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Abstract. Compiler correctness is, in its simplest form, defined as the inclusion
of the set of traces of the compiled program into the set of traces of the origi-
nal program, which is equivalent to the preservation of all trace properties. Here
traces collect, for instance, the externally observable events of each execution.
This definition requires, however, the set of traces of the source and target lan-
guages to be exactly the same, which is not the case when the languages are far
apart or when observations are fine grained. To overcome this issue, we study a
generalized compiler correctness definition, which uses source and target traces
drawn from potentially different sets and connected by an arbitrary relation. We
set out to understand what guarantees this generalized compiler correctness defi-
nition gives us when instantiated with a non-trivial relation on traces. When this
trace relation is not equality, it is no longer possible to preserve the trace prop-
erties of the source program unchanged. Instead, we provide a generic charac-
terization of the target trace property ensured by correctly compiling a program
that satisfies a given source property, and dually, of the source trace property one
is required to show in order to obtain a certain target property for the compiled
code. We show that this view on compiler correctness can naturally account for
undefined behavior, resource exhaustion, different source and target values, side-
channels, and various abstraction mismatches. Finally, we show that the same
generalization also applies to many secure compilation definitions, which char-
acterize the protection of a compiled program against linked adversarial code.

1 Introduction

Compiler correctness is an old idea [29, 31, 32] that has seen a significant revival in the
recent past. This new wave was started by the creation of the CompCert verified C com-
piler [27] and continued by the proposal of many significant extensions and variants of
CompCert [8, 17, 23, 24, 33, 39, 43, 44, 48] and the success of many other milestone
compiler verification projects, including Vellvm [50], Pilsner [34], CakeML [45], Jas-
min [4], CertiCoq [5], etc. Yet, even for these verified compilers, the precise statement
of correctness matters. Since proof assistants are used to conduct the verification, an
external observer does not have to understand the proofs in order to trust them, but one
still has to deeply understand the statement that was proved. And this is true not just for
correct compilation, but also for secure compilation, which is the more recent idea that
our compilation chains should do more to also ensure security of our programs [3, 20].
Basic Compiler Correctness. The gold standard for compiler correctness is semantic
preservation, which intuitively says that the semantics of a compiled program (in the
target language) is compatible with the semantics of the original program (in the source
language). For practical verified compilers, such as CompCert [27] and CakeML [45],



semantic preservation is stated extrinsically, by referring to traces. In these two settings,
a trace is an ordered sequence of events—such as inputs from and outputs to an external
environment—that are produced by the execution of a program.

A basic definition of compiler correctness can be given by the set inclusion of the
traces of the compiled program into the traces of the original program, or formally [27]:

Definition 1.1 (Basic Compiler Correctness (CC)). A compiler ↓ is correct iff
∀W t. W↓   t⇒W   t

This definition says that for any whole1 source program W, if we compile it (denoted
W↓), execute it with respect to the semantics of the target language, and observe a trace
t, then the original W can produce the same trace t with respect to the semantics of
the source language.2 This definition is simple and easy to understand, since it only
references a few familiar concepts: a compiler between a source and a target language,
each equipped with a trace-producing semantics.
Beyond Basic Compiler Correctness. This basic compiler correctness definition as-
sumes that any trace produced by a compiled program can be produced by the source
program. This is a very strict requirement, and in particular implies that the source and
target traces are drawn from the same set and that the same source trace corresponds to a
given target trace. These assumptions are often too strong, and hence verified compiler
efforts use different formulations of compiler correctness:
CompCert [27] The original compiler correctness theorem of CompCert [27] can be

seen as an instance of basic compiler correctness, but it did not provide any guar-
antees for programs that can exhibit undefined behavior [40]. As allowed by the C
standard, such unsafe programs were not even considered to be in the source lan-
guage, so were not quantified over. This has important practical implications, since
undefined behavior often leads to exploitable security vulnerabilities [10, 18, 19]
and serious confusion even among experienced C and C++ developers [26, 40, 46,
47]. As such, since 2010, CompCert provides an additional top-level correctness
theorem3 that better accounts for the presence of unsafe programs by providing
guarantees for them up to the point when they encounter undefined behavior [40].
This new theorem goes beyond the basic correctness definition above, as a target
trace need only correspond to a source trace up to the occurrence of undefined
behavior in the source trace.

CakeML [45] Compiler correctness for CakeML accounts for memory exhaustion in
target executions. Crucially, memory exhaustion events cannot occur in source
traces, only in target traces. Hence, dually to CompCert, compiler correctness only
requires source and target traces to coincide up to the occurrence of a memory
exhaustion event in the target trace.

Trace-Relating Compiler Correctness. Generalized formalizations of compiler cor-
rectness like the ones above can be naturally expressed as instances of a uniform defini-
tion, which we call trace-relating compiler correctness. This generalizes basic compiler

1 For simplicity, for now we ignore separate compilation and linking, returning to it in §5.
2 As a typesetting convention, we use a blue, sans-serif font for source elements, an orange,
bold font for target ones and a black , italic font for elements common to both languages.

3 Stated at the top of the CompCert file driver/Complements.v and discussed by Regehr [40].
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correctness by (a) considering that source and target traces belong to possibly distinct
sets TraceS and TraceT, and (b) being parameterized by an arbitrary trace relation ∼.

Definition 1.2 (Trace-Relating Compiler Correctness (CC∼)). A compiler ↓ is cor-
rect with respect to a trace relation ∼⊆ TraceS ×TraceT iff

∀W.∀t. W↓   t⇒∃s ∼ t.W   s

This definition requires that, for any target trace t produced by the compiled program
W↓, there exist a source trace s that can be produced by the original program W and
is related to t according to ∼ (i.e. s ∼ t). By choosing the trace relation appropriately,
one can recover the different notions of compiler correctness presented above:
Basic CC Take s ∼ t to be s = t. Trivially, the basic CC of Definition 1.1 is CC=.
CompCert Undefined behavior is modeled in CompCert as a trace-terminating event

Goes_wrong that can occur in any of the languages (source, target, and all inter-
mediate languages), so for a given (composition of) phase(s), we have TraceS =
TraceT. But the relation between source and target traces with which to instantiate
CC∼ to obtain CompCert’s current theorem is:

s ∼ t ⇐⇒ s = t ∨ (∃m ≤ t. s = m·Goes_wrong)

A compiler satisfying CC∼ for this trace relation can turn a source trace ending
in undefined behavior m·Goes_wrong (where “·” is concatenation) either into the
same trace in the target (first disjunct), or into a target trace that starts with the
prefix m but then continues arbitrarily (second disjunct, “≤” is the prefix relation).

CakeML Here, target traces are sequences of symbols from an alphabet ΣT that has
a specific trace-terminating event, Resource_limit_hit, which is not available
in the source alphabet ΣS (i.e. ΣT = ΣS ∪ {Resource_limit_hit}. Then, the
compiler correctness theorem of CakeML can be obtained by instantiating CC∼

with the following ∼ relation:
s ∼ t ⇐⇒ s = t ∨ (∃m. m ≤ s. t = m·Resource_limit_hit)

The resulting CC∼ instance relates a target trace ending with Resource_limit_hit
after executingm to a source trace that first producesm and then continues in a way
given by the semantics of the source program.
Beyond undefined behavior and resource exhaustion, there are many other practical

uses for CC∼: in this paper we show that it also accounts for differences between source
and target values, for a single source output being turned into a series of target outputs,
and for side-channels.

On the flip side, the compiler correctness statement and its implications can be
more difficult to understand for CC∼ than for CC=. The full implications of choosing a
particular ∼ relation can be subtle. In fact, using a bad relation can make the compiler
correctness statement trivial or unexpected. For instance, it should be easy to see that
if one uses the total relation, which relates all source traces to all target ones, the CC∼

property holds for every compiler, yet it might take one a bit more effort to understand
that the same is true even for the following relation:

s ∼ t ⇐⇒ ∃W.W   s ∧ W↓   t

Reasoning About Trace Properties. To understand more about a particular CC∼ in-
stance, we propose to also look at how it preserves trace properties—defined as sets of
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allowed traces [25]—from the source to the target. For instance, it is well known that
CC= is equivalent to the preservation of all trace properties (where W |= π reads “W
satisfies π” and stands for ∀t. W   t⇒ t ∈ π):

CC= ⇐⇒ ∀π ∈ 2Trace ∀W. W|=π ⇒ W↓|=π

However, to the best of our knowledge, similar results have not been formulated for
trace relations beyond equality, when it is no longer possible to preserve the trace prop-
erties of the source program unchanged. For trace-relating compiler correctness, where
source and target traces can be drawn from different sets, and related by an arbitrary
trace relation, there are two crucial questions to ask:
1. For a source trace property πS of a program—established for instance by formal

verification—what is the strongest target property that any CC∼ compiler is guar-
anteed to ensure for the produced target program?

2. For a target trace propertyπT , what is the weakest source property we need to show
of the original source program to obtain πT for the result of any CC∼ compiler?

