
Type-Directed Scheduling of Streaming Accelerators
David Durst

Stanford University

USA

Matthew Feldman

Stanford University

USA

Dillon Huff

Stanford University

USA

David Akeley

University of California, Los Angeles

USA

Ross Daly

Stanford University

USA

Gilbert Bernstein

University of California, Berkeley

USA

Marco Patrignani

Stanford University & CISPA

Helmholtz Center for Information

Security

USA & Germany

Kayvon Fatahalian

Stanford University

USA

Pat Hanrahan

Stanford University

USA

Abstract
Designing efficient, application-specialized hardware accel-

erators requires assessing trade-offs between a hardware

module’s performance and resource requirements. To facili-

tate hardware design space exploration, we describe Aether-

ling, a system for automatically compiling data-parallel pro-

grams into statically scheduled, streaming hardware circuits.

Aetherling contributes a space- and time-aware intermedi-

ate language featuring data-parallel operators that represent

parallel or sequential hardware modules, and sequence data

types that encode a module’s throughput by specifying when

sequence elements are produced or consumed. As a result,

well-typed operator composition in the space-time language

corresponds to connecting hardware modules via statically

scheduled, streaming interfaces.

We provide rules for transforming programs written in

a standard data-parallel language (that carries no informa-

tion about hardware implementation) into equivalent space-

time language programs. We then provide a scheduling al-

gorithm that searches over the space of transformations to

quickly generate area-efficient hardware designs that achieve

a programmer-specified throughput. Using benchmarks from

the image processing domain, we demonstrate that Aether-

ling enables rapid exploration of hardware designs with dif-

ferent throughput and area characteristics, and yields results

that require 1.8-7.9× fewer FPGA slices than those of prior

hardware generation systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3385983

CCSConcepts: •Hardware→Hardware description lan-
guages and compilation; • Software and its engineer-
ing → Data types and structures; Data flow languages;
• Computer systems organization→ Data flow architec-
tures.

Keywords: space-time types, hardware description languages,

scheduling, image processing, FPGAs

ACM Reference Format:
David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross

Daly, Gilbert Bernstein,Marco Patrignani, Kayvon Fatahalian, and Pat

Hanrahan. 2020. Type-Directed Scheduling of Streaming Accelera-

tors. In Proceedings of the 41st ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation (PLDI
’20), June 15–20, 2020, London, UK. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3385412.3385983

1 Introduction
The need for energy-efficient computing is driving computer

architects to aggressively explore new kinds of application-

specific hardware accelerators [22]. Correspondingly, there

is a growing need for tools that improve the productivity of

creating custom hardware designs. One common approach

is to directly compile high-level algorithm descriptions into

hardware circuits. This strategy is reflected by recent domain-

specific compilation systems targeting compute-intensive

application domains such as machine learning [12, 26] and

image processing [20, 21, 39, 44]. However, to arrive at effi-

cient solutions, it is also common for a hardware designer to

assess trade-offs between performance achieved and hard-

ware resources used by exploring a space of different hard-

ware designs for a single algorithm.

In this paper, we focus on the domain of classic image

processing and present Aetherling, a system for automati-

cally compiling programs in a high-level, data-parallel lan-

guage into a range of streaming hardware designs featuring

different throughputs and resource requirements. Rather

than model statically scheduled, streaming hardware using

https://doi.org/10.1145/3385412.3385983
https://doi.org/10.1145/3385412.3385983

PLDI ’20, June 15–20, 2020, London, UK Durst, Feldman, Huff, Akeley, Daly, Bernstein, Patrignani, Fatahalian, Hanrahan

synchronous dataflow representations [7, 21, 29, 44], our ap-

proach is to encode the parallelism (space) and throughput

(space per unit time) properties of streaming hardware in-

terfaces in the type system of a high-level, but space-time
aware, data-parallel language. As a result, all well-typed pro-

grams in the space-time language are guaranteed to compile

to statically scheduled, acyclic, streaming hardware designs.

Aetherling enables rapid exploration of such designs with

different throughput and area trade-offs using a heuristic-

driven search over rewrite rules that transform an input

program in a hardware-agnostic language into different im-

plementations in the space-time aware language. Although

Aetherling does not guarantee that its statically scheduled

designs minimize resource utilization, we show that Aether-

ling’s output typically requires less control logic andmemory

overhead than dynamically scheduled designs.

Specifically, we make the following contributions:

1. We define a space-time intermediate language featur-

ing: (a) sequence types that encode the parallelism and

throughput of streaming hardware interfaces; and (b)

operators that correspond to hardware modules with

computable properties such as throughput, area, and

delay. All well-typed programs in this language have a

direct interpretation as statically scheduled, streaming

hardware (Section 4). In this paper, implementations

of these programs are restricted to acyclic accelerators

without asynchronous control flow that only access

off-accelerator memory at the beginning and end of

the pipeline.

2. We provide rewrite rules for transforming programs

expressed in a second (hardware unaware) functional

data-parallel language (Section 3) into equivalent space-

time language programs (Section 5).

3. We provide an algorithm for automatically transform-

ing programs expressed in Aetherling’s data-parallel

input language to efficient space-time language pro-

grams that meet a specified throughput (Section 6).

4. We provide an implementation of the Aetherling in-

put language, space-time language, and scheduler that

synthesizes FPGA designs (Section 7). We schedule ba-

sic image processing programs using this system and

demonstrate that the resulting designs require less

area for control overhead than those produced by re-

cent systems that generate image processing hardware

from high-level language descriptions (Section 8).

We refer the reader to the supplementary material at http:
//aetherling.org for the full formalization (syntax, typing,

and operational semantics) of Aetherling’s input language

and space-time language.

2 Overview
To better understand Aetherling’s hardware synthesis goals,

consider creating a circuit that convolves a 1D input stream

RegBRegA

210

Lorem ipsum

Reg

Reg

Add

Add... Div3 210

4

5

2

3
...

Reg

Add

Add

0

1

Reg

Add

Add

Div3

Div3

4

5

2

3

0

1
...

...

input stream output stream

1 elt/clk

2 elts/clk

1/3 elts/clk
1--0 Add Div3Serialize

RegC

1--0

(a)

(b)

(c)

1 elt/clk

2 elts/clk

1/3 elts/clk

Counter
(0,1,2)

reset

210
clk

210
clk

210
clk

3

210

210

210 3

Figure 1. These three circuits compute the same 1D convo-

lution, but utilize different amounts of hardware to achieve

different output throughputs. In the bottom design, compo-

nents labeled in red are underutilized and only emit output

elements every third clock.

with a 3-element filter (assume all filter weights are 1/3).

Pseudocode for this operation, defined on an input sequence

in, is given below:

out[i] = (in[i-2] + in[i-1] + in[i]) / 3

One potential circuit for performing this operation is

shown in Figure 1-a. In this circuit, stream elements arrive

at the hardware’s input interface at a rate of one element

per clock. These elements stream through a chain of two

registers that hold the previous two elements of the stream

(a register accepts an input on clock i and emits it on clock

i+1). The circuit sums the three most recent stream elements

using two adders, then divides the result by three to compute

the convolution output. Since all components of the circuit

produce and consume elements at the same throughput (one

element per clock), the circuit requires no additional stor-

age for buffering intermediate data between components,

yielding a resource-efficient design.

A hardware designer can also explore alternative designs

that compute the same output, but use different amounts

of hardware to achieve different throughputs. For example,

Figure 1-b shows a design that doubles output throughput to

two elements per clock at the cost of using four adders and

two dividers. The circuit in Figure 1-c uses only a single adder,

serializing per-output summation work over three clocks. As

a result, the circuit’s input/output interfaces transfer only

one stream element every three clocks. This final design

includes underutilized hardware (shown in red) that sits idle

for two of every three clocks. Although all throughputs are

http://aetherling.org
http://aetherling.org

Type-Directed Scheduling of Streaming Accelerators PLDI ’20, June 15–20, 2020, London, UK

not the same in this multi-rate design, all connected circuit

components produce and compute elements at the same rate,

so no buffering hardware is required between operators.

Even in this simple convolution example, changing the

circuit to adjust throughput is more complex than just dupli-

cating (or removing) hardware resources from the basic one

element per clock design. For example, the wiring pattern

between the stateful components (registers) and combina-

tional components (adders, dividers) needed to be changed

between the designs in Figure 1-a and b. In Figure 1-c, new

components (a unit for serializing stream elements to the

adder over time and a counter for resetting a register’s state

to 0), along with underutilization of some components, are

required for a correct design.

To reduce this complexity, the Aetherling system facili-

tates hardware design exploration by automatically handling

the throughput-adjusting changes to a circuit. Aetherling

programmers must only specify a data-parallel algorithm

(without specifics of hardware implementation details) and a

desired throughput for a hardware design to achieve. Given

these inputs, Aetherling will automatically produce a stat-

ically scheduled, streaming hardware design that executes

the specified algorithm at the required throughput.

