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Abstract—The Web has grown into the most widely used
application platform for our daily lives. First-party Web ap-
plications thrive due to many different third parties they rely
on to provide auxiliary functionality, like maps or ads, to their
sites. In this paper, we set out to understand to what extent this
outsourcing has adverse effects on two key security mechanisms,
namely Content Security Policy (CSP; to mitigate XSS) and
Subresource Integrity (SRI; to mitigate third-party compromises)
by conducting a longitudinal study over 12 weeks on 10,000 top
sites. Under the assumption that a first party wants to deploy
CSP and SRI and is able to make their code base compliant with
these mechanisms, we assess how many sites could fully deploy
the mechanisms without cooperation from their third parties.
For those unable to do so without cooperation, we also measure
how many third parties would jointly have to make their code
compliant to enable first-party usage of CSP and SRI.

To more accurately depict trust relations, we rely on holistic
views into inclusion chains within all pages of the investigated
sites. In addition, based on a combination of heuristics and
manual validation, we identify different eTLD+1s belonging
to the same business entity, allowing us to more accurately
discerning parties from each other. Doing so, we show that the
vast majority of sites includes third-party code which necessitates
the use of unsafe-inline (75%) or unsafe-eval (61%),
or makes deployment of strict-dynamic impossible (76%)
without breakage of functionality. For SRI, based on the analysis
of a single snapshot (within less than 12 hours), we also show that
more than half of all sites cannot fully rely on SRI to protect
them from third-party compromise due to randomized third-
party content.

I. INTRODUCTION

The Web, as we know it today, is deeply intertwined with
our everyday life. It allows us to perform essential tasks, such
as keeping in touch with our beloved ones through social
media, and even serves us feature-rich business appliances.
However, since the advent of the Web 2.0, there was a rapid
growth in complexity on the client side. Notably, the amount
of different contributors from which scripting resources are
included follows this increase, resulting in a continually rising
reliance on third parties. For example, the Web site of a
coffee shop can refer to an external library to incorporate
an interactive map showing the quickest route to the next

store. The coffee shop can thus rely on a third party to take
care of this specific part, enabling the first party to focus on
the needs of their core functionality. Other use cases include
advertisement, analytics, or simply hosting a widely used
library in a single place, reducing traffic on one’s site.

The increasing reliance on third parties to provide func-
tionality to first-party sites naturally comes with risks. In
particular, including scripts from others allows such third
parties to add whatever code they deem necessary and even
delegate this privilege to arbitrary additional external parties.
Numerous research works in this area have shown that this
reliance on third parties increases the attack surface of first-
party sites, e.g., via third-party compromise due to bad security
practices [20], the addition of malicious code via intertwined
inclusion chains [2, 7], and the introduction of client-side XSS
[17, 29, 30].

Hence, it is in a site developer’s best interest to defend
their site against such threats. Specifically, we focus on two
key mechanisms to protect Web sites: Content Security Policy
(CSP) and Subresource Integrity (SRI). CSP [27] primarily
aims to mitigate the impact of XSS vulnerabilities. In contrast,
SRI [19] aims to secure including sites against compromise
of third-party servers by only executing scripts that match the
cryptographic hash attached to their definition. Unfortunately,
both mechanisms lack widespread deployment [1]. Up to 95%
of deployed CSPs are utterly insecure [3, 36], and rolling out
CSP was recently shown to be a lengthy process in which
some sites ultimately give up and fail to arrive at a meaningful
policy [25]. New CSP features, such as strict-dynamic,
are intended to make a secure deployment of CSP easier for
the first party. Specifically, the authors envision “with such a
policy, the owner would need to add nonces to static <script>
elements, but would be assured that only these trusted scripts
and their descendants would execute. This mode of deploying
CSP can significantly improve the security of a policy and
facilitate adoption” [36]. Nevertheless, even though the feature
was added in 2016 to the CSP standard, it has not been
adopted by many sites, and script-controlling policies are still
as insecure as ever [25]. Similarly, while SRI’s popularity is
slowly increasing, this is primarily due to widespread libraries
like jQuery [4], leaving many other resources susceptible to
cause severe harm in case of compromised third parties.

The main focus of our work is to assess how many sites
are blocked from meaningful usage of CSP and SRI through
how many third parties; under the assumption that first parties
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want to secure their site (and are able to make their own code
compatible, especially with CSP). Virtually all prior research
on third parties [2, 7, 9, 20, 31] has used the notion of an
eTLD+1 to reason about parties. This assumption, however,
does not hold true as it is common for modern sites to split
their application logically across multiple eTLD+1s. Instead,
we define parties by the entity that operates them, e.g., Google
for Youtube and Doubleclick. We derive two heuristics to
identify candidates for our definition of an extended Same
Party and manually vet them to avoid false positives.

With this improved notion of a party, we tackle our main
research question through an extensive 12-week experiment of
the Tranco top 10,000, in which we collect inclusions, attribute
them to the respective parties, and observe the behavior the
different parties exhibit. In doing so, and assuming a first
party that is willing to tackle the necessary modifications to
their own codebase to enable a meaningful CSP, we show
that the instability in inclusions through third parties limits the
applicability of host-based allowlists, the only universally sup-
ported mode of CSP (as even modern browsers like Safari lack
strict-dynamic support). Similarly, the usage of APIs
like eval and the parser-inserting addition of script elements
and event handlers hinders deployment of policies without
the unsafe-eval and unsafe-inline keywords, and
hampers roll-out of nonce-based strict-dynamic policies.
We also highlight that high-profile third-party inclusions such
as Facebook or Doubleclick often randomize minuscule parts
of the script content, rendering the hash-based SRI deployment
impossible. With both these aspects, even a party willing
to make their own code base compliant with these security
mechanisms, will not be able to have meaningful security
without suffering from breakage of third-party functionality.

In sum, our paper makes the following contributions:
• Based on observed inclusion relations, we derive a new

notion of party beyond eTLD+1, dubbed extended Same
Party in Section IV. We then show that our new notion is
much closer to reality than using eTLD+1s, highlighting
the need for such an improved notion for the modern Web
(Section V).

• We measure how the behavior of first, third, and delegated
code impacts the deployment of CSP in Section VI.
In particular, we study how the fluctuation in included
hosts renders host-based CSPs infeasible, how often
sites would need to use the trivially insecure unsafe-
inline keyword, and how sites cannot use strict-
dynamic without causing breakage in their third-party
dependancies.

• In Section VII, we analyze the feasibility of restricting
the behavior of a site’s codebase to the script hash using
SRI and show that the fluctuation of script content hosted
at static URLs does not allow the majority of sites to pin
their third-party dependencies. Furthermore, we show that
in the wild SRI’s protection is frequently undermined by
unpinned inclusions performed by pinned resources.

• Based on our empirical analyses, we provide calls to
action to both third-party script providers and browser

vendors. Furthermore, to aid developers in assessing the
adverse effects of third-party scripts, we open-source
SMURF, which allows to attribute CSP-incompatible
behavior to hosts.

II. TECHNICAL BACKGROUND

In this paper, we refer to a registerable domain (e.g.,
bbc.co.uk or google.com) as an eTLD+1 (effective top-
level domain+1). We use the term interchangeably with site,
aligned with, e.g., the notion of same-site that browsers use for
security mechanisms like site isolation [23]. In addition, we
use the term disconnect to reason about how connected a first
party is to third-party code; i.e., whether they directly include
such code or whether any of the included parties added the
additional scripts.

A. JavaScript Inclusions

The Web’s core security concept is the Same-Origin Policy,
which ensures that a script can only access resources from the
same origin (protocol, host, and port). JavaScript inclusions are
partially exempt from this rule, as any HTML document may
include scripts from other origins. While the content of the
scripts cannot be read, the JavaScript engine will execute these
scripts; importantly, in the origin of the including document.
JavaScript can, in turn, add additional scripting resources,
be it through writing script tags or event handlers through
document.write, invoking eval to convert a string to
code, or programmatically adding scripts to the DOM through
document.createElement and appendChild. By de-
fault, inclusions cannot be restricted, i.e., any included script
can add additional content to its liking.

B. Content Security Policy

In its original form, the Content Security Policy (CSP) was
meant to mitigate the effects of Cross-Site Scripting and enable
a developer to limit the resources which could be loaded into
their site [27]. This is achieved by providing an allowlist
of origins from which external content can be included, in
combination with disallowing potentially dangerous constructs
such as inline scripts, event handlers, and eval by default.
To allow for backward compatibility in using those unsafe
practices while rolling out a strict CSP, unsafe-inline
and unsafe-eval are part of the CSP specification. De-
ploying a policy with unsafe-inline essentially allows
an attacker abusing an injection vulnerability to insert their
script content directly as an inline script; such policies cannot
mitigate XSS. At the same time, as removing any inline
script seemed infeasible, CSP added nonces and hashes [33].
Through this, developers can attach a random nonce to each
script (as contained in the CSP), making them executable;
similarly, scripts can be allowed through their hash sum. It
must be noted, though, event handlers cannot be allowed in
this fashion. The only option to achieve is to add the unsafe-
hashes [34] attribute to the policy, which enables event
handlers to be executed if their hash is explicitly allowed.
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Orthogonally, if a site operator needs to use eval, they have
to resort to unsafe-eval.