Far from being mere hypothetical questions, they can help the developer of a verified
compiler to better understand the compiler correctness theorem they are proving, and
we expect that any user of such a compiler will need to ask either one or the other if
they are to make use of that theorem. In this work we provide a simple and definitive
answer to these questions, for any instance of CC∼. We observe that any trace relation∼
induces two property mappings τ̃ and σ̃, which are functions mapping source properties
to target ones (τ̃ standing for “to target”) and target properties to source ones (σ̃ standing
for “to source”):

τ̃(πS) = {t | ∃s. s ∼ t ∧ s ∈ πS} σ̃(πT) = {s | ∀t. s ∼ t⇒ t ∈ πT}
τ̃ answers the first question above by mapping a given source property πS to the target
property that contains all target traces for which there exists a related source trace that
satisfies πS. Dually, σ̃ answers the second question by mapping a given target property
πT to the source property that contains all source traces for which all related target
traces satisfy πT. Formally, we show that τ̃ and σ̃ form a Galois connection and intro-
duce two new correct compilation definitions in terms of trace property preservation
(TP): TPτ̃ quantifies over all source trace properties and uses τ̃ to obtain the corre-
sponding target properties. TPσ̃ quantifies over all target trace properties and uses σ̃
to obtain the corresponding source properties. We prove that these two definitions are
equivalent to CC∼, yielding a novel trinitarian view of compiler correctness (Figure 1).

CC∼

TPτ̃TPσ̃

∀W. ∀t. W↓   t⇒∃s ∼ t.W   s

∀πT. ∀W.W |= σ̃(πT)

⇒ W↓ |= πT ≡ ≡
∀πS. ∀W.W |= πS

⇒ W↓ |= τ̃(πS)

≡

Fig. 1: The equivalent compiler correctness definitions forming our trinitarian view.
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Contributions

I We propose a new trinitarian view of compiler correctness that accounts for a non-trivial
relation between source and target traces. While, as discussed above, specific instances
of the CC∼ definition have already been used in practice, we seem to be the first to
propose assessing the meaningfulness of CC∼ instances in terms of how properties are
preserved between the source and the target, and in particular by looking at the property
mappings σ̃ and τ̃ induced by the trace relation ∼. We prove that CC∼, TPσ̃ , and TPτ̃

are equivalent for any trace relation, as illustrated in Figure 1 (§2.3). In the opposite
direction, we show that any property mappings that form a Galois connection induce a
trace relation so that an analogous equivalence holds (§2.4). Finally, we extend these
results from the preservation of trace properties to the larger class of subset-closed
hyperproperties (§2.5) (e.g., noninterference).

I We use CC∼ compilers of various complexities to illustrate that our view on com-
piler correctness naturally accounts for undefined behavior (§3.1), resource exhaustion
(§3.2), different source and target values (§3.3), and differences in the granularity of
data and observable events (§3.4). We expect these ideas to apply to any other discrep-
ancies between source and target traces. For each compiler we show how to choose the
relation between source and target traces and how the induced property mappings pre-
serve interesting trace properties and subset-closed hyperproperties. We look at the way
particular σ̃ and τ̃ work on different kinds of properties and how the produced property
can be expressed for different kinds of traces.

I We analyze the impact of correct compilation on noninterference [16], showing what
can still be preserved (and thus also what is lost) when target observations are finer than
source ones, e.g., side-channel observations (§4). We formalize the guarantee obtained
by correct compilation of a noninterfering program as an abstract noninterference [15],
a weakening of target noninterference. Dually we identify a class of declassifications of
target noninterference for which source reasoning is possible.

I Finally, we show that the trinitarian view also extends to a large class of secure compila-
tion definitions, formally characterizing the protection of the compiled program against
linked adversarial code (§5). For each secure compilation definition we again propose
both a property-free characterization in the style of CC∼, and two characterizations
in terms of preserving a class of source or target properties satisfied against arbitrary
adversarial contexts. The additional quantification over contexts allows for finer dis-
tinctions when considering different property classes, so we study mapping classes not
only of trace properties and hyperproperties, but also of relational hyperproperties [2].
An example secure compiler accounting for a target that can produce additional obser-
vations that are not possible in the source illustrates this approach.

The paper closes with discussions of related (§6) and future work (§7). An online ap-
pendix contains omitted technical details: https://arxiv.org/abs/1907.05320
Most of the theorems formally or informally mentioned in the paper were mechanized in
the Coq proof assistant and are marked with . This development has around 10k lines
of code, is described in the online appendix, and is available at https://github.com/
secure-compilation/exploring-robust-property-preservation/tree/different_traces
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2 Trace-Relating Compiler Correctness

In this section, we start by generalizing the trace property preservation definitions from
the end of the introduction to TPσ and TPτ , which depend on two arbitrary mappings
σ and τ (§2.1). We prove that, whenever σ and τ form a Galois connection, TPσ and
TPτ are equivalent (§2.2). We use this general result to close the trinitarian equivalence
of Figure 1 for a given trace relation ∼ and its induced Galois connection σ̃ � τ̃
(§2.3). This helps us assess the meaningfulness of a given trace relation by looking at
the property mappings it induces. We also prove a dual result: for any σ and τ forming a
Galois connection we can define a trace relation so that the trinitarian equivalence holds
(§2.4). This allows us to construct new compiler correctness definitions starting from
a desired mapping of properties. Finally, we generalize the classic result that compiler
correctness (e.g., CC=) is enough to preserve not just trace properties but also all subset-
closed hyperproperties [11]. For this we show that CC∼ is also equivalent to subset-
closed hyperproperty preservation, for which we also define both a version in terms of
σ̃ and a version in terms of τ̃ (§2.5).

2.1 Property Mappings

As explained in §1, trace-relating compiler correctness CC∼, by itself, lacks a crisp de-
scription of which trace properties are preserved by compilation. Since even the syntax
of traces can differ between source and target, one can either look at trace properties of
the source (but then one needs to interpret them in the target), or at trace properties of
the target (but then one needs to interpret them in the source).

Formally, these two interpretations can be seen as two property mappings:
τ : 2TraceS → 2TraceT σ : 2TraceT → 2TraceS

For an arbitrary source program W, τ interprets a source property πS as the target
guarantee for W↓. Dually, σ defines a source obligation sufficient for the satisfaction of
a target property πT after compilation. To be coherent with this informal interpretation,
extra conditions on τ and σ seem natural (and as we will see in §2.2):

– First, the source property obtained by applying σ to the guarantee obtained by inter-
preting πS in the target (via τ ) should be weaker than πS itself, i.e. σ(τ(πS)) ⊇ πS.

– Dually, the target property obtained via τ from the source obligation (via σ) for a
target property πT should actually ensure that πT holds, i.e. τ(σ(πT)) ⊆ πT.

These two conditions on τ and σ are satisfied when the two maps form a Galois con-
nection between the posets of source and target properties ordered by inclusion. Let us
first recall the definition and the characteristic property of Galois connections [13, 30].

Definition 2.1 (Galois connection). Let (X,�) and (Y,v) be two posets. A pair of
maps, α : X → Y , γ : Y → X is a Galois connection iff it satisfies the following
adjunction law: ∀x ∈ X. ∀y ∈ Y. α(x) v y ⇐⇒ x � γ(y). α is referred to as the
lower adjoint and γ as the upper adjoint. We will often write α : (X,�)� (Y,v) : γ to
denote a Galois connection, and simply α : X � Y : γ when X and Y are powersets
with inclusion, and even α� γ when the involved sets are clear from context.
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Lemma 2.2 (Characteristic property of Galois connections). Ifα:(X,�)� (Y,v):γ
is a Galois connection, then α, γ are monotone and they satisfy these properties:

i) ∀x ∈ X. x � γ(α(x)) ii) ∀y ∈ Y. α(γ(y)) v y
If X,Y are complete lattices, then α is continuous, i.e. ∀F ⊆ X. α(

⊔
F ) =

⊔
α(F )

These properties coincide with the conditions on property mappings introduced
above, taking X to be source properties, Y to be target properties, α to be τ , γ to
be and σ, and the order to be set inclusion, i.e. σ(τ(πS)) ⊇ πS and τ(σ(πT)) ⊆ πT.

Perhaps surprisingly, the property mapping to the target (τ ) corresponds to the ab-
straction function α, while the property mapping to the source (σ) corresponds to the
concretization function γ. The explanation is that the definition of trace properties 2Trace

is contravariant in Trace, so while traces get more concrete when moving to the target,
trace properties get, well, more abstract.

2.2 Revisiting Trace Property Preservation

We can now generalize trace property preservation (TP), relying on an interpretation of
source properties in the target and target properties in the source.

Definition 2.3 (TPσ and TPτ ). Given two trace property mappings, τ : 2TraceS →
2TraceT and σ : 2TraceT → 2TraceS , for a compilation chain ·↓ we define:

TPτ ≡ ∀πS. ∀W.W |= πS ⇒ W↓ |= τ(πS) TPσ ≡ ∀πT. ∀W.W |= σ(πT)⇒ W↓ |= πT

By uniqueness of adjoints [30], given a τ , there exists at most one σ such that the
two form a Galois connection (and vice versa). Here, this means that if one is designing
a compiler whose correctness goal is to ensure preservation of source properties accord-
ing to a given mapping τ , then there can be only one corresponding property mapping
σ from target properties to source properties (and vice versa). This suggests that, for
any two property mappings defining a Galois connection, TPτ and TPσ are equivalent.