To achieve this goal, the Aetherling system consists of:

1. A functional input language (Lseq) for expressing pro-

grams using standard data-parallel operations on finite-

length sequences. Aetherling input programs do not

specify hardware implementation details, so program-

mers can maintain focus on functional correctness.

However, Lseq is constrained so that Aetherling can

transform all valid programs into custom hardware

implementations.

2. An intermediate language (Lst) that is similar to Lseq,
but that models the throughput and area of a program’s

hardware implementation. A key aspect of Lst is space-
time aware sequence types that define the parallelism
and throughput of hardware interfaces by encoding

when sequence elements are produced in addition to

sequence length.

3. A set of rewrite rules for transforming any Lseq pro-
gram into a semantically-equivalent Lst program.

4. A scheduling algorithm that, given a Lseq program

P and a desired hardware circuit throughput T, uses
the rewrite rules to schedule P into an equivalent Lst

program with throughput T.
5. A compiler for transforming Lst programs into synthe-

sizable Verilog hardware descriptions.

The following sections describe each of these components

in greater detail.

3 Sequence Language
Aetherling’s input language, called Lseq, is a data-parallel lan-
guage embedded in Haskell with a first-class sequence data

1 conv_math x =

2 map (\y -> div (tuple y 3)) (reduce add x)

3

4 conv1d input =

5 let shift_once = shift input

6 let shift_twice = shift shift_once

7 let window_tuple = map2 tuple_append

8 (map2 tuple shift_once shift_twice) input

9 let window = map tuple_to_seq

10 (partition N 1 window_tuple)

11 let result = map conv_math window

12 unpartition result

Figure 2. Lseq program for convolving elements of a 1D

input sequence with a 3-element filter with weights 1/3.

add :: Int × Int -> Int

tuple :: t -> t' -> t × t'

tuple_append ::

n−1︷ ︸︸ ︷
t × . . . × t -> t ->

n︷ ︸︸ ︷
t × . . . × t

map :: (t -> t') -> Seq n t -> Seq n t'

map2 :: (t -> t' -> t'') -> Seq n t -> Seq n t' ->

Seq n t''

reduce :: (t × t -> t) -> Seq n t -> Seq 1 t

shift :: Seq n t -> Seq n t

select_1d :: Int -> Seq n t -> Seq 1 t

tuple_to_seq :: Seq 1 (

n︷ ︸︸ ︷
t × . . . × t) -> Seq n t

partition :: (no :: Int) -> (ni :: Int) ->

Seq (no*ni) t -> Seq no (Seq ni t)

unpartition :: Seq no (Seq ni t) -> Seq (no*ni) t

(.) :: (b -> c) -> (a -> b) -> a -> c

Figure 3. Signatures of Lseq operators (excerpts, n are natural
numbers, a, b, c, t, t', t'' are types).

type and standard sequence operators. Most aspects of Lseq

are similar to prior functional data-parallel languages [11],

but Lseq is constrained so all programs can be compiled to

hardware circuits. Most notably, Lseq is finitary: all sequences
are of statically-known length, and the language only allows

expressions that are DAGs of computations.

Lseq programs operate on homogeneous, fixed-length se-

quences. Type (Seq n t) represents a sequence containing

n elements of type t. The length of the sequence is encoded

using dependent types. Sequences can be arbitrarily nested.

Figure 2 presents the Lseq program for the 1D convolution

example introduced in Section 2. The input, whose type is

(Seq n Int), is tupled with two other sequences obtained

by repeatedly shifting input by one element to the right

(Lines 5, 6). The result is a sequence of tuples (window_tuple)

that each contain three consecutive elements of input. These

tuples are converted to length-3 sequences (Lines 9, 10) so

data-parallel operators reduce and map can be used to perform

convolution arithmetic (Line 11).

PLDI ’20, June 15–20, 2020, London, UK Durst, Feldman, Huff, Akeley, Daly, Bernstein, Patrignani, Fatahalian, Hanrahan

SSeq 8 t

TSeq 8 0 t

TSeq 8 8 t

TSeq 4 0 (SSeq 2 t)

TSeq 8 0 (TSeq 1 1 t)

76543210 3210

40 8 12 40 8 120
clk

0
1

2

3
4
5

6
7

0 1 2 3 4 5 6 7

0

1

0 1 2 3 4 5 6 7

2

3

4 6

5 7

0 1 2 3 4 5 6 7

(B) (C)(A)

Figure 4. The SSeq and TSeq sequence types in Lst describe the number of elements processed by an operator and also when

elements arrive at an operator’s interface. Numbers in the boxes are the indices of each element (in the sequence) and not the

contents. We maintain this notation in all figures in this paper.

Figure 3 provides type signatures for the subset of Lseq

used in Figure 2. The semantics of most of these operators

are standard and therefore omitted, but we describe the non-

standard operators. The (partition no ni) operator creates

nested sequences (or, matrices) by dividing a (Seq (no*ni)t)

into no subsequences each of length ni. The unpartition op-

erator performs the inverse operation, merging (or, flatten-

ing) nested sequences into a single sequence. Both opera-

tors preserve the order of input sequence elements so that

(unpartition . partition no ni) is an identity operation.

4 Space-Time IR
Aetherling transforms Lseq programs into programs in its

space-time-aware sequence language Lst. Like Lseq, Lst is a
high-level language that operates on fixed-length sequences.

However, all programs in Lst explicitly encode key properties
of their hardware implementation. Notably, all sequence op-

erators in Lst correspond to streaming hardware modules. Lst

defines the interfaces to these modules using space-time se-
quence types which not only encode the lengths of sequences

communicated between modules, but when elements in the

sequences are communicated. In this paper, statements about

the interface to a Lst operator can be viewed as a description

of the corresponding hardware module.

4.1 Space-Time Sequence Types
Lst programs operate on two types of sequences: a space se-
quence (SSeq n t) and a time sequence (TSeq n i t). These

types encode the corresponding hardware’s interfaces, so a

well-typed Lst program describes a circuit where all modules

are synchronized with their producers and consumers on the

timing of sequence element communication. This synchro-

nization enables use of efficient, statically-scheduled hard-

ware modules, since no dynamic interface logic is needed

to determine when new data arrives. Further, inter-module

buffering between producers and consumers is not required,

except to align element arrival clock cycles when two se-

quences are joined (Section 7).

SSeq encodes a fully parallel operator interface. An oper-

ator that produces a sequence of type (SSeq n t) emits n

values of type t in parallel, over the same number of clocks

required to emit a single element of type t. Sequences in

Lst can be nested, so t can be another SSeq. Since parallel

hardware is required to implement an operator that commu-

nicates all elements at once, we say elements of a SSeq are

distributed “in space”.

Lst sequence types encode the throughput of interfaces.
For example, Figure 4-A illustrates the behavior of an inter-

face described by (SSeq 8 Int). All eight integers are com-

municated at the same time, so the type has a throughput of

eight Ints per clock. Generally, the throughput of an operator

producing a (SSeq n t) is n times the throughput of t.

TSeq encodes a fully sequential operator interface where

sequence elements arrive over time. To describe interfaces

that may be underutilized, the TSeq type describes when

elements are communicated over the interface (valid clocks)
as well as when the interface is idle (invalid clocks).

An operator that produces a (TSeq n i t) emits n values

of type t over n × c clocks, where c is the number of clocks

required to emit t. Then, the operator emits nothing for an

additional i×c clocks. We refer to the number of clock cycles

for an interface to accept or emit a program’s entire sequence

as the interface’s time. In the example above, the interface’s

time is (n + i) × c.

Figure 4-B illustrates interfaces described by types(TSeq 8

0 Int) and (TSeq 8 8 Int). Notice that both interfaces emit

eight integers over the first eight clocks. In the first case, the

interface has a time of eight clocks. In the latter case, the

valid elements are followed by eight invalid clocks (the gray

boxes). Due to these invalids, (TSeq 8 8 Int) describes an in-

terface with a time of 16 clocks to transfer the eight-element

sequence, and its throughput is half that of (TSeq 8 0 Int).