Weichselbaum et al. [36] proposed strict-dynamic
to alleviate the burden of keeping a CSP up to date with
all the hosts being added by third parties. If this mode
is enabled, any script that is allowed through a hash or a
nonce can programmatically add additional scripts, i.e., by
using createElement and appendChild, but not doc-
ument.write. Notably, when this option is enabled, any
host-based allowlist is disabled, meaning that even inclusions
from the same host must be done programmatically.

C. Subresource Integrity

While CSP aims to mitigate script injection attacks, Sub-
resource Integrity (SRI) was designed to disarm malicious
modification of externally included resources, e.g., through
compromised Content Delivery Networks or via in-transit
alteration of script code done by network-based attacks [19].
To take advantage of this feature, the including party has
to specify the hash of the expected content in a script’s
integrity attribute. In case of a mismatch between the hash
of the content and the integrity value, the browser refuses to
execute the script. Given the nature of the mechanism, a single-
byte change in the included script will lead to mismatching
hashes, effectively disabling the modified script. Hence, for
a script to be SRI-compatible, it must not change; a prime
example of an SRI-pinnable script is jQuery, which can be
included centrally from jQuery.org through an explicit version
number in the URL, which never changes its content.

III. EXPERIMENT PARAMETERS

To answer our main research question, namely whether
first parties can simply change their own codebase to allow
for seamless integration of CSP and SRI, we utilize the
Tranco [11] list from January 13, 2020, to extract the 10,000
highest ranking sites1. To mitigate the impact of a single
party with multiple internationalized domains (e.g., Google
with around 80 different TLDs) on our results, we used
Tranco’s feature to group together those sites belonging to
one organization.

We set out to analyze not only a single snapshot of the
Web’s tangled nature, but instead also to investigate the rate of
change observable throughout a prolonged period. Therefore,
we ran crawls once a week from January 13th through March
30th, 2020. For each crawl, our crawlers visited the start
pages from the fixed list and followed every same-site link. To
avoid influences of stale URLs, we repeat this process every
time, limiting ourselves to a maximum of 1,000 pages per
site. On average, each crawl yielded around 1 million URLs.
For results that do not consider the longitudinal aspect of
our data collection, we report on the data gathered in our
first crawl. Overall, we could find that of the 10,000 Tranco
entries, we could only analyze 8,389 by connecting to the
website by following the link http://entry. In 493 cases, we hit

1https://tranco-list.eu/list/3Q2L

a timeout in our crawling infrastructure. Besides sites that take
too long to visit, we could find hints that some sites behaved
differently when crawling them from our analysis machines
compared to our home network. We expect that our public
IP addresses used are known to host crawlers, and we do
not take specific measures to conceal our traffic as human-
generated. We were unable to connect to 603 entries because
of network-level issues, such as NXDOMAIN, connection
refusals, or certificate errors. Another 515 sites redirected our
crawler to another site, which we therefore also excluded from
our analysis. We can find 348 sites that do not include any
scripting resources at all. Manual investigation showed the
lack of scripting resources was mostly due to blank pages
(again likely as our IP is known as a crawler). Notably, we
also found instances in which Web sites refused us to access
the real content, e.g., at https://www.radio.com, which
instead showed a static warning page indicating unavailability
for our geolocation. Ultimately, this leaves us with 8,041 sites
with any script resource, which we consider throughout our
analyses.

IV. AN IMPROVED NOTION OF DISCONNECT

In order to understand which parties are introducing code
that is incompatible with CSP and SRI, we first need to
discuss how we can reliably attribute code locality to the
varying parties that jointly contribute to the overall code base
of sites. We first highlight technical challenges that need to
be considered for collecting precise inclusion relations (i.e.,
which party includes scripts from which other parties) on
the level of single scripts. We then leverage the resulting
inclusion trees to analyze co-occurrence patterns, which serve
as heuristics for candidate hostname pairs that are likely to be
affiliated. Lastly, we discuss how we can use these patterns
in uncovering which hostnames actually belong to the same
entity using manual efforts for the final verification and how
we can quantify disconnect of code based on a holistic view
into a given site.

A. Collecting Inclusion Relations

The first step in answering our research questions is the
collection of real-world inclusions. While previous work has
already developed the first tools to capture inclusions [10], we
build upon their capabilities to address previously unaddressed
issues related to state-of-the-art JavaScript features. These
include asynchronous execution as well as incorrect attribution
of inclusions to well-known libraries. In the following, we
present how we address the shortcomings of prior works. In
the spirit of open science, our implementation will be open-
sourced as part of a lightweight analysis technique which
we coin SMURF (see Section VIII-C), helping developers
to uncover problematic inclusion decisions and allowing other
researchers to compare against our work.

1) Precisely Capturing Inclusion Relations: To capture
inclusion relations, we reconstruct which entity initiated a
particular script inclusion using call stack traces. Although
this has been by prior work [10], through modern JavaScript
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features such as Promises, call stacks can be asynchronous.
Based on the available implementations, this has not been
considered before. To address this shortcoming, rather than
relying on the stack trace available through regular Java-
Script, we resolve all preceding stack traces via the DevTools’
Debugger.getStackTrace API with the current trace’s
parentId in the arguments to get the full chain of events that
led to a given inclusion. While this change may appear minus-
cule, given the increasing language support, e.g., async/await
in ECMAScript 2017 [6], we believe this to be an important
point to consider for our as well as all future work.

2) Correctly Handling Libraries: Usually, one would tie
the notion of an inclusion’s initiator to the top-most entry of
the call stack. However, modern libraries present throughout
the top sites provide asynchronous execution functionality,
e.g., jQuery’s $(document).ready(callback). When
called, jQuery stores the function pointer to callback and
retrieves and subsequently executes the function when the
document has finished loading. This delayed execution leads
to the top of the stack being jQuery; hence, any inclusion con-
ducted by the callback function would incorrectly be attributed
to jQuery. In fact, artifacts2 published by Lauinger et al.
[10] even highlight cases in which the included jQuery script
seemingly includes further inline scripts. Manual analysis of
all the libraries (as classified by retire.js [21]) shows
that no library by itself conducts further inclusions. Given this
observation, we assume the first non-library script contained
in an execution trace to be the actual initiator. Using this
notion allows us to accurately infer the culprits behind actions,
i.e., inclusion relations and API usage, even in the case of
omnipresent libraries acting as confused deputies.

B. The Extended Same Party (eSP)

With this precise inclusion information, we can now turn
towards understanding which hostnames actually belong to
the same entity. This is necessary for two aspects of our
analyses, namely to differentiate between first and third party
(to count how many sites are affected by third parties) as
well as to differentiate between different third parties (to count
how many third parties affect a given site). In addition, this
enables us to reason about delegation of trust, i.e., when
a third party includes scripting content from another third
party, which is important to understand whether a direct
business relationship exists between a first and a third party.
Related research [9] used the notion of an eTLD+1 to dif-
ferentiate different parties; however, modern practices of first-
party CDN’s (e.g., facebook.com and fbcdn.net) or the
logical separation of content (e.g., doubleclick.net and
googleadservices.com) highlight the need for a refined
notion that does not rely on domain labels alone.

Naturally, there is no ground-truth list of all domains
belonging to a particular entity. Still, there exists a curated list
of domains belonging to the same entity [12, 13] which is used

2The jQuery in the lower-left corner at https://seclab.ccs.neu.edu/static/
projects/javascript-libraries/causality-trees/modernfarmer.com/

as part of a tool named webXray [14]. Unfortunately, we could
see that those lists frequently miss connections among two
hostnames, e.g., twitch.tv and twitchcdn.net, which
is to be expected as those lists are not explicitly crafted for our
dataset. Therefore, we need to mine our dataset for more of
such connections to attribute hostnames to entities accurately.

While clustering approaches based on TLS certificates or IP
ranges appear meaningful to achieve such a mapping, we ex-
perimentally determined that such approaches yield high num-
bers of both false positive and negatives, e.g., through shared
hosting (through Cloudflare) as well as disjunct IP ranges for
different domains of the same entity (such newrelic.com
and their CDN nr-data.net). We instead apply a semi-
automatic approach, which involves relying on the observed
inclusion relations in the wild and is complemented by a
researcher validating all results manually. This way, our ap-
proach does not yield false positives (in the sense of two
eTLD+1s flagged as belonging to the same party when, in fact,
they are not). Naturally, any such empirical analysis yields
imprecisions. However, as we show in Section V, the notion
provides a much better upper bound for the number of third
parties included in Web sites compared to relying on eTLD+1s.

As the first step, in uncovering further same-party domains,
we look for eTLD+1s that are commonly used together in
inclusions, such as doubleclick.net and googlead-
services.com. Based on the crawl data from all our crawls
(see Section III), we find combinations of two eTLD+1s with
an inclusion relation on at least 10 sites. Based on this list of
908 combinations, we manually investigate their relation. In
several cases, this is trivial, such as the example mentioned
above. In other cases, this requires additional checks, such as
for IP ranges of the involved domains, up to the manual inspec-
tion of the sites themselves (e.g., their imprints). This enables
us to find pairs like cookielaw.org and onetrust.com,
which are operated by the same entity/party.

