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Abstract. The hardness of the Ring Learning with Errors problem
(RLWE) is a central building block for efficiency-oriented lattice-based
cryptography. Many applications use an “entropic” variant of the prob-
lem where the so-called “secret” is not distributed uniformly as pre-
scribed but instead comes from some distribution with sufficient min-
entropy. However, the hardness of the entropic variant has not been sub-
stantiated thus far.
For standard LWE (not over rings) entropic results are known, using a
“lossiness approach” but it was not known how to adapt this approach to
the ring setting. In this work we present the first such results, where en-
tropic security is established either under RLWE or under the Decisional
Small Polynomial Ratio (DSPR) assumption which is a mild variant of
the NTRU assumption.
In the context of general entropic distributions, our results in the ring
setting essentially match the known lower bounds (Bolboceanu et al.,
Asiacrypt 2019; Brakerski and Döttling, Eurocrypt 2020).

1 Introduction

Lyubashevsky, Peikert and Regev [17, 18] introduced the Ring Learning with
Errors (RLWE) problem as a structured variant of the celebrated LWE prob-
lem [27]. RLWE (and similar variants such as ideal/polynomial LWE [31]) are by
now an indispensable tool for constructing efficient lattice-based cryptographic
primitives, such as public-key encryption, key agreement and signatures. It is
appealing to use RLWE-based cryptographic primitives since they are usually
more succinct and efficient than their non-ring counterparts. Translating a cryp-
tographic construction from LWE to RLWE is often straightforward, and indeed
many LWE based constructions have RLWE counterparts that enjoy a higher
level of efficiency (at the cost of only enjoying hardness respective to a special
class of lattices instead of all lattices as in LWE).

The focus of this work is entropic hardness, which is an important property
of LWE-based cryptography [2, 4, 6, 9, 19] that so far resisted translation to the
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RLWE regime. Entropic hardness is the property of the LWE problem (and
hopefully also RLWE) to remain hard even when the so called “LWE secret”
is not sampled from the prescribed distribution, but instead is sampled from
some distribution with sufficient min-entropy. This is relevant in the context of
key-leakage (see e.g. [13] for a survey), and in a number of other applications
which use RLWE with a key that is not sampled according to the prescribed
distribution. These include implementations of fully homomorphic encryption
such as [5,10,11,28] and even some of the candidates in the NIST post-quantum
cryptography contest [22].

The question of entropic security for RLWE is therefore highly motivated.
Nevertheless, very little was known about its security prior to this work. The only
work we are aware of in this context is by Bolboceanu et al. [3], which introduced
a non-standard assumption that they call HLBDD. They prove the hardness of
entropic RLWE for a class of distributions that they call k-wise independent,
based on the hardness of HLBDD and standard RLWE. This solution has a
number of drawbacks in not addressing general entropic distributions, being
applicable only in certain rings (it requires that the ring has CRT representation)
and making a new assumption.

One would have hoped that it would be possible to use similar methods to
those used in the context of LWE also for RLWE. After all, the structure of the
problems is very similar. However, the same barrier seemed to have stopped all
prior attempts. In a nutshell, it is the failure to find a proper analog lossiness
argument in the ring setting. This term refers to a family of proof techniques
that underlie all known entropic hardness results [2, 4, 6, 9, 19]. We explain this
barrier in more detail below.

We recall that in standard LWE, an instance is composed of a random matrix
A ∈ Zn×Nq with N � n, and a vector y = sA + e, where s is the “LWE secret”
and e is a noise vector (usually sampled from a Gaussian). The goal is to find
the vector s, or in the decisional version of the problem to distinguish (A,y)
from uniform. The RLWE problem is a structured variant of the above, usually
defined using elements from the ring of integers of an algebraic number field
(and its dual). For the purpose of this work, it will be instructive to consider
an equivalent (and in fact more general) formulation of RLWE that does not
refer to algebraic number theory at all and takes great resemblance to the above
LWE description. Let us rewrite the above LWE instance as follows, consider
the case where N = n ·m. We can break the matrix A into square blocks s.t.
A = [A1, . . . ,Am] and consider the LWE instance as a sequence of blocks of
the form {(Ai,yi = sAi + ei)}mi=1. RLWE instances can be presented in the
same way, except the matrices Ai are no longer uniform, but instead are drawn
from a distribution over structured matrices.3 Throughout this work we will
attempt to state our results and techniques in terms of this Structured LWE
formulation as much as possible, without specifying the exact structure of the

3 Essentially this structure represents the multiplication of an element a from the
(dual) of a ring of integers by an element from the ring of integers.
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matrices Ai, and the instantiations to the special case of number fields will follow
as straightforward corollaries.

A lossiness argument for LWE hinges on the observation that the entropic
LWE distribution is computationally indistinguishable from one where the ma-
trices Ai are not uniform, but instead are distributed as Ai = B · Ci + Fi,
where B ∈ Zn×kq (note that the same B is used for all i) for k � n, Ci ∈ Zk×nq ,
and Fi is small noise. Indistinguishability is established by decisional LWE. This
step makes the matrices Ai “close to low-rank”. Furthermore, now yi = sAi =
sBCi + sFi + ei. From this point the methods diverge somewhat, let us stick to
the approach of [2, 4] that we follow in this paper. In these works, it is shown
that even information theoretically s cannot be recovered, essentially because
the adversary only has access to sB, which has dimension k and therefore does
not contain much information, and to the terms sFi+ ei, where it is shown that
the entropy in ei masks the information about s.

Trying to apply this argument in the structured LWE setting runs into a
problem. The matrices Ai are no longer uniform but instead have some (effi-
ciently verifiable) structure. Therefore, we need to find a distribution that is
both indistinguishable from the structured Ai distribution, and has lossiness
properties as above. In the context of the structure that is imposed by RLWE,
this seems hopeless since the structure imposed by the ring does not allow the
Ai matrices to be close to low-rank for general rings.4 In this work we overcome
this barrier.

1.1 Our Results

We present a new approach to achieve lossiness that generalizes the “closeness
to low-rank” approach, but that can be applied for general RLWE (and possibly
other structured LWE variants). Concretely, we observe that it suffices to replace
Ai with a matrix whose span contains short vectors. That is, we will set Ai =
H·Zi, where H is an invertible matrix that is sampled once and used for all i, and
the Zi come from a distribution over low-norm matrices. The exact norm that
we use depends on the underlying ring, but for the purposes of this overview, it
suffices to think of Zi as a matrix where all entries are shorter than some bound
� q. We observe that the matrices H ·Zi are neither low rank nor close to low-
rank, however they become close to low rank under a (common) basis-change
corresponding to the matrix H.5 The level of lossiness will be dictated by the
properties of Zi: the lower the norm of Zi, the more lossiness is obtained. We
note that we can assume that H itself has a short inverse, that we denote by Z0

(we explain below that this does not actually impose an additional restriction).

4 The work of [3] can be viewed as targeting a special case where this is possible, the
case where the ring decomposes into a “CRT representation”. This requires making
a non-standard assumption like their HLBDD assumption which only applies to that
special setting.

5 In fact, under this basis change the matrices are even close to the 0 matrix, which
has the lowest possible rank.
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We show that this notion is both sufficient for proving entropic security, and
that there exist such lossy distributions that are indistinguishable from uniform
under standard assumptions.

The DSPR and NTRU Assumptions. We notice that the assumption as de-
scribed above closely resembles the Decisional Small Polynomial Ratio (DSPR)
[16] and NTRU assumptions [12]. Both assumptions are defined over polyno-
mial rings and have very similar syntax. Both essentially assert that over some
polynomial ring, there is a distribution over ring elements s.t. when sampling
f, g1, . . . , gm from this distribution, it holds that g1/f, . . . , gm/f are jointly in-
distinguishable from a set of uniformly random ring elements. The NTRU cryp-
tosystem uses a specific and very short distributions for f, gi (over polynomials
with {−1, 0,+1} coefficients) and DSPR considers a Gaussian distribution (say
with some Gaussian parameter γ) which will be easier to use.6 The assump-
tion becomes weaker as γ increases. As observed by Stehlé and Steinfeld [30],
when the distributions become wide enough (γ &

√
q), this assumption is actu-

ally implied by RLWE. For other parameter regimes, however, DSPR appears
to provide a lower level of security compared to RLWE, at least with respect
to state of the art attacks [14]. Translating the above into the structured LWE
terminology, we can define Z0 as the matrix that corresponds to the operator
of multiplying by f , and Zi as the matrix that corresponds to multiplying by
gi. Intuitively the parameter γ can be thought of as a measure for the smallness
of the elements in the Zi matrices. We note that since the polynomial rings are
commutative, the matrices H,Z0,Zi all commute with each other in the actual
instantiation. However, we will not require this property.