While it may seem like invalid clocks imply inefficient

hardware designs, they are fundamentally required for Lst

types to describe the behavior of all hardware interfaces for
the entire duration of a circuit’s execution. When operators

Type-Directed Scheduling of Streaming Accelerators PLDI ’20, June 15–20, 2020, London, UK

map_s f :: SSeq 4 t -> SSeq 4 t’
throughput(map_s f) = 4 elt/clk
area(map_s f) = 4 x area(f)

map_t f :: TSeq 4 0 t -> TSeq 4 0 t’
throughput(map_t f) = 1 elt/clk
area(map_t f) = area(f)

map_t (map_s f)
 :: TSeq 2 0 (SSeq 2 t) -> TSeq 2 0 (SSeq 2 t’)
throughput(map_t (map_s f)) = 2 elt/clk
area(map_t (map_s f)) = 2 x area(f)

10
clk

0

1

2

3

3210
clk

0 1 2 3 f

3210

0 1 2 3

0
clk

0

1

2

3

0

0

1

2

3

f
f
f
f

10

0

1

2

3
f
f

Figure 5. Three Lst operator expressions that apply f to all

elements of the input sequence. The corresponding hardware

implementations differ in throughput and area.

produce and consume sequences with different lengths (e.g.,

reductions, downsampling), invalid clocks enable Aetherling

to describe both when the operators’ interfaces are commu-

nicating valid data and when they are idle. The input and

output sequences for all Aetherling’s space-time operators

(Section 4.2) require the same amount of time to communicate.
As a result, the interfaces of all operators in a well-typed Lst

program require the same amount of time.

Nesting TSeq and SSeq types can be used to describe a rich

space of operator interfaces. For example, the top illustration

in Figure 4-C provides an example of a partially parallel
interface described by the type (TSeq 4 0 (SSeq 2 Int)).

This interface always emits valid elements and transfers a

length-8 sequence two elements at a time over four clocks.

The bottom half of Figure 4-C illustrates how nesting TSeq

types can be used to describe a fine-grained valid/invalid

pattern on an underutilized interface.

4.2 Operators
To express hardware designs with different throughput and

area, Lst provides parallel and sequential versions of all se-

quence operators previously seen in Lseq. These operators
respectively implement the parallel and sequential interfaces

described by the SSeq and TSeq types.

For example, the spatial (or parallel) map operator map_s
operates on SSeqs. Given a function f (corresponding to a

hardware circuit), the operator (map_s f) consists of n copies

of f that simultaneously process all n (simultaneously arriv-

ing) elements of the input sequence. Similarly, the temporal

add :: (Int x Int) -> Int

tuple :: t -> t' -> t x t'

tuple_append ::

n−1︷ ︸︸ ︷
t × . . . × t -> t ->

n︷ ︸︸ ︷
t × . . . × t

map_s :: (t -> t') -> SSeq n t -> SSeq n t'

map_t :: (t -> t') -> TSeq n i t -> TSeq n i t'

map2_s :: (t -> t' -> t'') -> SSeq n t ->

SSeq n t' -> SSeq n t''

map2_t :: (t -> t' -> t'') -> TSeq n i t ->

TSeq n i t' -> TSeq n i t''

reduce_s :: (t x t -> t) -> SSeq n t -> SSeq 1 t

reduce_t :: (t x t -> t) -> TSeq n i t ->

TSeq 1 (n+i-1) t

shift_s :: SSeq n t -> SSeq n t

shift_t :: TSeq n i t -> TSeq n i t

select_1d_s :: Int -> SSeq n t -> SSeq 1 t

select_1d_t :: Int -> TSeq n i t -> TSeq 1 (n+i-1) t

reshape :: t -> t'

Figure 6. Signatures of Lst operators (excerpts).

map operator (map_t f) corresponds to a single copy of the

f circuit that processes elements arriving at its interface

sequentially in time. Figure 5 illustrates three examples of

operators that map f onto all elements of an input sequence

but do so with different throughputs.

Figure 6 provides signatures for a selection of Lst opera-
tors needed to express the 1D convolution application from

Figure 2. Most operators are standard data-parallel opera-

tors; therefore, we defer definition of their semantics to the

supplementary material. However, we call attention to two

important details.

Multi-rate operators. reduce_t and select_1d_t are tem-

poral multi-rate operators that accept TSeq’s of length n and

emit TSeq’s of length 1. The output sequences of these oper-

ators contain additional invalid elements that ensure their

input and output sequences have the same time.

Reshape operator. reshape is a data shuffling operator

that converts between two space-time sequence types with

the same element throughput (e.g.,(TSeq 1 3 (SSeq 4 Int))

and (TSeq 4 0 Int)).1 The correspondence of elements be-

tween the input and output sequences is defined by flattening.

If both input and output sequences were standard Haskell

lists, recursively flattening both lists and eliminating invalid

values would produce two identical lists.

reshape is unique among Lst operators in that its resource

requirements can vary significantly depending on the combi-

nation of input and output Lst types used. Implementations

of reshape may range from being simple data serializers to

needing to buffer an entire sequence (Section 7). We find this

lack of cost transparency to not be an issue in practice be-

cause for our benchmarks Aetherling’s scheduler (Section 6)

1reshape treats homogeneous tuples as SSeq’s.

PLDI ’20, June 15–20, 2020, London, UK Durst, Feldman, Huff, Akeley, Daly, Bernstein, Patrignani, Fatahalian, Hanrahan

1 conv_math :: SSeq 3 Int -> SSeq 1 Int

2 conv_math x =

3 map_s (\y -> div (tuple y 3)) (reduce_s add x)

4

5 conv1d :: TSeq n 0 Int -> TSeq n 0 Int

6 conv1d input =

7 shift_once :: TSeq n 0 Int

8 let shift_once = shift_t input

9 shift_twice :: TSeq n 0 Int

10 let shift_twice = shift_t shift_once

11 window_tuple :: TSeq n 0 (Int × Int × Int)

12 let window_tuple = map2_t tuple_append

13 (map2_t tuple shift_once shift_twice) input

14 window :: TSeq n 0 (SSeq 3 Int)

15 let window = map_t reshape

16 (reshape window_tuple)

17 result :: TSeq n 0 (SSeq 1 Int)

18 let result = map_t conv_math window

19 reshape result

Figure 7. Lst program for a 1D convolution emitting one

pixel per clock.

only generates programs that utilize forms of reshape with

resource-efficient implementations.

Figure 7 provides a Lst implementation of the 1D convolu-

tion example from Figure 2. The program emits one output

per clock (TSeq n Int) and describes a circuit similar to that

shown in Figure 1-a. Most operators in the Lst implementa-

tion are the temporal versions of their equivalents in Lseq.
However, parallel operators map_s and reduce_s perform the

arithmetic for each output element in parallel. Instances

of reshape in the Lst code correspond to uses of partition,

unpartition, and tuple_to_seq in the Lseq program.

4.3 Operator Properties
In addition to specifying the throughput and timing proper-

ties of their interfaces, all Lst operator definitions include two
additional properties that describe their hardware implemen-

tations: area and delay. Using these per-operator definitions,

Aetherling can compute the area and delay of any Lst pro-
gram.

Area measures the hardware resources required to imple-

ment an operator (e.g., on an FPGA, resources include LUTs,

DSPs, and BRAMs). The scheduling algorithm described in

Section 6 uses Lst program area estimates during its search

for area-efficient hardware implementations.

Delay measures the number of clock cycles from the first

element of an input sequence arriving at an operator to the

first element emitted by the operator. For example, (map_t

add) is a fully combinational operator, so applying it to a

(TSeq 4 0 Int) input means the operator has zero clocks

of delay and the time of its input and output interfaces is

four clocks. On the other hand, if mul is implemented by

Figure 8. Lseq to Lst Direct Rewrite Rules (excerpts).

hardware with four pipeline stages, (map_t mul) when ap-

plied to the same input has a delay of four clocks and the

time of its input and output interfaces is four clocks. The

Lst compiler statically computes the delay of all operators to

generate correct hardware implementations of Lst programs

(Section 7). Therefore, Aetherling doesn’t support variable-

latency operators such as floating-point multipliers that are

optimized to change their delay depending on the input.

The interested reader will find formulas for the area and

delay of all Lst operators in the supplemental material.

5 Rewrite Rules
In this section, we describe the rewrite rules used to trans-

form Lseq programs into Lst. We first define rewrite rules that

yield fully-parallel and fully-sequential translations into Lst

(Section 5.1). Then, we provide additional rewrite rules from

Lseq to Lseq that are used to explore the space of partially-

parallel translations (Section 5.2). Finally, we argue that these

rewrite rules are semantics preserving (Section 5.4). For these

rules, we cannot state that an operator and its rewriting are

equivalent as the input and output values of Lseq and Lst

programs have different types (Seq and SSeq/TSeq respec-

tively). We therefore provide an isomorphism between Seq

and SSeq/TSeq and state that a Lseq program and its transla-

tion into Lst have equivalent semantics up to this isomor-

phism (Section 5.3).

5.1 Lseq to Lst Direct Rewrite Rules
The direct rewrite rules from Lseq to Lst convert each Lseq

operator to a Lst operator that is either fully parallel or fully

sequential. Figure 8 shows the subset of these rewrite rules

used for lowering the convolution example from Lseq in Fig-

ure 2 to Lst in Figure 7.