While the previously outlined approach allows us to find
large CDN providers, it does not yet allow us to find individual
sites that have their own CDN. To find these, we analyze
our collected inclusions to see cases in which a first party
(identified by its eTLD+1) directly included content from a
different eTLD+1 (the potential CDN). For each potential
CDN, we check if it is also used on any other site we analyzed
and only consider those domains which are exclusively used
by one site. Furthermore, observations of the collected data
indicated that keywords such as img, cdn, or static were
often part of CDN domain names. Hence we exclusively focus
on domains containing them. For each combination of a first
party and potential CDN, we then again resort to manual
checks to determine if this is, in fact, a CDN. In many cases,
this is straight-forward based on the involved domain names,
such as soufun.com and soufunimg.com. In checking
individual domains to see if they are a CDN, we also observed
a notable trend, namely the fact that accessing the CDN
directly (i.e., http://sitecdn.com) would redirect us to
the main site. Therefore, we augment our manual analysis by
leveraging this observation to automatically check, whenever
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a possible CDN is discovered, if accessing it redirects us to
the main site. If that is the case, we mark it as the site’s CDN
without further manual review. By combining both techniques
to identify same-party candidates, we in total identified 2,175
site pairs for further checks, out of which 1,146 are operated
by the same entity (across all crawls). Overall, all manual
efforts combined took approximately eight person-hours, and
we make our results available as part of SMURF [28], which
we discuss in Section VIII-C. We augment our list with same-
entity entries from the most up-to-date list used by webXray
[13] as available in the Internet Archive. Doing so allows
us to find 133 additional same-party relations. Contrarily,
webXray’s list does account for 1,096 of our 1,146 found
connections meaning that it alone does not suffice for our
purposes.

1) Threats to Validity: The manual clustering approach we
chose naturally suffers from a certain limitation in missing
sites that belong to the same party. One prominent example
is Alibaba, which uses alicdn.com on a number of their
properties. Notably, though, the combination of the individual
sites (e.g., alibaba.com or alipay.com) does not occur
often enough to qualify for the first check we perform. On
the flip side, given that alicdn.com is not exclusively used
on alibaba.com, the second check also fails to detect the
relation. Luckily, these rather obvious relations of popular
sites are picked up by webXray’s list [13]. To understand the
impact of this on our heuristics (i.e., without the webXray
list), we conducted a manual spot check. Based on the total
of 183,028 inclusion relations (between different eTLD+1s)
we gathered in our first crawl, we could assign 1,434 pairs to
be originating from the same party. Of the remaining 181,594,
70,973 could be trivially shown to not originate from the same
party; merely because they were included through services
like Google’s Ad services, for which we are confident to
know all related domains3. Of the remaining 110,621 pairs,
we randomly sampled 1,000 and manually checked if they
were of the same party. In doing so, we found that only 24
pairs were actually from the same party. Given our approach
of removing the trivially obvious different parties before this
sampling, we are confident that our approximation of same-
party relations is reasonable. Thus, while our approach may
still overestimate the number of third parties for any given
Web site, it is much better compared to approaches merely
based on the eTLD+1 (as we show in Section V).

C. Holistic View on Disconnect from First Party

Besides having a clear understanding of which hostnames
belong together, we want to be able to quantify how (un)related
a particular party is to the first party. Prior work [9] used the
longest chain of inclusions to measure implicit trust; instead,
we use the shortest path observed in any inclusions from a
given party to ascertain its disconnect from the first party.

Figure 1 depicts our running example of two inclusion trees
spanning four scripting resources. We use it to introduce con-

3we conducted a spot check of around 1,000 domains classified as non-
Google domains and could not find a single false positive

Document #1
p1.com

JS 4
p3.com

JS 2
p2.com

JS 3
p3.com

JS 5
p3cdn.com

Document #2
p1.com

Fig. 1. Example inclusion trees

cepts that allow us to quantify the disconnect to the first-party
developer on the level of parties. We first focus on the left-
hand side of the graph. Here, the Web document from p1.com
(our first party) includes a script resource JS 2 from p2.com,
which in turn includes JS 3 from p3.com. Judging merely on
this inclusion chain, p3.com seems to be disconnected from the
first-party developer. However, looking at the right-hand side
document, we find p1.com directly includes JS 4 from p3.com,
meaning there is actually no disconnect. If we now turn our
attention to the inclusion of p3cdn.com, we see that it is never
included directly by the first party. Considering the eTLD+1
notion, we would flag p3cdn.com as a delegated party, as its
inclusion is merely a product of the delegated capabilities of
script inclusion to p3.com. However, if we infer that those two
sites are in fact to be considered to be the same party, then
we would report that p1.com never includes a delegated party.
This example highlights the necessity for an improved notion
of a same party as well as a means of investigating the shortest
chains to a party. In our analysis, we conduct this aggregation
for all observed documents belonging to a common root node;
e.g., if we find Facebook iframes on another site, we attribute
all inclusions within that iframe to Facebook.

For every party inside a given site, we can now calculate the
smallest number of other third parties that are scattered along
our inclusion chains for any of the hostnames that we can
associate with the given party. This allows us to holistically
quantify their disconnect from the first party and a delegated
party can then be defined as a party for which this number is
greater or equal to one.

V. MEASURING DISCONNECT ON THE WEB

Given that prior work has relied on longest chains of
inclusions and used an eTLD+1 as the separator between
parties, in this section, we study how this notion compares
to ours, which relies on shortest paths to a party and the more
fine-grained eSP notion. The data is based on the first snapshot
of our crawls from January 13, but the results generalize, as
Table VI in the appendix confirms.

A. eTLD+1 vs. eSP

In this particular experiment, we want to investigate how
our notion of eSP influences the number of different parties
that jointly contribute to one inclusion chain. Considering our
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TABLE I
SITES WHICH HAVE AT LEAST GIVEN NUMBER OF INVOLVED PARTIES IN

LONGEST CHAIN

parties 1 2 3 4 5 6 7

eTLD+1 7,643 6,589 3,578 786 137 50 1
eSP 7,628 5,124 1,451 199 19 5 0

running example shown in Figure 1, the left branch involves
two parties. For the right-hand side, depending on the notion
of a party, we have two (for the site notion) or one (for
the eSP notion) party involved. We disregard the first party,
which means that this number directly reflects the amount
of different third parties along any chain in the application.
In the example, though, as we are counting most involved
parties in any chain, the document counts as having two code
contributors regardless of the used party notion.

Table I depicts the number of sites and the corresponding
number of code contributors involved in any inclusion. eSP
counts the number of distinct code contributors according to
our notion of an extended Same Party, whereas eTLD+1 shows
the number according to prior works [2, 9, 20]. Comparing
the two notions, a clear difference becomes apparent, which
highlights the need for our refined notion. Our results show
that for our definition of an extended Same Party 7,628 sites
(7,643 for eTLD+1) have at least one additional party from
which code is included (shown as 1). This number is in light
of our successful detection of 1,146 same-party relations and
the 133 relations extracted from webXray. Nevertheless, the
majority of these sites also included actual third-party content,
explaining the comparatively low difference in numbers.

We find that 5,124 sites have pages on which a directly
included third party includes resources from another third
party (indicated by having two involved parties, 6,589 for the
eTLD+1 notion); i.e., 5,124 sites show a delegation of trust
in the longest observed inclusion chain. This is a significant
difference of 1,465 sites (18% of the sites with any Java-
Script), which would have incorrectly classified as containing
delegated inclusions if we had relied on eTLD+1. Hence, we
find that our eSP notion provides a significantly better display
of inclusion practices in the wild. However, in the following,
we highlight the necessity to holistically investigate a site
and consider all inclusions in all documents to arrive at a
meaningful understanding of trust disconnect.

B. Longest vs. Shortest Path

While investigating the extreme chains provides us with
very interwoven interactions among multiple parties, it does
not yet allow us to reason about the disconnect between the
first-party developer and the code contributor that, in the end,
runs their code in the first-party site. To provide a more
meaningful notion of such a disconnect, we resort to finding
the shortest path to any party that runs code in the site, as in
having the least amount of other third parties contributing to
the inclusion of a script from the given party as introduced in
Section IV-C. In particular, we count how many third parties

TABLE II
LEVEL OF DISCONNECT BETWEEN THIRD PARTY AND FIRST PARTY BY

LEAST NUMBER OF THIRD PARTIES ALONG ANY INCLUSION CHAIN.

parties 1 2 3 4 5 6

eTLD+1 7,643 5,807 2,215 315 43 19
eSP 7,625 3,853 750 49 6 2

are between the first and the final third party. As discussed
in the previous section, this analysis is conducted on all
documents belonging to a given root node (Tranco list entry).

Table II depicts our findings with the number of sites for
which we can find at least one representative of the party,
which depends on the number of other third parties and no
other representative being included in a shorter path. We find
that 7,625 sites for our extended Same Party notion and 7,643
sites for the eTLD+1 notion include at least one third party
and do so directly without the involvement of any other party
(meaning they are directly connected but are not the first party,
i.e., have a level of disconnect equal to one). What is more,
on 3,853 sites code originating from an implicitly trusted party
is included; i.e., an explicitly trusted third party includes code
from somewhere else, denoted as a delegated party. Moreover,
we find that 750 sites include code from parties to which trust
has been delegated twice (i.e., a delegated party included code
from yet another party). Finally, 49 sites have at least three
levels of trust delegations, and two sites have five.