Lastly, we point out that while RLWE enjoys a worst-case to average-case
hardness reduction [17,26], such reduction is not known for NTRU/DSPR with
small γ. Hence there is a tradeoff between the quality of the result obtained and
the hardness of the assumption that we need to make.

Noise Lossiness and Entropic Security Under DSPR. We follow the ap-
proach of [4] and consider the notion of noise lossiness of a distribution of secrets
S, which is defined to be the conditional smooth min-entropy of a sample from
S conditioned on learning its perturbation by Gaussian noise. Formally:

νσ(S) = H̃∞(s|s + e) , (1)

where e is Gaussian with parameter σ. We also recall that [4] show a general
relation between noise lossiness and entropy

νσ(S) & H̃∞(S)− n log(q/σ) . (2)

We show that similarly to LWE, the hardness of entropic RLWE on a given
secret distribution S is also related to its noise lossiness. We present our result
in the context of RLWE in power-of-2 cyclotomic number fields, but the result
is modular and applies to RLWE on any ring that has reasonable regularity
condition. See also discussion below.
6 We will consider Gaussians over the canonical embedding of ring elements into Eu-

clidean space.
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Theorem 1.1 (Informal). Assume DSPR with parameter γ. Let S be a dis-
tribution s.t. for some σ′ it holds that νσ′(S) & n log(γpoly(n)) +ω(log λ). Then
Entropic RLWE in a power-of-2 cyclotomic with secret distribution S and Gaus-
sian noise parameter σ ≈ σ′ · poly(n) ·

√
m is hard.

Plugging in Eq. (2), we get that for general entropic distributions we require
average min-entropy of roughly H̃∞(S) & n log(q/σ)+O(n log(nmγ))+ω(log λ)
in order to achieve entropic hardness. We note that better bounds on noise
lossiness are known for “short” distributions, where the entropy requirement can
go almost all the way down to n log γ, which allows to show entropic hardness for
many low-norm distributions but unfortunately is still insufficient for the widely
used setting where the secret is chosen as a ring element with binary coefficients.
Indeed, even in our results, we need to make stronger DSPR assumptions as we
wish to deal with secrets of lower entropy. We believe that there is an inherent
difficulty for proving hardness of such distributions without making extreme
hardness assumptions.

Our results are stated in a rather general form. We present a notion of “struc-
tured LWE” problem, which captures standard LWE, RLWE and potentially
other problems, and present lossiness results based on a “matrix DSPR” as-
sumption, assuming that the matrix distributions in the DSPR instance satisfy
some (mild) non-degeneracy conditions. Proving that the non-degeneracy con-
ditions indeed hold is the only place where the specifics of the number field are
required. The aforementioned [30] fortunately implies these required conditions
for power-of-2 cyclotomic number fields. We believe that the proof can be gen-
eralized to other number fields (especially cyclotomics) but this would require
essentially repeating the [30] proofs in more generality which we feel is tangent
to the purpose of this work.

Since our paper is written in a modular manner, it suffices to simply prove
the non-degeneracy conditions in Section 6 in order to obtain entropic hardness
results for other variants of structured LWE, be it RLWE in other number fields
(or a different embedding) or other forms of the problem completely.

To conclude, let us discuss the applicability of our techniques to the so called
“module LWE” problem [1, 5, 15, 25]. Module-LWE interpolates between LWE
and ring-LWE and is appealing in the practical context as it may offer supe-
rior security benefits over RLWE with minimal additional computational cost.
Viewed as a structured LWE problem, in module-LWE the matrix A is simply
a block matrix, where each block is an independent RLWE matrix. Our meth-
ods apply to such matrices as well, under a matrix DSPR assumption. We can
instantiate matrix DSPR under RLWE-like assumptions, but we do not know of
variants of this assumption that rely on module-LWE-like structures. A complete
module LWE analog of our result would require introducing such an analog.

1.2 Our Techniques

As explained above, in order to prove security for entropic structured LWE, we
rely on the assumption that we can replace the uniform Ai with Ai = H · Zi,
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where Zi are short, and there exists Z0 (also short) s.t. HZ0 = I (mod q). We
note that a survey by Peikert [24] uses a similar method when sketching a proof
that the hardness of NTRU implies that of RLWE. Namely, replacing the ai ele-
ments in RLWE samples with NTRU values, and arguing that the RLWE secret
should become information-theoretically irrecoverable. One can view our method
as putting together a rigorous variant of Peikert’s arguments, and showing that
it is possible to obtain lossiness for various entropic distributions.

We start by examining the distribution of the yi values after substituting
Ai = H · Zi. We have

yi = sAi + ei = sH · Zi + ei .

We now take the approach of “flooding at the source” [4]. The idea is to
“bring the noise closer to the secret” and show that all structured LWE blocks
in fact depend on a noisy version of the secret, which allows to apply noise lossi-
ness. Specifically, the technique that is used is Gaussian decomposition. Using
Gaussian decomposition it is possible to show that if the ei Gaussians are wide
enough relative to the norm of the Zi matrices, it is possible to find e s.t. for
all i, ei = eZi + e′i, where e and all e′i are independent. This essentially follows
from the covariance-additivity of Gaussian vectors, which can be carried over to
discrete Gaussians as well.

Plugging this decomposed Gaussian into the equation for yi, we get

sH · Zi + eZi + e′i = (sH + e)Zi + e′i .

This implies that all information about s is captured in the term sH+e (mod q).
We now note that already at this point we can derive a non-trivial entropic

result. Let us denote s′ = sH, and notice that since H is invertible, the entropy of
s′ is the same as that of s and recovering s is information-theoretically equivalent
to recovering s′. Now, essentially by definition, the probability of recovering s′

is exactly captured by its noise lossiness. Specifically, if the noise lossiness is
super-logarithmic then s′ is not recoverable. Since we can relate noise lossiness
to entropy (recall Eq. (2)) we have

νσ(s′) & H̃∞(s′)− n log(q/σ) = H̃∞(s)− n log(q/σ) ,

where σ is the Gaussian parameter of e. Therefore, so long as it holds that
H̃∞(s) & n log(q/σ) + ω(λ), then we have entropic security for RLWE with
secret coming from the distribution of s. This is indeed a non-trivial bound
which may be useful in certain settings (e.g. when we only know the entropy of
the distribution of s but do not know any other properties), but in many cases
we would like to take into account additional properties of the distribution that
reduce the large gap of n log(q/σ) between noise lossiness and entropy. However,
in the current analysis we can say very little about the distribution of s′ given the
distribution of s (other than the entropy being preserved). We therefore proceed
to show a connection that directly relates to the noise lossiness of s itself.

Recall that we deduced that all information about s is captured in the term
sH+e (mod q). Since H is invertible, we can multiply the equation by its inverse
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Z0 (on the right) to obtain s+eZ0 (mod q). We conclude that even information
theoretically, an attacker can only recover s+eZ0 (mod q), where e is Gaussian
and Z0 is a low-norm matrix which is known to the attacker.

We wish to show that s+eZ0 (mod q) does not leak much information about
s. We can see that some information can in fact be leaked. For example, if s is
short, then the reduction modulo q does not have any effect, and the adversary
can learn s+eZ0 (as a value over the integers), this in particular allows to learn
the coset of s relative to the lattice spanned by the rows of Z0 (henceforth we
refer to it as the “Z0 lattice”). This is essentially the reason why our techniques
don’t carry over to the setting of very low norm s – this would require sampling
Z0 from a very narrow distribution that would imply very strong and unrealistic
parameters for our DSPR assumption.

