoid libraries with security problems, no such
a solution has yet been brought forward to Android. It is unclear
how such a solution would work and which challenges need to be
solved in realizing it.

In this work, we want to make a step forward in this direction.
We propose Up2Dep, an Android Studio extension that supports
Android developers in keeping project dependencies up-to-date and
in avoiding insecure libraries. To evaluate the technical feasibility
of Up2Dep, we publicly released Up2Dep and tested it with An-
droid developers (N=56) in their daily tasks. Up2Dep has delivered
quick-fixes that mitigate 108 outdated dependencies and 8 outdated
dependencies with security problems in 34 real projects. It was
perceived by those developers as being helpful. Our results also
highlight technical challenges in realizing such support, for which
we provide solutions and new insights.

Our results emphasize the urgent need for designated tool sup-
port to detect and update insecure outdated third-party libraries in
Android apps. We believe that Up2Dep has provided a valuable step
forward to improving the security of the Android ecosystem and
encouraging results for tool support with a tangible impact as app
developers have an easy means to fix their outdated and insecure
dependencies.

KEYWORDS

Mobile Security, Vulnerable Third-party Libraries, Third-party
Library Updatability, Cryptographic API Misuse in Android

ACM Reference Format:

Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel. 2020.
Up2Dep: Android Tool Support to Fix Insecure Code Dependencies. In
Annual Computer Security Applications Conference (ACSAC 2020), December

7–11, 2020, Austin, USA. ACM, New York, NY, USA, 14 pages. https://doi.
org/10.1145/3427228.3427658

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427658

1 INTRODUCTION

Software developers commonly re-use existing code, in particular in
the form of third-party libraries. Third-party libraries are software
components that are bundled in a form that can be distributed to
developers through different channels, such as central repositories.
However, those libraries come at a cost: if they contain bugs or
security and privacy issues, those flaws could be amplified by being
integrated in different applications that use the affected library
versions. Prior works [16, 19, 22, 33, 38] showed that such libraries
could expose user sensitive information to third-party applications,
or be a contributing factor for cryptographic API misuse in applica-
tions. More concerning, even when privacy & security related fixes
were available in newer versions of affected libraries, their adop-
tion by developers progressed very slowly [14]. Existing work has
proposed different solutions to overcome the problem of outdated
third-party libraries. Ogawa et al. [40] proposed using an external
service to split app code and third-party library code from Android
application package (APK) files, and then replace the (vulnerable)
outdated libraries with their fixed versions. This might improve
the situation but requires user actions to re-install the updated
APK. Market stores may play the central role to roll out updates for
libraries to end users but third-party libraries are tightly integrated
into their host app which makes it virtually impossible to precisely
separate app code and library code [14], and to pinpoint the exact
version of a library that an app is using. App developers (not market
stores, not end users) are in the perfect position to fix this problem
in today’s ecosystem as app code and library code are separated
in their development environment. They are aware of the exact
library version they are using and can upgrade their dependencies.
However, developers do not update their app’s dependencies [19]
because the outdated libraries are still working; developers fear
incompatibilities between library versions, specifically semantic
versioning has been found unreliable and has failed developers;
developers are unaware of the updates; and updates take too much
effort. This raises an important issue: providing security updates
does not solve the problems at all if developers do not migrate their
app’s dependencies to the security fixes.

Unfortunately, existing solutions to support developers in keep-
ing their project’s dependencies up-to-date are ineffective. Android
Studio itself includes Lint tool [3] to inform developers about up-
dates of third-party dependencies in Android projects. However,
Lint only provides developers information on whether there are
newer versions of the included libraries, but it does not alert devel-
opers about security vulnerabilities of the libraries and it is limited
to a list of only two libraries that are classified as privacy risks and
without further information about the risks. The lack of informa-
tion on whether the current version is secure and on whether the
newer version is compatible with the existing code of the app makes

https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/3427228.3427658
https://doi.org/10.1145/3427228.3427658
https://doi.org/10.1145/3427228.3427658

ACSAC 2020, December 7–11, 2020, Austin, USA Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel

developers afraid of migrating their project dependencies to newer
versions, and, more importantly, it accustoms developers to stay
with the current (although outdated and more likely vulnerable)
versions as long as the app is still working.

With established tools being unreliable and not universally adopted
(semantic versioning) [19] or providing insufficient support (Lint),
this leaves a gap between developers’ expressed wishes for support
and the status quo. At the same time, there are still open ques-
tions on the technical feasibility of tool support for developers to
keep project’s dependencies up-to-date, which challenges come
along the way, especially how developers would receive (i.e., apply)
such a tool support, and most importantly its (security) impact on
real projects. As long as these questions are not yet answered, we
will still see security & privacy problems in apps that are attrib-
uted to outdated, insecure third-party libraries. Therefore, to make
advances in filling this gap with appropriate tool support for app de-
velopers, we focus in this paper on the following research questions:
"Would it be technically feasible to support developers in keeping their

project’s dependencies up-to-date?" and, more importantly, "Could
such a tool support have a tangible impact on the security and privacy

of Android apps?". To try to answer these questions, we developed
an Android Studio extension called Up2Dep to help Android app
developers in upgrading their library dependencies and in avoiding
vulnerable library versions. Up2Dep analyzes third-party libraries
to provide developers with information about the changes that they
may need to perform when updating a library, based on the public
API changes between the library versions. Using the collected in-
formation about library APIs and their usages on a given project,
Up2Dep provides developers feedback on the updatability of out-
dated library versions (i.e., we base our updatability information
only on the code itself and not on unreliable external sources like
semantic version of libraries).

Up2Dep also maintains a database of publicly disclosed vulnera-
bilities and cryptographic API misuse of libraries, and alerts devel-
opers if a vulnerable library version is included in their apps.

Our solution is the first implemented solution to support app
developers in their task to avoid outdated, critical dependencies, and
an important step to gather first-hand feedback from developers
about solutions that so far have only been recommended in the
literature.

We tested Up2Dep with developers to see how Up2Dep can sup-
port them in their daily programming tasks. To measure the impact
of Up2Dep, we implemented telemetric features inside Up2Dep that
gather anonymized information on how developers interact with
Up2Dep and that allow developers to provide feedback in-situ on
whether the suggested quick-fixes worked as they expected and
what they think about such support from Up2Dep. Our telemetric
data shows that among 56 developers, 30 have applied quick-fixes
suggested by Up2Dep on 34 real projects, totaling 116 quick-fixes (8
insecure library versions, 108 outdated library versions). The results
from the 60 in-situ feedbacks we received from 22 developers con-
firm that 80.0% of the proposed fixes worked and Up2Dep’s support
was useful, while only four cases of the proposed fixes did not work.
Upon further investigating the feedback, we discovered that 13.51%
libraries in our dataset have hidden security related problems as the
problems reside in the transitive dependencies of those libraries,
and are not shown to the developers. We believe, this is a new

and important finding because if this problem is not solved, many
app developers would continue using insecure libraries without
being aware of it. This is detrimental for the security of the Android
ecosystem as end users of such apps will eventually be exposed
to a variety of attacks. Therefore, we subsequently developed a
solution to tackle this problem by analyzing and alerting devel-
opers of libraries that have (hidden) transitive dependencies with
security problems. Further, our study results show that having tool
support on the compatibility of the updates really helps developers
more willing to keep their project’s dependencies up-to-date. Lastly,
we further evaluated developers’ Up2Dep experience in an online
survey where 23 developers shared with us their opinion. Up2Dep
received a SUS score [17] of 76.20, which indicates that Up2Dep
was considered good by developers in terms of usability.

In summary, we make the following tangible contributions:
• We significantly extended LibScout’s original library dataset
(by the factor of 7.5x, totaling 1,878 libraries with their com-
plete version history) and analyze those libraries (37,402
library versions) to discover cryptographic API misuse. To
support future research, we make both Up2Dep and this
dataset publicly available 1.

• We built an Android Studio extension called Up2Dep to warn
developers about vulnerable library versions including both
publicly disclosed vulnerabilities and cryptographic API mis-
use. Up2Dep helps developers upgrade their project’s depen-
dencies, taking into account the library API compatibility.

• We evaluated the technical feasibility of Up2Dep with An-
droid developers (N=56) in-the-wild and gather anonymized
usage information with our telemetric features. Our results
show that Up2Dep has helped developers in fixing their
project dependencies (n=108) and in avoiding dependen-
cies with security problems (n=8). The majority (80.0%) of
suggested fixes (from developer’s feedback) worked and de-
velopers found them useful, while only four instances of the
proposed fixes did not work as developers expected.

• We discovered that 13.51% of the libraries (233 out of 1,725)
have hidden security problems by including (insecure) depen-
dencies which is normally not visible to developers. We have
subsequently developed a solution to tackle this problem.