Our comparative (longest chains with site notion vs. shortest
paths with eSP notion) analysis indicates that while sites tend
to exhibit highly interwoven trust chains somewhere in their
pages, considering the holistic view on the code disconnect
within a Web site, which we could gather by favoring depth
over breadth, provides a much clearer picture. When we
compare the trust approximations provided by the longest
chain and the site notion with the shortest path and the eSP
notion, which account to 6,589 and 3,853 respectively, we can
see that 2,736 (34% of our dataset) sites do not suffer from the
dangerous pattern of including parties in a delegated fashion.

And while we cannot reproduce the findings of prior work or
retroactively apply our methods to their data, our results indeed
illustrate that for the current web models of trust disconnect
would be heavily skewed when resorting to the longest path
and eTLD+1 notion.

For the following analyses, we rely on our established
notions; i.e., both for separating parties from each other as
well as to reason about delegated or direct inclusions.

VI. IMPAIRING CONTENT SECURITY POLICY

Equipped with our improved notion of parties and third
parties’ disconnect from the first party, in this section, we
quantify the impact of third parties on a site’s ability to deploy
CSP securely. CSP is primarily meant to protect against XSS.
This protection mechanism is undermined if a policy requires
the unsafe-inline and unsafe-eval keywords, which
are necessary if inline script or event handlers are used, or
strings are transformed to code through eval, respectively.
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Fig. 2. Stability of included hosts

Orthogonally, while host-based allowlists are known to be
prone for bypasses [3, 36], they are nevertheless recommended
to constrain the sources from which developers can include
code in the presence of nonces and strict-dynamic [15].
This implies that fluctuations in included hosts either break
an application or force the first party to allow wildcards such
as https://. To ease the burden on maintaining a host-
based allowlist, sites can also decide to deploy strict-
dynamic; this, however, is contingent on all included code
being compatible through programmatic addition of script
elements.

In this section, we investigate how these three aspects
of CSPs are impacted by first, third, and delegated parties.
Naturally, incompatible code does not technically prevent a
first-party from deploying a sane CSP. However, any incompat-
ibility means that specific parts of the site will no longer work,
threatening, e.g., functionality or monetization. In particular,
we consider this analysis to be an important first step in
analyzing to what extent third parties may be involved in
the lacking [1] and insecure [36] CSP deployments found
throughout top sites, which we further investigate at the end
of the section.

A. Host-based Allowlists

As prior work has shown, coming up with a host-based
allowlist for CSP is a tiring process, frequently leading to
operators simply adding the * source expression to avoid
breakage [25]. While the insecurity of such a policy is obvious,
we here aim to understand to what extend fluctuations in
included hosts play a role in first party’s struggle to achieve a
secure and functional CSP.

To keep a policy functioning without causing breakage, it
is necessary to allow content from all those hosts which are
included. Using a host-based CSP, this can be achieved by
individually allowing each host or using a wildcard to allow
all hosts belonging to a common eTLD+1 (*.domain.com).
Allowing all subdomains, however, may expose a site to
additional risks. A known bypass to the security of a CSP is to
allow sources which host a JSONP endpoint [36]. Naturally, al-
lowing any subdomain of a given domain increases the chances

of such an endpoint being allowed. As examples show4,
such endpoints are often contained on subdomains of widely-
included domains, e.g., on detector.alicdn.com.

Hence, it is desirable to keep the list of allowed hosts as
small as possible and resort to allowing all subdomains only if
need be. Fluctuations in the included hosts, though, may result
in breakage in such cases. Figure 2 shows the stability of the
involved hosts and sites over time. In particular, for each week,
it shows how many sites include code from hosts they had not
previously used (new host) and how many sites introduced
code from other eTLD+1s, requiring changes to the host-based
allowlist, or allowing the entire subdomain-tree of the new
eTLD+1s. In addition, the graph shows the numbers broken
down to those hosts/sites which are mandated through third
parties; in particular, New Third-Party Host refers to the case
where a third party introduces a new host, and New Delegated
Host refers to a third party adding a host from yet another
third party. Note that if a first party includes content from a
given host, and the third party also includes content from the
same host, this is not counted towards third-party inclusions.

In total, 5,442 sites added a new site at least once through
our experiment (relative to the sites they included in the first
snapshot). 2,977 did so because a third party included content
from a new host; of these, 2,272 had delegated inclusions,
i.e., a third party introduced code from another third party’s
hosts. Hence, 55% of all sites that need to update their CSP
(by adding an entire new eTLD+1 and its subdomains) would
need to do so because of at least one third party or suffer from
functionality breakage. Looking at the trend, we find that while
in the first week, over 2,000 sites still introduce content from
entirely unseen eTLD1+s, the number goes down to approx.
1,000-1,500 for the following weeks. Interestingly, there is no
clear downward trend in the data, implying that even in a
longer experiment, we would have observed similar numbers
for the following weeks. Notably, the introduction of sites is
necessitated by third parties in approx. one-third of all cases;
most of these are related to the introduction of sites that do not
originate from a previously seen third-party (New Delegated
Sites). Since these numbers do not contain third parties which
are added by the first party, this implies that third parties often

4https://github.com/zigoo0/JSONBee/blob/master/jsonp.txt
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add previously unseen parties to a site, requiring the first party
to update their CSP with disconnected parties.

Considering that the addition of hosts occurs even more
frequently than the addition of new sites, a site operator might
resort to allowing all subdomains of a given eTLD+1, so as
to avoid having to allow new hosts of the same eTLD+1
in the next week. Notwithstanding the danger of allowing
JSONP endpoints, having a CSP that contains entries which
are no longer needed violates the principle of least privilege.
Operating under the assumption that a site operator would
have wanted to keep their site functional and merely added all
eTLD+1s that were needed at least once in the 12-week period,
5,544/6,050 would contain unnecessary sites in their CSP at
the end of the experiment. That is to say, the vast majority
of sites would violate the principle of least privilege. Of these
5,544 sites, 4,135 would have at least one third-party-included
(i.e., delegated) host in its overly permissive allowlist.

Given this data, it seems hardly feasible to keep an individ-
ual site’s host-based CSP up-to-date. Not only is it necessary
for many sites to add required hosts or sites to their CSP,
but at the same time, a site operator regularly has to assess if
their CSP is not too overly permissive, and remove non-needed
entries. More than half of the sites that required adding a new
eTLD+1 to their CSP were sites with changes initiated by
third parties. Similarly, 4,135/5,554 (74%) sites would have to
remove a third-party site at least once during the 12 weeks to
keep their policy as strict as possible. Naturally, if an operator
decides to only allow specific hosts instead of entire sites,
there are more changes necessary. Hence, we find that third
party induced changes to the allowlists play an important role
in the maintenance cost for site operators, requiring significant
overhaul on a weekly basis.

1) Categorization of Culprits: To understand this constant
influx of newly included sites, we analyze how these new
inclusions support the first party. To that end, we utilize
Webshrinker [35] to categorize each of the eTLD+1s from
which new JavaScript was included throughout our experi-
ments starting from the second week. In particular, we resort
to the label with the highest-ranking score to flag an eTLD+1.

Table III shows the most prevalent categories for our entire
analysis period, both in terms of inclusions that were caused
by either party, as well as for third parties in particular.
Not surprisingly, we find the biggest culprit to be IAB3
(Business), which overlaps with IAB3-11 (Marketing) and
IAB3-1 (Advertising); i.e., most of the newly introduced
sites are related to advertisement. Considering only eTLD+1s
that were added by third-party code, 1,325 sites had a least
one new inclusion from an ad-related site. The second large
cluster of introduced eTLD+1s is related to technology &
computing; this category subsumes services that offer email
(e.g., newsletter delivery) or chat integrations. IAB25-WS1
contains sites like gstatic.com or nr-data.net, i.e.,
it subsumes cases of content distribution. Overall, we can
say that the ad ecosystem appears to be the driving factor
behind the influx of new eTLD+1s in most sites. However,
there exist also other fundamental building blocks included in

TABLE III
CATEGORIZATION OF SITES ADDED OVER TIME

affected sites
Category all only TP

IAB3 (Business) 2,864 1,325
IAB19 (Technology & Computing) 2,790 725
IAB25-WS1 (Content Server) 1,798 813
IAB25 (Non-Standard Content) 889 284
IAB14 (Society) 758 208

modern Web sites, which cause the introduction of new sites
throughout our experiments.

2) Code Location Drift: Naturally, the vast influx of new
hosts and eTLD+1s into a significant fraction of our inves-
tigated sites begs the question of whether or not this is an
artifact of recent findings of Vastel et al. [32]. They were able
to show that ad providers are frequently using new hosts to
evade filter lists. In particular, we could see that the largest
culprits behind the influx of hosts appear to be ad-related. To
understand whether this observation is merely a side effect of
the evasion techniques performed by ad providers or whether
there is actual new code being included from these newly
introduced hosts, we set out to analyze whether we can find
evidence for code drifting from one already included host to
a freshly included one across our analysis periods.