Instead, we show that essentially all the entropy that can be gained by the
adversary, beyond the “usual” noise lossiness, is indeed proportional to learning
a coset of the Z0 lattice. The number of such cosets is ≈ γn, and thus the loss
in entropy of n log γ in Theorem 1.1.

To see this, we consider the distribution: (Z0, s + ẽ, c), where ẽ is a spherical
discrete Gaussian over the integers, and c indicates a coset of ẽ with respect
to the Z0 lattice. We show that there is a (randomized) process that takes this
distribution as input, and outputs (Z0, s + eZ0). This means that the adversary
cannot learn about s from (Z0, s+eZ0) more than it can from (Z0, s+ ẽ, c). The
latter, just by definition, translates to the noise lossiness of s (with respect to
the Gaussian parameter of ẽ), minus the “leakage” that is imposed by providing
the adversary the value c. Since this value is a coset indicator, this leakage is
bounded.

To generate (Z0, s+eZ0) from (Z0, s+ ẽ, c), we use the Gaussian convolution
theorem of Peikert [23]. This theorem shows that it is possible to sample the
term eZ0, which is just a (non spherical) discrete Gaussian over the Z0 lattice,
in two steps: first sampling from a Gaussian over the integer lattice, and then
“rounding” the sample into the Z0 lattice. The rounding step only requires to
know the coset of the first step (in order to cancel it out). Setting the parameters
appropriately, the theorem can be used and the result follows.

In order to be able to apply Gaussian decomposition and also the Gaussian
convolution theorem, we rely on probabilistic properties of the Z matrices, in
particular their minimal and maximal singular values. The properties required
in order for our method to go through turn out not to hold with high proba-
bility, but rather only with some fixed inverse-polynomial probability. We thus
introduce a notion of “sometimes lossiness” and show that it suffices for proving
entropic hardness. In Section 5 we show how to obtain entropic hardness based
on probabilistic properties of the Z matrices. Then in Section 6 we show that
these properties hold for RLWE over power-of-two cyclotomics, using properties
proved in [30].
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1.3 Paper Organization

We try to keep the discussion abstract and use the notion of “structured LWE” as
much as we can. Eventually we state our result in terms of properties that need to
hold for the structured LWE problem at hand, and show that the RLWE/DSPR
instantiation indeed possesses these properties. Standard preliminaries in infor-
mation theory, lattices and algebraic number theory are provided in Section 2.
Section 3 introduces the entropic structured LWE (entSLWE) problem and shows
that mild form of (entropic) hardness for entSLWE with relatively few samples
implies full-fledged (entropic) hardness. Section 4 presents a notion of lossiness
that we call “sometimes lossiness” and shows how it is used to prove (entropic)
hardness, then a sometimes lossy distribution is constructed in Section 5 based
on an abstract problem we call Decisional Small Ratio (DSR) problem. Finally
Section 6 shows how to instantiate all required building blocks in the RLWE
setting.

2 Notation and Definitions

We will denote the security parameter by λ. We say a function ν(λ) is negligible
if ν(λ) ∈ λ−ω(1). We will generally denote row vectors by x and column vectors
by x>. We will denote the L2 norm of a vector x by ‖x‖ =

√∑
i x

2
i and the

L∞ norm by ‖x‖∞ = maxi |xi|.
Let X,Y be two discrete random variables defined on a common support X .

We define the statistical distance between X and Y as

∆(X,Y ) =
1

2

∑
x∈X
|Pr[X = x]− Pr[Y = x]|.

Consider a real valued matrix A ∈ Rn×m, assume for convenience that m ≥
n. The singular values of A are the square roots of the eigenvalues of the positive
semidefinite (PSD) matrix AA>. We will denote the largest singular value of A
by σmax(A). The spectral norm of A is σmax(A). It holds that

σmax(A) = max
x∈Rm\{0}

‖Ax‖
‖x‖

.

2.1 Min-Entropy

Let x be a discrete random variable supported on a set X and z be a possibly
(continuous) random variable supported on a (measurable) set Z. The condi-
tional min-entropy H̃∞(x|z) of x given z is defined by

H̃∞(x|z) = − log

(
Ez′

[
max
x′∈X

Pr[x = x′|z = z′]

])
.

In the case that z is continuous, this becomes

H̃∞(x|z) = − log

(∫
z′
pz(z′) max

x′∈X
Pr[x = x′|z = z′]

)
,
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where pz(·) is the probability density of z.
For an ε > 0 we define the ε-smooth min-entropy H̃ε

∞(x|z) as the maximum
over all H̃ε

∞(x′|z′) for which (x′, z′) is ε-close to (x, z) in statistical distance.

2.2 Leftover Hashing

We recall a version of the generalized leftover hash lemma [7,27].

Lemma 2.1. Let G be a finite Abelian group, and Y be a finite set. Let ` ≥
log(|G|) + log(|Y|) + ω(log(λ)) be an integer. Let g1, . . . , g` ←$ G be chosen
uniformly at random. Further let x ←$ {0, 1}` be chosen uniformly at random.
Let Y be a random variable supported on Y which is possibly correlated with x but
independent of the gi. Then it holds that (g1, . . . , g`,

∑
i xigi, Y ) is statistically

close to (g1, . . . , g`, u, Y ), where u←$ G is chosen uniformly at random.

2.3 Lattices and Gaussians

Lattices. We recall the standard facts about lattices. A lattice Λ ⊆ Rm is
the set of all integer-linear combinations of a set of linearly independent basis-
vectors, i.e. for every lattice Λ there exists a full-rank matrix B ∈ Rk×m such
that Λ = Λ(B) = {z ·B | z ∈ Zk}. We call k the rank of Λ and B a basis of Λ,
and we say that Λ is full-rank if k = m. For a lattice Λ ⊆ Rm, the dual lattice
Λ∗ is defined by Λ∗ = {x ∈ Span(Λ) | ∀z ∈ Λ : 〈z,x〉 ∈ Z}.

We say that a lattice is q-ary if (qZ)m ⊆ Λ ⊆ Zm. In particular, for every
q-ary lattice Λ there exists a matrix A ∈ Zk×mq such that Λ = Λq(A) = {y ∈
Zm | ∃x ∈ Zkq : y = x · A mod q}. We also define the lattice Λ⊥q (A) = {y ∈
Zm | A · y = 0 mod q}.
Gaussians. The Gaussian function ρσ : Rn → R is defined by

ρσ(x) = e−π·
‖x‖2

σ2 .

For a a non-singular matrix B we define ρB(x) = ρ(xB−1).
The continuous gaussian distribution DB on Rn has the probability density

function ρB(x)/ρB(Rn). We call Σ = B>B the covariance matrix of the gaussian
DB. For a lattice Λ, the discrete gaussian distribution DΛ,B supported on Λ has
the probability mass function ρB(x)/ρB(Λ).

For a lattice Λ and a positive real ε > 0, the smoothing parameter ηε(Λ)
is defined to be the smallest real number s for which ρ1/s(Λ

∗\{0}) ≤ ε. For a
matrix B we write B ≥ ηε(Λ) if ηε(ΛB−1) ≤ 1.

The following claim follows routinely from the definition of the smoothing
parameter.

Claim. Let Λ ⊆ Rn and V ∈ Rn×n be a matrix with largest singular value
σmax(V). It holds that ηε(Λ ·V) ≤ σmax(V) · ηε(Λ).

The following proposition allows us to decompose spherical gaussians with
respect to a matrix F.
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Proposition 2.2 ( [4], Proposition 3.2). Let F ∈ Rn×m be an arbitrary
matrix with spectral norm σF . Let σ, σ1 > 0 be s.t. σ > σ1 · σF . Let e1 ∼ Dn

σ1

and let e2 ∼ D√Σ for Σ = σ2I−σ2
1F
>F. Then the random variable e = e1F+e2

is distributed according to Dm
σ .