• Our results show that developers indeed are in favor of such
support and are willing to use it in their projects. Thus, this
work makes a call for action to include such an IDE-provided
support for app developers to avoid insecure code dependen-
cies already during app development and for the research
community to further investigate how library updatability
can be further improved (e.g., detecting non-code, breaking
changes between library versions).

2 RELATEDWORK

We discuss related works on studying the security of third-party
libraries and on tool support for developers in creating more secure
apps.

Security of third-party libraries: Sonatype reported that al-
most 2 billion software components were downloaded per year
that contain at least one security vulnerability, and that outdated
1https://github.com/ngcuongst/up2dep

Up2Dep: Android Tool Support to Fix Insecure Code Dependencies ACSAC 2020, December 7–11, 2020, Austin, USA

software components had a three times higher rate of security is-
sues [1]. In the Web world, Lauinger et al. [32] showed that 37% of
133k analyzed websites include at least one library with a known
vulnerability, and that it takes years for web developers to up-
grade the included dependencies to the latest version. On the other
hand, regarding Android applications, Stevens et al. [44] investi-
gated the user privacy in Android advertisement libraries and found
that among 13 investigated ad libraries, several of them are over-
privileged. Looking further into Android apps, Backes et al. [14]
proposed the LibScout tool to detect third-party library code in
Android apps, and found that 70.4% of the included libraries in their
dataset are outdated. They also found that it took developers on
average almost one year to migrate the app to the latest library
version.

Muslukhov et al. [33] proposed BinSight, a static program ana-
lyzer that was capable of identifying source attribution in Android
applications. The authors revealed that for 90% of the apps that
contain cryptographic API misuses, at least one violation originated
from third party inclusions. Watanabe et al. [46] also found that
70% and 50% of vulnerabilities of free and paid apps, respectively,
stemmed from software libraries, particularly from third-party li-
braries.

Tool support for software developers: Prior work has proposed
different approaches and tools to support developers in building
more secure Android apps. Among them, many developed tools to
find vulnerabilities in applications after they have been released [21,
35, 41]. This means that developers were only aware of such secu-
rity mistakes at the end of or after their development cycle. Other
tools [29, 39] provided developers support while they were writing
code. Krüger et al. [29] developed Cognicryptto support developers
in securely using crypto APIs. Rahaman et al. [42] proposed a set
of analysis algorithms and a static analysis tool namely Crypto-

Guard for detecting cryptographic and SSL/TLS API misuses to
help developers analyze large Java projects. Specifically target-
ing Android applications, Nguyen et al. [39] proposed FixDroid to
provide developers with feedback regarding common vulnerabili-
ties while developers write code. Focusing on supporting Android
developers in writing more privacy-friendly apps, Li et al. [34] pro-
posed Coconut, an Android Studio plugin that engages developers
to think about privacy during app development and to provide
real-time feedback on potential privacy issues. Further, Android
Studio, Google’s official IDE to develop Android apps, includes Lint
tool [3] to check for outdated third-party libraries. Lint, however,
only informs developers about whether or not a newer version of
the library is available.

None of the above solutions supports developers in keeping their
project dependencies up-to-date while taking into account the ef-
fort to update the dependencies, the compatibility of the update, or
the potential security vulnerabilities of the different dependencies’
versions. While being the Google-provided tool for Android devel-
opers, also Android Studio has not considered all these aspects to
help developers in keeping their project dependencies up-to-date,
and especially to avoid insecure library versions.

LibScout

Cognicrypt

Remote Dependency
Inspector

Dependency
Resolver

Usages
Analyzer

build.gradle

Code Editor

App Source
Code

Figure 1: Up2Dep’s architecture. Gray boxes are external

components

3 UP2DEP DESIGN

In this paper, we propose Up2Dep, an Android Studio extension that
facilitates the task of keeping Android project dependencies up-to-
date, and help developers avoid insecure library versions. We focus
on the Android Studio IDE as this is the tool officially supported by
Google and a previous survey [19] has shown that most Android
developers use it to develop apps. We abstain from performing
automatic (updates) patching in the background because this is
too much control over developer’s source code. Further, it is not
possible (with absolute reliability) to guarantee that the patching is
free of unintended side effects. Additionally, developers should be
informed and in control of the changes on their projects.

Up2Dep analyzes the developer’s code and provides developers
information about the compatibility of the dependency’s update. In
case an update to the latest version is incompatible, developers are
provided with two options: either they can update to the latest com-

patible version without having to adjust their app’s code; or they
can update to the latest version and Up2Dep provides them with in-
formation about which library APIs have changed and recommends
changes to their existing app code. Additionally, Up2Dep leverages
information about publicly disclosed vulnerabilities of libraries and
detected cryptographic misuse in Android third-party libraries to
warn developers against using insecure versions of dependencies.
Figure 1 illustrates how the different components of Up2Dep in-
teract with each other. Using LibScout [7] and Cognicrypt [29], we
feed Up2Dep the pre-analysis results consisting of API dependency
analysis (from LibScout) and cryptographic API misuse analysis
(from Cognicrypt). These pre-analyses results are bundled into of-
fline databases. This allows Up2Dep to provide developers real time
feedback as it does not need to repeatedly analyze all version his-
tory of the third-party libraries that developers include into their
applications, which might incur unnecessary performance over-
head. More importantly, Up2Dep does not need to send developer’s
code or all library information to its server as this would potentially
threaten the privacy of developers and their code. After developers
open a project in their Android Studio, Usages Analyzer will read
the Android Source Code to analyze it for usages of the included
third-party libraries. Whenever developers open a gradle build file
(i.e., where dependencies are specified, see Appendix B), Remote

Dependency Inspector will run its inspection to check for outdated
library versions. Finally, Dependency Resolver takes the results of

ACSAC 2020, December 7–11, 2020, Austin, USA Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel

Dependency Inspector and Usages Analyzer to compare them against
the pre-analysis results to gather the following information:

• Are there newer versions of the included library?
• To which extent can the included library be upgraded, e.g, is
there any incompatibility, where is the incompatibility, how
can the app code be adjusted?

• Does the included library contain any security vulnerabili-
ties, and does the developer’s code happen to use this poten-
tially insecure code?

We will now describe each component of Up2Dep in details.

3.1 Analysis Tools

Asmentioned above,Up2Dep collects information about third-party
libraries using existing analysis tools.

3.1.1 LibScout. We provide developers information about the API
of third-party libraries that they include in their apps. In particular,
we notify developers if they can upgrade a library to the latest
version or if the newer version would be API-incompatible with
the existing app code. Hence, we need to analyze the library his-
tory to find out if any of the used library APIs have changed in
newer versions of the library. When such changes occur, we provide
developers with further information on how they can adapt their
existing code so that it will be compatible to the newer version of
the library. To this end, we leverage the open-source tool LibScout
to produce API information for each library version in our dataset.

Library API database: The last version (2.3.2) of LibScout con-
tains a dataset of around 250 libraries. In this work, we build on
and extend the library database of LibScout. In particular, a library
on a third-party repository would usually come with a descriptive
file, e.g., pom.xml, and we analyze those files to discover transitive
dependencies of the libraries in the LibScout database. A transitive
dependency is another library on which the library included by the
app developer depends. For instance, the Facebook Login Android

Sdk library version 4.40.0 declares three transitive dependencies
in its pom.xml file: Android AppCompat Library V7, Facebook Core

Android SDK, Facebook CommonAndroid SDK. To obtain a list of pop-
ular third-party libraries that developers commonly include in their
projects, we crawl the F-Droid repository [6] to extract libraries
included in open source apps. In the end, we have a dataset of 1,878
libraries with their version history. We also extend LibScout’s list
of publicly disclosed vulnerabilities of third-party libraries. As of
July 2019, our list contains 10 libraries with a total of 97 vulnerable
library versions.

Determining API Compatibility: To determine the API com-
patibility between any consecutive library versions, we use the API
diff algorithm of LibScout that operates on two sets of public APIs
apiold and apinew, where apiold is the API set of the immediate pre-
decessor version of apinew. An API is presented by its signature that
consists of package and class name as well as the list of argument
and return type, e.g. example.com.ClassB.foobar()java.lang.String.
If apiold = apinew two versions are consider compatible. If apiold ⊈
𝑎𝑝𝑖new , the newer version has added new APIs but did not remove
or change any existing ones. This is also considered as compatible
(backwards). Whenever apiold includes APIs that are not included
in apinew, a type analysis is conducted to check for compatible

0 2000 4000 6000 8000
Number of misuse

MessageDigest

Cipher

SSLContext

SecretKeySpec

DigestInputStream

Signature

KeyStore

IvParameterSpec

CipherInputStream

AlgorithmParameters

35.0%

17.6%

15.3%

10.4%

9.1%

5.0%

3.3%

1.5%

1.5%

1.4%

Figure 2: Top 10 cryptographic API misuses by Java classes

in our library dataset.

counterparts in apinew. Compatible changes also include general-
ization of argument types, e.g., an argument with type String is
replaced by its super type Object. Generalization on return types is
normally not compatible and depends on the actual app code that
uses the return value. If any of the apiold is not found in the set of
apinew, we consider 2 versions incompatible.