For each site, we checked all scripts included from newly
introduced hosts. We then checked all previous snapshots to
determine if the same script (based on its SHA256 hash) was
previously found on a different host and included by the site.
In doing so, we found that over the entirety of our dataset, 220
sites had at least one script moved to a new host. More notably,
this only affected 814 scripts over all snapshots. Putting this
into the perspective of 10,271,782 unique scripts just in the
final snapshot, the number of newly added hosts as part of
code drift (w.r.t. hash-equal scripts) is minuscule.

Overall, this means that only a tiny fraction of newly
introduced hosts can be explained by code drift. On the
contrary, we argue that when we see new hosts being added
to a site that this also means that new code is added. We can
conclude that the vast majority of changes cannot be attributed
to filter list evasion techniques and that the artifacts that we
measured highlight the general evolution of sites over time,
which is a major hindrance for host-based allowlists.

B. Necessary Unsafe Keywords

Next to the struggle of maintaining host-based allowlists, a
second major issue to the security of a CSP is the usage of
compatibility keywords, namely unsafe-inline to enable
inline scripts and event handlers, as well as unsafe-eval to
allow the usage of eval. While the former is always a serious
issue, eval has its use-cases, e.g., for local code caching and
execution. However, its usage has been discouraged by prior
works [24], and the CSP authors’ choice to disable by default
underlines its security impact.

Given these insights into the keywords we want to avoid in
a CSP, we conduct a hypothetical what-if analysis, assuming
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TABLE IV
SITES WHICH NEED TO USE UNSAFE DIRECTIVES

unsafe-inline unsafe-eval
total handler script total

mandated by any 7,667 6,879 7,650 6,334

mandated by first party 7,643 4,972 7,618 4,424

mandated by third party 6,041 5,977 3,601 4,911
- only third party 24 1,907 32 1,910
- multiple third parties 4,573 4,446 1,663 2,943
- delegated parties 1,299 1,251 287 946
- only delegated parties 0 14 0 51

that all first-party developers wanted to deploy such a policy
without any compatibility modes and determine to what extent
the different stakeholders provide code that is incompatible
with such a policy. To that end, we need to measure when a
script uses eval, which automatically necessitates unsafe-
eval. For unsafe-inline, we need to monitor access
to the DOM through APIs like document.write and
innerHTML; however a mere access is not yet a compati-
bility issue for CSP. Rather, this behavior only causes issues
when used to write additional script tags, or when defining
HTML-based event handlers. To measure the behavior of the
scripts divided by our different stakeholders and analyze their
interaction with security-sensitive functionality, we resort to
in-browser hooking of the APIs in question. Together with
with our reporting mechanism, these hooks allow us to store
the execution trace for each API access and attribute each
call to a party. While there are ways for sites to detect such
hooking, we do not believe this to be a major threat to validity
(in the worst case, it provides us with lower bounds).

Table IV shows the results of our analysis concerning the
functionality used by first-, third-, and delegated-party code,
which, in its current form, requires either one of the insecure
directives. Since unsafe-inline is required if either inline
scripts or HTML event handlers are used, we show those
numbers both separately and in sum.

a) unsafe-inline: For unsafe-inline, we find
that 7,667 of our 8,041 analyzed sites have code constructs that
require this insecure directive, with the vast majority requiring
it due to the usage of inline script elements. Out of those,
7,643 would have to deploy unsafe-inline anyways due
to their own incompatible code (7,650 due to inline scripts,
and 6,879 due to event handlers). Besides, we find that 6,041
sites make use of third-party code, which requires unsafe-
inline to work. Therefore, even if a first party could rid
itself of event handlers and inline scripts, those sites would
be hindered by third parties from deploying a CSP without
the unsafe keyword. While this seems like a big ask, it
is feasible for first parties to deploy a nonce-based policy,
enabling them to allow all their inline scripts; event handlers,
however, cannot be allowed this way. Considering only those
2,671 sites with first-party inline scripts, but without first-
party event handlers (not shown), we find that third parties
would induce incompatibilities in 1,903 (71%) of them, which
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Fig. 3. Sites that require unsafe keywords by multiple third parties

prevents them from a sane CSP even if the first-party made
all their code compliant.

Hence, the logical next step in securing a first-party site
would be to convince the included third parties to update
their code to no longer require unsafe-inline. As the
table shows, 4,573 sites have more than one third party, which
hinders them from deploying CSP without unsafe-inline.
Additionally, 1,299 sites are hindered through delegated par-
ties, i.e., contributors with which they have no direct relation.
Figure 3 shows how many sites have incompatibilities with
a sane CSP that stem from how many third parties, i.e., how
many parties would need to change their codebase to allow for
a breakage-free CSP without unsafe keywords. Unfortunately,
more than 2,000 sites (25% of our dataset) would require the
cooperation of at least five other parties. There also exists a
rather long tail involving still more than 500 sites with ten or
more contributors.

b) unsafe-eval: For eval, the results differ slightly.
Overall, 6,334 sites could not deploy a policy without
unsafe-eval without breakage. In this case, 4,424 (70%)
are making use of eval in first-party code, and 4,911 (78%)
through third-party code. Thus, 1,910 sites cannot deploy a
policy without unsafe-eval exclusively because of third
parties. Even if all sites removed eval from their own code
base, 2,943 would have to convince more than one third party
to do the same (as shown in Figure 3). Similar to unsafe-
inline, we observe a long tail as well, requiring 292 sites
to convince more than ten third parties to remove their usage
of eval to rid the first party’s CSP of unsafe-eval.

c) Categorization of Culprits: Combining the blockage
through inline scripts, event handlers, and usage of eval,
6,377 sites include third parties that mandate either unsafe
keyword. To better understand how these parties relate to
the business needs of the firs party, we categorized all third
parties that require compatibility modes, again relying on the
results from Webshrinker. Here, we use the first category that
is associated with any of a party’s eTLD+1s. Table V show
the results of this categorization, indicating how many sites
are mandated to use unsafe-inline, unsafe-eval, and
at least one mode per category. We find that business is
the most prevalent category for both compatibility modes,
again likely relating to advertisement. While IAB19 is again
second (as it was for inclusion of remote content), IAB14
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TABLE V
TOP CATEGORIES OF PARTIES THAT REQUIRE UNSAFE KEYWORDS

unsafe- unsafe-
Category inline eval either

IAB3 (Business) 3,257 2,235 3,530
IAB19 (Tech. & Comp.) 1,918 1,472 2,717
IAB14 (Society) 1,340 76 1,372
IAB25-WS1 (Content Server) 598 895 1,236
IAB3-11 (Marketing) 633 536 794

(Society) is third-most prevalent overall, yet primarily for its
usage of inline scripts/event handlers. Taking a closer look
at the data, we find that this is caused Twitter, whose scripts
from platform.twitter.com alone are responsible for
1,294 sites that require unsafe-inline. The results for
this analysis paint a similar picture for the one of included
host, confirming the long-held beliefs that the advertisement
industry hinders CSP deployments with empirical evidence.

It is worth noting, though, that simply blaming the ad
industry is unfair. While their code contributes to many
incompatibilities, we find that removing the categories related
to advertisement, 6,213 sites contain other dependencies that
require the unsafe keywords. This highlights that simply
convincing the ad industry to programmatically add scripts
and event handlers as well as stop relying on eval does not
suffice, but rather a coordinated effort of virtually all third-
party content providers is necessary to remedy the situation.

C. strict-dynamic

As indicated in Section VI-A, the parties and hosts included
in the sites we analyzed fluctuates significantly over time. This
observation unveils issues of approaches such as CSPAuto-
gen [22], which rely on a fixed set of hosts to generate the
CSP. As outlined in Section II-B, strict-dynamic was de-
veloped to alleviate this burden, enabling trusted scripts to pro-
grammatically add additional scripts. Specifically, this means
that all scripts must be added via the programmatic creation
of script elements (through document.createElement)
and the programmatic addition to the DOM (e.g., through
element.appendChild). Based on our crawl, in which
we collected information about how scripts are added at
runtime, we find that only 1,414/8,041 (18%) sites would be
hindered from properly using strict-dynamic due to third
parties not adhering to this paradigm when adding additional
scripts. Unfortunately, using strict-dynamic mandates
the usage of nonces or hashes, which in turn means unsafe-
inline is ignored. And while it is feasible to attach nonces to
inline scripts or allow them through their hash, event handlers
cannot be allowed in this fashion. The only solution for
these issues is to use unsafe-hashes [34], yet another
compatibility mode. Looking back at Table IV, specifically
at third-party induced inline event handlers, 5,977 sites could
not use strict-dynamic without losing the functionality
provided by these handlers. We only find 1,894/8,041 sites
without third-party event handlers and where third parties

only programmatically add scripts. Hence, the remaining
6,147/8,041 could not deploy strict-dynamic.