2.4 Noise Lossiness

The noise lossiness of a distribution S measures how much information is lost
about a sample of S when adding gaussian noise. Another way to think about
noise lossiness is as a measure of how bad S performs as a Euclidean error-
correcting code. The following definition of noise lossiness slightly deviates from
the definition given in [4] by considering potentially non-spherical gaussians.

Definition 2.3 (Noise Lossiness). Fix a matrix B ∈ Rn×n. Let S ⊆ Znq be
a distribution of secrets and let σ > 0 be a gaussian parameter. We define the
noise-lossiness νσB(S) by

νσB(S) = H̃∞(s|s + e)

where s←$ S and e←$ DσB.

In [4] the following bounds for the noise lossiness of distributions were pro-
vided.

Lemma 2.4 (Noise-Lossiness for General Entropic Distributions). Let
0 < σ ≤ q

√
π/ ln(4n) be a gaussian parameter and let S be any distribution on

Znq . Then it holds that

νσ(S) ≥ H̃∞(S)− n · log(q/σ)− 1

Lemma 2.5 (Noise-Lossiness for Short Distributions). Let σ > 0 be a
gaussian parameter and let S be a r-bounded distribution on Znq . Then it holds
that

νσ(S) ≥ H̃∞(S)−
√

2πn log(e) · r
σ
.

2.5 Algebraic Number Fields

We will briefly reiterate some basics about algebraic number fields and the Learn-
ing with Errors Problem over Rings. See e.g., [17, 18] for more details.

An algebraic number field K is a finite extension of the rationals Q, every
number field can be constructed via Q(ξ) = Q[X]/(f(X)) where f ∈ Q[X] is a
monic irreducible polynomial and ξ is a root of f . The degree n of K is defined
to be the degree of f and K can be seen as an n-dimensional Q-vectorspace.

The number fields most relevant to us are power-of-two cyclotomics. For this
instantiation the polynomial f is of the form f = Xn + 1 where n is a power of
two.



Lossiness and Entropic Hardness for Ring-LWE 11

A number field K of degree n has n embeddings, that is injective ring homo-
morphisms into the complex numbers C, usually denoted by σi : K → C. Each
σi is defined by sending ξ to one of the roots of f in C.

The embeddings σi come in conjugate pairs, there are s1 real embeddings
and 2s2 complex conjugate embeddings with n = s1 + 2s2. We can define the
space H ⊆ Rs1 × C2s2 by

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 | ∀j ∈ [s2] : xs1+s2+j = xs1+j}.

It can be shown that the space H is isomorphic to Rn as an inner product space.
Let Θ : H → Rn be this isomorphism. Moreover, the space H is isomorphic as
a ring to the field tensor product KR = K⊗Q R. Let Θ̄ : KR → Rn be the metric
isomorphism which takes KR to Rn, i.e. Θ̄ is just the concatenation of σ and Θ.

The canonical embedding σ : K → H is given by σ(x) = (σ1(x), . . . , σn(x)).
It can be shown that σ is a ring-homomorphism, where both addition and mul-
tiplication on Cn are defined component-wise. The canonical embedding induces
a geometry on K, that is we can define a eucilidean norm on K via the eu-
clidean norm on Cn, concretely for x ∈ K we define ‖x‖ = ‖σ(x)‖. Note that
‖σ(x)‖ = ‖Θ(σ(x))‖.

While ‖ · ‖ immediately satisfies the triangle inequality, in the canonical
embedding also the following multiplicative inequality holds: For all x, y ∈ KR
it holds that ‖x · y‖ ≤ ‖x‖∞ · ‖y‖. Here, ‖ · ‖∞ is the L∞ norm defined by
‖x‖∞ = maxi |σi(x)|. We will also use the inequality ‖x · y‖∞ ≤ ‖x‖∞ · ‖y‖∞.

We can define a gaussian distribution DKR,
√

Σ via the gaussian distribution

D√Σ on Rn, i.e. we set DKR,
√

Σ = Θ̄−1(D√Σ).
A element x ∈ K is called algebraic integer, if the minimal polynomial of x

has integer coefficients. For a number field K we denote by R ⊆ K the set of all
algebraic integers in K, which can be shown to be a sub-ring of K. For the special
case that K is a cyclotomic, it holds that R = Z[ξ].

Since R is a finitely generated Z-module, it holds that Λ = Θ̄(R) ⊆ Rn is
a lattice. We let L denote some basis for this lattice and we denote B = L−1.
In this notation, multiplication by the matrix B maps a x ∈ λ to an integer
vector, i.e. xB ∈ Zn, which is exactly the coefficient vector of the ring element
with respect to the basis L. We define the smoothing parameter ηε(R) of R to
be ηε(Λ).

Gaussian distributions over K, or more precisely over KR are defined as fol-
lows. Given a Gaussian distribution D√Σ over Rn, we map it to KR via Θ̄−1.

The resulting distribution is the Gaussian with parameter
√

Σ over KR.

2.6 Ring-LWE

Let q be a modulus and R be a ring of integers of a number field K. We will
briefly define the (non-dual) decisional Ring Learning with Errors (Ring-LWE)
problem in Hermite form for an error-distribution χ supported on R is defined
as follows. We discuss other versions of the Ring LWE problem in Section 3. We
use a definition provided by Peikert [24, Section 4.4.1] which is slightly different
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from the one in [17] but easier to work with. See discussion in [24, Section 4.4.1]
for details.

Definition 2.6 (Decisional Ring-LWE (Hermite Form)). Let s ←$ χ.
Given m samples (ai,bi) ∈ Rq × Rq, the task is to decide whether the bi are of
the form bi = ais + ei for errors ei ←$ χ or if the bi are chosen uniformly at
random from Rq.

Lyubashevsky, Peikert and Regev [17] provided a worst-to-average case re-
duction for the Ring LWE problem relative to worst-case problems in ideal lat-
tices. In particular, they show that if the error distribution χ is an appropriate
gaussian, then the Ring LWE search problem is as hard as the approximate
shortest vector problem in worst case ideal lattices. Furthermore, [17] provide a
search-to-decision reduction which bases the hardness of decisional Ring LWE
on the search variant.

3 (Entropic) Structured LWE

In this section, we define a version of LWE which we call structured LWE. Struc-
tured LWE generalizes both standard and ring-LWE.

We will only consider the search version of structured LWE in this work.

Definition 3.1 (Entropic Structured Learning with Errors). Let q be a
modulus and n, k be integers. LetM be a distribution of matrices on Zn×nq and Υ
be a distribution of error-distributions on Rn. Furthermore, let S be a distribution
on Znq . The goal of the entSLWE(q, k,M, Υ,S) problem is to find a secret s←$ S
given k samples ((A1,y1), . . . , (Ak,yk)), where χ←$ Υ is an error distribution
and for all i ∈ [k] we have Ai ←$M, ei ←$ χ and yi ← sAi + ei.

If A = (A1, . . . ,Ak), e = (e1, . . . , ek) and y = (y1, . . . ,yk) where yi =
sAi + ei, we will use the shorthand y = sA + e. This in fact corresponds to
the standard matrix multiplication and vector addition if we identify A with
to be the horizontal concatenation of all Ai and e the horizontal concatenation
of all ei. If an unbounded number of samples are given (via an oracle), then
we will omit the parameter k. We note that Regev’s LWE is obtained when
M,S are uniform and Υ is Gaussian. The Ring-LWE instantiation is discussed
in Section 3.2 below.

We will consider two different hardness notions for entSLWE. In the standard
notion, we require that no PPT adversary find the secret s with non-negligible
probability.

Definition 3.2 (Standard Hardness). Let q, n, k, M, Υ and S be as above.
We say that the entSLWE(q, k,M, Υ,S) problem is (standard-) hard, if it holds
for every PPT adversary A that

Pr[A(A, sA + e) = s] < negl(λ),

where χ←$ Υ , A←$Mk, s←$ S and e←$ χ
k.
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We call the second notion mild hardness. In essence, the success probability
of an adversary which breaks mild hardness only depends on the choice of s and
e, but not on the choice of A.