3.1.2 CogniCrypt. We employ the static analysis component of
Cognicrypt, namely CogniCrypt_sast, to discover insecure uses
of cryptographic APIs within the libraries in our dataset. Cog-
niCrypt_sast takes rules written in the CRYSL language, which
define best-practice for secure use of cryptographic APIs, and ana-
lyzes Java applications to find any potential violations of the prede-
fined rules.

We choose Cognicrypt instead of other tools, such as [18, 20, 43],
because Cognicrypt and CRYSL are publicly available and provide the
flexibility in defining cryptographic rules while other tools mostly
provide hard-coded rules, which are not easy to extend. Besides,
Cognicrypt provides more comprehensive rules that result in three
times more identified cryptographic violations in comparison to
previous work [20], and the analysis finishes on average in under
three minutes per application. More importantly, Cognicrypt lever-
ages serveral extensions [13, 31] of the program analysis framework
Soot [45], which performs intra- and inter-procedural static analy-
sis that gives Cognicrypt and CRYSL a high precision (88.95%) and
recall (93.1%).

Cognicrypt’s rule set [30] includes 23 rules covering Java classes
involving cryptographic key handling as well as digital signing. All
rules are available on Github [5]. Beside the these rules, we have
also written an additional rule for http (to check whether a library
uses http instead of https to communicate with a server)

Cryptographic API misuse dataset: We apply Cognicrypt to
our dataset consisting of 1,878 libraries. We are able to analyze
1,725 (91.9%) libraries. It took Cognicrypt more than 3 hours to

Up2Dep: Android Tool Support to Fix Insecure Code Dependencies ACSAC 2020, December 7–11, 2020, Austin, USA

analyze the remaining 153 libraries and we terminated Cognicrypt

when processing a library exceeded 3 hours2. Among the 1,725
libraries, 238 (13.80%) contain at least one cryptographic API mis-
use, and 70 of those affected libraries (29.41%) have fixed/removed
the cryptographic misuse in their later versions. This means that,
developers could easily avoid such (vulnerable) cryptographic API
misuse by upgrading their project’s dependencies to the latest ver-
sion. Figure 2 lists the distribution of the cryptographic API misuse
of the libraries in our dataset. The list is headed by MessageDigest

(35.0% of the top 10 misuses). One of the reasons why MessageDi-
gest has a significantly higher number of misuse is that to use
it securely, developers (suggested by the Java Cryptography Ar-
chitecture Standard) must apply a sequence of method calls, e.g,
MessageDigest.getInstance(algorithmName) followed by Message-

Digest.update(input), followed by MessageDigest.digest(), etc., com-
bined with minimum required length for the offset of the update
method. This does not seem trivial to follow. In general, for Java
classes such as MessageDigest, SSLContext, and Cipher, developers
need to specify an algorithm or a protocol to work with and library
developers often use an algorithm or mode of encryption that is
considered insecure, such as ECB mode for encryption, or MD5 or
SHA-1 for hashing. This puts these classes of misuse among the
most common cryptographic API misuses in third-party libraries.
Further, we have found 20 cases where the libraries (spanning across
93 library versions) use http to communicate with remote servers.

3.2 Remote Dependency Inspector

Android Studio is built on Jetbrain’s IntelliJ IDEA software. How-
ever, the major challenge is the implementation of an Android
Studio extension for Up2Dep as it is not well supported and very
few documentation is available. To learn how the internal system
of Android Studio works, we have to manually read Android Studio
source code and examine its APIs (e.g., dynamically run and test
them) as well as use reflection to access its internal (private) API to
enable the crucial functionality of Up2Dep. To effectively inspect
an Android project’s dependency, we need to implement a custom
code inspection. With the gradle build system, Android developers
need to declare their project’s or module’s dependencies (libraries)
in a gradle build file (see Appendix B.1). This file is written in the
Groovy language. This means we need to write an inspection that is
able to analyze Groovy code. IntelliJ IDEA provides an abstract class
called GroovyElementVisitor that offers plugin authors the options
to analyze varieties of Groovy code fragments. For every Groovy-

CodeBlock, Up2Dep looks for a dependencies tag and iterates over all
declared dependencies to extract group_id, artifact_id, and version

string of each dependency (see Section B.1). Up2Dep then checks
if the current dependency is available in our dataset (i.e., it checks
if we have pre-analyzed this dependency and if the information
about its APIs is available in our database). In case the dependency
is available in our dataset, Up2Dep gathers all information about
the current version up to the latest version, including information
on whether a version has security vulnerabilities. The reason we
do this is to not only detect the latest version, but also the latest
compatible version in case an incompatibility with the app code

2Such libraries are overly complex and mainly serve traditional Java applications, not
intended for Android apps. Analyzing one library version already takes hours.

occurs while helping developers avoid versions with known secu-
rity vulnerabilities. At this point, Up2Dep knows if a dependency
is outdated and which version is the latest one.

Database maintenance: To allow continuous maintenance of
Up2Dep’s database we set a crawler up to run periodically to get
new versions of the libraries in our database and subsequently ap-
ply Cognicrypt to analyze them for cryptographic API misuse, and
LibScout to identify API compatibility between library versions.
The updated database is retrieved automatically inside Android Stu-
dio to timingly provide developers with updatability and security
information about their included third-party libraries. For publicly
disclosed vulnerabilities, we update our database manually.

3.3 Usages Analyzer

As we want to provide developers with information regarding a
dependency’s compatibility and the use of libraries with potentially
insecure usages of cryptographic APIs, we need to analyze the de-
velopers’ code. We built a code dependency analyzer that traverses
through all Java and Kotlin files. When developers open a project
in Android Studio, and the indexing process of Android Studio has
completed, Up2Dep starts to analyze the project’s dependencies. We
decided to wait for the indexing process to be done before analyzing
code dependencies, because it significantly speeds up the analysis
process as code files (including resources) have been transformed
into a preferable representation, namely PsiTree, that allows faster
processing. Each file corresponds to a PsiTree, and PsiTrees can
depend on each other and can contain sub-PsiTrees. For every file
(PsiTree), Up2Dep extracts its dependent PsiTree, and resolves the
PsiTree to find out if it is associated with an external (foreign) code
file. In case of a foreign PsiTree, Up2Dep checks with the Project-
FileIndex class (provided by IntelliJ/Android Studio) to examine if
the corresponding code file is in library classes or library source. As
the ProjectFileIndex class contains information about all included
libraries, Up2Dep can resolve a library class or a library source to
find its library information (e.g., library name and version). Once
the resolving process is completed, Up2Dep records any usages
of the library, e.g., method call (including constructor), and saves
them for later references. At the end of the process, Up2Dep has
a complete dependency tree of source code files (Java and Kotlin)
and their corresponding used libraries with details on which library
methods the app is using. More specifically, the result of Usages
Analyzer is a mapping of multiple pairs: code file (Java or Kotlin)
and corresponding used library including API usages.

3.4 Dependency Resolver

The results from Remote Dependency Inspector and Usages Ana-

lyzer are fed to Dependency Resolver. For each included library,
Dependency Resolver checks the library’s usages in the app code
as reported by Usages Analyzer. At this point, Dependency Resolver

has information on which APIs of the currently included libraries
are used in the developer’s code. If Dependency Resolver finds that
any of the used APIs of an outdated library is no longer available in
the library’ latest version, it picks the library version that is newer
than the current version but contains all the used APIs (newer
compatible version). Using the information of publicly disclosed
vulnerabilities of third-party libraries, Dependency Resolver checks

ACSAC 2020, December 7–11, 2020, Austin, USA Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel

if the currently included library version has a known security vul-
nerability. Additionally, Dependency Resolver looks up each used
library API to detect if the API leads to cryptographic API misuse
in the library, and the details of the misuse.

From all those information,Dependency Resolver gives developers
the following warnings and potential fixes in their build.gradle files.
The dependency

• is outdated and can be updated to the latest version.
• is outdated and cannot be updated to the latest version.
• is outdated and has a known security vulnerability.
• potentially uses a cryptographic API insecurely.

We notify developers about the security and outdatedness of their
project dependencies in the build.gradle file as this is the location
where developers would manage their project dependencies. Be-
sides, we also leverage the IDE functionality to allow developers
to use Up2Dep in batch mode to analyze the whole project and
see the analysis results in a separate window. In the following, we
describe how Up2Dep notifies developers about the above declared
problems.

Outdated version can be updated to the latest version: In
this case, all the used APIs of the outdated library are also available
in its latest version. Dependency Resolver suggests developers to
update to the latest version as it will be compatible to the devel-
oper’s code (see Figure 11 in Appendix). Developers can apply the
suggested fix by using the default short-cut of Android Studio or
clicking on the default bulb icon to apply the recommended fix.
When this quick-fix is applied, the outdated version string of the
library declared in the build.gradle will be replaced by the latest
version.