Theorem 2.4 (TPτ and TPσ coincide ). Let τ : 2TraceS � 2TraceT : σ be a Galois
connection, with τ and σ the lower and upper adjoints (resp.). Then TPτ ⇐⇒ TPσ .

2.3 From Trace Relations to Property Mappings

We now investigate the relation between CC∼ and TPτ and TPσ . We show that, starting
from a given trace relation ∼, it is always possible to define two property mappings τ̃ ,
σ̃ so that the three criteria are all equivalent. Dually, §2.4 will show that, given a Galois
connection τ � σ, it is possible to define a relation that ensures the equivalence.

Definition 2.5 (Induced property mappings). For an arbitrary trace relation ∼⊆
TraceS ×TraceT, we define its induced property mappings τ̃ and σ̃ as in §1:

τ̃ = λ πS. {t | ∃s. s ∼ t ∧ s ∈ πS} σ̃ = λ πT. {s | ∀t. s ∼ t⇒ t ∈ πT}

These induced property mappings indeed form a Galois connection.
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Theorem 2.6 (Induced adjunction ). τ̃ � σ̃ is a Galois connection between the
sets of trace properties of source and target traces ordered by set inclusion.

We denote by TPτ̃ , TPσ̃ the criteria in Definition 2.3 for τ̃ and σ̃ respectively.
Theorem 2.7 below states the equivalence of TPτ̃ , CC∼, and TPσ̃:

Theorem 2.7 (TPτ̃ , CC∼, TPσ̃ coincide ). For any trace relation ∼ and induced
property mappings τ̃ and σ̃ (Definition 2.5), we have: TPτ̃ ⇐⇒ CC∼ ⇐⇒ TPσ̃ .

It follows that, for a CC∼ compiler, σ̃ provides the source proof obligation ensuring a
certain target property holds, and τ̃ provides the target guarantee of a compiled program
every time a property holds for the source program. Sometimes the lifted properties may
be trivial: the target guarantee can be true, and the source obligation can be false.

2.4 From Property Mappings to Trace Relations

A compiler designer might start by first determining the target guarantees (τ ), and then
aim at showing TPτ , which can, however, be challenging to prove directly. This section
shows that, given a Galois connection between source and target properties, we can
define a trace relation ∼ that ensures the equivalence between CC∼, TPτ , and TPσ .
Consequently, instead of proving TPτ directly, it is sufficient to prove CC∼, for which
convenient proof techniques exist in the literature [7, 45].

Definition 2.8 (Induced trace relation (∼̂)). Given a Galois connection τ : 2TraceS �
2TraceT : σ, we define the induced trace relation ∼̂ ⊆ TraceS × TraceT so that the
target guarantee for πS, τ(πS), coincides with the image of the relation on the same πS.

s ∼̂ t ⇐⇒ t ∈ τ({s})

Notice that σ does not appear in the definition, but it is uniquely defined by being the
upper adjoint of τ [30], so ∼̂ depends on both τ and σ.

Theorem 2.9 (TPτ , CC∼̂, and TPσ all coincide ). Given a Galois connection τ �
σ between property mappings, and their induced trace relation ∼̂, we have:

TPτ ⇐⇒ CC∼̂ ⇐⇒ TPσ

2.5 Preservation of Subset-Closed Hyperproperties

A CC= compiler ensures the preservation of not only trace properties but also all subset-
closed hyperproperties, as this class of hyperproperties is known to be preserved by
refinement [11]. An example of a subset-closed hyperproperty is noninterference [11],
and a CC= compiler guarantees that if W is noninterfering with respect to the inputs
and outputs in the trace then so is W↓. To be able to talk about how properties such
as noninterference are mapped here we propose another trinitarian view involving CC∼

and preservation of subset-closed hyperproperties (Theorem 2.12), slightly weakened
in that source and target property mappings will need to be closed under subsets.

First recall that a program satisfies a hyperproperty when its complete set of traces,
which from now on we will call its behavior, is a member of the hyperproperty [11].
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Definition 2.10 (Hyperproperty Satisfaction). A program W satisfies a hyperprop-
erty H , written W |= H , if and only if beh(W ) ∈ H , where beh(W ) = {t | W t}.

Hyperproperty preservation is a strong requirement in general. Fortunately many inter-
esting hyperproperties are subset-closed (SCH for short), which simplifies preservation
of such hyperproperties, since it suffices to show that the behaviors of the compiled pro-
gram refine the behaviors of the source one, which coincides with the statement of CC=.

To talk about hyperproperty preservation in the trace-relating setting, we need an
interpretation of source hyperproperties into the target and vice versa. The one we con-
sider builds on top of the two trace property mappings τ and σ, which are naturally
lifted to hyperproperty mappings. This way we are able to extract two hyperproperty
mappings from a trace relation similarly to §2.3.

Definition 2.11 (Lifting property mappings to hyperproperty mappings). Let τ :
2TraceS → 2TraceT and σ : 2TraceT → 2TraceS be arbitrary property mappings. The
images of HS ∈ 22

TraceS ,HT ∈ 22
TraceT under τ and σ respectively are:

τ(HS) = {τ(πS) | πS ∈ HS} σ(HT) = {σ(πT) | πT ∈ HT}

Formally we are defining two new mappings, this time on hyperproperties, but by a
small abuse of notation we still denote them by τ and σ.

Interestingly, it is not possible to apply the same argument used for CC= to show
that a CC∼ compilation chain guarantees W↓ |= τ̃(HS) whenever W |= HS. That proof
breaks because the target hyperproperty τ̃(HS) is not necessarily subset-closed, even if
the original hyperproperty HS is. In the following theorem we consider the loss of pre-
cision due to the two interpretations of hyperproperties, and close τ̃(HS) under subsets
(indicated as Cl⊆); a similar treatment is given to σ̃ as well.

Theorem 2.12 (Preservation of Subset-Closed Hyperproperties ). For any trace
relation ∼ and induced hyperproperty mappings τ̃ and σ̃, for Cl⊆(H) = {π | ∃π′ ∈
H. π ⊆ π′}, we have: SCHPCl⊆◦τ̃ ⇐⇒ CC∼ ⇐⇒ SCHPCl⊆◦σ̃ .

SCHPCl⊆◦τ̃ ≡ ∀W∀HS ∈ SCHS.W |= HS ⇒ W↓ |= Cl⊆(τ̃(HS))

SCHPCl⊆◦σ̃ ≡ ∀W∀HT ∈ SCHT.W |= Cl⊆(σ̃(HT))⇒ W↓ |= HT

In conclusion, CC∼ can also be used to reason about the preservation of subset-
closed hyperproperties, but one has to be aware of the potential loss of precision. We
illustrate this in §4 when considering the preservation of noninterference in a CC∼

compiler to a target language with additional observations.

3 Instances of Trace-Relating Compiler Correctness

The trace-relating view of compiler correctness of §2 can serve as a unifying frame-
work for studying a range of interesting compilers. This section provides several rep-
resentative instantiations of the framework: source languages with undefined behavior
that compilation can turn into arbitrary target behavior (§3.1), target languages with re-
source exhaustion that cannot happen in the source (§3.2), changes in the representation
of values (§3.3), and differences in the granularity of data and observable events (§3.4).
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3.1 Undefined Behavior

In this section, we expand upon the discussion of undefined behavior from §1. We first
stick to CompCert’s model, where source and target alphabets are the same, including
the event for undefined behavior. The relation allows relaxing equality by potentially
replacing undefined behavior with an arbitrary sequence of events.

Example 3.1 (CompCert-like Undefined Behavior Relation). Source and target traces
are sequences of events drawn fromΣ, where Goes_wrong ∈ Σ. The symbol Goes_wrong
is a terminal event that represents an undefined behavior. We recall the trace relation for
undefined behavior from the introduction:

s ∼ t ⇐⇒ s = t ∨ ∃m ≤ t. s = m ·Goes_wrong

Each trace of a target program produced by a CC∼ compiler is either also a trace of the
original source program, or it has finite prefix that the source program also produces,
immediately before encountering undefined behavior. One of CompCert’s correctness
theorem can be rephrased as this variant of CC∼.

Trace properties We proved that the two property mappings induced by the relation can
be written as follows ( ):

σ̃(πT) = {s | s ∈ πT ∧ s 6= m ·Goes_wrong}
∪ {m ·Goes_wrong | ∀t,m ≤ t =⇒ t ∈ πT}

τ̃(πS) = {t | t ∈ πS} ∪ {t | ∃m ≤ t. m ·Goes_wrong ∈ πS}

These two mappings explain what a CC∼ compiler ensures for the ∼ relation above:
– The target-to-source mapping σ̃ states that to prove that a compiled program has a

property πT using source-level reasoning, one has to prove that any trace produced
by the source program must either be a target trace satisfying πT or have undefined
behavior provided that any continuation of the trace substituted for the undefined
behavior satisfies πT .

– The source-to-target mapping τ̃ states that by compiling a program satisfying a prop-
erty πS we obtain a program that produces traces that satisfy the same property or
that extend a source trace that ends in undefined behavior.