Definition 3.3 (Mild Hardness). Let q, n, k, M, Υ and S be as above. We
say that the problem entSLWE(q, k,M, Υ,S) is mildly hard, if for every PPT
adversary A and every negligible function ν it holds that

Pr
s,e,χ

[Pr
A

[A(A, sA + e) = s] > 1− ν] < negl(λ).

In this work we will focus on the notion of mild hardness. While this seems
like a restriction at first glance, it follows by a routine amplification argument
that, given an unbounded number of samples, mild hardness implies standard
hardness.

Lemma 3.4. Let q, n,M and S be as above and let Υ be a distribution of error-
distributions. If entSLWE(q,M, Υ,S) is mildly hard, then it is also standard hard.

Proof. Assume towards contradiction there was a PPT search adversary A with
non-negligible success probability ε′ against standard hardness of the prob-
lem entSLWE(q,M, Υ,S). For notational convenience, the adversary A obtains
its samples via an oracle Os,χ, which has s and χ hardwired. When queried,
Os,χ chooses A ←$ M and e ←$ χ and outputs a sample (A, sA + e). Let
ε = 1/poly(λ) be such that ε(λ) = ε′(λ) infinitely often. We will construct an
adversary B against the mild hardness of entSLWE(q,M, Υ,S) as follows.

Algorithm BOs,χ

– For i = 1, . . . , 2λ/ε:

• Compute si ← AOs,χ(1λ).
• Query λ additional samples and test whether si is a valid solution,

if so output s← si
– If none of the si passed the check, output ⊥.

Assume that yi = sAi + ei for all i ∈ [k]. We will now analyze the success
probability of B. Say that a pair (s, χ) is good, if it holds that

Pr[AOs,χ(1λ) = s] ≥ ε/2,

where the probability is taken over the remaining random choices of O and the
random coins of A. By a Markov inequality, it holds that

Pr
s,χ

[(s, χ) good] = Pr
s,χ

[Pr[AOs,χ(·)(1λ) = s] ≥ ε/2] ≥ ε/2.

Now, fix a good (s, χ). We will bound the probability that all iterations of B
fail to compute s. Once we have fixed s and χ, all iterations use independent
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random coins, and thus their outcomes are independent. Consequently, it holds
that

Pr[∀i ∈ [2λ/ε] : AOs,χ(·)(1λ) 6= s] =

2λ/ε∏
i=1

Pr[AOs,χ(·)(1λ) 6= s]

≤ (1− ε/2)2λ/ε

≤ exp(−ε/2 · 2λ/ε)
= exp(−λ),

which is negligible. We can conclude that

Pr
s

[Pr[B((Ai, sAi + ei)i∈[k]) = s] > 1− exp(−λ)] ≥ ε/2,

which means that B breaks the mild hardness of entSLWE(q,M, Υ,S).

3.1 Rerandomization

Lemma 3.4 holds given an unbounded number of samples. We will now consider
statistical rerandomization procedures which allow to generate an unbounded
number of samples (Ai, sAi + ei) from a fixed number of samples. A typical ar-
tifact of statistical re-randomization is that if one starts with a bounded number
of samples for a fixed error distribution χ, then the rerandomized samples will
have an error that comes from a distribution of error distributions.

Subset Sum Rerandomization
We provide a simple rerandomization procedure which takes random subset

sums over the input samples. While the norm of errors in the output distribution
will be bounded, these errors will not follow a nice distribution.

Lemma 3.5. Let k ≥ log(|G|) +n log(q) +ω(log(λ)), let Φ be an error distribu-
tion on Zn. The distribution of error-distributions ΥΦ,bin is defined as follows:
A distribution χ ←$ ΥΦ,bin is determined by k elements e1, . . . , ek ∈ Zn chosen
from Φ. To sample from the distribution χ, choose a x←$ {0, 1}k uniformly at
random and output

∑
i xiei.

If entSLWE(q, k,M, Φ,S) is mildly hard, then entSLWE(q,M, ΥΦ,bin,S) is
also mildly hard.

Note that if the distribution Φ is B-bounded, then ΥΦ,bin is kB-bounded.

Proof. The reduction proceeds via statistical rerandomization. Let A be an ad-
versary against the mild hardness of entSLWE(q,M, ΥΦ,bin,S). We will construct
an adversary B against the mild hardness of entSLWE(q, k,M, Φ,S). More con-
cretely, assume there is a negligible function ν and a non-negligible function ε
such that

Pr
s,e,χ

[Pr
A

[A(A, sA + e) = s] > 1− ν] > ε.

The adversary B proceeds as follows.
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Algorithm B
– Input: k samples (A1,y1), . . . , (Ak,yk).
– Setup an oracle O, which when queried chooses a uniformly random

x ∈ {0, 1}k and outputs (
∑
i xiAi,

∑
i xiyi).

– Compute and output s← AO(·)(1λ)

We will now show that B faithfully simulates the oracle O of the problem
entSLWE(q,M, ΥΦ,bin,S). Assume that yi = sAi + ei. Then the rerandomized
sample

(
∑
i

xiAi,
∑
i

xiyi = s(
∑
i

xiAi) +
∑
i

xiei)

has an error term e∗ =
∑
i xiei which follows a distribution χ of ΥΦ,bin, where

χ is defined by e1, . . . , ek ∈ Zn. Note that e∗ is supported on Znq . Thus, by the
leftover hash lemma (Lemma 2.1), the distribution of

∑
i xiAi is statistically

close to uniform in G given the e∗ and we conclude that the distribution of the
samples generated by O is statistically close to the correct distribution, which
concludes the proof.

Gaussian Rerandomization We will now look into a more sophisticated reran-
domization technique which will produce output samples with gaussian errors.
What follows is an adaptation of the techniques of Micciancio and Peikert [20].
For this paragraph, we need the notion of Gram-Schmidt norm of a lattice-basis.
For a full-rank matrix B ∈ Rn×n, let b1, . . . ,bn be the rows of B. The Gram-
Schmidt orthogonalization B̃ is a matrix with rows b̃1, . . . , b̃n where b̃i is the
component of bi to span(b1, . . . ,bi−1). The Gram-Schmidt norm of the matrix
B is ‖B̃‖. The following Lemma connects the smoothing parameter of a lattice
with its Gram-Schmidt norm.

Lemma 3.6 ( [8]). Let Λ ⊆ Rn be a lattice with basis B and let ε > 0. Then it
holds that

ηε(Λ) ≤ ‖B̃‖ ·
√

ln(2n(1 + 1/ε))/π.

Thus, for any ω(
√

log(λ)) function, there is a negligible ε such that ηε(Λ) ≤
‖B̃‖ · ω(

√
log(λ)).

Let G be an additive subgroup of Zn×nq of order m = |G|. As a shorthand, for
a row-matrix of group elements A = (a1, . . . ,Am) ∈ G1×m and a matrix M =
(Mij) ∈ Zm×k we will write A ·M to denote (

∑m
i=1 aiMi1, . . . ,

∑m
i=1 aiMik).

Furthermore, we will write Λ⊥(A) = {x ∈ Zm | A · x = 0}.
The following Lemma establishes that there exists a set of elements g1, . . . ,gm

such that each u ∈ G can be written as u =
∑m
i=1 xigi where all xi ∈ {0, 1}. In

fact, our construction is a direct analog of the gadget matrix construction of [20].

Lemma 3.7. Let G be a finite abelian group of order |G|. Let m = log |G|. Then
there exists a G ∈ G1×m such that every u ∈ G can be written as u = G·x where
x ∈ {0, 1}m. Furthermore, there exists a basis S of Λ⊥(G) with ‖S̃‖ ≤

√
5.
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Proof. By the fundamental theorem of finite abelian groups (see e.g. []), the
group G is isomorphic to a direct sum of cyclic groups, i.e. there exist q1, . . . , qk ∈
N such that G ∼=

⊕k
i=1 Zqi . Let θ : G→

⊕k
i=1 Zqi be the corresponding isomor-

phism. We can express any element u ∈ Zqi as
∑dlog(qi)e
j=0 uj2

j where ui ∈ {0, 1}.
Moreover, setting

Si =



2 qi,0
−1 2 qi,1
−1 qi,2

. . .
...