Outdated version cannot be updated to the latest version:
When not all used APIs of an outdated library are available in
the latest version (e.g., because the library developer removed or
changed methods), Dependency Resolver suggests developers to
update to a newer but compatible version. This means the newer
version would not require changes to the app code to adapt to the
library’s API changes. Similar to the previous fix, developers can
apply it by using the default short-cut or clicking on the default bulb
icon. When no compatible version is available and developers still
want to update the outdated library to the latest but incompatible
version, they are provided the option Show Dependencies (see Figure
12 in Appendix). The purpose of the Show Dependencies fix is to
give developers feedback on how and where they can migrate
their project’s dependencies to the latest versions (see Figure 10 in
Appendix).

Outdated library version with known security vulnerabil-
ity: When the included library contains a known security vulner-
ability, Dependency Resolver alerts developers with an error (in
red color) with details on the vulnerability. Developers can further
check the vulnerability in the attached link to our Up2Dep project
website (see Figure 8 in Appendix). Since a known security vulner-
ability can be a serious problem for the host app or end-user, we
use a red warning instead of a normal warning (in yellow color) to
notify developers. In this case, developers can upgrade to the latest
version that contains the security patches. When the latest library
version is also vulnerable, developers are recommended to consider
not using this library.

Use of insecure cryptographic APIs: Similar to known security
vulnerabilities, if any used librarymethod happens to insecurely use
a cryptographic API,Dependency Resolver warns developers in form
of errors against using this API (see Figure 9 in Appendix). In this
case, Up2Dep suggests to developers to update to the latest version
if the used APIs in the latest version do not contain cryptographic
API misuse. If the latest version still has that problem, developers
can use the Show dependencies option to examine the location and
necessity of the used library method and decide whether or not
they can remove the used method call, or switch to another library.

4 EVALUATION METHODOLOGY

Our goal is to find out if it is technically feasible for Up2Dep to sup-
port developers in keeping their project dependencies up-to-date
and in avoiding library versions with security problems, e.g., how
many outdated (including insecure) libraries Up2Dep has helped
developers migrate to the latest versions and which security vulner-
abilities it has fixed for developers. We further examine developers’
Up2Dep experience in an online survey. Different aspects of Up2Dep
in interactingwith developers — studying developers behavior upon
learning about the security of an included library, how security
warning messages can be customized, how can we keep the balance
between developers being annoyed and being informed, how devel-
oper’s mental model evolves — are not in the scope of this paper,
and left for future work. In the following, we first describe how we
enable developers to evaluate Up2Dep in-the-wild. We then report
how we advertised Up2Dep and delivered it to Android developers
for evaluation.

Figure 3: In context feedback dialog.

To enable developers to evaluate Up2Dep, we leveraged the re-
mote study platform of FixDroid [39] to setup and conduct our
evaluation. We included telemetric features that record whether
a suggested quick-fix was applied. We provided developers the
Feedback in context (see Figure 3) option3 where they could send
us feedback on whether the suggested fix worked as expected, if
they needed more information on any warning, or on other issues
they encountered. In our instruction, we strongly encouraged de-
velopers to provide us feedback so that we could make Up2Dep
better, this was where they can help us to help them, i.e., making
a free-to-use tool better for them. Developers were also provided
the option to opt-out of our telemetric data collection in Up2Dep’s
settings. Before developers downloaded Up2Dep we clearly inform
developers on which information we gathered about their usage
(on our project’s website and in Android Studio plugin repository
description). Our goal in this step was to make sure they are well
informed before they decide to install our plugin.
3This feature is adopted from Lint tool.

Up2Dep: Android Tool Support to Fix Insecure Code Dependencies ACSAC 2020, December 7–11, 2020, Austin, USA

4.1 Recruitment

After we advertised Up2Dep’s prototype at an Android developer
conference, we used Twitter and email as communication channels
to keep in contact with developers and to recruit further developers.
After we released Up2Dep with complete features, we advertised
our tool on different Android developer forums, Android developers
groups on Facebook, and in a related lecture at our institution to
invite experienced students, who are working on real (non-study-
related) Android projects4, into using Up2Dep. Finally, we sent an
invitation email to an Android development team, with which we
already had contact before, to ask the team to try out Up2Dep.

We abstained from sending emails to the contact information
harvested from Google Play apps, as done in prior studies [9, 19,
26, 39], since those studies had an extremely low response rate
and such mass emails may be considered as harmful/spamming
behavior that would create a negative view from developers toward
studies conducted by researchers.

4.2 Ethical Concerns

This study has been approved by our institution’s ethics review
board. All telemetric information is gathered anonymously—we do
not know who the developer is—and we do not collect the devel-
oper’s code. Furthermore, we clearly explain on our website which
information we gather and provide developers the option to opt-out
of our telemetry data collection at any time. Finally, all data is sent
to our server over a secured connection.

5 RESULTS

In this section, we present our evaluation results, which provide
the answers to our research questions (RQ) stated in Section 1. This
covers both telemetric data of developers who filled out our exit
survey as well as of developers who are using Up2Dep but did not
answer our survey. Our evaluation has lasted for 81 days, the results
we report in the following are from within this duration. All data
related to Up2Dep tutorial was excluded from our results5. Finally,
we briefly compare Up2Dep with LibScout and Cognicrypt.

5.1 RQ1: Would it be technically feasible to

support developers in keeping their

project’s dependencies up-to-date?

From the telemetric data and answers to our online survey, we can
see that developers have made use of Up2Dep to keep their project
dependencies up-to-date. In particular, Up2Dep helped developers
upgrade their project’s dependencies (N=116) to the latest version
in 34 real projects. We describe the data as well as the feedback
developers have provided in details in the following.

5.1.1 Telemetric Results. As we included telemetric features in
Up2Dep, we are also able to gather telemetric data from developers
who did not participate in our survey. Of 56 developers who are
usingUp2Dep, 30 (53.57%) have applied quickfixes (N=116) provided
by Up2Dep to update their project’s dependencies—i.e., updated an

4Projects that are not related to their university studies/courses
5When Up2Dep recorded telemetry data, it computed a hash value of the project’s
name. If developers used Up2Dep in a project that has the same hash value with one
of our exemplary projects, such data was excluded from our results.

0 20 40 60 80 100
Number of applied quickfixes

Latest version

Show dependencies

Compatible version

68.97%

27.59%

3.45%

Figure 4: Number of applied quickfixes per type.

outdated third party library to the latest/newer compatible version
or examined a library’s API dependencies (34 projects).

Figure 4 shows the number of applied quickfixes per type. We
can see that the majority of applied quickfixes are Update to the
latest version. Besides, 27.59% of quick-fixes belong to Show depen-

dencies meaning that developers have checked the API usages of
the corresponding dependency. However, since we do not collect
developer’s code, we do not know whether manual code change
were performed to update the corresponding dependency.

0 10 20 30 40 50
Number of feedback provided by developers

Useful - this check is correct,
 and you find it useful

Other

False positive - this check is incorrect

I don't get it - the message
 does not convey enough info

80.00%

8.33%

6.67%

5.00%

Figure 5: Feedback given by developers in context. Develop-

ers can give feedback to multiple quickfixes.

Among all 30 developers who have applied suggested quick-fixes
in their projects, 22 of them (73.33%) have provided us feedback
through the feedback dialog (Figure 3). On average developers have
spent 19 minutes working with Up2Dep before giving us the first
feedback. The results from the 60 in-situ feedbacks we received
from 22 developers confirm that 80.0% of the proposed fixes worked,
and developers found the warning/quickfix useful while only 4 pro-
posed fixes did not work as expected. Figure 5 lists all feedback
provided by developers. We also observe that 5.0% of the feed-
back indicates that the developer did not understand the warning
message (I don’t get it). We manually examined the correspond-
ing third-party libraries and found that their warnings were about
cryptographic API misuse. This suggests that we need to make the
warning message more developer-friendly, e.g., make it easier to
understand (similar to other domains such as browser securitywarn-
ings [10, 23]). As each feedback came together with the dependency
for which developers had given feedback, we manually investigated
the feedback that belongs to False positive and Other. We noticed
that transitive dependencies might be the reason for such feedback.
When a third-party library A depends itself on library B in version
v1 and developers use library B version v2 in their app code, this
means this project has now two versions (v1 ≠ v2) of the library

ACSAC 2020, December 7–11, 2020, Austin, USA Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel

0 4 8 12 16 20
Number of developers

Compatible version check

Insecure version check

Crypto Misuse API check

Show dependency

90.91%

72.73%

72.73%

72.73%

Figure 6: Features of Up2Dep that developers find useful. De-

velopers can choose multiple features.