These definitions can help us reason about programs. For instance, σ̃ specifies that,
to prove that an event does not happen in the target, it is not enough to prove that it
does not happen in the source: it is also necessary to prove that the source program is
safe, i.e. it does not have any undefined behavior (second disjunct). Indeed, if it had an
undefined behavior, its continuations could exhibit the unwanted event, and so would
not be in the property. �

Note that this relation can easily be generalized to other settings. For instance, con-
sider the setting in which we reached a low-level language like machine code. Target
traces can contain new events that cannot occur in the source: indeed, in modern archi-
tectures like x86 a compiler typically uses only a fraction of the available instruction
set. Some instructions might even perform dangerous operations, such as writing to the
hard drive. Formally, the source and target do not have the same events anymore.

Thus, we consider a source alphabet ΣS = Σ ∪ {Goes_wrong}, and a target alpha-
bet ΣT = Σ∪Σ′. The trace relation is defined in the same way and we obtain the same
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property mappings as above, except that since target traces now have more events (some
of which may be dangerous), the arbitrary continuations of target traces get more inter-
esting. For instance, consider a new event that represents writing data on the hard drive,
and suppose we want to prove that this event cannot happen for a compiled program.
Then, proving this property requires exactly proving that the source program exhibits
no undefined behavior. More generally, what one can prove about target-only events can
only be either that they cannot appear (because there is no undefined behavior) or that
any of them can appear (in the case of undefined behavior).

3.2 Resource Exhaustion

In this section, we return to the discussion about resource exhaustion from §1.

Example 3.2 (Resource Exhaustion). We consider traces made of events drawn from
ΣS in the source, and ΣT = ΣS ∪ {Resource_Limit_Hit} in the target. Recall the
trace relation for resource exhaustion:

s ∼ t ⇐⇒ s = t ∨ ∃m ≤ s. t = m ·Resource_Limit_Hit

Formally, this relation is similar to the one for undefined behavior, except this time it is
the target trace that is allowed to end early instead of the source trace.

By inspection of the definitions, we can see that the induced trace property map-
pings σ̃ and τ̃ are equal to the following ( ):

σ̃(πT ) = {s | s ∈ πT } ∩ {s | ∀m ≤ s. m ·Resource_Limit_Hit ∈ πT }
τ̃(πS) = πS ∪ {m ·Resource_Limit_Hit | ∃s ∈ πS. m ≤ s}

These capture the following intuitions:
– The target-to-source mapping σ̃ states that, to prove a property of the compiled pro-

gram, one has to prove that the traces of the source program satisfy two conditions:
(1) they must also satisfy the target property; and (2) the termination of every one of
their prefixes by a resource exhaustion error must satisfy the target property.

– The other mapping τ̃ states that a compiled program produces traces that either be-
long to the same properties as the traces of the source program or end early due to
resource exhaustion.

Note that σ̃ is rather restrictive: any property that prevents resource exhaustion cannot
be proved using source-level reasoning. Indeed, if πT does not allow resource exhaus-
tion, then σ̃(πT) = ∅. This is to be expected since resource exhaustion is simply not
accounted for at the source level.

On the other hand, in this model, safety properties [25] are mapped (in both direc-
tions) to other safety properties ( ). This is a desirable trait for a relation: since safety
properties are usually easier to reason about, one who is only interested in target safety
properties can reason about them using powerful source-level tools for safety properties.

CakeML’s compiler correctness theorem is an instance of CC∼ for the ∼ relation
above. We have also implemented two small compilers that are correct for this relation
as illustrations of other situations where this relation is needed. The full details can
be found in the Coq development in the supplementary materials.The first compiler
( ) goes from a simple expression language, similar to the one in §3.3 but without
inputs, to the same language where the execution is bounded by fuel: each execution
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step consumes some amount of fuel and the execution immediately halts when it runs
out of fuel. The compiler is the identity.

The second compiler ( ) is more interesting: we proved this CC∼ instance for a
variant of Xavier Leroy’s DSSS’17 compiler from a WHILE language to a simple stack
machine [28]. We enriched the two languages with outputs and modified the semantics
of the stack machine so that it falls into an error state if the stack reaches a certain size.
The proof uses a standard forward simulation modified to account for failure. �

Finally, we conclude this section by noting that the resource exhaustion relation and
the undefined behavior relation from the previous subsection can easily be combined
together. Indeed, given a relation ∼UB and a relation ∼RE defined as above on the same
sets of traces, one can build a new relation ∼ that allows both refinement of undefined
behavior and resource exhaustion by taking their union: s ∼ t , s ∼UB t ∨ s ∼RE t. A
compiler that is CC∼UB or CC∼RE is trivially CC∼, though the converse is not true.

3.3 Different Source and Target Values

We now illustrate trace-relating compilation for a compiler whose main feature is trans-
lating source-level booleans into target-level natural numbers. Given the simplicity of
the languages and of the compiler, most of the details of the formalization are deferred
to the online appendix.

The source language is a pure, statically typed expression language whose expres-
sions e include naturals n, booleans b, conditionals, arithmetic and relational operations,
boolean inputs inb and natural inputs inn. A trace s is a list of inputs is paired with a
result r, which can be a natural, a boolean or an error. Well-typed programs never pro-
duce error ( ). Types ty are either N (naturals) or B (booleans); typing is standard. The
source language has a big-step operational semantics (e   〈is, r〉) which tells how an
expression e generates a trace 〈is, r〉. The semantics is standard and therefore omitted.

The target language is analogous to the source except that it is untyped, only has
naturals n and its only inputs are naturals inn. The semantics of the target language is
also given in big-step style. Since we only have naturals and all expressions operate on
them, no error result is possible.

The compiler is homomorphic, translating a source expression to the same target
expression; the only differences are natural numbers (and conditionals), as noted below.

true↓ = 1 inb↓ = inn e1 ≤ e2↓ = if e1↓≤ e2↓ then 1 else 0

false↓ = 0 inn↓ = inn if e1 then e2 else e3↓ = if e1↓≤ 0 then e3↓ else e2↓
Compiling the if-then-else statement is more complicated: the target condition e1↓≤ 0
is used to check that e1 is false, and therefore the then and else branches of the source
are swapped in the target.

Relating Traces We relate basic values (naturals and booleans) in a non-injective fash-
ion as noted below. Then, we extend the relation to lists of inputs in a pointwise fashion
(Rules Empty and Cons) and lift that relation to traces (Rules Nat and Bool).

n ∼ n true ∼ n if n > 0 false ∼ 0
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(Empty)

∅ ∼ ∅

(Cons)
i ∼ i is ∼ is

i · is ∼ i · is

(Nat)
is ∼ is n ∼ n
〈is, n〉 ∼ 〈is,n〉

(Bool)
is ∼ is b ∼ n
〈is, b〉 ∼ 〈is,n〉

With this relation, the compiler is proven correct in the sense of CC∼.

Theorem 3.3 ( ·↓ is correct ). ·↓ is CC∼.

A notable difficulty in the proof of Theorem 3.3 arises from the trace-relating compi-
lation setting: that proof does not follow from determinacy, input totality and forward
simulation, as for compilation chains that have the same set of traces at both source and
target level [7]. Instead, because the trace relation is not injective (both 0 and false are
mapped to 0), the type system is used to disambiguate between the two possibilities
to back-translate a target trace. The property mappings σ̃ and τ̃ induced by the trace
relation ∼ defined above capture the intuition behind encoding booleans as naturals:

– the source-to-target mapping allows true to be encoded by any non-zero number;
– the target-to-source mapping requires that 0 is replaceable by, e.g., both 0 and false.

An extension to the property mappings is to take into account the type of the source pro-
gram and obtain a type-aware property mapping. That is, in order to study the source
obligation for source programs e of type ty, one can instead consider the following
restriction: σ̃ty(πT ) = σ̃(πT ) ∩ {s | ∃e′ : ty. e′   s}. This strengthens the proof obli-
gation by restricting it to traces that can be produced by programs of a fixed type. Rea-
soning using this proof obligation is indeed correct, because when σ is used in TPσ ,
it is always restricted to source traces produced by a program of the appropriate type.
This narrowing of the source obligation can be used to guide verification: if σ̃ states
that one has to prove that the result is either 0 or false, then σ̃ty tells us which disjunct
to prove: if the source programs have type N we need 0, otherwise false.

3.4 Abstraction Mismatches

We now consider how to relate traces where a single source action is compiled to mul-
tiple target ones. To illustrate this, we take a pure, statically typed source language that
can output pairs of arbitrary size, and a pure, untyped target language where sent values
have a fixed size. Concretely, the source is analogous to the language of §3.3 except
that it does not have inputs or booleans and it has an expression send e, which can send
a (nested) pair e of values in a single action. That is, given that e reduces to a pair, e.g.,
〈v1, 〈v2, v3〉〉, expression send 〈v1, 〈v2, v3〉〉 emits action 〈v1, 〈v2, v3〉〉.

That expression is compiled into a sequence of individual sends in the target lan-
guage send v1 ; send v2 ; send v3, since in the target, send e sends the value that
e reduces to, but the language has no pairs.