5.2 Nesting Rewrite Rules
To enable transformations that yield partially parallel Lst op-
erators, Aetherling has rewrite rules from Lseq to Lseq which
we call nesting rewrite rules (Figure 9). These rules take an
operator with an input type of a single (Seq (no*ni)t) and

produce a nesting of operators with an input type of a nested

Type-Directed Scheduling of Streaming Accelerators PLDI ’20, June 15–20, 2020, London, UK

1 map f → map (map f)

2 map2 f → map2 (map2 f)

3 reduce f → reduce (map f) . map (reduce f)

4 shift in_seq →

5 let fst_seq = shift . map (select_1d (ni-1)) in_seq

6 let (snd_seq:other_seq) =

7 [map (select_1d i) in_seq | i <- [0..ni - 2]]

8 let result_tuples =

9 foldl (\xs x -> map2 (map2 tuple_append) xs x)

10 (map2 (map2 tuple) fst_seq snd_seq) other_seq

11 map tuple_to_seq result_tuples

12 select_1d i →

13 select_1d no (i//no) . map (select_1d ni (i%no))

Figure 9. Lseq Nesting Rewrite Rules (excerpts).

(Seq no (Seq ni t)). By first applying nesting, then apply-

ing direct rewrite rules to the Lseq operators produced by

nesting, Aetherling can produce partially-parallel Lst pro-
grams. For example, in the following code, application of the

map nesting rule, followed by direct rewrites, converts a Lseq

map on a sequence of 10 elements to a partially parallel Lst

program that processes two elements at a time.

While most of the nesting rules are standard [9], the

one for shift is not. For example, consider a shift in Lseq

which takes the input sequence [0, 1, 2, 3] :: (Seq 4 Int) to

[u, 0, 1, 2], where u signifies an undefined value. (We choose

to shift in an undefined value to simplify hardware implemen-

tation.) We need to rewrite that shift in order to operate on

nested sequences. Consider the case of (Seq 3 (Seq 2 Int)),

where shift inputs

[[
0

1

] [
2

3

] [
4

5

]]
and outputs

[[
u
0

] [
1

2

] [
3

4

]]
.

This can be done by first shifting the last row by one (Fig-

ure 9-Line 5) and placing it on the first row and then by

moving all other rows (collected in Line 7) down by one

(Lines 9, 10).
2

5.3 Isomorphism
In order to relate elements of Lseq and Lst as they are manip-

ulated by the rewrite rules, we provide three isomorphisms:

• one between Seq and nested Seq’s;

• ones between Seq and SSeq, Seq and TSeq.

The combination of the three isomorphisms is used to say

that the translation from Lseq to Lst programs that first ap-

plies the nesting rewrite rules and then applies the direct

rewrite rules is semantics preserving [15].

The intuition behind the isomorphisms is that isomorphic

types are inhabited by values that are sequences containing

the same values in the same order but with possibly different

2
We invite the skeptical reader to try this on larger nested sequences too.

distributions in time and space. More precisely, once flat-

tened and stripped of invalids, isomorphic sequences must

have the same values. So, (Seq (no*ni)t) is isomorphic to

(Seq no (Seq ni t)) if flattening the nested sequence yields

the first one. Thus, [1, 2, 3, 4] :: (Seq 4 Int) is isomorphic

to [[1, 2], [3, 4]] :: (Seq 2 (Seq 2 Int)). On the other hand,

(Seq n t) is isomorphic to (SSeq n t) if the two sequences

have the same length and the same elements. Thus, [5, 6]
:: (Seq 2 Int) is isomorphic to [5, 6] :: (SSeq 2 Int). Fi-

nally, (Seq n t) is isomorphic to (TSeq n i t) if the two

sequences have the same length and the same elements, dis-

regarding the possible trailing invalid values (indicated with

i) in the second sequence. Thus, [7, 8, 9] :: (Seq 3 Int) is

isomorphic to [7, 8, 9, i, i] :: (TSeq 3 2 Int).

From these, we conclude that [1, 2, 3] :: (Seq 3 Int) is iso-

morphic to [[1, i], [2, i], [3, i], i] ::(TSeq 3 1 (TSeq 1 1 Int)).

Intuitively, this is because type (Seq 3 Int) is isomorphic

to (Seq 3 (Seq 1 Int)). Then, (Seq 1 Int) is isomorphic

to type (TSeq 1 1 Int), and from this we can derive that

(Seq 3 _) is isomorphic to (TSeq 3 1 _).

5.4 Rewrite Rules Preserve Semantics
We argue that combinations of the rewrite rules are seman-

tics preserving. The direct rewrite rules of Figure 8 trivially

preserve semantics up to the isomorphism because they sim-

ply convert Lseq operators to the same ones in Lst. This is
true even for the partition and unpartition rules since they

are translated to reshape, and they all convert between types

while preserving the same ordering of elements.

The nesting rewrite rules of Figure 9 are mostly standard

nesting operations [9, 11]. In fact, rules for map, map2, and

reduce (as well as for all elided operators) are well-known

results from data parallel languages. The select_1d rule is a

duplicate of the reduce rule. The shift nesting rewrite rule is

similar to the stencils in Lift [18]. As such, it is also simple to

see that the nesting rewrite rules preserve the isomorphism.

We defer formally proving that Aetherling’s rewrite rules

are semantics preserving up to the presented isomorphism

to future work. We expect such results to build on similar

semantics-preservation proofs [3, 4, 23, 33, 36]. Specifically,

by relying on the type systems of Lseq and of Lst, we expect to
build a cross-language logical relation that relates terms (and

crucially values) of the two languages when they “behave

the same”. The key complexity of such a relation will be

accounting for the isomorphism in order to determine when

two sequences are related or, in technical terms, to determine

what values are related at type (Seq n t).

6 Scheduling
In this section, we describe an algorithm that uses Aether-

ling’s rewrite rules to transform Lseq programs into equiva-

lent Lst programs with a specified output throughput T. We

PLDI ’20, June 15–20, 2020, London, UK Durst, Feldman, Huff, Akeley, Daly, Bernstein, Patrignani, Fatahalian, Hanrahan

refer to this process as “scheduling” since the algorithm de-

termines how to orchestrate a program’s execution in space

(via parallelism) and time.

Consider scheduling a Lseq program that outputs a se-

quence of 8 integers (Seq 8 Int) with a throughput of two

ints per clock (T=2). Multiple Lst sequence types describe
this throughput, for example:

TSeq 4 0 (SSeq 2 Int)

TSeq 2 2 (SSeq 4 Int)

TSeq 2 0 (TSeq 1 1 (SSeq 4 Int))

Lst programs that produce these types correspond to hard-

ware with different area requirements. Therefore, the goal

of scheduling is to find the lowest area Lst program that

meets the specified throughput. Aetherling performs this

optimization using a heuristic-driven search that involves

(1) enumerating a set of Lst sequence types with the desired

throughput and (2) using rewrite rules from Section 5 to con-

vert the input Lseq program into Lst programs that output

sequences with these types.

6.1 Enumerating Candidate Output Types
Enumerating single sequences. Aetherling’s scheduler

considers a space of program transformations that take each

(Seq n t) type in the source Lseq program into a Lst type of
one of the five following forms:

(1) TSeq n i t

(2) TSeq n io (TSeq 1 ii t)

(3) TSeq n io (TSeq 1 ii (TSeq 1 ii t))

(4) SSeq n t

(5) TSeq no io (SSeq ni t) (for n=no × ni)

These five rules do not generate all possible Lst types, but
serve as heuristics for limiting the scheduler’s search space.

The first three forms yield Lst sequences that match a target

throughput of one pixel per clock (or less, considering in-

valids). Forms (2) and (3) interleave valid and invalid clocks

rather than creating a single burst like form (1). Implemen-

tations of programs with multi-rate operators can use more

efficient reshapes when they avoid bursty behavior and emit

valid data at regular intervals. In our experience, the two

layers of nesting in form (3) are sufficient for processing data

with two dimensions, such as images.
3
Forms (4) and (5) yield

fully parallel (T=n) and partially parallel output respectively.

Since underutilized parallel hardware is unlikely to be an

area efficient solution, Aetherling only applies form (5) with

the minimum ni that meets the specified throughput.

We demonstrate that, for our benchmarks in Section 8,

there are area-efficient hardware implementations whose

output interfaces lie within the space of Lst sequences ob-
tained via these five sequence transformations. For exam-

ple, when scheduling the 1D convolution with output type

3
Forms (2) and (3) describe the largest part of the search space since multiple

values for the parameters io and ii may yield the desired throughput. The

number of options for io and ii increases as n increases.