B. This might break the app due to unresolved dependencies. We
found transitive dependencies’ problems in: org.jsoup:jsoup:0.22 and
com.jakewharton:butterknife:7.0.1 (found in the False positive feed-
backs). Both of these dependencies have transitive dependencies
that app code itself makes use of. Up2Dep suggests developers to
update them to the latest versions. Although the latest versions pro-
vide all APIs that the apps are currently using, but they no longer
contain the exact transitive dependencies (version) that the apps
are using, this in the end breaks the functionality of apps. Since we
do not collect developer’s code, we cannot evaluate which API of a
library developers are using in their project. We decided to further
study this problem on open source Android projects. We collected
libraries (org.jsoup:jsoup:0.22 and com.jakewharton:butterknife:7.0.1)
that are found in the False positive feedbacks, and found projects
on F-Droid repository that have such dependencies. We further
investigate the problems of transitive dependencies and report our
finding in Section 5.2.2.
5.1.2 Online Survey Results.
Demographic data:Of 56 developers, 23 have shared theirUp2Dep
experience with us in our online survey. Developers have spent on
average 48 minutes working with Up2Dep before joining our survey
(see Table 1 in Appendix for details). Around half of the developers
have less than one year of Android programming experience, while
the other half has at least two years of experience. In particular,
11 developers developed more than 2 Android apps, while only 3
participants have not yet published any apps. About two-thirds of
the developers have a security background, most of them are male,
and their age ranges from 18 to 30 years. Among 23 developers,
9 of them are students (2 with at least 2 years of programming
experience, 7 with less than 1 year of programming experience)
who got to know Up2Dep after we advertised it in a related lecture
at our institution6.

Usability score: To assess the usability of Up2Dep in our survey,
we used the SUS (System Usability Scale) [17]. A system with a
SUS score of above 68 would be rated as above average. Up2Dep
achieves a SUS score of 76.20, which is considered good in terms of
usability [15].

Useful features: Of Up2Dep’s features, the Compatible version

check was namedmost often (see Figure 6). This supports the results
of a previous study [19] that showed that developers abstain from

6We did not distinguish academic training from programming experience.

updating their project’s dependencies due to (fear of) incompatible
updates.

5.2 RQ2: Could such a tool support have a

tangible impact on the security and privacy

of Android apps?

5.2.1 Fixed Security Problems. We observe that there are 4 in-
stances of the okhttp3 v3.0.0 library in developers’ projects, which
contains a known security vulnerability. okhttp v3.0.0 allows man-
in-the-middle attackers to bypass certificate pinning by sending a
certificate chain with a certificate from a non-pinned trusted CA
and the pinned certificate. Zhang et al. showed that nearly 10%
of the most popular apps on Google Play store still used such an
insecure version for more than 1 year after the fixed version had
been released [47]. In our study, those library versions were up-
dated by developers with the support of Up2Dep to the latest, fixed
version. Furthermore, there are 3 instances of an outdated version
of the Glide library where developers used hash API without calling
the complete sequence of function (see Section 3.1.2). Finally, one
instance of okhttp3 v3.11.0 that misused a cryptographic API, and
the developer in our study happened to re-use the correspond API
of the library. This issue has been fixed in their latest, misuse-free
version of the library. All in all, 6.89% of the outdated dependencies
that Up2Dep has helped developers to migrate to their latest ver-
sions (8 out of 116) had security problems. Since we do not collect
information of the developers’ projects (i.e., this may make develop-
ers skeptical to try Up2Dep), we therefore do not have information
on the projects patched by Up2Dep. However, regardless of the
project details, we consider this number non-negligible given the
easy means that developers can employ to fix them. Therefore, by
fixing projects containing these insecure library versions, Up2Dep
directly benefits the security and privacy of Android apps.

5.2.2 Security Problems of Transitive Dependencies. From the feed-
back related to the False positive category, we learned that for a
small number (2) of cases, the problem of transitive dependency
would prevent developers from keeping their project’s dependen-
cies up-to-date because of incompatibility. However, the current
dependency management system of Gradle makes it hard for devel-
opers to be informed about what are the transitive dependencies of
the manually declared dependencies as it automatically downloads
sub-dependencies of a given dependency without developers eas-
ily noticing it. Developers can check the log console to see what
sub-dependencies are downloaded together with the current depen-
dency, yet this is only available in the log console with hundreds
of log events. The problem becomes more serious if a transitive
dependency has (well known) security problems. Those are totally
hidden from developers because they are usually automatically
downloaded following the main dependency unless developers
specifically exclude them [27]. Thus, even if developers would vet
a dependency manually, insecure sub-dependencies that are auto-
matically, non-obviously pulled in when installing the dependency
can undermine the app’s security again. This highlights the need
for tooling support, as such Up2Dep.

Transitive dependency analysis: Given the crucial informa-
tion regarding security problems of transitive dependencies, we

Up2Dep: Android Tool Support to Fix Insecure Code Dependencies ACSAC 2020, December 7–11, 2020, Austin, USA

developed an additional feature that thoroughly checks all tran-
sitive dependencies of all declared dependencies to: (1) analyze
compatibility when suggesting developers to update the declared
dependencies, and more importantly, (2) to check and notify de-
velopers if any transitive dependencies contain security problems.
When Up2Dep detects a declared dependency in a build.gradle file
of a project, it checks all transitive dependencies (all sub levels)
of the current dependency and queries security related informa-
tion of these transitive dependencies. If any transitive dependency
contains security problems, developers are notified similar to how
security problems of the main dependency are communicated (see
Section 3.4).

Analysis Results: Our results reveal that there are 1,209 library
versions (belonging to 112 unique dependencies) that have security
problems. These dependencies are currently (transitively) used by
9,787 library versions (233 unique libraries) in our data-set. Espe-
cially, among 1,209 transitive dependency versions with security
problems, 16 contain a publicly disclosed vulnerability. This means
even if developers are aware of such libraries with security prob-
lems they have no way to find out if their projects are including
such insecure dependencies as they are not visible to developers.
The latest version of Up2Dep now informs developers about such
security problems of both the main dependency and transitive de-
pendencies so that developers can also avoid insecure transitively
included library (versions).

5.3 Comparison with Existing Work

In our work, we significantly increased the database of LibScout
by a factor of 7.5x. Furthermore, our database covers the top 100
most popular libraries on Maven repository [4] which was not
considered by LibScout. Most importantly, we provided an effortless
synchronization (end-to-end) process that automatically scans for
new libraries (versions), analyzes for cryptographic API misuse,
then the information on security and updatability of new libraries
(versions) are delivered to developers right in their development
environment without them having to use extra tools.

Besides, as we extended the rule set of Cognicrypt to include the
check for use of http protocol, we have found 20 libraries (8.4% of
all identified insecure libraries), spanning across 93 versions using
such insecure protocol. With the original rule-set of Cognicrypt
we would have missed the insecure network connection in these
libraries.

6 DISCUSSION

6.1 Threats to Validity and Future Work

Our work leverages LibScoutand Cognicryptand inherits their lim-
itations. For LibScoutthe ability to provide suggestions for API
changes relies solely on API heuristics, such as name, parameter
types, or return types, which do not necessarily guarantee that the
suggested API will work as expected. If the semantics or side-effects
of a library method change between versions, this could break the
functionality of the developer’s app although the app code was
compatible at the method signature level with the new library ver-
sion. Further detecting semantic changes is an open problem that
requires effort from different domains, especially software engineer-
ing, and is not in the scope of our work. Yet in this work, we show

that relying on API changes to derive compatibility among library
versions does help developers to keep their project’s dependencies
up-to-date, yet it needs further improvement to cover more cases.

While Cognicrypt provides the flexibility to create new rules to
detect cryptographic misuse, it is not free of false positives. We
found cases where calls to cryptographic APIs are wrapped in
custom Java utility classes by the library developer. Cognicrypt can
not completely link the control flow graph of those custom classes
to detect if a cryptographic misuse occurs in those cases. This
results in Cognicrypt over-approximating the misuse and reporting
false positives. In particular, misuse of MessageDigest depends on
call sequences and this shortcoming of Cognicrypt in classifying
misuse of that class when being wrapped in custom classes might
be a contributing factor to the high number of misuses detected for
MessageDigest (see Figure 2). However, it is not easily possible to
verify such misuse using static analysis and exclude false positives
from our results. Once Cognicrypt addresses this limitation, also
Up2Dep will provide more accurate warnings to app developers.

Additionally, we currently manually look for publicly disclosed
vulnerabilities, which is a tedious task. In future, this could be gener-
ally done with a central library repository, e.g., when a vulnerability
of a library is disclosed, central library repositories can incorporate
and mark the vulnerable versions in their database so that tools
like Up2Dep or Lint can automatically retrieve and provide devel-
opers feedback in their IDE. However, for the cryptographic API
misuse, Up2Dep’s pre-analyzer component automatically crawls
newer versions of third-party libraries and runs Cognicrypt to ob-
tain up-to-date results.