For space constraints we omit the full formalisation of these simple languages and
of the homomorphic compiler ( (·)

y : e → e). The only interesting bit is the compi-
lation of the send expression, which relies on the gensend (·) function below. That
function takes a source expression of a given type and returns a sequence of target
send instructions that send each element of the expression.

gensend (` e : τ) =

®
send (` e : N)

y if τ = N

gensend (` e.1 : τ ′); gensend (` e.2 : τ ′′) if τ = τ ′ × τ ′′
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Relating Traces We start with the trivial relation between numbers: n∼0 n, i.e. numbers
are related when they are the same number. We cannot build a relation between single
actions since a single source action is related to multiple target ones. So, we define a
relation between a source action M and a target trace t inductively on the structure of
M (which is a pair of values, and values are natural numbers or pairs).

(Trace-Rel-N-N)

n∼0 n n′∼0 n′

〈n, n′〉∼n · n′

(Trace-Rel-N-M)

n∼0 n M∼ t
〈n,M〉∼n · t

(Trace-Rel-M-N)

M∼ t n∼0 n
〈M, n〉∼ t · n

(Trace-Rel-M-M)
M∼ t M′∼ t′

〈M,M′〉∼ t · t′

A pair of naturals is related to the two actions that send each element of the pair
(Rule Trace-Rel-N-N). If a pair is made of sub-pairs, we request all such sub-pairs to
be related (Rules Trace-Rel-N-M to Trace-Rel-M-M).

We build on these rules to define the relation between source and target traces s ∼ t
for which the compiler is correct (Theorem 3.4).

(Trace-Rel-Single)

s∼ t M∼ t′

s ·M∼ t · t′

Trivially, traces are related when they are both empty. Alter-
natively, given related traces, we can concatenate a source ac-
tion and a second target trace provided that they are related
(Rule Trace-Rel-Single). This relation induces the standard
mappings between source and target properties, τ̃ and σ̃ (Definition 2.5).

Theorem 3.4 ( (·)
y is correct). (·)

y is CC∼.

With our trace relation, the trace property mappings capture the following intuitions:
– The target-to-source mapping states that a source property can reconstruct target

action as it sees fit. For example, trace 4 · 6 · 5 · 7 is related to 〈4, 6〉 · 〈5, 7〉 and
〈〈4, 〈6, 〈5, 7〉〉〉〉 (and many more variations). This gives freedom to the source im-
plementation of a target behavior, which follows from the non-injectivity of ∼.4

– The source-to-target mapping states that the only valid target traces are those that
source programs can compute, without any addition. This intuitively seems to pre-
serve the meaning of the property, mapping source safety properties to target safety
properties and even source hyperproperties to target hyperproperties.

4 Trace-Relating Compilation and Noninterference Preservation

When source and target observations are drawn from the same set, a correct compiler
(CC=) is enough to ensure the preservation of all subset-closed hyperproperties (§2.5),
in particular of noninterference (NI) [16]. This is possible only under the assumption
that source and target observable actions are the same. In the scenario where target ob-
servations are strictly more informative than source observations, the best guarantee one
may expect from a correct trace-relating compiler (CC∼) is a weakening (or declassifi-
cation) of target noninterference that matches the noninterference property satisfied in
the source. To formalize this reasoning, this section applies the trinitarian view of trace-
relating compilation to the general framework of abstract noninterference (ANI) [15].

We first define NI and explain the issue of preserving source NI via a CC∼ compiler.
We then introduce ANI, which allows characterizing various forms of noninterference,

4 Making ∼ injective is a matter of adding open and close parentheses actions in target traces.
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and formulate a general theory of ANI-preservation via CC∼. We also study how to
deal with cases such as undefined behavior in the target. Finally, we answer the dual
question, i.e. how to recover source NI from target NI.

Intuitively, NI requires that publicly observable outputs do not reveal information
about private inputs. To define this formally, we need a few additions to our setup. We
indicate the (disjoint) input and output projections of a trace t as t◦ and t• respectively.
Denote with [t]low the equivalence class of a trace t, which is obtained using a standard
low-equivalence relation that relates any two high (private) events, and that relates low
(public) events only if they are equal. Then, NI for source traces can be defined as:

NIS = {πS | ∀s1s2 ∈ πS. [s
◦
1]low = [s◦2]low ⇒ [s•1]low = [s•2]low }

In words, source NI comprises the sets of traces that have equivalent low output projec-
tions as soon as their low input projections are equivalent.

Trace-Relating Compilation and Noninterference. In a compilation chain where
additional observations are possible in the target, it is a priori unclear whether a nonin-
terfering source program is compiled to a noninterfering target program or not, and if
so, whether the notion of NI in the target is the expected or desired one.

To illustrate this issue, consider a scenario where target traces additionally expose
the execution time of a trace. Let TraceS denote the set of traces in the source, and
TraceT = TraceS × Nω be the set of target traces, where Nω , N ∪ {ω}. Target
traces have two components: a source trace, and a natural number that denotes the time
spent to produce the trace (ω if infinite). We define the trace relation as:

s ∼ t ⇐⇒ ∃n. t = (s,n)

Intuitively, a source trace is related to any target trace with the same first component,
irrespective of the execution time component. Thus, a compiler is CC∼ if any trace
that can be exhibited in the target can be simulated in the source in any time. Build-
ing on this, the strongest notion of NI one can expect at the target level, NIT, is that
private inputs do not affect public outputs (observable also in the source) or the exe-
cution time (observable only in the target). All properties πT ∈ NIT are obtained by
some πS ∈ NIS, n ∈ Nω and I ⊆ Nω as follows. For every s ∈ πS, if πS contains
some other trace that is low-equivalent on inputs to s, then πT contains s paired only
with n and no other timing. If there are no such traces in πS, then πT includes the
whole {(s, h) | h ∈ I}. Applying the trinitarian view for subset-closed hyperproper-
ties (§2.5) to NI yields that for a CC∼ compilation chain, if W satisfies NIS, then W↓
satisfies Cl⊆ ◦ τ̃(NIS). However, can this resulting hyperproperty be interpreted as plain
noninterference? Unfortunately not, as this is visibly a strictly weaker hyperproperty
than NIT since:

Cl⊆ ◦ τ̃(NIS) = Cl⊆ ({ πS × Nω | πS ∈ NIS}) = { πS × I | πS ∈ NIS ∧ I ⊆ Nω} ,
the first equality coming from τ̃(πS) = πS × Nω , and the second by NIS being subset-
closed. As we will see, this hyperproperty can be characterized as a form of NI, which
one might call timing-insensitive noninterference, which is ensured only against at-
tackers that cannot measure execution time. For this characterization, and to describe
different forms of noninterference as well as formally analyze their preservation by a
CC∼ compiler, we rely on the general framework of abstract noninterference [15].
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Abstract Noninterference. ANI is a generalization of NI whose formulation relies
on properties (i.e., abstractions in abstract interpretation [13]) in order to encompass
arbitrary variants of NI. ANI is parameterized by an observer abstraction ρ, which
denotes the distinguishing power of the attacker, and a selection abstraction φ, which
specifies when to check NI, and therefore captures a form of declassification [41].5

Formally:
ANI ρφ = {π | ∀t1t2 ∈ π. φ(t◦1) = φ(t◦2)⇒ ρ(t•1) = ρ(t•2)}

By picking φ = ρ = [·]low , we recover the standard noninterference defined above,
where NI must hold for all low inputs (i.e., no declassification of private inputs), and
the observational power of the attacker is limited to distinguishing low outputs.

Moreover, the observational power of the attacker can be weakened by choosing
a more liberal relation for ρ. For instance, one may limit the attacker to observe the
parity of output integer values. Another way to weaken ANI is to use φ to specify that
noninterference is only required to hold for a subset of low inputs.

To be formally precise, φ and ρ are defined over sets of (input and output projections
of) traces, so when we write φ(t) above, this should be understood as a convenience
notation for φ({t}). Likewise, φ = [·]low should be understood as φ = λπ.

⋃
t∈π[t]low ,

i.e., the powerset lifting of [·]low . Additionally, φ and ρ are required to be upper-closed
operators (uco)—i.e., monotonic, idempotent and extensive—on the poset that is the
powerset of traces ordered by inclusion [15].
Trace-Relating Compilation and ANI for Timing. We can now reformulate our ex-
ample with execution time observable in the target in terms of ANI. We have NIS =
ANI φρ with φ = ρ = [·]low . In this case, we can formally describe the hyperproperty
that a compiled program W↓ satisfies whenever W satisfies NIS as an instance of ANI:

Cl⊆ ◦ τ̃(NIS) = ANI ρφ

for φ = φ and ρ(πT) = {(s,n) | ∃(s1,n1) ∈ πT. [s
•]low = [s•1]low}

The definition of φ tells us that the trace relation does not affect the selection abstrac-
tion. The definition of ρ characterizes an observer that cannot distinguish execution
times for noninterfering traces (notice that n1 in the definition of ρ is discarded). For
instance, ρ({(s,n1)}) = ρ({(s,n2)}), for any s, n1, n2. Therefore, in this setting, we
know explicitly through ρ that a CC∼ compiler “degrades” source noninterference to
target timing-insensitive noninterference.
Trace-Relating Compilation and ANI in General. While the definitions of φ and ρ
above can be discovered by intuition, we want to know whether there is a systematic
way of obtaining them. In other words, for any trace relation∼ and any notion of source
NI, what property is guaranteed on noninterfering source programs by a CC∼ compiler?