2 qi,log(qi)−1
−1 qi,log(qi)


∈ Zlog(qi)×log(qi),

where the qi,j are the bits of the binary expansion of qi, we observe that

(1, 2, 22, . . . , 2log(qi)) · Si = 0.

We further observe that det(Si) = qi via simple Laplace expansion. Moreover,
analogously to [20] Lemma 4.3 we can routinely establish that ‖S̃‖ ≤

√
5.

For i ∈ [k] and j ∈ dlog(qi)e let vi,j ∈
⊕k

t=1 Zqt be a vector which is 2j in
coordinate i and 0 everywhere else. It follows from the above observation that
any element r ∈

⊕k
t=1 Zqt can be expressed as

r =

k∑
i=1

dlog(qi)e∑
j=0

ri,jvi,j

for ri,j ∈ {0, 1}. Moreover, setting the block matrix S to

S =


S1

S2

. . .

Sk


we get that

(v1,1, . . . ,vk,log(qk)) · S = 0.

We further observe that det(S) = |G|. Setting gi,j = θ−1(vi,j) for all i, j
it follows that every element in G can be expressed as a subset sum of the
g1,1, . . . ,gk,log(qk). Moreover, as

(g1,1, . . . ,gk,log(qk)) · S = 0,

and as since det S = |G|, it holds that S is a basis of Λ = Λ⊥(g1,1, . . . ,gk,log(qk)).

Since it holds for each block Si that ‖S̃i‖ ≤
√

5, by the block-diagonal struc-
ture of S it also holds that ‖S̃‖ ≤

√
5. Thus, setting G = (g1,1, . . . ,gk,log(qk))

the claim of the theorem follows.
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Lemma 3.8. Let G = (g1, . . . ,gm) and let S ∈ Zm×m be a basis of Λ⊥(G) with
Gram-Schmidt norm ‖S̃‖. Let A′ = (a1, . . . ,an)←$ Gn be chosen uniformly at
random and let R←$ {0, 1}n×m be a uniformly chosen binary matrix. Then

A = (A′‖ −A′R + G)

is statistically close to uniform in Gn+m and there exists a basis B ∈ Z(n+m)×(n+m)

of Λ⊥(A) with

Proof. First note that as A′ is uniformly random in Gn, by the leftover hash
lemma it holds that A′R is statistically close to uniform in Gm. Consequently,
A = (A′‖ −AR + G) is statistically close to the uniform distribution on Gm.
Furthermore, by Lemma 3.7 there exists a matrix W ∈ {0, 1}m×n such that
A′ = G ·W. It follows routinely that

B =

(
I R

I

)
·
(

I
W S

)
is a basis of Λ⊥(A) as AB = 0 and det(B) = |G|. Finally, analogously to [20]
Lemma 5.3 we can bound ‖B̃‖ by (σ1(R) + 1) · ‖S̃‖.

We will also make use of the following lemma of Regev and of the smoothing
lemma of Micciancio and Regev.

Lemma 3.9 ( [27] Corollary 3.10). Let Λ be a lattice, let z, c ∈ Rn be vectors
and let r, α > 0 be two reals. Assume that 1/

√
1/r2 + (‖z‖/α)2) ≥ ηε(Λ) for

some ε < 1/2. Let v ∼ DΛ+c,r and e be a continuous gaussian with parameter
α. Then 〈z,v〉+ e is within statistical distance 4ε of a continuous gaussian with
parameter

√
(r‖z‖)2 + α2).

Lemma 3.10 ( [21] Lemma 4.1). Let Λ ⊆ Rn be a lattice, let ε > 0 and let
s > ηε(Λ). Let x be distributed according to DΛ,s and let u be uniformly random
modulo Λ. Then the statistical distance between x mod Λ and u mod Λ is at
most ε/2.

We are now ready to provide our gaussian rerandomization lemma.

Lemma 3.11. Let k ∈ N, fix z = (z1, . . . , zk) ∈ Rk and let s, α > 0 be such
that 1/

√
1/s2 + (‖z‖/α)2) ≥ ω(

√
log(λ)). Further set r =

√
(s‖z‖)2 + α2. Now

let A = (a1, . . . ,ak) ←$ G1×k be chosen uniformly at random, x ∼ DZk,s and
e∗ ∼ Dα, a′ ←$ G be chosen uniformly at random and e′ ∼ Dr. Then it holds
that

(A,A · x, 〈z,x〉+ e∗) ≈ (A,a′, e′). (3)

Proof. We will proceed via a sequence of hybrids. The first hybrid distribution
H1 is the left-hand-side distribution of (3), i.e. (A,a, e), where a = A · x and
e = 〈z,x〉+ e∗.
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– H2: In the first hybrid change, we will change the way A is chosen. In-
stead of choosing A uniformly random in G1×k, we choose A via A =
(A′‖ − A′R + G), where A′ ∈ G1×log(|G|) is chosen uniformly random,
R ←$ {0, 1}log(|G|×(k−log(|G|))) is a random binary matrix, and G is the
group-gadget provided by Lemma 3.7.
By Lemma 3.8 it holds that H1 and H2 are statistically close,
Furthermore, Lemma 3.8 yields that Λ = Λ⊥(A) has a basis B with ‖B̃‖ ≤√

5.
Consequently, by Lemma 3.6 it holds that ηε(Λ) < ω(

√
log(λ)) for a negli-

gible ε.
Note further that in this hybrid we can compute y∗ equivalently via y∗ =
sa∗ +

∑k
i=1 eixi + e∗.

– H3: In this hybrid we will change the way y∗ is computed. First note that
conditioned on a∗ =

∑k
i=1 aixi = A · x, it holds that x is distributed ac-

cording to DΛ+c,s, where Λ = Λ⊥(A) and c ∈ Zk is a point with A · c = a∗.

Now, instead of computing y∗ by y∗ = sa∗+
∑k
i=1 eixi+e∗ we will compute

it via y∗ = sa∗ + e, where e is distributed according to Dγ , where γ =√
(s‖z‖)2 + α2. It follows by Lemma 3.9 that H2 and H3 are statistically

close.
– H4: In this hybrid we will change the distribution of a∗. Specifically, instead

of choosing a∗ via a∗ = A · x, we choose a∗ uniformly at random in G.
To see that H3 and H4 are statistically close, note the following. As s ≥
ηε(Λ), it follows by Lemma 3.10 that Ax is statistically close to Au, where
u is uniformly random in Zkq . Consequently, as by Lemma 3.7 G generates G
and therefore A = (A′‖A′R+G) generates G, it holds that Au is uniformly
random in G.

– H5: In this hybrid we undo the change of H2, i.e. we choose A = (a1, . . . ,ak)
uniformly random in G1×k. Note that now we arrived at the right-hand-side
distribution of (3).

This concludes the proof.

3.2 Ring-LWE as Structured LWE

Recall the conventions and properties from algebraic number theory as described
in Section 2.5, and the definition of RLWE from Section 2.6 (note that we use
the simpler definition that does not use the so-called dual-ring). In particular
recall that the ring of integers R of the number field K is a finitely generated
Z-module. Since the number field K is mapped into Rn via the mapping Θ̄, this
mapping allows to cast R as a lattice Λ. We denote the basis of this lattice by L
and its inverse by B = L−1. The mapping B ◦ Θ̄ therefore maps from K to Rn
such that the image of R is Zn.

Let a ∈ R. Since multiplication with a is a linear function, there exists a
matrix Aa ∈ Zn×n, such that for all s ∈ R, if s ∈ Zn is the vector representation
of s according to the aforementioned mapping, then Aas is the vector represen-
tation of a ·s ∈ R according to the above mapping. A Gaussian distribution with



Lossiness and Entropic Hardness for Ring-LWE 19

parameter
√

Σ over the field is mapped by B ◦ Θ̄ to a Gaussian over Rn with
parameter σB.