To conclude our hypothetical scenario, we have seen that
even if developers would want to get rid of the compatibility
modes, for 6,041 and 4,911 sites, respectively, they would need
the cooperation of at least one code contributor, and most
likely even multiple ones. We have seen instances in which
those contributors are even included over trust delegations,
begging the question of whether there is even an incentive for
these parties – given the lack of a direct business relation –
to change the codebase. This inability imposed by the sites’
business needs is particularly problematic given recent ideas of
requiring security features, e.g., a strict CSP, to allow the site
to access newly introduced browser APIs [18] or even disallow
existing APIs to be used given the lack of the respective
security feature. While such changes would force developers
to act and deploy security mechanisms, our analysis shows
that this would still require the cooperation of other parties
and can only be tackled by all the stakeholders involved in
the Web platform.

D. Real-World Impact on Deployed CSPs

To understand if our hypothetical scenario can be founded
by empiricism, we now turn to analyze the policies which
we encountered during our crawls. Out of the investigated
8,041 sites we found 1,052 to be using a CSP with either
default-src or script-src, meaning that they make
use of CSP’s functionality to restrict which scripts end up
running within their sites. Out of those 1,052 sites, 1,006
incorporate unsafe-inline without nonces or hashes. We
found that 707/1,006 sites have third parties that introduce
inline scripts. Notwithstanding necessary changes to the first-
party code, this means those sites are bound to use unsafe-
inline to preserve functionality due to third-party code.
Confirming our insights from Table IV, all of those besides
one site, though, also have inline scripts in the first-party code.
In addition, 860 sites make use of unsafe-eval. Of those,
540 are partially hindered due to third parties, and 174 solely
due to third parties, i.e., first-party code did not use eval.
These results not only confirm that over 95% of policies are
insecure [36], but more importantly that between 63% (for
unsafe-eval) and 70% (for unsafe-inline) of all sites
have third parties that require the unsafe keywords, making
policies trivially bypassable.

VII. IMPAIRING SUBRESOURCE INTEGRITY

An orthogonal threat to XSS is the compromise of widely-
included resources. By default, external scripts are only re-
ferred to by their URL. Hence, if an adversary manages to
compromise the network link to such an external resource or
the server hosting it, they can freely change the content to
include malicious code. As outlined in Section II-C, SRI is
meant to provide a site with enhanced control over external
scripts, through the unambiguous specification of the script
code’s expected hash. Arguably, this may not be desired by
the third party (e.g., to avoid breakage when a new version
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of an advertisement library is released). However, for the first
party, this is the only viable option to ensure their included
resource has not been changed in a malicious fashion.

As we have shown in Section V, Web sites extensively rely
on third parties to provide functionality. However, this in turn
widens the attack surface of the including application, since
it needs to rely on all included parties remaining uncompro-
mised. To ensure that a third-party compromise does not have
an adverse effect on their application, it is in the first party’s
best interest to pin as many third-party scripts as possible.
In the following we, use our eSP notion to identify third-
party scripts and examine to which degree SRI deployment is
feasible to mitigate compromised inclusions.

A. Feasibility of SRI Enforcement

Since our crawlers collect not only the links to included
resources, but also their content, we can ascertain which
scripts are unstable, i.e., return different content for subsequent
requests. Specifically, we analyzed our first snapshot from
January 135, and extracted all those scripts that within a
single crawl (which takes less than 12 hours) returned different
content under the same URL. Figure 4 shows the number of
sites that have at least one third-party script with changing
content. We find that this pattern occurs frequently, with 4,358
sites including such an instable script. The graph also indicates
that there is a large body of sites on which there are numerous
dynamic scripts. In the long tail, there are 200 sites with 15
such inclusions, and 132 with at least 20.

Table VII in the appendix shows the 20 most commonly
occurring scripts. We compared the different versions of the
scripts and found that the seven scripts related to Facebook
merely differ in a comment that indicates the JIT compile
time. In this case, the change does not alter functionality, and
the most widely used script alone affects 789 applications,
which cannot SRI-pin the included SDK script. Similarly,
for Amazon, we found that their ad script was unchanged
except for a recompilation, which caused a new comment
with a timestamp as well as randomized identifier names. For
the files related to Google (Youtube, Ad Services, their API
platform), the observed changes were related to versioning;
in these cases, the included script would merely add the
latest version of another script. While this makes sense from

5We checked other snapshots and the January 13 results generalize

a functionality point of view, as site operators never have
to update their inclusion URLs, it nevertheless makes SRI
deployment impossible. Arguably, though, the level of security
for these high-profile companies may suffice to ensure the
integrity of the scripts; in addition all of them were loaded
over HTTPS, rendering a man-in-the-middle attack infeasible.

To also assess the effect of less prominent contributors on
SRI feasibility, we exclude any script from an eTLD+1 from
which the top 20 changing scripts originate. Figure 4 also
shows the result if we disregard scripts from those hosts.
Here, we find that 3,530 sites include at least one scripting
resource which changed its content within one crawl. This
means that 828 applications could enable SRI if only the top
players would fix their content. Yet, the majority of sites could
still not deploy SRI for all their third-party inclusions, having
to hope their included parties do not suffer a compromise.

1) Programmatically Enforcing SRI: When looking at the
average number of different versions for a script under the
same location, we found around twelve distinct versions within
a snapshot. While SRI does not permit to have multiple
integrity tags, assuming that this set of script variants is finite
and stable, one could resort to programmatically trying to add
a given script with all its possible hashes until one inclusion
succeeds; essentially allowing the twelve different hashes for
a dynamic script.

Looking in more detail at the findings from Figure 4
for such domains with five dynamic scripts, 1,197 fit that
bill. Hence, those applications would, on average, need to
incorporate around 60 different hashes to account for all
possible script hashes which we could observe. There is a
particularly long tail with 132 applications requiring around
240 different hashes solely to allow for the dynamic scripts.
To even attempt curating such a list, the first party would need
to be informed about any changes in third-party scripts in real-
time. This also mandates that the first party can vet any such
change in real-time and subsequently incorporate the changes
(be it additions or deletions). Given that this seems to be a
highly unlikely scenario, we find that SRI cannot be used to
constrain the behavior of third-party script resources on the
current Web.

2) Undermining SRI Through Additional Inclusions: Be-
sides non-stable script resources, a second hindering factor
for comprehensive, site-wide SRI deployment for third-party
scripts is subsequent script inclusions done by these scripts.
As the first party has no control over this subsequent script
inclusion process, it also has no way to enforce SRI pinning
for the additional scripts. Within our dataset, out of the 7,643,
which include code from third-party entities, 3,276 sites only
include stable, hence SRI-compatible scripts. Of those, 2,780
are subject to at least one further script inclusion conducted by
a pinnable third party. Thus, the overall number of sites, which
hypothetical could leverage SRI to ensure only security-vetted
scripts, comes down to merely 496.
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B. SRI in the Wild

As the DevTools Protocol provides no API that allows for
retrieval of information about a specific script’s SRI usage
we need to obtain this information from the DOM directly.
We utilize a MutationObserver, which allows us to record
changes on any DOM nodes during execution. We register
this observer before the page is parsed, allowing us to capture
all script additions. Whenever we observe that a script with
the integrity attribute is introduced, we log this to our
database.

While SRI is used on a total of 1,562 sites, we found
that 626 of these only used SRI to pin popular libraries,
virtually all of which were jQuery or Bootstrap (in line with
what Chapuis et al. [4] found). We attribute this fact mainly
to the inclusion advice on the homepages of both projects,
which supply HTML code snippets already, including the
integrity attribute. Since these applications exclusively
use SRI on library inclusions, we suspect that developers
merely use this mechanism by accident. For other libraries
(as indicated by retire.js), we could not find such hints
which explains their lack of SRI pins.

Of the remaining 936 sites, another 22 only pinned first-
party resources, which, in terms of content restriction, does
not provide any security improvements for the first party. If
an attacker would be able to change the pinned resource, they
would most likely also be able to change the associated pin,
since according to our notion of an extended Same Party, the
two resources are both hosted by the same entity. This leaves
us with 914 sites on which SRI was actively used to ensure
the integrity of a third-party resource.

On 67 sites, we found that an SRI-pinned script included an-
other script without adding an integrity attribute. This subverts
the desired effect of SRI, namely to restrict what script code
is loaded to what was vetted by the developer. Essentially,
an attacker compromising the third party can tamper with
the indirectly included script. Furthermore, in 52 cases, the
unpinned inclusion belonged to a different party. Essentially,
this means that the first-party pins are meaningless, as an at-
tacker can compromise the indirect inclusions. While the lack
of understanding of the SRI mechanism has been documented
by Chapuis et al. [4], this gives rise to reconsidering how SRI
is supposed to operate, e.g., warning a developer through the
console that a pinned script conducts an unpinned inclusion.

VIII. DISCUSSION

The Web’s success is largely based on a first party’s
ability to focus on their core business needs, while relying
on third parties to provide additional functionality. As we
have observed, 95% (7,628/8,041) sites in our dataset rely
on at least one third party. However, this reliance on others
also means that the first party may be significantly impaired
in deploying critical security mechanisms like CSP and SRI.
In our work, we underline the community’s long-held belief
that third parties may be major roadblocks to security header
deployment by showing that even if all first parties were to
update their own code, the majority would still need to resort

to unsafe policies or break third-party functionality. While it is
a big ask for the first party, there is little incentive for them to
start the process on their own code if third-party functionality
necessitates unsafe keywords or induces breakage.