We can now answer this question generally (Theorem 4.1): any source notion of
noninterference expressible as an instance of ANI is mapped to a corresponding notion
of noninterference in the target, whenever source traces are an abstraction of target ones
(i.e., when ∼ is a total and surjective map).

So we now consider trace relations that can be split into input and output trace
relations (denoted as ∼ , 〈 ◦∼, •∼〉) such that s ∼ t ⇐⇒ s◦

◦∼ t◦ ∧ s•
•∼ t•. The trace

5 ANI includes a third parameter η, which describes the maximal input variation that the attacker
may control. Here we omit η (i.e., take it to be the identity) in order to simplify the presentation.
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relation ∼ induces a Galois connection between the sets of trace properties τ̃ � σ̃ as
described in §2.3. Similarly, both ◦∼ and •∼ induce Galois connections, τ̃ ◦ � σ̃◦ and
τ̃ • � σ̃• between the sets of input and output properties. In the timing example, time is
an output so we have ∼ , 〈=, •∼〉 and •∼ is defined as s•

•∼ t• ⇐⇒ ∃n. t• = (s•,n).

Theorem 4.1 (Compiling ANI). Assume traces of source and target languages are
related via ∼ ⊆ TraceS × TraceT, ∼ , 〈 ◦∼, •∼〉 such that ◦∼ and •∼ are both total,
surjective maps from target to source traces. Assume ↓ is a CC∼ compiler, and φ ∈
uco(2Trace◦

S), ρ ∈ uco(2Trace•
S).

If W satisfies ANI ρφ, then W↓ satisfies ANI ρ
#

φ# where φ# and ρ# are defined as:

φ# = g◦ ◦ φ ◦ f ◦ ρ# = g• ◦ ρ ◦ f • where

f ◦(π◦
T) =

{
s◦
∣∣ ∃t◦ ∈ π◦

T. s◦
◦∼ t◦
}

g◦(π◦S) = {t◦ | ∀s◦. s◦
◦∼ t◦ ⇒ s◦ ∈ π◦S}

(and both f • and g• are defined similarly)

As expected, φ# = g◦ ◦ φ ◦ f ◦ = φ and ρ# = g• ◦ ρ ◦ f • = ρ, recovering the
definitions we justified intuitively above for timing. Moreover, we can prove that in
general ANI ρ

#

φ# ⊆ Cl⊆ ◦ τ̃(ANI ρφ). Therefore, the derived guarantee ANI ρ
#

φ# is at
least as strong as the one that follows by knowing that the compiler ↓ is CC∼.

Noninterference and Undefined Behavior. In its statement, Theorem 4.1 does not
apply to several scenarios from §3 such as undefined behavior (§3.1), because in those
cases the relation •∼ is not a total surjective map. Nevertheless, one can still exploit our
framework to reason about the impact of compilation on noninterference.

Let us consider ∼ , 〈 ◦∼, •∼〉 where ◦∼ is any total and surjective map from target
to source inputs (e.g., equality) and •∼ is defined as s•

•∼ t• ⇐⇒ s• = t• ∨ ∃m• ≤
t•. s• = m• ·Goes_wrong . Intuitively, a CC∼ compiler guarantees that any interference
cannot be observed by a target attacker that cannot exploit undefined behavior to learn
private information. This intuition can be made formal by the following theorem.

Theorem 4.2 (Relaxed Compiling ANI). Relax the assumptions of Theorem 4.1 by
allowing •∼ to be any output trace relation. If W satisfies ANI ρφ, then W↓ satisfies

ANI ρ
#

φ# where φ# is defined as in Theorem 4.1, and ρ# is such that:

∀s t. s•
•∼ t• ⇒ ρ#(t•) = ρ#(τ̃ •(ρ(s•)))

Technically, instead of giving us a definition of ρ#, the theorem gives a property of
it. The property states that, given a target output trace t•, the attacker cannot distin-
guish it from any other target output traces produced by other possible compilations
(τ̃ •) of the source trace s it relates to, up to the observational power of the source level
attacker ρ. Therefore, given a source attacker ρ, the theorem characterizes a family of
attackers that cannot observe any interference for a correctly compiled noninterfering
program. Notice that the target attacker ρ# = λ_. > satisfies the premise of the
theorem, but defines a trivial hyperproperty, so that we cannot prove in general that
ANI ρ

#

φ# ⊆ Cl⊆ ◦ τ̃(ANI ρφ). The same ρ# = λ_.>, shows that the family of attacker
described in Theorem 4.2 is non empty, and this ensures the existence of the most pow-
erful of them [15], whose explicit characterization we leave as future work.
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From Target NI to Source NI. We now explore the dual question: under which hy-
potheses does trace-relating compiler correctness alone reduce satisfaction of target
noninterference to source noninterference? This question is of practical interest, as one
would be allowed to protect from target attackers by ensuring noninterference in the
source, usually an easier task if the source language has some enforcement mechanism
such as a security type system [1].

Let us consider an extension of the languages from §3.4 with inputting (pairs of)
values as well. It is easy to show that the compiler described in §3.4 is still CC∼. As-
sume that we want to satisfy a given notion of target noninterference after compilation,
i.e. W↓|=ANI ρφ. Recall that the observational power of the target attacker, ρ, is ex-
pressed as a property of sequences of values. To express the same property, or attacker,
in the source, we have to abstract the way pairs of values are nested. For instance,
the source attacker should not distinguish 〈v1, 〈v2, v3〉〉 and 〈〈v1, v2〉, v3〉. In general
(i.e. when ◦∼ is not the identity), this argument is valid only when φ can be represented
in the source. More precisely, φ must consider as equivalent all target inputs that are
related to the same source one, this because in the source it is not possible to have a
finer distinction of inputs. This intuitive correspondence can be formalized as follows:

Theorem 4.3 (Target ANI by source ANI). Letφ ∈ uco(2Trace◦
T), ρ ∈ uco(2Trace•

T)
and •∼ a total and surjective map from source outputs to target ones and assume that

∀s t. s◦
◦∼ t◦ ⇒ φ(t◦) = φ(τ̃ ◦(s◦))

If ·↓ is a CC∼ compilation chain and W satisfies ANI ρ
#

φ# , then W↓ satisfies ANI ρφ for

φ# = σ̃◦ ◦ φ ◦ τ̃ ◦ ρ# = σ̃• ◦ ρ ◦ τ̃ •

To wrap up the discussion about noninterference, the results presented in this section
formalize and generalize some intuitive facts about compiler correctness and noninter-
ference. Of course, they all place some restrictions on the shape of the noninterference
instances that can be considered, because compiler correctness alone is in general not a
strong enough criterion for dealing with many security properties (see e.g., [6, 14]).

5 Trace-Relating Secure Compilation

So far we have studied compiler correctness criteria for whole, standalone programs.
However, in practice, programs do not exist in isolation, but in a context where they in-
teract with other programs, libraries, etc. In many cases, this context cannot be assumed
to be benign and could instead behave maliciously to try to disrupt a compiled program.

Hence, in this section we consider the following secure compilation scenario: a
source program is compiled and linked with an arbitrary target-level context, i.e. one
that may not be expressible as the compilation of a source context. Compiler correctness
does not address this case, as it does not consider arbitrary target contexts, looking
instead at whole programs (empty context [27]) or well-behaved target contexts that
behave like source ones (compositional compiler correctness [21, 24, 34, 44]).

To account for this scenario, Abate et al. [2] describe several secure compilation
criteria based on the preservation of classes of (hyper)properties (e.g., trace properties,
safety, hypersafety, hyperproperties, etc.) against arbitrary target contexts. For each of
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these criteria, they give an equivalent “property-free” criterion, analogous to the equiv-
alence between TP and CC=. For instance, their robust trace property preservation
criterion (RTP) states that, for any trace property π, if program P plugged into any
context C satisfies π, then the compiled program P↓ plugged into any target context
C satisfies the π. Their equivalent criterion to RTP is RTC, which states that for any
trace produced by the compiled program when linked with any target context, there is a
source context that produces the same trace. Formally (writing C [P ] to mean program
P linked with context C) they define:

RTP ≡ ∀π. ∀P.(∀C. ∀s.C [P]   s⇒ s ∈ π)⇒ (∀C. ∀t.C [P↓]   t⇒ t ∈ π)
RTC ≡ ∀P. ∀C.∀t.C [P↓]   t⇒ ∃C. C [P]   t

In the following we adopt the notation P |=R π to mean “P robustly satisfies π” and
write RTP more compactly as RTP ≡ ∀π. ∀P. P |=Rπ ⇒ P↓ |=Rπ.

All the criteria of Abate et al. [2] are stated in a setting where source and target
traces are the same. In this section, we extend their result to our trace-relating set-
ting, obtaining trintarian views for secure compilation. Despite the similarities with
§2, more challenges show up, in particular when considering the robust preservation
of proper sub-classes of trace properties. For example, the application of σ̃ or τ̃ may
lose the information that a property is safety, a crucial point for the equivalence with the
property-free criterion for safety properties by Abate et al. [2]. We solve this problem by
interpreting the class of safety properties as an abstraction of the class of all trace prop-
erties induced by a closure operator (§5.1). The rest of the section provides instances
satisfying some secure compilation trinities, namely for the class of trace properties
(§5.2), and for the proper sub-classes of safety properties and hypersafety (§5.3).