(Seq 8 Int) (Figure 2) with a throughput T=1/3, Aetherling
searches over Lst programs with the following output types:

TSeq 8 16 Int (from form 1)

TSeq 8 0 (TSeq 1 2 Int) (from form 2)

TSeq 8 4 (TSeq 1 1 Int) (from form 2)

TSeq 8 16 (TSeq 1 0 Int) (from form 2)

TSeq 8 16 (TSeq 1 0 (TSeq 1 0 Int)) (from form 3)

TSeq 8 16 (SSeq 1 Int) (from form 5)

Note that the second type given above describes the in-

terface of the area-efficient hardware pipeline illustrated in

Figure 1-c, which emits an element every third clock.

Enumerating nested sequences. The above transforma-

tions apply to a single Seq type in a Lseq program. When a

Lseq program produces a nested sequence, Aetherling fac-

tors the target throughput T into target sub-throughputs Ti
for each of the subsequences. For example, to schedule a

program with type (Seq 8 (Seq 2 Int)) with throughput T,
Aetherling will consider transformations that convert the

innermost (Seq 2 Int) to Lst types with throughput T1 and

convert the outermost (Seq 8 t) to Lst types with through-

put T0, where T0 × T1 = T.
In the example above, there are multiple valid assignments

of T0 and T1. In general, given an arbitrarily nested Lseq type,
the scheduler enumerates all valid assignments of subse-

quence throughputs by performing a prime factorization of

T and distributing the factors as target subsequence through-

puts Ti for each nested Seq. For each assignment, the sched-

uler then uses the five Seq transformation forms described

above to enumerate possible Lst types for each nested Seq.

This yields a collection of nested Lst sequence types that

describe candidate hardware output interfaces.

6.2 Transforming Programs to Match Output Types
Given a Lseq program and a Lst output type T, the scheduler
invokes the rewrite rules to transform the Lseq program into

a Lst program of output type T. We first describe how to

transform single Lseq operators into Lst operators of a speci-
fied type, then address full Lseq program transformations.

6.2.1 Transforming Individual Operators.

Base operators. Lseq operators that do not operate on Seq

types (e.g., add) are trivially converted using applications of

the appropriate Lseq to Lst direct rewrite rules (Figure 8).

Sequence operatorswithnesting rewrite rules. If a nest-
ing rewrite rule for an operator exists, the scheduler repeat-

edly applies the nesting rewrite (zero or more times) until the

resulting Lseq expression emits a nested Seq with the same

nesting depth as the Lst target type. Then, the algorithm

applies direct Lseq to Lst rewrite rules to convert operators in
the (potentially) nested Lseq expression into Lst. For example,

consider transforming the Lseq expression:

map add :: Seq 4 (Int x Int) -> Seq 4 Int

Type-Directed Scheduling of Streaming Accelerators PLDI ’20, June 15–20, 2020, London, UK

into a Lst expressionwith output type TSeq 2 0 (SSeq 2 Int).

Application of the map nesting rewrite rule produces:

map (map add) ::

Seq 2 (Seq 2 (Int x Int)) ->

Seq 2 (Seq 2 Int)

Then, application of Lseq to Lst direct rewrite rules for each
map produces:

map_t (map_s add) ::

TSeq 2 0 (SSeq 2 (Int x Int)) ->

TSeq 2 0 (SSeq 2 Int)

Sequence operators that transform into reshape. Op-
erators that have no nesting rewrite rules but produce Seq

outputs (partition, tuple_to_seq) translate to reshape. Un-

like the other operators in Lst, reshape is unique in that its

input type is not fully determined given its output type. (By

definition reshape converts between two sequence types.)

The input type of reshape is determined during full-program

scheduling, as described in the subsequent section.

6.2.2 Transforming Full Programs. Aetherling sched-

ules full Lseq programs by performing a sequence of individ-

ual operator transformations. It begins with the last operator

in the Lseq program DAG and continues to the front until all

DAG nodes have been transformed.

Given a target output type for the program, the scheduler

first transforms the last operator in the Lseq program DAG

into an equivalent Lst expression that emits this type. With

the exception of transformations that yield reshape, this

process also determines the input type of the resulting Lst

expression. Then, the process recurs on predecessor nodes

in the Lseq DAG, using the input type for the current Lst

expression as the predecessor’s target output type in the

next recursive call.

When transformations yield a reshape, the scheduler must

choose a Lst input type for the reshape. It uses the process de-
scribed in Section 6.1 to enumerate potential Lst input types
for the reshape. For each of those types, it recursively calls

the scheduling algorithm on the input Lseq expression to the

reshape. Each input type for the reshape is a different candi-

date output type for the upstream expression. The scheduler

picks the reshape input type that causes the reshape and the

upstream Lst expression to have the least area. (The cost of

scheduling is exponential in the number of reshapes encoun-

tered in a program.)

The program transformation process is repeated for all

candidate program output types. Aetherling’s scheduler com-

putes the area of all generated Lst programs, and retains the

program with the least area.

6.2.3 Handling Fork-Join Structure. The program trans-

formation algorithm described in Section 6.2.2 does not cor-

rectly transform DAGs with fork-join structure (i.e., when
a single sequence is consumed by parallel paths that later

sharpen1d input =
 let blur = conv1d input
 let joined = map2 tuple input blur
 map sub joined

conv1d tupleinput map2 submap1

2

Figure 10. An image sharpening program with fork-join

DAG structure. When transforming this Lseq program into

Lst, a reshape may need to be inserted at point 1 or point 2

in the DAG to ensure all paths that consume input expect

the same Lst input type.

merged together, Figure 10). Specifically, independent back-

to-front transformation of operators on different DAG paths

does not guarantee that all consumers of a sequence require

the same Lst input type. We solve this problem by inserting

a reshape on one of the paths so that all consumers require

the same Lst input type.
It is possible to use reshape insertion to solve the type

mismatch problem because the different Lst types required
by each consuming path are guaranteed to have the same

throughput. We defined reshape in Section 4.2 to convert

between any two Lst types with the same throughput. The

mismatched types must have the same throughput since they

have the same length, as they are isomorphic to the same

Lseq type, and the same time, as stated in Section 4.1.

7 Implementation
Aetherling’s Lseq is implemented as a shallow embedded DSL

in Haskell using the methodology from Bjesse et al. [8]. The

Lseq type system is implemented using Haskell’s lightweight

dependent types [14]. The shallow embedding is then com-

piled to a deep embedding. All Lseq and Lst scheduling passes
are performed on deep embeddings.

Operator Implementation. All Lst operators correspond
to hardware generators written in Chisel [6], a hardware

design language embedded in Scala. These generators pro-

duce Verilog. One particularly complex generator is reshape.

We use efficient implementations of reshape for common

cases, such as serialization that converts between sequential

types like (TSeq 1 2 (SSeq 3 Int)) and parallel types like

(TSeq 3 0 Int). These efficient implementations are suffi-

cient to implement the benchmarks in Section 8. However,

other possible input and output Lst types for reshape can-
not be supported by our efficient specializations. We im-

plement the general case of the operator by extending the

memory-minimizing stream permutation approach of Koehn

and Athanas [25] to support conversion between input and

output sequences featuring invalid clocks. To maintain high

clock rates, we perform a simple form of register retiming

that inserts registers into operators that have long combina-

tional path lengths.

PLDI ’20, June 15–20, 2020, London, UK Durst, Feldman, Huff, Akeley, Daly, Bernstein, Patrignani, Fatahalian, Hanrahan

h input =
 let s1 = map_t f input
 let s2 = map_t g1 s1
 let s3 = map_t g2 s1
 map2_t (add . tuple) s2 s3

f
g2

g1

h
reg reg

delay(g1) = 3
delay(g2) = 1
delay(reg) = 1

input

Compiler inserted
regs for delay matching

s1

s2

s3

Figure 11. Sequence elements generated by the logic path

featuring g2 (delay=1) must be delayed for two cycles so they

arrive at the node h at the same time as the corresponding

elements produced by g1 (delay=3). The Aetherling compiler

relies on the ability to compute the delay of all paths through

a program in order to insert the appropriate delay registers.

Delay Matching. The Lst type system guarantees that

all composed modules match throughputs and also expect

the same order of valids and invalids. However, typing does

not guarantee that all logic paths through a program DAG

feature the same delay. (Recall delay is a property of an op-

erator’s internal hardware implementation, not a property

of its interface.) As a result, when Lst DAGs feature fork-

join structure, sequence elements generated from one path

through the graph may be produced on an earlier clock than

their corresponding elements in the other path. Figure 11

illustrates such a situation, where elements from module

g2 (with delay 1) are generated before their corresponding

elements from g1 (with delay 3). To ensure correct opera-

tion of this design, the Aetherling compiler must insert two

registers into the lower path to ensure that corresponding

elements arrive at the joining operator h at the same time.