Further, the population size of the developers in our evaluation
might be perceived as small since we only have 56 developers, of
which 23 shared with us their experience in our online survey, and
22 developers provided us feedback in their Android Studio. Our
demographic data shows that our evaluation indeed has a popula-
tion of experienced developers (e.g., 18 of them have developed at
least 2 Android apps). However, developer studies [9, 26, 39] had in
the past notoriously a low number of participants as it is not easy
to recruit real developers. Besides, most of them were conducted
with students as proxies using handcrafted, toy projects which do
not necessarily represent the day-to-day real situation that devel-
opers often face. In our work, on the other hand, we tried to avoid
students as proxies and toy projects as much as possible and gain
insights from developing real app projects (external validity). We
think the fact that we could recruit this number of developers and
keep them using Up2Dep is in part due to the interest and need
for such a tool by the developer community. Furthermore, with
our feedback in-context option, we obtain valuable feedback from
developers on whether Up2Dep works. Given the only small per-
centage of false positives reported (6.7%) and 80% of the suggested
quick-fixes working as expected, we believe that we have delivered
a novel and expedient tool, and can show the impact of such tooling
support on real world situations.

Lastly, we abstained from collecting telemetric information on
whether developers ignored the quick-fix, since this might be con-
sidered too intrusive. Unfortunately, this also precludes us from
modeling whether a known security vulnerability or cryptographic
misuse warning is a significant predictor for applying quick-fixes
and library updates in our evaluation.

ACSAC 2020, December 7–11, 2020, Austin, USA Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel

6.2 Transitive Dependencies and App Security

While during our evaluation, we did not consider transitive depen-
dencies, we also have seen that the problems of transitive depen-
dency with regards to library updatability is a corner case, e.g., only
2 instances of the false positives. Also existing research [28] on the
updatability of third-party libraries shows that only 1.7% of the li-
brary API could be affected by this problem (referred to as entangled
dependencies). Still we see a potential threat to the security of An-
droid apps due to transitive dependencies. We found that (known)
security problems of a library could be hidden from developers
when the library is included as a transitive dependency of another
dependency and this transitive dependency is not communicated as
obvious to app developers as needed. While the community is try-
ing its best to find security related problems of third-party libraries,
it is also important to keep developers informed on all potential
risks associated with a (declared) dependency. We are to the best of
our knowledge the first to study the security problems of transitive
dependencies and subsequently developed a solution to tackle this
problem by alerting developers when they include libraries that
have transitive dependencies with security problems.

6.3 Impact of Fixing Insecure Dependencies

Among the 116 applied fixes, 6.89% had security vulnerabilities
(4 known security vulnerabilities, 4 cryptographic API misuse).
We consider these numbers non-negligible and this has tangible
impact on the security and privacy of the Android apps that devel-
opers are working on. Previous work has identified the security &
privacy impact of outdated third-party libraries in general and of
outdated insecure third-party libraries in particular (see Section 2).
By updating the insecure code dependencies to secure versions,
we are removing the factors that could amplify security & privacy
problems in apps and expose end users to multiple types of at-
tacks. While market stores such as Google Play have been scanning
apps for security & privacy problems, they are dealing with mono-
lithic byteblobs where there is no separation between app code
and library code. Hence, such solutions need exact, reliable library
detection mechanisms which is a challenging task and no satis-
factory solution exists yet. This becomes even more challenging
when the apps’ byte-code is obfuscated, something that Google
itself is promoting to app developers [12]. Our results show that
by integrating support to suggest secure code dependencies within
developers’ IDEs, we can eliminate many security problems that
arise from including insecure third-party libraries without having
to deal with monolithic apks where app code and library code have
been merged together. Especially, developers do not need to learn
new tools or adjust their daily work-flow to be able to use Up2Dep.
Our results call for action from IDE developers to merge tools like
Up2Dep into IDEs, like Android Studio, so that developers imme-
diately and by default benefit from such support. Based on our
results, the experiences in other software ecosystems [8, 24] or for
native Android libs [11, 25], and the movement toward integrating
security into software development life cycle namely SevDevOps

[36, 37], we argue that this would have a tangible impact on the
security & privacy of the Android ecosystem especially.

6.4 Fear of Incompatibility vs. Will to Update

In our evaluation, we learned that, the majority of the outdated li-
braries can be updated all the way to the latest version (see Figure 4)
without having to change the app code (i.e., 68.97% quick-fixes are
update to the latest version). Developers are afraid of updating be-
cause they fear that the new version of the libraries would break
the app’s existing functionality [19]. Without the information on
the compatibility of the new update, developers either have to man-
ually verify the release notes (if available) of the libraries to make
sure that the functions their apps are using are still available in the
update, or simply keep using the outdated versions. One developer
shared such experience via email with us after trying out Up2Dep:

"Thank you for sharing your project with me. It’s re-
ally exciting, we’re normally manually reviewing the
change logs to see if we should update our dependen-
cies right away or what we should test."

Compatible check was rated the most useful feature (see Figure 6)
by developers in our study. Had Up2Dep not provided the compati-
bility information on the outdated dependencies, developers would
probably not be willing to perform the updates on these 68.98%
outdated dependencies (80 of 116 outdated dependencies).

7 CONCLUSION

Since security patches of libraries are often rolled out as updates,
app developers (not market stores, not the end users) need to keep
their project’s third-party libraries up-to-date to avoid security
problems of outdated libraries. In this paper, we present Up2Dep,
an Android Studio extension that facilitates the task of keeping an
Android app project third-party libraries up-to-date while taking
into account the security and the compatibility of the newer ver-
sions of such dependencies. Up2Dep suggests alternative library
APIs to developers in case a newer library version is incompatible.
It further helps developers in avoiding insecure libraries by alerting
them to publicly disclosed vulnerabilities and cryptographic API
misuse in third-party libraries. We tested Up2Dep with 56 Android
developers. Up2Dep has helped developers in fixing 116 outdated
third-party libraries, of which 6.89% had security vulnerabilities (4
known security vulnerabilities, 4 cryptographic API misuse). The
majority (80.0%) of the suggested quick-fixes worked as expected
with only 4 cases of failed quick-fixes. In further investigation, we
discovered the hidden security problems of transitive dependencies
of 13.51% of the libraries in our dataset. We are the first to dis-
cover the hidden problem of insecure transitive dependencies and
subsequently developed the corresponding solution to tackle this
problem. Our results call for action to (1) merge tool support, like
Up2Dep, into developers’ integrated development environments, as
this would create a tangible impact on the security and privacy of
the Android ecosystem when developers benefit from tool support
for upgrading used third-party libraries, and (2) study developer’s
behavior to best provide them the right tool support.

ACKNOWLEDGMENTS

We like to thank our anonymous reviewers for their valuable feed-
back. We also thank our shepherd — Sébastien Bardin for his feed-
back and for being a supportive point of contact for the revision of
this paper.

Up2Dep: Android Tool Support to Fix Insecure Code Dependencies ACSAC 2020, December 7–11, 2020, Austin, USA

REFERENCES

[1] Accessed 2016. 2016 State of the Software Supply Chain. https://www.sonatype.
com/software-supply-chain.

[2] Accessed 2018. Gradle Build Tool. https://gradle.org/.
[3] Accessed 2018. Lint Tool. http://tools.android.com/tips/lint.
[4] Accessed 2018. Top most popular libraries on Maven. https://mvnrepository.

com/popular.
[5] Accessed 2019. Cognicrypt Crypto API rules. https://github.com/CROSSINGTUD/

Crypto-API-Rules.
[6] Accessed 2019. F-Droid App Repository. https://f-droid.org/en/.
[7] Accessed 2019. LibScout. https://github.com/reddr/LibScout.
[8] Accessed 2019. Snyk: A developer-first solution that automates finding & fixing

vulnerabilities in your dependencies. https://snyk.io.
[9] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,

Michelle L Mazurek, and Christian Stransky. 2017. Comparing the usability of
cryptographic apis. In Security and Privacy (SP), 2017 IEEE Symposium on. IEEE,
154–171.

[10] Devdatta Akhawe and Adrienne Porter Felt. 2013. Alice in Warningland: A
Large-Scale Field Study of Browser Security Warning Effectiveness.. In USENIX

security symposium 2013, Vol. 13.
[11] Android Developer Documentation. Accessed 2019. App security improvement

program. https://developer.android.com/google/play/asi.
[12] Android Developer Documentation. Accessed 2019. Shrink, obfuscate, and opti-

mize your app. https://developer.android.com/studio/build/shrink-code.
[13] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[14] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library
Detection in Android and Its Security Applications. In Proc. 23rd ACM Conference

on Computer and Communication Security (CCS’16). ACM.
[15] Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining what indi-

vidual SUS scores mean: Adding an adjective rating scale. Journal of usability
studies 4, 3 (2009), 114–123.

[16] Theodore Book, Adam Pridgen, and Dan S. Wallach. 2013. Longitudinal Analysis
of Android Ad Library Permissions. CoRR abs/1303.0857 (2013).