For CSP, we find that given the significant fluctuation in
included hosts (both by first and third parties) makes a work-
ing, yet secure host-based allowlist infeasible. We could show
that 74% of all sites would have to remove sites introduced by
third parties from their CSP to keep it as tight as possible. On
the flipside, 50% of all sites with fluctuations are required to
add sites at least once in our 12-week experiment through
inclusions by third parties. Looking at the situation w.r.t.
to unsafe keywords, the situation is even more dire; even
if first parties were to remove all their usage of eval and
inline JavaScript, around 78% of our dataset would require
either unsafe keyword because of third parties which rely on
them. Importantly, while the notion of strict-dynamic as
proposed by Weichselbaum et al. [36] could alleviate some of
the problems of ever-changing inclusions, a majority of sites
with third-party code could not deploy it. This is because
of the adverse effect of inline event handlers, which cannot
be allowed through hashes or nonces. strict-dynamic,
however, requires trusted scripts to be allowed through hashes
or nonces, meaning a majority of the sites with third-party
code could not deploy it without breaking the third-party
functionality. Given that sites heavily have to rely on third
parties for monetization (be it through ads or reach via social
networks), they either have to leave their sites insecure or
attempt to rely on other parties to deliver the same service
as the incompatible ones. Specifically, for advertisement, to
understand if first parties could not simply switch networks, we
analyzed all parties which own at least one domain related to
advertisement (according to Webshrinker) and were included
by at least 1% of our dataset (i.e., 100 sites). This yielded
a total of 26 parties, out of which only a single one would
not impair the first party in deploying a CSP (i.e., does not
require unsafe-eval or unsafe-inline and does not
break with strict-dynamic). This was digitru.st, which
is not primarily serving ads, but rather helps multiple ad
companies synchronize tracking identifiers. This implies that
unless large ad networks generally adhere to CSP-compliant
coding practices, first parties are left in a no-win situation
where they can either have revenue loss or insecure CSPs.

As far as SRI is concerned, we stipulate that while not all
resources should necessarily be pinnable, third parties should
avoid making them unpinnable through technically unneces-
sary randomization. In particular, the example of Facebook
shows that merely due to comments in the JavaScript file,
SRI is rendered inapplicable. As our analysis in Section VII
has shown, relying on programmatic cycling through observed
hashes of a given external resource is also infeasible due to the
large number of third-party inclusions and the average number
of different versions returned when requesting the same URL.
All this data is only based on a single snapshot, for which
the dynamic nature is even more surprising, given that one
crawl only takes around 12 hours. In addition, our real-world
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analysis showed that SRI-pinned scripts might themselves in-
clude additional scripts without SRI; meaning that an attacker
may simply compromise the delegated inclusion to attack the
SRI-pinning site.

A. Call to Action for Third Parties

Third parties are in a unique position to affect the Web’s
overall security. As it stands now, they are a major roadblock
to the deployment of promising security measures like CSP.
Especially regarding the programmatic addition of scripts,
the necessary changes in the codebase are minimal. While
removing the reliance on event handlers and inline scripts
may be significantly more engineering effort, widely-included
third parties have a massive amplifier; i.e., they can affect
hundreds of sites’ ability to deploy CSP. While especially
the largest vendors can hardly be compelled to change their
functionality to be CSP-compliant, we nevertheless call on
them to adopt best practices and lead by example to ensure
that a wider-spread adoption of CSP is even feasible. It is
worth noting here that we discovered scripts from Twitter
to be a CSP roadblock for around 1,300 sites, forcing sites
to deploy unsafe-inline. Interestingly, their own CSP is
nonce-based, which would be incompatible with the code they
provide third parties. Hence, if third parties vetted the code
they provide to others as much as the one they run themselves,
the situation could quickly be remedied.

Furthermore, as far as SRI is concerned, we found that
many third parties make their scripts incompatible with SRI
for no good reason, e.g., through having a comment with the
timestamp in the response. Given that a single compromised
CDN poses a grave threat for hundreds of sites, we urge third
parties to make every effort to have SRI-compatible scripts.

B. Call to Action for Browser Vendors

Browser vendors move the Web’s security forward by
implementing novel security mechanisms. For example, while
the recent choice of Chrome to make cookies same-site by
default [5] may result in breakage, it largely solves prob-
lems such as CSRF, XSSI, or Clickjacking. As proposed
by Google’s Mike West, vendors may consider hiding new
features behind the deployment of security mechanisms [18],
such as sane CSP. While this has its upsides in ensuring that
newly developed code that wants to use these new features
has to be built in a CSP-compliant fashion, it may also have
an adverse affect on existing applications. In particular, if
third parties cause compliance issues, the first party cannot
use the new features. Hence, while we support such incentive
structures, they should be deployed in line with mechanisms
such as First-Party Sets [8]. In this way, code from first
parties could be allowed to access the new APIs without
having to deploy a sane CSP, whereas for third parties access
is only granted if a sane CSP is deployed. As Web sites
rely on their third parties for monetization, the first-party
developers then also have incentives to address their own
incompatibilities, leading to an overall more secure Web.
Furthermore, given SRI’s inflexibility to deal with structurally

equivalent code with differing values, browser vendors should
consider adopting more relaxed pinning strategies such as the
one proposed by Soni et al. [26].

C. Developer Support: SMURF

In an ideal setting, every third-party script could provide a
security manifest, similar to browser extensions, that declara-
tively states the component’s security impact. In early steps for
such a measure, this could, e.g., start by simply stating which
domains may be involved in any inclusion or contain proposals
for a CSP which supports the component’s functionality needs.
However, until such a point is reached, we make the most
important components of our toolchain available as part of
SMURF [28]. With this, developers can analyze their sites to
a) understand how inclusions relate to each other, enabling
them to untangle which host introduced certain code into
their site. In addition, it b) allows to monitor the behavior of
all included code to understand if it causes incompatibilities
through the usage of eval or unsafe script additions. If used
during development time, this enables the first party to gain
key insights into the security roadblocks which may be caused
by including third parties, potentially allowing them to choose
another vendor with similar functionality early on.

IX. LIMITATIONS

Our work relies on several assumptions about entities on
the Web and their incentives. We argue that a party should
be defined by the business entity that operates its eTLD+1.
For bigger companies, such as Google, there likely are dif-
ferent teams for individual products (such as Youtube or
Doubleclick), and hence, multiple teams would have to adjust
their coding practices. Nevertheless, a major player such as
Google could globally decide to adhere to more compatible
coding standards. Furthermore, our heuristics aim at identi-
fying co-occurrence patterns, which we use to manually draw
connections between two hostnames if they belong to the same
business entity. Even though such an approach is meaningful to
differentiate between first and third parties and among different
third-parties, it should not blindly be used in other domains.
In particular, we do not want the main site and its sandbox
domain to be treated the same under the SOP, which would
severely threaten the integrity of the main site. Nonetheless,
our approach allows us to investigate the number of players
(including the first parties) currently hindering a wide-spread
adoption of security mechanisms. Another clear limitation
of our approach comes from the imperfection of our used
heuristics, as outlined in our experiment in Section IV-B1.
While our manual analysis (which we assume to be correct
given our diligence) does not yield false positives (i.e., flag two
domains from different parties as same-party), it does yield
false negatives. Prominently, this was the case for Alibaba’s
CDN and 2.4% of the 1,000 manually sampled inclusion pairs.
Hence, we may still incorrectly associate first-party behavior
with a third party when relying solely on our heuristics paired
with manual vetting, yet believe this number to be small
enough given the error rate derived through our sampling to
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be reasonably used on their own. For our used notion of an
eSP, we have augmented the same-entity pairs found by us
with relations from curated lists containing hostname to entity
mappings available online [13], to enhance the precision of
our results further. Unfortunately, we could show that solely
relying on such lists does not suffice for our use-case.

Second, our hypothetical analysis assumes that a first party
wants to deploy CSP in the first place. However, the site
in question may not have any user-specific data, making an
XSS attack less damning. Furthermore, we do not imply that
a first party would deploy CSP right away after all of its
third-party resources are compatible. As shown by Roth et al.
[25], even high-profile sites like Flickr struggle for years with
their deployment. However, the task is made even harder if
the first party needs to convince its third parties to produce
compliant code or switch third-party providers altogether.
Similarly, for SRI, we analyze its deployability from the first
party’s standpoint, who may want to pin all of its resources.
This may be in stark contrast to what the third-party provider
wants to do, as they may want to disallow SRI usage to enable
the seamless rollout of new library versions.

Third, our manual approach to grouping eTLD+1s that
belong to the same party makes it hard for others to build
on our results. Unfortunately, our attempts at automating this
process proved to produce incorrect results (both in terms of
false positives and negatives). To allow others to build on our
work, we release the labeled set of same-party domains as
identified by our work [28].

Finally, our analysis focuses on the top 10,000 Web sites
and may not be accurate to represent the entire Web. We favor
depth over breadth since our research relies on a holistic view
of the checked sites. In addition, the longitudinal aspect means
that lower-ranked sites that go offline could significantly skew
the data. Nevertheless, it may well be the case that lower-
ranked sites include incompatible code less often. We still
believe that the process of deploying CSP and SRI (even for
lower-ranked sites) would be eased significantly if the third
parties of the major sites we analyzed in this paper would
adhere to compliant coding practices.