As described in Section 4.3, Aetherling is able to compute

the delay along all paths of a program in Lst, and uses this

information to insert the appropriate registers so that all

paths through the program’s DAG have matching delays.

FPGA Bitstream Generation. We generate clock rate

and area numbers for Section 8 by synthesizing the Ver-

ilog to bitstreams for the Xilinx XC7K160TIFFV676-2L FPGA

using the Xilinx Vivado Design Suite 2018.2.

8 Evaluation
We evaluated Aetherling by generating hardware implemen-

tations of several image processing benchmarks (Section 8.1).

Using these benchmarks, we demonstrate Aetherling’s abil-

ity to automatically generate hardware designs with different

throughput-area trade-offs (Section 8.2). We also compare

the efficiency of Aetherling’s designs with the output of

two recent hardware generation systems that prioritize de-

sign space exploration for data-parallel applications: Halide-

HLS [39] and Spatial [26] (Section 8.3). Halide is an image

processing DSL that is widely used in industry [40], and

Halide-HLS extends Halide’s “scheduling” primitives to de-

scribe hardware implementations of Halide programs. Spatial

is a general-purpose language for creating hardware accel-

erators using data-parallel patterns. It exposes scheduling

directives and has built-in design space exploration for tun-

ing design parameters.

We choose to not compare against additional, prior sys-

tems for compiling image processing applications to accel-

erators (Rigel [21], Darkroom [20], RIPL [44], and Lift [28])

because available implementations of these systems do not fit

within our evaluation framework of automatically producing

multiple throughput-area trade-offs.

8.1 Benchmark Description
Our benchmarks consist of the following functions:

map adds a constant to every element of a 200-element in-

put sequence. This is a test of Aetherling’s ability to compile

a Lseq program to a range of throughput-area trade-offs.

conv is a 3×3 convolution (without boundary conditions).

convb2b performs two back-to-back convolutions (3×3 filter,

then 2×2). Since the reduction performed in a convolution

runs at a higher throughput than downstream operators,

these benchmarks feature “multi-rate circuits” where some

interfaces are fully utilized while others have invalids.

sharpen implements an unsharp mask [24]. This is a com-

mon image processing operation that emphasizes high fre-

quency image features (e.g., edges). This benchmark features

a DAG with fork-join structure.

camera is a simple version of a modern camera pipeline,

a demosaic followed by a sharpen. The demosaic uses a

position-dependent convolution.

In most implementations, we use single-channel (32 bits

per pixel), 1920x1080 images and fixed-point multiplication

and division. For camera, we use three channels (96 bits

per pixel). We synthesized designs at the following clock

rates: 175 MHz for Aetherling, 161 MHz for Halide-HLS,

and 125 MHz for Spatial. We tested the Aetherling designs

using Verilator [42], the Spatial designs using VCS, and the

Halide-HLS designs using Vivado HLS C simulation.

8.2 Exploring Space-Time Trade-offs
Aetherling enables rapid exploration of throughput-area

trade-offs for a Lseq program. Figure 12 plots the throughput

(in output pixels per clock) and area of designs generated

by scheduling the five benchmarks. These designs exhibit

significant structural variation, ranging from sub-one-pixel

per clock designs requiring extra serializers and counters to

higher throughput designs with throughput-specific wiring

between shift buffers and arithmetic units.

Figure 12 uses three metrics for area on the target FGPA:

DSPs, BRAMs, and slices. DSPs measure the area used for

resource intensive math: the multiplication and division for

the convolution. BRAMs measure the area used for buffering

rows of the image. (sharpen and camera also use BRAMs

Type-Directed Scheduling of Streaming Accelerators PLDI ’20, June 15–20, 2020, London, UK

1 2 5 10 40 200
1

10

1000
Sl

ic
es

MAP

1/3 1 2 4 8 16
100

1000

10000
CONV

1/3 1 2 4 8 16
100

1000

10000
CONVB2B

1/3 1 2 4 8 16
100

1000

10000
SHARPEN

1/4 1 2 4 8 16
100

1000

10000
CAMERA

1 2 5 10 40 200
0

1

2

BR
AM

s

1/3 1 2 4 8 16

4

8

32

1/3 1 2 4 8 16

4

8

32

1/3 1 2 4 8 16

4

8

32

1/4 1 2 4 8 16

4

8

32

1 2 5 10 40 200
0

1

2

D
SP

s

1/3 1 2 4 8 16
10

100

500

1/3 1 2 4 8 16

Throughput (px/clk)

10

100

500

1/3 1 2 4 8 16
10

100

500

1/4 1 2 4 8 16
10

100

500

Resources Consumed by Aetherling Designs

Figure 12.Aetherling generates designs matching a specified output throughput. The resources used for control logic, measured

by slices, increases linearly with throughput above one pixel per clock. Designs with throughputs of less than one pixel per

clock require additional overhead (such as serializers and counters), resulting in slightly higher slice utilization than the best

one pixel-per-clock designs. Data points for high throughput convb2b and camera designs are not given because they require

too many DSPs for the target FPGA. The graphs use log-scale axes because the parallelism increases exponentially.

for buffering needed to match delays.) Slices measure the

area used for simple math (e.g., 32-bit adders) and control

logic overhead, including counters and registers necessary

to support the math and row buffers.

For throughputs above one, we observe a linear relation-

ship between design throughput and slices. Designs for conv,

convb2b, and camera at less than one pixel-per-clock have

slightly higher overhead than the best one pixel-per-clock

circuits. In these cases, the extra overhead required to un-

derutilize the convolution hardware (recall the additional

components in Figure 1-c) outweighs the area saved by re-

moving parallel adders from the design (conv only needs

eight adders to perform a convolution at one pixel per clock).

We observe a linear relationship between throughput and

DSPs. The relationship between throughput and BRAMs

has two parts. BRAM capacity to store several rows of pixel

data is the dominant constraint at low throughputs, so the

number of required BRAMs is constant when targeting four

pixels per clock and below. At eight pixels per clock and

above, BRAM requirements scale linearly with throughput

as additional BRAMs are needed to ensure sufficient read and

write bandwidth [46]. sharpen’s and camera’s requirements

increase at a lower throughput due to additional, smaller

BRAMs used for delay matching.

8.3 Efficiency Comparison
Figure 13 compares the area efficiency of designs produced by

Aetherling to those of Spatial for all but the camera bench-

mark (no Spatial implementation of camera was available).

Excluding the simple map experiment, Aetherling designs re-

quire 1.8-7.9× fewer slices to achieve the same throughput as

Spatial. This reduction is due to more efficient control logic.

Vivado’s design reports for Spatial indicate that slices due to

other sources are minimal. For example, the convolution’s

32-bit adders are optimized into control logic modules.

Hardware generated by Aetherling does not require con-

trol circuity to dynamically manage communication between

hardware modules. In contrast, Spatial uses control logic to

interface arithmetic with its generated memories. The im-

pact of the control logic, and thus the difference in slice

counts between of Spatial and Aetherling designs, is lowest

at two pixels per clock since Spatial is able to most efficiently

control its memories at this throughput.

Differences in DSP and BRAM utilization between Aether-

ling and Spatial exist, but are not fundamental to the designs

of the systems. Spatial uses more BRAMs because its mem-

ory utilization analyzer currently stores more rows of the

image than necessary. Spatial saves DSPs at higher through-

puts through common subexpression elimination. Spatial’s

PLDI ’20, June 15–20, 2020, London, UK Durst, Feldman, Huff, Akeley, Daly, Bernstein, Patrignani, Fatahalian, Hanrahan

1 2 4 8
0

2

4

6

8

R
el

at
iv

e
Sl

ic
es

1 2 4 8 1 2 4 8 1 2 4 8

1 2 4 8
0

1

2

3

4

R
el

at
iv

e
BR

AM
s

1 2 4 8 1 2 4 8 1 2 4 8

1 2 4 8
MAP

0.0
0.2
0.4
0.6
0.8
1.0

R
el

at
iv

e
D

SP
s

1 2 4 8
CONV

1 2 4 8
CONVB2B

1 2 4 8
SHARPEN

Resources Consumed by Spatial Designs (Relative to Aetherling)

Throughput (px/clk)

Figure 13. In nearly all benchmarks, designs generated by Spatial require more slices than Aetherling designs with the same

throughput. map is simple, so Aetherling and Spatial require almost the same number of slices and no BRAMs or DSPs.

MAP CONV CONVB2B SHARPEN

1

2

3

4

R
el

at
iv

e
Sl

ic
es

Resources Consumed by Halide-HLS Designs
 (Relative to Aetherling)

Figure 14. Designs generated by Halide-HLS require more

slices than Aetherling designs. All designs have a throughput

of one output pixel per clock.

BRAM utilization and Aetherling’s DSP utilization could be

improved with additional compiler optimization passes.