[17] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[18] Alexia Chatzikonstantinou, Mezza Group, Christoforos Ntantogian, Christos
Xenakis, and Georgios Karopoulos. 2015. Evaluation of Cryptography Usage in
Android Applications. https://doi.org/10.4108/eai.3-12-2015.2262471

[19] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.
Keep Me Updated: An Empirical Study of Third-Party Library Updatability on
Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (Dallas, Texas, USA) (CCS ’17). ACM, 2187–2200. https:
//doi.org/10.1145/3133956.3134059

[20] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An empirical study of cryptographic misuse in android applications. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security. ACM, 73–84.
[21] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[22] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security. In Proceedings of the 20th USENIX Con-

ference on Security (San Francisco, CA) (SEC’11). USENIX Association, Berkeley,
CA, USA, 21–21. http://dl.acm.org/citation.cfm?id=2028067.2028088

[23] Adrienne Porter Felt, Alex Ainslie, Robert W. Reeder, Sunny Consolvo, Somas
Thyagaraja, Alan Bettes, Helen Harris, and Jeff Grimes. 2015. Improving SSL
Warnings: Comprehension and Adherence. In Proceedings of the 33rd Annual

ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). ACM, New York, NY, USA, 2893–2902. https://doi.org/10.1145/
2702123.2702442

[24] GitHub Help. Accessed 2019. Viewing and updating vulnerable dependen-
cies in your repository. https://help.github.com/articles/viewing-and-updating-
vulnerable-dependencies-in-your-repository/.

[25] Google Help. Accessed 2019. How to fix apps containing Libpng Vulnerability.
https://support.google.com/faqs/answer/7011127?hl=en.

[26] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Sebas-
tian Möller, Yasemin Acar, and Sascha Fahl. 2018. Developers Deserve Security
Warnings, Too: On the Effect of Integrated Security Advice on Cryptographic
API Misuse. In Fourteenth Symposium on Usable Privacy and Security ({SOUPS}
2018). 265–281.

[27] Gradle. Accessed 2019. Gradle Transitive Dependency. https://docs.gradle.org/5.
6.2/userguide/managing_transitive_dependencies.html.

[28] Jie Huang, Nataniel Pereira Borges Jr., Sven Bugiel, and Michael Backes. 2019.
Up-To-Crash: Evaluating Third-Party Library Updatability on Android. In 4th

IEEE European Symposium on Security and Privacy. https://publications.cispa.
saarland/2885/

[29] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden,
Florian Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, and Ram
Kamath. 2017. CogniCrypt: Supporting Developers in Using Cryptography. In
Proceedings of the 32Nd IEEE/ACM International Conference on Automated Software

Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway,
NJ, USA, 931–936. http://dl.acm.org/citation.cfm?id=3155562.3155681

[30] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. 2018.
CrySL: An Extensible Approach to Validating the Correct Usage of Cryptographic
APIs. In 32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[31] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java program analysis: a retrospective. In Cetus Users and Compiler

Infastructure Workshop (CETUS 2011), Vol. 15. 35.
[32] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo

Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In 24th Annual Network and

Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,

February 26 - March 1, 2017.
[33] Cheng-Lun Li, Ayse G. Buyuktur, David K. Hutchful, Natasha B. Sant, and Satyen-

dra K. Nainwal. 2008. Portalis: using competitive online interactions to support
aid initiatives for the homeless. In CHI ’08 extended abstracts on Human factors

in computing systems (Florence, Italy). ACM, New York, NY, USA, 3873–3878.
https://doi.org/10.1145/1358628.1358946

[34] Tianshi Li, Yuvraj Agarwal, and Jason I Hong. 2018. Coconut: An IDE plugin for
developing privacy-friendly apps. Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies 2, 4 (2018), 178.
[35] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:

Statically Vetting Android Apps for Component Hijacking Vulnerabilities. In
Proceedings of the 2012 ACMConference on Computer and Communications Security

(Raleigh, North Carolina, USA) (CCS ’12). ACM, New York, NY, USA, 229–240.
https://doi.org/10.1145/2382196.2382223

[36] Vaishnavi Mohan, Lotfi ben Othmane, and Andre Kres. 2018. BP: security con-
cerns and best practices for automation of software deployment processes: an
industrial case study. In 2018 IEEE Cybersecurity Development (SecDev). IEEE,
21–28.

[37] Vaishnavi Mohan and Lotfi Ben Othmane. 2016. Secdevops: Is it a marketing
buzzword?-mapping research on security in devops. In 2016 11th International

Conference on Availability, Reliability and Security (ARES). IEEE, 542–547.
[38] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel. 2019. Short Text, Large Effect:

Measuring the Impact of User Reviews on Android App Security & Privacy.
In 2019 2019 IEEE Symposium on Security and Privacy (SP), Vol. 00. 155–169.
https://doi.org/10.1109/SP.2019.00012

[39] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles
Weir, and Sascha Fahl. 2017. A Stitch in Time: Supporting Android Developers
in Writing Secure Code. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (Dallas, Texas, USA) (CCS ’17). ACM,
New York, NY, USA, 1065–1077. https://doi.org/10.1145/3133956.3133977

[40] Hiroki Ogawa, Eiji Takimoto, Koichi Mouri, and Shoichi Saito. 2018. User-Side
Updating of Third-Party Libraries for Android Applications. In 2018 Sixth In-

ternational Symposium on Computing and Networking Workshops (CANDARW).
IEEE, 452–458.

[41] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious Dy-
namic Code Loading in Android Applications.. In NDSS 2014, Vol. 14. 23–26.

[42] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles
Frantz, Murat Kantarcioglu, and Danfeng (Daphne) Yao. 2019. CryptoGuard:
High Precision Detection of Cryptographic Vulnerabilities in Massive-sized Java
Projects. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security (London, United Kingdom) (CCS ’19). ACM, 2455–2472.
https://doi.org/10.1145/3319535.3345659

[43] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie. 2014. Modelling
Analysis and Auto-detection of Cryptographic Misuse in Android Applications.
In 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure

Computing. 75–80. https://doi.org/10.1109/DASC.2014.22
[44] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012.

Investigating user privacy in android ad libraries. InWorkshop on Mobile Security

Technologies (MoST), Vol. 10.
[45] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,

and Vijay Sundaresan. 2000. Optimizing Java bytecode using the Soot framework:
Is it feasible?. In International conference on compiler construction. Springer, 18–34.

[46] Takuya Watanabe, Mitsuaki Akiyama, Fumihiro Kanei, Eitaro Shioji, Yuta Takata,
Bo Sun, Yuta Ishi, Toshiki Shibahara, Takeshi Yagi, and TatsuyaMori. 2017. Under-
standing the Origins of Mobile App Vulnerabilities: A Large-scale Measurement
Study of Free and Paid Apps. In Proceedings of the 14th International Conference

https://www.sonatype.com/software-supply-chain
https://www.sonatype.com/software-supply-chain
https://gradle.org/
http://tools.android.com/tips/lint
https://mvnrepository.com/popular
https://mvnrepository.com/popular
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://f-droid.org/en/
https://github.com/reddr/LibScout
https://snyk.io
https://developer.android.com/google/play/asi
https://developer.android.com/studio/build/shrink-code
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1145/3133956.3134059
http://dl.acm.org/citation.cfm?id=2028067.2028088
https://doi.org/10.1145/2702123.2702442
https://doi.org/10.1145/2702123.2702442
https://help.github.com/articles/viewing-and-updating-vulnerable-dependencies-in-your-repository/
https://help.github.com/articles/viewing-and-updating-vulnerable-dependencies-in-your-repository/
https://support.google.com/faqs/answer/7011127?hl=en
https://docs.gradle.org/5.6.2/userguide/managing_transitive_dependencies.html
https://docs.gradle.org/5.6.2/userguide/managing_transitive_dependencies.html
https://publications.cispa.saarland/2885/
https://publications.cispa.saarland/2885/
http://dl.acm.org/citation.cfm?id=3155562.3155681
https://doi.org/10.1145/1358628.1358946
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1109/SP.2019.00012
https://doi.org/10.1145/3133956.3133977
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1109/DASC.2014.22

ACSAC 2020, December 7–11, 2020, Austin, USA Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel

on Mining Software Repositories (Buenos Aires, Argentina) (MSR ’17). IEEE Press,
Piscataway, NJ, USA, 14–24. https://doi.org/10.1109/MSR.2017.23

[47] Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. 2019. LibID: Reli-
able Identification of Obfuscated Third-Party Android Libraries. In Proceedings of

the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis

(Beijing, China) (ISSTA 2019). Association for Computing Machinery, New York,
NY, USA, 55–65. https://doi.org/10.1145/3293882.3330563

A SURVEY QUESTIONS

A.1 App Development

Q1: How do you prefer getting update notifications? [multiple
choice]

• Yellow highlighting on the dependency version
• Pop upwhen new versions are available, with “Ignore” option
• When I build/compile my project?
• Other [free text]