Therefore, a Ring-LWE equation of the form as+e, with a, s ∈ Rq = R/qR is
translated by the mapping B ◦ Θ̄ (which is efficiently computable and efficiently
invertible given B) into the linear equation Aas+e (mod q), where Aa ∈ Zn×nq ,
s ∈ Znq and e is sampled from the distribution χ = DσB.

Therefore given a Ring-LWE instance, we can convert it into a structured
LWE instance with the aforementioned parameters, so that solving the structured-
LWE instance will also imply a solution to the original Ring-LWE instance. The
“quality” of the translation relies on the properties of the matrix B, i.e. on how
good of a basis for R we can obtain. We discuss the properties of B in the case
of power-of-two cyclotomic number fields in Section 6.

4 Sometimes Lossiness and Hardness of Entropic
Structured LWE

We will first define a new lossiness notion which we call Sometimes Lossiness.
This notion will serve as our main tool to establish hardness of entropic gen-
eralized LWE problems. Recall the definitions of smooth min-entropy (see Sec-
tion 2.1).

Definition 4.1. Let q, n, k be integers. Let X be a distribution on (Zn×nq )k, S
be a distribution on Znq and χ be an error-distribution on Znq . We say that X is a
sometimes lossy pseudorandom distribution for S and χ if there exists negligible
function ε, a κ = ω(log(λ)) and a δ ≥ 1/poly(λ) such that the following properties
hold.

– Pseudorandomness: X is computationally indistinguishable from Mk.
– Sometimes Lossiness: It holds that

Pr
A←$X

[H̃ε
∞(s|A, sA + e) ≥ κ] ≥ δ,

where s←$ S and e←$ χ
k.

4.1 From Sometimes Lossiness to the Hardness of Entropic
Structured LWE

We will now show that a sometimes lossy pseudorandom distribution X for a
distribution of secrets S and an error distribution χ implies that hardness of
entSLWE(q, k,M, χ,S).

Theorem 4.2. Let S be a distribution of secrets and let χ be an error distri-
bution. Assume there exists a sometimes lossy pseudorandom distribution X on
(Zn×nq )k. Then entSLWE(q, k,M, χ,S) is mildly hard.
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Proof. Let δ = 1/poly(λ) be as in Definition 4.1. Set ` = λ/δ = poly(λ). By a
standard hybrid argument, it holds that

(A(1), . . . ,A(`)) ≈c (U(1), . . . ,U`),

where A(i) ←$ X and U(i) ←$Mk for all i = 1, . . . , `. Our argument will make
use of the fact that by our choice of `, some of the A(i) must be lossy, except
with some negligible probability.

Assume towards contradiction that entSLWE(q, k,M, χ,S) is not mildly hard,
i.e. there exists a PPT adversary A against entSLWE(q, k,M, χ,S) such that

Pr
s,e

[Pr
A

[A(A, sA + e) = s] > 1− ν] > ε,

where s←$ S, A←$ X , e←$ χ, ν = ν(λ) is negligible and ε ≥ 1/poly(λ).
We will use A to construct a distinguisher D which distinguishes the random

variables (A(1), . . . ,A(`)) and (U(1), . . . ,U(`)) with non-negligible advantage.
Let N = λ/ε = poly(λ). The distinguisher D is given as follows.

D(A1, . . . ,A`) :
For i = 1, . . . , `:

– For j = 1, . . . , N :
• Choose si,j ←$ S and ei,j ←$ χ

k

• Compute s′i,j ← A(A(i), si,jA
(i) + ei,j)

– If for all j ∈ [N ] it holds that s′i,j 6= si,j , abort and output 1.
Output 0.

We will now analyze the distinguishing advantage of D.

1. First assume that A’s input is (A(1), . . . ,A(`)), where each A(i) is chosen
from X . Since the A(i) are all independent and X is sometimes lossy for S
and χ, recalling that ` = λ/ε it holds that

Pr
A(1),...,A(`)

[∀i ∈ [`] : H̃∞(s|sA(i) + e) < κ] =
∏̀
i=1

Pr
A(i)

[H̃∞(s|sA(i) + e) < κ]

≤ (1− ε)` ≤ e−ε` = e−λ,

which is negligible. Consequently, there exists an index i ∈ [`] such that
H̃∞(s|sA(i) + e) ≥ k, except with negligible probability over the choice of
the A(1), . . . ,A(`). Thus, fix A(1), . . . ,A(`) for which there exists an index
i∗ ∈ [`] with H̃∞(s|sA(i∗) +e) ≥ k. Now, since si∗,1, . . . , si∗,N ←$ S, it holds
by a union-bound that

Pr[∃j ∈ [N ] : A(A(i∗), si∗,jA
(i∗) + ei∗,j) = si∗,j ]

≤ N · Pr[A(A(i∗), sA(i∗) + e) = s]

≤ N · 2−H̃∞(s|A(i∗),sA(i∗)+e)

≤ N · 2−κ,
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where s ←$ S and e ←$ χ. The term N · 2−κ is negligible as N = poly(λ)
and κ = ω(log(λ)). Consequently, it follows that in the computation of
D(A(1), . . . ,A(`)) in the i∗-th iteration of the outer loop it will hold that
s′i∗,j 6= si∗,j for all j ∈ [N ], except with negligible probability over the choice

of si∗,1, . . . , si∗,N and ei∗,1, . . . , ei∗,N . This will cause D(A(1), . . . ,A(`)) to
output 1.
All together, we conclude that in case (A(1), . . . ,A(`)) is chosen from X `, it
holds that D(A(1), . . . ,A(`)) = 1, except with negligible probability over the
choice of (A(1), . . . ,A(`)) and the random coins of D.

2. Now assume that A’s input is (U(1), . . . ,U(`)), where each Ui is chosen
from Mk. We will show that with high probability over the choice of the
(U(1), . . . ,U(`)) and the random coins of D, for every iteration i there will
be an index j such that s′i,j = si,j , which will cause D(U(1), . . . ,U(`)) to
output 0.
Now fix an i∗ ∈ [`]. Define the event BAD(s, e) by

BAD(s, e) :⇔ Pr
U

[A(U, sU + e) = s] ≤ 1− ν,

where U ←$ M. Recall that since we assume that A breaks mild hard-
ness it holds that Prs,e[BAD(s, e)] ≤ 1 − ε. We will now bound the prob-
ability that all (si∗,1, ei∗,1), . . . , (si∗,N , i

∗, N) are bad. Since all the pairs
(si∗,1, ei∗,1), . . . , (si∗,N , i

∗, N) are independent, it holds that

Pr[∀j ∈ [N ] : BAD(si∗,j , ei∗,j)] =
∏
j∈[N ]

Pr[BAD(si∗,j , ei∗,j)]

≤ (1− ε)N ≤ exp(−ε ·N) = exp(−λ),

where we have used that N = λ/ε. Consequently, it holds with overwhelm-
ing probability 1 − exp(−λ) that at least one si∗,j is not bad. Thus, fix
(si∗,1, ei∗,1), . . . , (si∗,N , i

∗, N) such that there is an index j∗ such that the
pair (si∗,j∗ , ei∗,j∗) is not bad, i.e. PrU[A(U, si∗,j∗U+ei∗,j∗) = si∗,j∗ ] > 1−ν.
It follows that

Pr
U(i∗)

[∃j ∈ [N ] : A(U(i∗), si∗,jU
(i∗) + ei∗,j) = si∗,j ]

≥ Pr
U(i∗)

[A(U(i∗), si∗,j∗U
(i∗) + ei∗,j∗) = si∗,j∗ ]

≥ 1− ν,

which is overwhelming. We can conclude that, it happens with at most neg-
ligible probability over the choice of the si∗,1, . . . , si∗,N , ei∗,1, . . . , ei∗,N and
U(i∗) that the i∗-th iteration of the outer loop does not results in an abort
with output 1.
A union-bound over all i∗ ∈ [`] yields that with at most negligible probability
over the choice of the U(1), . . . ,U(`) and the random coins of D that in the
computation of D(U(1), . . . ,U(`)) any of the ` iterations of the outer loop
results in an abort with output 1. By construction of D, this means that
D(U(1), . . . ,U(`)) = 0 with overwhelming probability.
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Putting everything together, we conclude that

Pr[D(A(1), . . . ,A(`)) = 1]− Pr[D(U(1), . . . ,U(`)) = 1]

= Pr[D(A(1), . . . ,A(`)) = 1] + Pr[D(U(1), . . . ,U(`)) = 0]− 1

= 1− negl(λ),

Thus,D distinguishes X andMk with advantage close to 1, which contradicts the
assumption that X andM are computationally indistinguishable. This concludes
the proof.