Figure 14 compares the area efficiency of designs produced

by Aetherling to those of Halide-HLS. Excluding the sim-

ple map experiment, Aetherling designs require 3-4× fewer

slices to achieve the same throughput as Halide-HLS. As

with Spatial, the plot shows that there’s less control over-

head compared to Halide-HLS. This is because Halide-HLS

compiles programs to C code with high-level synthesis tem-

plates. The resulting designs employ dynamic control logic

to synchronize each stage of computation.

We elide BRAM consumption in Figure 14 as Aetherling

and Halide-HLS use the same number of BRAMs for all

benchmarks. We elide DSP consumption because we were

unable to direct Halide-HLS to synthesize fixed-point mul-

tipliers and dividers to DSPs (despite direct help from the

authors of Halide-HLS). To ensure a fair comparison, we syn-

thesized both the Aetherling and Halide-HLS applications

in Figure 14 with shifts for the multipliers and dividers. The

shifts have negligible impact on the number of slices, and

use no DSPs. In Aetherling’s conv, the shifts use so few

resources that they are elided from Vivado’s area report.

The process of generating different designs using Halide-

HLS and Spatial revealed limits to the design space explo-

ration features of these prior systems. For example, although

Spatial provides built-in support for tuning the tiling, sched-

uling, and loop parallelization factors of an algorithm, creat-

ing designs that achieved different throughputs with mini-

mal control logic required structural change to the Spatial

program. These changes were implemented out of language
by metaprogramming the Spatial dataflow graph in Scala.

We were unable to generate designs matching all desired

throughputs using Halide-HLS, even after direct collabora-

tion with that system’s authors.

9 Related Work
The ubiquity of image processing, particularly in energy-

constrained mobile environments, has motivated many ef-

forts to compile domain-specific languages to image pro-

cessing accelerators [13, 20, 21, 39, 44]. A number of these

efforts [21, 44], as well as much prior work focusing on signal

processing systems [17, 38], utilize the synchronous dataflow

(SDF) [29] and cyclo-static dataflow (CSDF) [7] models as

mechanisms to match the throughput of processing nodes

in a dataflow graph. SDF requires nodes to define how they

Type-Directed Scheduling of Streaming Accelerators PLDI ’20, June 15–20, 2020, London, UK

produce and consume stream tokens so it can solve for firing

rates that yield equal throughput. By constraining programs

to DAGs, and encoding the number of tokens (and their

arrival rates) in types, Aetherling reduces the problem of

SDF throughput matching to the scheduler in Section 6 that

simply matches types.

Other systems have taken approaches similar to Aether-

ling for encoding space-time properties. Rigel [21] uses both

SDF and types that encode parallelism. Dahlia [34] uses affine

types to produce predictable HLS designs by restricting

memory access patterns. Both Cλash [5, 45] and Lift [28, 43]

present data-parallel operators like those in Section 4 whose

types can encode throughput. Aetherling extends these types

to also encode the ordering of valids and invalids. The TSeq

clock cycle ordering can be viewed as a simple version of the

Signal [32] clock calculus and related work like LUSTRE [19].

A limitation of our approach is that, unlike the clock calculus,

we cannot express some patterns of valid and invalid clocks.

For example, the Lst types cannot encode a sequence of two
Ints on one clock cycle and then one Int on the next. Fu-

ture work on expanding the space of representable patterns

may allow the scheduler to search for even more efficient

throughput-area trade-offs.

Spatial [26] and HLS [1, 10, 30] are other approaches for

compiling high level descriptions of algorithms to hardware

with different throughput-area trade-offs. Programs writ-

ten for both systems are expressed in languages where the

semantics do not specify cycle-accurate hardware execution.

Both Spatial [27, 31] and HLS, when using systems like

Aladdin [41], enable design space exploration that tunes pa-

rameters to trade-off throughput and resource utilization.

Through this exploration process, Spatial and HLS allow the

developer to search different types of trade-offs compared to

Aetherling. For example, Spatial required metaprogramming

in Section 8 because its design space exploration does not

fundamentally change the circuit architecture to meet a spec-

ified throughput. Unlike Aetherling, Spatial enables explor-

ing different communication patterns with off-accelerator

memories that can’t be described by TSeq and SSeq.

The Halide image processing language [40] was designed

to enable rapid design space exploration for dense tensor

applications such as image processing. Halide’s solution is

to define a separate scheduling language, where programs

in this second scheduling language describe how to rewrite

the Halide application DAG to explore program optimiza-

tions. While Halide scheduling has generally been performed

manually by human programmers, search-based techniques

for automatically generating schedules for Halide programs

have now surpassed expert programmer performance [2].

Since our own approach to Aetherling scheduling (in Sec-

tion 6) is structured as a sequence of choices about which

rewrite rule to apply, it is likely that Halide’s fast tree-search-

based approach to automatic scheduling could be applied to

scheduling Aetherling programs as well.

Although it is possible to reinterpret Halide’s schedul-

ing primitives as hardware design directives [39], Halide’s

primitives and compiler internals are CPU-centric and not

intended for hardware design space exploration.We are inter-

ested in exploring if Aetherling’s representationsmight serve

as an alternative intermediate representation for Halide.

Type-directed program synthesis systems such as Syn-

quid [37] andMyth [16, 35] demonstrate other techniques for

synthesizing programs that satisfy a type constraint. These

systems create software programs whose semantics satisfy

the constraints of a target refinement type. Future work us-

ing their techniques could improve upon the scheduler’s

subroutine that finds the minimum area Lst program with a

target output type and semantics specified by a Lseq program.

10 Conclusion
In this paper, we presented Aetherling, a type-directed ap-

proach to compiling data-parallel programs to statically sched-

uled, streaming hardware designs. Aetherling can produce a

diverse set of hardware designs by changing only a single

input parameter (desired throughput) to the scheduler. Due

to the efficiency of statically scheduled module interfaces,

when synthesizing FPGA designs for simple image process-

ing benchmarks, Aetherling’s designs require 1.8-7.9× fewer

slices than those of prior hardware generation systems.

Going forward, future development of Aetherling will pur-

sue extensions that increase application scope. We aim to

support additional image processing and machine learning

applications by permitting limited data-dependent memory

accesses, data reuse, and stream blocking. Additionally, we

will enlarge the space of designs that the scheduler can effi-

ciently search. We also aim to formally prove the soundness

of Aetherling’s transformations to have stronger guarantees

for a larger part of the workflow.

Acknowledgments
This material is based upon work supported by the National

Science Foundation (NSF) Graduate Research Fellowship

Program under Grant No. (DGE-1656518), the NSF under

Grant No. (CCF-1846502), the Air Force Research Laboratory

(AFRL) and Defense Advanced Research Projects Agency

under agreements numbered FA8750-17-2-0095, FA8650-18-

2-7861, a Stanford Graduate Fellowship, affiliates of the Stan-

ford DAWN project and Stanford AHA Agile Hardware Cen-

ter, and the German Federal Ministry of Education and Re-

search (BMBF) through funding for the CISPA-Stanford Cen-

ter for Cybersecurity (FKZ: 13N1S0762). Any opinions, find-

ings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily

reflect the views of the sponsors.

PLDI ’20, June 15–20, 2020, London, UK Durst, Feldman, Huff, Akeley, Daly, Bernstein, Patrignani, Fatahalian, Hanrahan

References
[1] 2019. Vivado High-Level Synthesis. https://www.xilinx.com/products/

design-tools/vivado/integration/esl-design.html [Online; accessed 26-

Mar-2020].

[2] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-

Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fa-

tahalian, Frédo Durand, and Jonathan Ragan-Kelley. 2019. Learn-

ing to Optimize Halide with Tree Search and Random Programs.

ACM Trans. Graph. 38, 4, Article 121 (July 2019), 12 pages. https:
//doi.org/10.1145/3306346.3322967

[3] Amal Ahmed and Matthias Blume. 2008. Typed Closure Conversion

Preserves Observational Equivalence. In International Conference on
Functional Programming. ACM, 157–168.

[4] Amal Ahmed and Matthias Blume. 2011. An Equivalence-Preserving

CPS Translation via Multi-Language Semantics. In Proceedings of the
16th ACM SIGPLAN International Conference on Functional Program-
ming (Tokyo, Japan) (ICFP ’11). ACM, 431–444.

[5] C.P.R. Baaij. 2015. Digital circuit in CλaSH: functional specifications
and type-directed synthesis. Ph.D. Dissertation. University of Twente,

Netherlands. https://doi.org/10.3990/1.9789036538039 eemcs-eprint-

23939.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew

Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.

2012. Chisel: constructing hardware in a scala embedded language. In

DAC Design Automation Conference 2012. IEEE, 1212–1221.
[7] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete.