Q2: Based on which criteria do you usually pick a library for
your projects? [multiple choice]

• Popularity
• Easy to use
• Functionality
• Security
• Other

Q3: Have you developed any third-party libraries?[Yes/No]
• Yes: Which library is that? [freetext]
• No

Q4: How would you rate the security (whether a given version
has security vulnerability) of libraries you decide to include it into
your projects [single choice]
1-5

Q5: Did you notice any highlights regarding outdated library
versions in your app’s Gradle files? [single choice]

• Yes
• No
• I don’t know

Q6:Where do you reach out for help while solving programming
tasks that relate to third-party libraries? [multiple choice]

• StackOverflow
• Search engines
• Third party library’s website
• Other [free text]

A.2 Up2Dep Usage

Q7: How did you get to know Up2Dep? [multiple choice]
• Friends, colleagues
• IntelliJ IDEA/Android Studio repository
• Twiter
• Android Developer Conference
• Other

Q8: Which features of Up2Dep do you find useful? (screenshots
are included for each feature)

• Compatibility check (compatible version vs. latest version)
• Insecure version check
• Crypto API misuse check
• Show dependencies and alternative API suggestions

• Other [free text]
Q9: Since you started using Up2Dep, how many outdated li-

braries have you updated?
• 0
• 1
• More than 2
• Other [free text]

A.3 Up2Dep Usability - SUS Questions

Q10: For each of the following statements, how strongly do you
agree or disagree (Strongly disagree, disagree, neutral, agree, strongly
agree)

• I think that I would like to use Up2Dep frequently.
• I found Up2Dep unnecessarily complex.
• I thought Up2Dep was easy to use.
• I think that I would need the support of a technical person
to be able to use Up2Dep.

• I found the various functions of Up2Dep were well inte-
grated.

• I thought there was too much inconsistency in Up2Dep.
• I would imagine that most people would learn to use Up2Dep
very quickly.

• I found Up2Dep very cumbersome to use.
• I felt very confident using Up2Dep.
• I needed to learn a lot of things before I could get going with
Up2Dep.

A.4 Demographic

Q11: How many years have you been programming in Android?
• less than 1 year
• around 2 years
• around 3 years
• more than 3 years

Q12: How old are you?
• 18–30
• 31-40
• 41-50
• >50
• No answer

Q13: What is your gender?
• Male
• Female
• No answer

Q14: How many apps have you developed so far?
• 1
• 2
• more than 2
• 0

Q15: Do you have IT-Security background?
• Yes
• No

Q16: Where are you from? [free text]

https://doi.org/10.1109/MSR.2017.23
https://doi.org/10.1145/3293882.3330563

Up2Dep: Android Tool Support to Fix Insecure Code Dependencies ACSAC 2020, December 7–11, 2020, Austin, USA

1 ex t . s uppo r tVe r s i on = 2 5 . 3 . 1
2 dependenc i e s {
3 imp l emen ta t i on ' com . example : magic : 1 . 2 . 1 '
4 / / or
5 imp l emen ta t i on group : ' com . example ' , name : 'magic ' ,

v e r s i o n : ' 1 . 2 . 2 '
6 / / dependenc i e s use v a r i a b l e as v e r s i o n s t r i n g
7 imp lemen ta t i on ' com . and ro id . suppor t :

suppor t −v4 : $ suppo r tVe r s i on '
8 imp lemen ta t i on ' com . and ro id . suppor t :

appcompbat −v7 : $ suppo r tVe r s i on '
9 }

Listing 1: Declaring external dependencies in Android

projects.

B BACKGROUND

We will briefly provide information on the Gradle build system and
Android Studio plugin development.

B.1 Gradle Build Tool in Android Studio

Android Studio uses Gradle Build Tool [2] as an Android Studio
plugin to automate and to manage the app build process. The Gradle
build system eases the task of including internal and/or external
libraries to app builds as dependencies. In our work, we do not take
into account local binary dependencies, e.g., jar files that develop-
ers manually download and import into their projects because the
majority of third-party libraries are included in Android projects
via central repositories. Besides, for local module dependencies and
local binary dependencies, the exact version information is not
available, one can only profile the binary files and provide approxi-
mate matches which would add up another factor of uncertainty.

Listing 1 shows examples of how developers can declare their
project’s external dependencies in Android Studio. On line 3, compo-
nents of a dependency’s information are colon-separated, group_id:-
artifact_id:version, while on line 5, they are declared as key-values.
From this information, when developers choose to sync their project’s
dependencies, Gradle will sync such dependencies from the default
repository (e.g., JCenter or Maven) or the ones declared in the
gradle.settings file of the app project. Besides, developers can also
declare version strings as a variable (line 1) and use this variable for
the external dependency’s version (lines 7,8). This helps developers
avoiding repeatedly specifying (and updating) version strings for
multiple libraries from the same group (e.g., com.android.support)
that use the same version string.

B.2 Android Studio Plugin

Android Studio is based on Jetbrain’s IntelliJ IDEA. Therefore, to
develop an Android Studio plugin one needs to create an IntelliJ
IDEA plugin that targets Android Studio. The IntelliJ platform
provides tools designed for static code analysis, i.e., inspections
that allow developers to check for potential problems in the source
code. Examples of such inspections are finding probable bugs, dead
code, performance issues, improving code structure and quality,
or examining coding practices and guidelines. In the following,
we describe how code inspection and quick-fixes work in IntelliJ
IDEA/Android Studio. Code inspection in Android Studio leverages
the program structure interface (PSI) to analyze source code files of

a project. PSI is responsible for parsing files and creating syntactic
as well as semantic code models. This allows the IDE to efficiently
perform static code analysis on a project’s source code such as
identifying code inconsistency, probable bugs, and specification
violations. There are two main program structure interfaces in
IntelliJ IDEA namely PsiFile and PsiElement. PsiFile represents the
content of a code file as a hierarchy of elements (so-called PsiTree).
Each specific programming language can extend the PsiFile base
class to have its own representation, such as PsiJavaFile for Java
language, GroovyFileBase for Groovy language, or KtFile for Kotlin
language. PsiElements are used to explore the internal structure of
a project’s source code by the IntelliJ platform.

Specifically, PsiElements are used to perform code inspection
and quick-fixes on IntelliJ IDEA/Android Studio projects. When
a quick-fix is applied, PsiElements are updated, removed from, or
additionally added to an existing PsiFile.

To analyze developer’s code, one can extend the InpsectionPro-
fileEntry class to build a PsiElementVisitor that traverses through
all PsiElements belonging to a PsiFile. Each PsiElement corresponds
to a keyword, a variable, or an operation in a particular language.
To apply a quick-fix, e.g., updating a dependency declared in the
file build.gradle of an Android project (see Appendix B.1), a new
PsiElement representing a newer version is created and replaces the
existing PsiElement that represents the outdated library’s version.

Figure 7: Invitation to our online survey inside Android Stu-

dio.

Table 1: Participant demographics of online survey.

Age 18-30 22
No answer 1

Gender Male 21
No answer 2

Based Europe 13
Asia 9
Other 1

Programming Experience (years) <1 10
2 5
3 4

>3 4
Apps Developed >2 12

2 6
1 2
0 3

IT-Security Background Yes 17
No 6

ACSAC 2020, December 7–11, 2020, Austin, USA Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel

Figure 8: Up2Dep warns against using an insecure library version (with publicly disclosed vulnerability).

Figure 9: Up2Dep warns against re-using a cryptographic API misuse in a library.

Figure 10: Up2Dep shows how developers can migrate their project dependencies to the latest version when incompatibility

between library versions occurs, i.e., the return type of method load has changed from RequestBuilder to RequestCreator.

Figure 11: Up2Dep warns against an outdated library.

Figure 12: Up2Dep provides different options to update an outdated library version.

	Abstract
	1 Introduction
	2 Related work
	3 Up2Dep Design
	3.1 Analysis Tools
	3.2 Remote Dependency Inspector
	3.3 Usages Analyzer
	3.4 Dependency Resolver

	4 Evaluation Methodology
	4.1 Recruitment
	4.2 Ethical Concerns

	5 Results
	5.1 RQ1: Would it be technically feasible to support developers in keeping their project's dependencies up-to-date?
	5.2 RQ2: Could such a tool support have a tangible impact on the security and privacy of Android apps?
	5.3 Comparison with Existing Work

	6 Discussion
	6.1 Threats to Validity and Future Work
	6.2 Transitive Dependencies and App Security
	6.3 Impact of Fixing Insecure Dependencies
	6.4 Fear of Incompatibility vs. Will to Update

	7 Conclusion
	Acknowledgments
	References
	A Survey Questions
	A.1 App Development
	A.2 Up2Dep Usage
	A.3 Up2Dep Usability - SUS Questions
	A.4 Demographic

	B Background
	B.1 Gradle Build Tool in Android Studio
	B.2 Android Studio Plugin