5.1 Trace-Relating Secure Compilation: A Spectrum of Trinities

In this section we generalize many of the criteria of Abate et al. [2] using the ideas
of §2. The ideas of §2 are enough to easily generalize the criteria for trace properties
and subset-closed hyperproperties of Abate et al. [2]. Before discussing how we solve
the additional challenges of classes such as safety and hypersafety, we first explain the
simple generalization of RTC to the trace-relating setting (RTC∼) and its corresponding
trinitarian view (Theorem 5.1):

Theorem 5.1 (Trinity for Robust Trace Properties ). For any trace relation∼ and
induced property mappings τ̃ and σ̃, we have: RTPτ̃ ⇐⇒ RTC∼ ⇐⇒ RTPσ̃ , where

RTC∼ ≡ ∀P ∀CT ∀t. CT [P↓]   t⇒ ∃CS ∃s. CS [P]   s ∧ s ∼ t

RTPτ̃ ≡ ∀P ∀πS ∈ 2TraceS . P |=R πS ⇒ P↓ |=R τ̃(πS)

RTPσ̃ ≡ ∀P ∀πT ∈ 2TraceT . P |=R σ̃(πT)⇒ P↓ |=R πT

Abate et al. [2] propose many more equivalent pairs of criteria, each preserving dif-
ferent classes of (hyper)properties, which we briefly recap now. For trace properties,
they also have criteria that preserve safety properties plus their version of liveness
properties. For hyperproperties, they have criteria that preserve hypersafety properties,
subset-closed hyperproperties, and arbitrary hyperproperties. Finally, they define re-
lational hyperproperties, which are relations between the behaviours of multiple pro-
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grams for expressing, e.g., that a program always runs faster than another. For rela-
tional hyperproperties, they have criteria that preserve arbitrary relational properties,
relational safety properties, relational hyperproperties and relational subset-closed hy-
perproperties. Roughly speaking, the security guarantees due to robust preservation of
trace properties regard only protecting the integrity of the program from the context,
the guarantees of hyperproperties also regard data confidentiality, and the guarantees
of relational hyperproperties even regard code confidentiality. Naturally, these stronger
guarantees are increasingly harder to enforce and prove.

While we have lifted the most significant criteria from Abate et al. [2] to our trini-
tarian view, due to space constraints we provide the formal definitions only for the two
most interesting criteria. We collect the generalization of many other criteria in Figure 2,
which we outline below. Omitted definitions are available in the online appendix.

Beyond traces properties: robust safety and hyperproperty preservation. We detail
robust preservation of safety properties and of arbitrary hyperproperties since they are
both relevant from a security point of view and their generalization is interesting.

Theorem 5.2 (Trinity for Robust Safety Properties ). For any trace relation ∼
and for the induced property mappings τ̃ and σ̃, we have:

RTPSafe◦τ̃ ⇐⇒ RSC∼ ⇐⇒ RSPσ̃ where

RSC∼ ≡ ∀P ∀CT ∀t ∀m ≤ t.CT [P↓]   t⇒ ∃CS ∃t′ ≥m ∃s ∼ t′. CS [P]   s

RTPSafe◦τ̃ ≡ ∀P∀πS ∈ 2TraceS .P |=R πS ⇒ P↓ |=R (Safe ◦ τ̃)(πS)

RSPσ̃ ≡ ∀P∀πT ∈ SafetyT.P |=R σ̃(πT)⇒ P↓ |=R πT

There is an interesting asymmetry between the last two characterizations above, that
we explain now in more detail. RSPσ̃ quantifies over target safety properties, while
RTPSafe◦τ̃ quantifies over arbitrary source properties, but imposes the composition of
τ̃ with Safe , which maps an arbitrary target property πT to the target safety property
that best over-approximates πT

6 (an analogous closure was needed for subset-closed
hyperproperties in Theorem 2.12). More precisely Safe is a closure operator on target
properties, with SafetyT =

{
Safe(πT)

∣∣ πT ∈ 2TraceT
}

. The mappings

Safe ◦ τ̃ : 2TraceS � 2TraceT : σ̃ ◦ ι ◦ Safe

where ι = id|SafetyT
, determine a new Galois connection between trace properties.

A “robust” variant ( ) of Theorem 2.4 gives us
RTPSafe◦τ̃ ⇐⇒ RTPσ̃◦ι◦Safe

Finally, note that quantifying over arbitrary target properties, closing them in the class
of safety and then applying σ̃, is the same as restricting σ̃ only to the properties in
SafetyT, so that RTPSafe◦τ̃ becomes exactly RSPσ̃ , and RTPSafe◦τ̃ ⇐⇒ RSPσ̃ .

This argument generalizes to arbitrary closure operators on target properties and
on hyperproperties as long as the corresponding class is a sub-class of subset-closed
hyperproperties. A few more trinities in the diagram rely on instances of this argument.
This argument explains all but one of the asymmetries in Figure 2, which regards the
robust preservation of arbitrary hyperproperties:

6 Safe(πT) = ∩{ST | πT ⊆ ST ∧ ST ∈ SafetyT}, is the topological closure in the topol-
ogy of Clarkson and Schneider [11] where safety properties coincide with the closed sets.
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Theorem 5.3 (Weak Trinity for Robust Hyperproperties ). For a trace relation
∼⊆ TraceS×TraceT, and induced property mappings σ̃ and τ̃ , RHC∼ is equivalent to
RHPτ̃ below. Moreover, if τ̃ � σ̃ is a Galois insertion (i.e. τ̃ ◦ σ̃ = id), RHC∼ implies
RHPσ̃ , while if σ̃ � τ̃ is a Galois reflection (i.e. σ̃ ◦ τ̃ = id), RHPσ̃ implies RHC∼.

RHC∼ ≡ ∀P ∀CT ∃CS ∀t. CT [P↓]   t ⇐⇒ (∃s ∼ t. CS [P]   s)

RHPτ̃ ≡ ∀P ∀HS. P |=R HS ⇒ P↓ |=R τ̃(HS)

RHPσ̃ ≡ ∀P ∀HT. P |=R σ̃(HT)⇒ P↓ |=R HT

This trinity is weak since extra hypotheses are needed to prove an implication. While
the equivalence RHC∼ ⇐⇒ RHPτ̃ holds unconditionally, the other two implications
hold only under distinct, stronger assumptions. For RHPσ̃ it is still possible and correct
to deduce a source obligation for a given target hyperproperty HT when no information
is lost in the the composition τ̃ ◦ σ̃ (i.e. the two maps are a Galois insertion). On the
other hand, RHPτ̃ is a consequence of RHPσ̃ when no information is lost in composing
in the other direction, σ̃ ◦ τ̃ (i.e. the two maps are a Galois reflection).
Navigating the diagram. For a given trace relation ∼, Figure 2 orders the generalized
criteria according to their relative strength. If a trinity implies another (denoted by⇒),
then the former provides stronger security for a compilation chain than the latter.

As mentioned, some property-free criteria (i.e., those for subset-closed hyperprop-
erties, safety, hypersafety, 2-relational safety and 2-relational hyperproperties) in the
diagram are derived from a stronger criterion closed with an additional operator. We
have already presented the Safe operator; other operators are Cl⊆, HSafe , and 2rSafe ,
which respectively ensure that the function they are composed with maps a subset-
closed hyperproperty (as in Theorem 2.12), a hypersafety property, or a 2-relational
safety property to the same class across languages. As a reading aid, we use the same
background color for both the trinity from which the stronger criterion is borrowed and
for the criterion using the closing operator. The trace-based trinity is blue, the subset-
closed hyperproperty one is red, and 2-relational property one is green.

We now describe how to interpret the acronyms in Figure 2. All criteria start with
R meaning they refer to robust preservation. Criteria for relational hyperproperties—
here only arity 2 is shown for simplicity—contain 2r. Next, criteria names spell the
class of hyperproperties they preserve: H for hyperproperties, SCH for subset-closed
hyperproperties, HS for hypersafety, T for trace properties and S for safety properties.
Finally, property-free criteria end with a C while property-full criteria involving σ̃ and
τ̃ end with P. Thus, robust (R) subset-closed hyperproperty-preserving (SCH) compi-
lation (C) is RSCHC∼, robust (R) two-relational (2r) safety-preserving (S) compilation
(C) is R2rSC∼ etc.

5.2 Instance of Trace-Relating Robust Preservation of Trace Properties

This section illustrates trace-relating secure compilation by extending the example of
§3.3 to a target language having strictly more events than the source.
Source and Target Languages. The source and target languages used in this section
(RS and RT, respectively) are nearly identical expression languages borrowing from the
syntax of the source language of §3.3. Both languages add sequencing of expressions,
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RTC∼

RTPτ̃RTPσ̃

RSC∼

RTPSafe◦τ̃RSPσ̃

RSCHC∼

RSCHPCl⊆◦τ̃RSCHPCl⊆◦σ̃

RHC∼

RHPτ̃RHPσ̃

Ins.

Refl.