1996. Cycle-static dataflow. IEEE Transactions on signal processing 44,

2 (1996), 397–408.

[8] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.

Lava: hardware design in Haskell. In ACM SIGPLAN Notices, Vol. 34.
ACM, 174–184.

[9] Guy E. Blelloch. 1993. NESL: A Nested Data-Parallel Language (Version
2.6). Technical Report. Pittsburgh, PA, USA.

[10] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed

Kammoona, Jason H Anderson, Stephen Brown, and Tomasz Cza-

jkowski. 2011. LegUp: high-level synthesis for FPGA-based proces-

sor/accelerator systems. In Proceedings of the 19th ACM/SIGDA inter-
national symposium on Field programmable gate arrays. ACM, 33–36.

[11] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,

Gabriele Keller, and Simon Marlow. 2007. Data Parallel Haskell: A Sta-

tus Report. In Proceedings of the 2007 Workshop on Declarative Aspects
of Multicore Programming (Nice, France) (DAMP ’07). ACM, New York,

NY, USA, 10–18. https://doi.org/10.1145/1248648.1248652
[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An

Automated End-to-End Optimizing Compiler for Deep Learning. In

13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association, Carlsbad, CA, 578–594.

https://www.usenix.org/conference/osdi18/presentation/chen
[13] Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bondhugula.

2016. A DSL Compiler for Accelerating Image Processing Pipelines on

FPGAs. In Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation (Haifa, Israel) (PACT ’16). ACM, New

York, NY, USA, 327–338. https://doi.org/10.1145/2967938.2967969
[14] Richard A Eisenberg and Stephanie Weirich. 2013. Dependently typed

programming with singletons. ACM SIGPLAN Notices 47, 12 (2013),
117–130.

[15] Conal Elliott. 2017. Generic functional parallel algorithms: Scan and

FFT. Proc. ACM Program. Lang. 1, ICFP, Article 48 (Sept. 2017), 24 pages.
https://doi.org/10.1145/3110251

[16] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve

Zdancewic. 2016. Example-directed synthesis: a type-theoretic in-

terpretation. ACM SIGPLAN Notices 51, 1 (2016), 802–815.

[17] Michael I Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S

Meli, Andrew A Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann,

DavidMaze, et al. 2002. A stream compiler for communication-exposed

architectures. In ACM SIGOPS Operating Systems Review, Vol. 36. ACM,

291–303.

[18] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,

and Christophe Dubach. 2018. High performance stencil code genera-

tion with Lift. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization. ACM, 100–112.

[19] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.

1991. The synchronous data flow programming language LUSTRE.

Proc. IEEE 79, 9 (1991), 1305–1320.

[20] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-

Kelley, Noy Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and

Pat Hanrahan. 2014. Darkroom: compiling high-level image processing

code into hardware pipelines. ACM Trans. Graph. 33, 4 (2014), 144–1.
[21] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley,

Mark Horowitz, and Pat Hanrahan. 2016. Rigel: Flexible multi-rate

image processing hardware. ACM Transactions on Graphics (TOG) 35,
4 (2016), 85.

[22] John L Hennessy and David A Patterson. 2019. A new golden age for

computer architecture. Commun. ACM 62, 2 (2019), 48–60.

[23] Chung-Kil Hur and Derek Dreyer. 2011. A Kripke Logical Relation

Between ML and Assembly. In Principles of Programming Languages.
ACM, 133–146. https://doi.org/10.1145/1926385.1926402

[24] Sang Ho Kim and Jan P Allebach. 2005. Optimal unsharp mask for

image sharpening and noise removal. Journal of Electronic Imaging 14,

2 (2005), 023005.

[25] Thaddeus Koehn and Peter Athanas. 2016. Arbitrary streaming per-

mutations with minimum memory and latency. In 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
1–6.

[26] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,

Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,

Christos Kozyrakis, et al. 2018. Spatial: A language and compiler

for application accelerators. In ACM Sigplan Notices, Vol. 53. ACM,

296–311.

[27] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou,

Christos Kozyrakis, and Kunle Olukotun. 2016. Automatic generation

of efficient accelerators for reconfigurable hardware. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA).
Ieee, 115–127.

[28] Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach.

2019. High-level synthesis of functional patterns with Lift. In Proceed-
ings of the 6th ACM SIGPLAN International Workshop on Libraries,
Languages and Compilers for Array Programming. ACM, 35–45.

[29] Edward A Lee and David G Messerschmitt. 1987. Synchronous data

flow. Proc. IEEE 75, 9 (1987), 1235–1245.

[30] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk

Stroobandt. 2012. An overview of today’s high-level synthesis tools.

Design Automation for Embedded Systems 16, 3 (2012), 31–51.
[31] Luigi Nardi, David Koeplinger, and Kunle Olukotun. 2019. Practical

design space exploration. In 2019 IEEE 27th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE, 347–358.

[32] Mirabelle Nebut. 2004. An overview of the Signal clock calculus.

Electronic Notes in Theoretical Computer Science 88 (2004), 39–54.
[33] Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully Ab-

stract Compilation via Universal Embedding. In International Confer-
ence on Functional Programming. ACM, 103–116.

[34] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Ted

Bauer, Yuwei Yi, Apurva Koti, Adrian Sampson, and Zhiru Zhang.

2020. Predictable Accelerator Design with Time-Sensitive Affine types.

Proceedings of the 41st ACM SIGPLAN Conference on Programming

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/1248648.1248652
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/2967938.2967969
https://doi.org/10.1145/3110251
https://doi.org/10.1145/1926385.1926402

Type-Directed Scheduling of Streaming Accelerators PLDI ’20, June 15–20, 2020, London, UK

Language Design and Implementation (2020), to appear.

[35] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-

directed program synthesis. ACM SIGPLAN Notices 50, 6 (2015), 619–
630.

[36] Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Ap-

proaches to Secure Compilation A Survey of Fully Abstract Compi-

lation and Related Work. ACM Comput. Surv. 51, 6, Article 125 (Jan.
2019), 36 pages.

[37] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-

gram synthesis from polymorphic refinement types. ACM SIGPLAN
Notices 51, 6 (2016), 522–538.

[38] Claudius Ptolemaeus (Ed.). 2014. System Design, Modeling, and Simula-
tion using Ptolemy II. Ptolemy.org. http://ptolemy.org/books/Systems

[39] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson,

Jonathan Ragan-Kelley, and Mark Horowitz. 2017. Programming het-

erogeneous systems from an image processing DSL. ACM Transactions
on Architecture and Code Optimization (TACO) 14, 3 (2017), 26.

[40] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, FrédoDurand, and SamanAmarasinghe. 2013. Halide: a language

and compiler for optimizing parallelism, locality, and recomputation

in image processing pipelines. In Acm Sigplan Notices, Vol. 48. ACM,

519–530.

[41] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks.

2014. Aladdin: A pre-rtl, power-performance accelerator simulator

enabling large design space exploration of customized architectures.

In ACM SIGARCH Computer Architecture News, Vol. 42. IEEE Press,

97–108.

[42] Wilson Snyder and Jean-Philippe Lang. 2019. Intro - Verilator - Veripool.
https://www.veripool.org/projects/verilator/wiki/Intro

[43] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe

Dubach. 2015. Generating performance portable code using rewrite

rules: from high-level functional expressions to high-performance

OpenCL code. ACM SIGPLAN Notices 50, 9 (2015), 205–217.
[44] Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia, Deep-

ayan Bhowmik, and Andrew Wallace. 2018. RIPL: A Parallel Image

Processing Language for FPGAs. ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 11, 1 (2018), 7.

[45] Rinse Wester. 2015. A transformation-based approach to hardware
design using higher-order functions. Ph.D. Dissertation. University of

Twente. https://doi.org/10.3990/1.9789036538879
[46] Xilinx, Inc. 2019. 7 Series FPGAs Memory Resources: User Guide (ug473

(v1.14) ed.). Xilinx, Inc.

http://ptolemy.org/books/Systems
https://www.veripool.org/projects/verilator/wiki/Intro
https://doi.org/10.3990/1.9789036538879

	Abstract
	1 Introduction
	2 Overview
	3 Sequence Language
	4 Space-Time IR
	4.1 Space-Time Sequence Types
	4.2 Operators
	4.3 Operator Properties

	5 Rewrite Rules
	5.1 seq-colorLseq to st-colorLst Direct Rewrite Rules
	5.2 Nesting Rewrite Rules
	5.3 Isomorphism
	5.4 Rewrite Rules Preserve Semantics

	6 Scheduling
	6.1 Enumerating Candidate Output Types
	6.2 Transforming Programs to Match Output Types

	7 Implementation
	8 Evaluation
	8.1 Benchmark Description
	8.2 Exploring Space-Time Trade-offs
	8.3 Efficiency Comparison

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