X. RELATED WORK

CSP & SRI: Content Security Policy has been the subject
of many studies over the years. In 2014, Weissbacher et al.
[37] conducted a longitudinal analysis of CSP deployment,
showing virtually no adoption. While follow-up studies from
Weichselbaum et al. [36] and Calzavara et al. [3] indicated an
increase in CSP deployment, they both independently showed
the vast majority of policies are insecure. Most recently,
Roth et al. [25] analyzed the historical evolution of CSPs
for 10,000 sites, documenting how site operators struggle to
secure their CSPs, and often either give up entirely; or fall
back to trivially bypassable policies. While attempts have
been made to ease the deployment of CSP through automatic
generation [22], this has also not caused a significant uptick.
Regarding SRI, Chapuis et al. [4] conducted a longitudinal
analysis of SRI deployment. While their results indicate an

increasing deployment, they more importantly document this is
mostly related to widely-used libraries such as jQuery having
example code with SRI.

While our analysis cannot conclusively point the finger at
third parties, we documented that even in case a first party is
willing to make the effort to secure their site with CSP and
SRI, they are blocked by third parties. Especially for CSP, we
believe this explains the lack of deployment and struggle to
deploy a meaningful policy for existing applications. Our work
is the first to specifically document the incompatible behavior
exhibited by third-party code, impairing CSP deployment.
Furthermore, for SRI we highlight that in particular scripts
with a high reach (such as Facebook with almost 10% of the
sites in our dataset) are often incompatible with SRI due to
minuscule, random modifications.

Script Inclusion Practices & Third-Party Analyses: The
security impact of third parties has been the subject of research
since at least 2012. Back then, Nikiforakis et al. [20] measured
the script inclusion behavior of the Top 10,000 Web sites
showing that first-party inclusion decisions can vastly impact
the security of the including site. While this study examines
the included resources based on their origin, work from Yue
and Wang [38] also investigated the structural properties of
dynamically added code. Kumar et al. [9] started to focus
more on the structure of such script inclusions and introduced
the concept of implicit trust. They furthermore show that a
quarter of the top 1 million sites are blocked from deploying
HTTPS due to their inclusions. The risks of including outdated
libraries were analyzed by Lauinger et al. [10], showing that
37% of the top 75,000 sites include at least one library con-
taining a vulnerability. The dangers associated with malicious
links contained in such inclusion chains were highlighted by
Arshad et al. [2]. To tackle this problem, they proposed an
in browser-solution detecting malicious links, thus, protecting
end-users. In 2019, Ikram et al. [7] investigated how often
malicious inclusions happen over implicit trust relations in the
Alexa top 200,000. Based on their longitudinal analysis, they
find that 95% of included parties carry over to the next day.

All of these works have made assumptions about parties
based on eTLD+1s. While the impact of our findings is limited
for the work from Nikiforakis et al. [20], all other works
have reasoned about indirect or delegated trust; meaning that
our findings indicate their over-approximation of the problem
space. We note again that our analysis has revealed that had
we taken the old notion of trust delegations (longest chains
and eTLD+1), we would have incorrectly flagged 34% of our
dataset as having delegations, where there are actually none.
Hence, we highlight the need for a careful analysis of involved
parties, and to move away from eTLD+1 as an indicator.

With respect to detecting third-party hosting, Matic et al.
[16] proposed to use RDAP information about the resolved IPs
of sites as well as information extracted from the startpages to
detect hosting environments. In particular, they investigate if
a given site is self-hosted or via a CDN/third party. We exper-
imented with automated clustering based on common names
of TLS certificates and the IP ranges of involved domains.
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However, both approaches yielded imprecise results, both in
terms of missing connections (such as newrelic.com and
their CDN nr-data.net) as well as incorrect clusters (such
as different parties hosted by Cloudflare). The same restriction
applies to the approach of Matic et al. [16]. Hence, while
our manual clustering does not necessarily catch all parties
correctly, it does not draw false conclusions by grouping
domains that do not belong together.

XI. CONCLUSION

In this paper, we analyzed to what extent first parties, who
are willing to change their own code base, can meaningfully
secure their sites through CSP and SRI. Based on our new
notions of the same party and delegation of trust, we found
that third parties are major roadblocks for security. For CSP,
they often introduce new delegated hosts, requiring the first
party to potentially add entire eTLD+1s to their policies. At the
same time, the fluctuation in included parties means that the
first party needs to continually remove entries from their CSP
to maintain the principle of least privilege. Furthermore, third
parties play a major role in necessitating unsafe-inline
and unsafe-eval, both in our hypothetical analysis as
well as in the wild. And while updating the host-based CSP
could be eased by the deployment of strict-dynamic,
third parties provide code that is incompatible either due to
parser-inserted script addition or through using inline events.
Regarding SRI, we find that high-profile parties often random-
ize minuscule parts of their scripts, which actively hinders
pinning. What is more, real-world evidence shows that pinned
scripts often include unpinned code from additional, delegated
sources, undermining the entire security of SRI.

Arguably, first parties have a significant task ahead in
ensuring their own compatibility, especially with CSP. How-
ever, even having done so, the majority of them are unable
to outsource non-core business needs and deploy security
mechanisms at the same time. This leaves them in a no-
win situation in which either security can be enforced or
functionality preserved. While the former would require them
to implement all functionality themselves, choosing the latter
leaves them subject to security-sensitive decisions taken by
third parties, which themselves face no repercussions when
providing code that is incompatible with security mechanisms.
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TABLE VI
RESULTS OVER OUR COMPLETE ANALYSIS PERIOD FOR OUR NOTION OF AN ESP. WHILE WE CAN SEE THAT THE OVERALL TRENDS REMAIN STABLE

THERE APPEARS TO BE A GENERAL DOWNWARD TREND OF THE SPECIFIC NUMBERS. THIS CAN BE MOSTLY ATTRIBUTED TO A NUMBER OF APPLICATION
TO WHICH WE CAN NO LONGER CONNECT DURING OUR ANALYSIS PERIOD.

Date 0 1 2 3 4 5 6 7 8

longest chains

20200113 8041 7628 5124 1451 199 19 5
20200120 7943 7530 5039 1421 195 18 4
20200127 7897 7487 5028 1411 190 15 5
20200203 7872 7457 4988 1400 207 22 6
20200210 7513 7086 4632 1219 152 17 6
20200217 7867 7438 4990 1370 195 19 5
20200224 7761 7339 4873 1314 165 13 5
20200302 7728 7295 4835 1291 159 16 6
20200309 7910 7496 5047 1429 200 19 6 1
20200316 7742 7322 4896 1408 206 22 6 1
20200323 7899 7493 5025 1447 216 23 5 1
20200330 7855 7463 4991 1415 214 21 4

shortest path

20200113 7634 3899 762 50 6 2
20200120 7538 3818 738 66 6 2
20200127 7495 3806 743 69 7 2
20200203 7466 3642 713 66 6 2
20200210 7097 3497 678 63 7 2
20200217 7450 3788 739 65 5 2
20200224 7348 3664 702 53 4 1
20200302 7304 3430 612 41 6 2
20200309 7496 3740 727 67 9 3 1
20200316 7322 3691 719 67 7 2 1
20200323 7493 3774 724 62 6 2 1
20200330 7463 3731 725 70 8 1

TABLE VII
MOST COMMONLY INCLUDED THIRD-PARTY SCRIPTS THAT CHANGED THEIR CONTENT DURING OUR STUDY. TABLE SHOWS THE NUMBER OF AFFECTED

APPLICATIONS AND THE AMOUNT OF DIFFERENT SCRIPT HASHES THAT WE COULD OBSERVE TO BE SERVED UNDER THE RESPECTIVE URL.

script location affected sites versions found
https://connect.facebook.net/en US/sdk.js 789 245
https://www.googletagservices.com/tag/js/gpt.js 641 91
https://securepubads.g.doubleclick.net/tag/js/gpt.js 336 69
https://sb.scorecardresearch.com/beacon.js 276 3
https://connect.facebook.net/en US/all.js 186 177
https://www.googleadservices.com/pagead/conversion async.js 142 71
https://pagead2.googlesyndication.com/pagead/show companion ad.js 109 37
https://www.google.com/recaptcha/api.js 104 2
https://connect.facebook.net/en US/fbevents.js 98 3
https://www.googletagservices.com/activeview/js/current/osd.js?cb=%2Fr20100101 95 2
https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js 57 6
https://www.youtube.com/iframe api 50 2
https://connect.facebook.net/en US/sdk.js?hash=42272dd37ca5caf2a2797a1147783a65&ua=modern es6 50 8
https://www.googletagservices.com/activeview/js/current/osd listener.js?cache=r20110914 48 2
https://cse.google.com/adsense/search/async-ads.js 48 2
https://c.amazon-adsystem.com/aax2/apstag.js 47 2
https://connect.facebook.net/en GB/sdk.js 45 114
https://connect.facebook.net/en US/fbds.js 43 89
https://apis.google.com/js/platform.js 40 2
https://connect.facebook.net/ja JP/sdk.js 36 84
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