RHSC∼

RSCHPHSafe◦τ̃RHSPCl⊆◦σ̃

R2rTC∼

R2rTPτ̃R2rTPσ̃

R2rSCHC∼

R2rSCHPCl⊆◦τ̃R2rSCHPCl⊆◦σ̃

R2rSC∼

R2rTP2rSafe◦τ̃R2rSPσ̃

R robust 2r 2-relational
H hyperproperties SCH subset-closed hyperproperties HS hypersafety

T trace properties S safety properties
P property-full criterion C property-free criterion based on σ and τ

Fig. 2: Hierarchy of trinitarian views of secure compilation criteria preserving classes
of hyperproperties and the key to read each acronym. Shorthands ‘Ins.’ and ‘Refl.’ stand
for Galois Insertion and Reflection. The denotes trinities proven in Coq.

two kinds of output events, and the expressions that generate them: outS n and outS n
(usable respectively in RS and RT) and outT n (usable only in RT). The presence
of outT events is the sole difference between source and target. The extra events in
the target model the fact that the target language has an increased ability to perform
certain operations, some of them potentially dangerous (such as writing to the hard
drive), which cannot be observed by the source language, and against which source-
level reasoning can therefore offer no protection.

Both languages and compilation chains now deal with partial programs, contexts
and linking of those two to produce whole programs. In this setting, a whole program
is the combination of a main expression to be evaluated and a set of function definitions
(with distinct names) that can refer to their argument symbolically and can be called by
the main expression and by other functions. The set of functions of a whole program
is the union of the functions of a partial program and a context; the latter also contains
the main expression. The extensions of the typing rules and the operational semantics
for whole programs are unsurprising and therefore elided. The trace model also follows
closely that of §3.3: it consists of a list of regular events (including the new outputs)
terminated by a result event. Finally, a partial program and a context can be linked into
a whole program when their functions satisfy the requirements mentioned above.

The target language RT is a small extension of the source, which allows target-only
events outT to appear in target expressions and consequently in target traces t.

Relating Traces. In the present model, source and target traces differ only in the fact
that the target draws (regular) events from a strictly larger set than the source, i.e. ΣT ⊃
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ΣS. A natural relation between source and target traces essentially maps to a given target
trace t the source trace that erases from t those events that exist only at the target level.
Let t|ΣS

indicate trace t filtered to retain only those elements included in alphabet ΣS.
We define the trace relation as:

s ∼ t ⇐⇒ s = t|ΣS

In the opposite direction, a source trace s is related to many target traces, as a finite
number of target-only events can be inserted at any point in s. The induced mappings
for this relation are:
τ̃(πS) = {t | ∃s. s = t|ΣS

∧ s ∈ πS} σ̃(πT) = {s | ∀t. s = t|ΣS
⇒ t ∈ πT}

That is, the target guarantee of a source property is that the target has the same
source-level behavior, sprinkled with arbitrary target-level behavior. Conversely, the
source-level obligation of a target property is the aggregate of those source traces all of
whose target-level enrichments are in the target property.

Since RS and RT are very similar, it is simple to prove that the identity compiler
( ·↓) from RS to RT is secure according to the trace relation ∼ defined above.

Theorem 5.4 ( ·↓ is secure). ·↓ is RTC∼

5.3 Instances of Trace-Relating Robust Preservation of Safety and Hypersafety

To provide examples of cross-language trace-relations that preserve safety and hyper-
safety properties, we show how existing secure compilation results can be interpreted in
our framework. This indicates how the more general theory developed here can already
be instantiated to encompass existing results, and that existing proof techniques can be
used in order to achieve the secure compilation criteria we define.

Concerning the preservation of safety, Patrignani and Garg [37] consider a com-
piler from a typed, concurrent WHILE language to an untyped, concurrent WHILE lan-
guage with support for memory capabilities. As in §3.3, their source has bools and nats
while their target only has nats. Additionally, their source has an ML-like memory
model (where the domain of the heap is arbitrary locations `) while their target has an
assembly-like memory model (where the domain of the heap is natural numbers n).
Their traces consider context-program interactions and as such they are concatenations
of call and return actions with parameters, which can include booleans as well as loca-
tions. Because of the aforementioned differences, they need a cross-language relation
to relate source and target actions.

Besides defining a relation on traces (i.e., an instance of ∼), they also define a
relation between source and target safety properties. They provide an instantiation of τ
that maps all safe source traces to the related target ones. This ensures that no additional
target trace is introduced in the target property, and source safety properties are mapped
to target safety ones by τ . Their compiler is then proven to generate code that respects
τ , so they achieve a variation of RTPSafe◦τ̃ .

Concerning the preservation of hypersafety, Patrignani and Garg [36] consider com-
pilers in a reactive setting where traces are concatenations of input (α?) and output (α!)
actions. In their setting, traces are different between source and target, so they define
a cross-language relation on actions that is total on the source actions and injective.
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Additionally, their set of target output actions is strictly larger than the source one, as it
includes a special action

√
, which is how compiled code must respond to invalid target

inputs (i.e., receiving a bool when a nat was expected). Starting from the relation on
actions, they define TPC, which is an instance of what we call τ . Informally, given a
set of source traces, TPC generates all target traces that are related (pointwise) to a
source trace. Additionally, it generates all traces with interleavings of undesired inputs
α? followed by

√
as long as removingα?

√
leaves a trace that relates the source trace.

TPC preserves hypersafety across languages, i.e., it is an instance of RSCHPHSafe◦τ̃

mapping source hypersafety to target hypersafety (and safety to safety).

6 Related Work

We already discussed how our results relate to some existing work in correct compila-
tion [27, 45] and secure compilation [2, 36, 37]. We explicitly notice that most of our
definitions and results make no assumptions about the structure of traces. Referring to
traces as sequences of events is only needed to define safety properties and hypersafety.
In all other cases, traces are arbitrary and could for instance be “interaction trees” [49].
In fact, we believe that the compilation from IMP to ASM proposed by Xia et al. [49]
can be seen as an instace of HC∼, for the relation they call “trace equivalence.”

Compilers where our work could be useful. Our work should be broadly applicable
to understanding the guarantees provided by many verified compilers. For instance,
Wang et al. [48] recently proposed a CompCert variant that compiles all the way down
to machine code, and it would be interesting to see if the model at the end of §3.1 applies
there too. This and, many other verified compilers [9, 23, 33, 43] beyond CakeML [45]
deal with resource exhaustion and it would be interesting to also apply the ideas of
§3.2 to them. Hur and Dreyer [21] devised a correct compiler from an ML language to
assembly using a cross-language logical relation to state their CC theorem. They do not
have traces, though were one to add them, the logical relation on values would serve as
the basis for the trace relation and therefore their result would attain CC∼.

Switching to more informative traces capturing the interaction between the program
and the context is often used as a proof technique for secure compilation [2, 22, 35].
Most of these results consider a cross-language relation, so they probably could be
proved to attain one of the criteria from Figure 2.

Generalizations of compiler correctness. The compiler correctness definition of Mor-
ris [32] was already general enough to account for trace relations, since it considered a
translation between the semantics of the source program and that of the compiled pro-
gram, which he called “decode” in his diagram, reproduced in Figure 3 (left). And even
some of the more recent compiler correctness definitions preserve this kind of flexibil-
ity [38]. Still, while CC∼ can be seen as an instance of Morris’ [32] definition, we are
not aware of any prior work that investigated the preservation of properties, when the
“decode translation” is neither the identity nor a bijection, and source properties need
to be re-interpreted as target ones and vice versa.

Correct compilation and Galois connections. Melton et al. [30] and Sabry and Wadler
[42] expressed a strong variant of compiler correctness using the diagram of Figure 3
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source language

target language target meanings

source meanings

compile
target semantics

decode

source semantics
W

W↓ Z

Z#

T

S

Fig. 3: Morris’s [32] (left) and Melton et al.’s [30] and Sabry and Wadler’s [42] (right)
correctness diagrams.

(right) [30, 42]. They require that compiled programs parallel the computation steps of
the original source programs, fact that can be proven showing the existence of a decom-
pilation map # that makes the diagram commute, or equivalently, the existence of an
adjoint for ↓ (W ≤ W ′ ⇐⇒ W � W ′ for both source and target). The “parallel”
intuition can be formalized as an instance of CC∼. Take source and target traces to be
finite or infinite sequences of program states (maximal trace semantics [12]), and relate
them exactly like Melton et al. [30] and Sabry and Wadler [42].

7 Conclusion and Future Work

We have extended the property preservation view on compiler correctness to arbitrary
trace relations, and believe that this will be useful for understanding the guarantees var-
ious compilers provide. An open question is whether, given a compiler, there exists a
most precise ∼ relation for which this compiler is correct. As mentioned in §1, every
compiler is CC∼ for some ∼, but under which conditions there is a most precise re-
lation? In practice, more precision may not always be better though, as it may be at
odds with compiler efficiency and may not align with more subjective notions of the
usefulness, leading to tradeoffs in the selection of suitable relations. Finally, another
interesting direction for future work is studying whether using the relation to Galois
connections allows us to more easily compose trace relations for different purposes,
say, for a compiler whose target language has undefined behavior, resource exhaustion,
and side-channels. In particular, are there ways to obtain complex relations by combin-
ing simpler ones in a way that eases the compiler verification burden?
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