5 Construction of Sometimes Lossy Distributions

In this section we will construct sometimes lossy distributions from a somewhat
general problem we call Decisional Small Ratio (DSR) problem. In Section 6 we
will show that DSR can be instantiated with by the Decisional Small Polynomial
Ratio (DSPR) assumption (which is related to the NTRU problem) or the stan-
dard RLWE assumption, leading to sometimes lossy distributions with different
parameters.

Definition 5.1 (Decisional Small Ratio (DSR) Assumption). Let q be a
modulus and k, n be integers and let M be a distribution of matrices on Zn×nq .

Let Ψ be a distribution on (Zn×nq )× × Zn×nkq . The DSR assumption for q, n, k,
M and Ψ postulates that

H · Z ≈c U,

where (Z0,Z)←$ Ψ , H is the Zq-inverse of Z0 mod q and U←$Mk.

The DSR assumption generalizes the Decisional Small Polynomial Ration
(DSPR) assumption [16], which itself is a generalization of the decisional NTRU
assumption. We will show that under certain conditions the DSR assumption
implies a sometimes lossy mode for LWE.

In our analysis, we will make use of the following smoothing lemma and
convolution theorem.

Lemma 5.2 ( [27, Claim 3.9]). Let Λ ⊆ Rn be a lattice and let σ ≥
√

2ηε(Λ).
Let e ∼ DΛ,σ be a discrete gaussian and e′ ∼ DRn,σ be a continuous gaussian.
Then e + e′ is 4ε close to DRn,

√
2σ.

Theorem 5.3 ( [23, Thm 3.1]). Let Σ1,Σ2 > 0 be two positive definite ma-
trices such that Σ = Σ1 +Σ2 > 0 and Σ−11 +Σ−12 > 0. Let Λ1, Λ2 be two lattices
such that

√
Σ1 ≥ ηε(Λ1) and

√
Λ2 ≥ ηε(Λ2) for some ε > 0. Let c1, c2 ∈ Rn be

arbitrary. Consider the following sampling procedure for x ∈ Λ2 + c2.

– Choose x1 ←$ DΛ1+c1,
√

Σ1
.

– Choose x←$ x1 +DΛ2+c2−x1,
√

Σ2
.

Then it holds that the marginal distribution of x is within statistical distance 8ε
to DΛ2+c2

.
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Lemmas 5.4,5.5 and 5.6 will be used to prove Theorem 5.7, the main technical
result of this section.

Convention: In the following lemmas, always assume the following: q is a mod-
ulus, n is an integer and B ∈ Rn×n. Moreover let Λ = Λ(B−1) and set s = ηε(Λ).

Lemma 5.4 (Blockwise Gaussian Decomposition). Let F = (F1, . . . ,Fk) ∈
Rn×nk, where for all i Fi ∈ Rn×n and set F′ = (BF1B

−1, . . . ,BFkB
−1). As-

sume that the largest singular value of F′ is σF′ . Let σ, σ1 > 0 be such that
σ ≥ σF′ · σ1. There exists a distribution Ψ on Rnk, such that if e′ ∼ Dσ1·B and
e′′ ∼ Ψ are independent, then e = e′F + e′′ is distributed according to Dk

σB.

Proof. Let Σ = σ2I − σ2
1F
′>F′. Let f ′ ∼ Dσ1I = Dn

σ1
and f ′′ ∼ D√Σ. By

Proposition 2.2 it holds that f = f ′F′+f ′′ is distributed according to Dnk
σ = Dk

σI.
Write f = (f1, . . . , fk) and f ′′ = (f ′′1 , . . . , f

′′
k). Then it holds for all i

f i = f ′ · F′i + f ′′ = f ′BFiB
−1 + f ′′i .

Multiplying both sides with B yields

f iB = f ′BF + f ′′i B.

Now notice that f ′B is distributed according to Dσ1B and for all i ∈ [k] it holds
that f iB is distributed according to DσB. Note that e′ and f ′B are identically
distributed, and also ei and f iB are identically distributed for all i ∈ [k] . Setting
Ψ to be the distribution of the f ′′B the result follows.

Lemma 5.5 (Continuous to Discrete). Let Z0 ∈ Zn×n. Let τ2 be the largest
singular value of Z′0 = BZ0B

−1. Assume that σ >
√

2τ2ηε(B
−1). Let f ∼ D√2σB

and e ∼ DΛ(Z0),σ·B. Let S be a random variable supported on Znq . Then it holds
that

H̃4ε
∞(s|s + fZ−10 ) ≥ H̃∞(s|s + eZ−10 ).

Proof. Let ẽ′ ∼ DσI be a spherical continuous gaussian and let ẽ be distributed
according to DΛ(B−1Z′0),σI. By Claim 2.3 we have that τ1 · ηε(B−1) ≥ σmax(Z′0) ·
ηε(Λ(B−1)) ≥ ηε(Λ(B−1 ·Z′0)). Now let f̃ ∼ D√2σI. Then it holds by Lemma 5.2

that f̃ and ẽ + ẽ′ are 4ε close.
Now note that by the definition of e we have that e and ẽ ·B are identically

distributed, also f and f̃ · B are identically distributed. Setting e′ = ẽ′B, we
obtain that fZ−10 and eZ−10 + e′Z−10 are 4ε-close. We can conclude that

H̃∞(s|s+eZ−10 ) = H̃∞(s|s+eZ−10 , e′) ≤ H̃∞(s|s+eZ−10 +e′Z−10 ) ≤ H̃4ε
∞(s|s+fZ−10 ).

Lemma 5.6 (Discrete to Continuous). Let f ←$ DZn,
√
2σ·B and e←$ DσB,

then it holds that

H̃8ε
∞(s|s + f) ≥ H̃∞(s|s + e).
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Proof. Let e′ be distributed according to DZn−e,σB. Then it holds by Theorem
5.3 that the statistical distance between e + e′ and f is smaller than 8ε.

Theorem 5.7. Let Z0 ∈ Zn×n and for i ∈ [k] Zi ∈ Zn×n be matrices and
let Z = (Z1, . . . ,Zk) ∈ Zn×nkq be the matrix obtained by concatenating the Zi.

Further let Z−10 ∈ Qn×n be the rational inverse of Z0 and H ∈ Zn×nq be the
Zq-inverse of Z0 mod q.

Define the matrix Z′0 = BZ0B
−1 and Z′ = (BZ1B

−1, . . . ,BZkB
−1). Let τ1

be the largest singular value of Z′0
−1

Z′ and τ2 be the largest singular value of Z′0.
For a σ > τ2ηε(Λ(B−1)) let σ0 ≥ 23/2σ · τ1. Then it holds that

H̃20ε
∞ (s|sHZ + e0) ≥ H̃∞(s|s + e)− n log(τ2),

where e0 ←$ D
k
σ0B and e←$ DσB.

Proof. Fix a distribution of secrets S and let s←$ S. Let σ1 = σ0/τ1 ≥ 23/2σ

Since the largest singular value of Z′0
−1

Z′ is τ1, by Lemma 5.4 there exists
a distribution Ψ over Rnk such that we can equivalently sample e0 by e0 =
e1Z

−1
0 Z + e′1, where e1 ∼ Dσ1B and e′1 ∼ Ψ . Consequently, we can write

y = sHZ + e0 = sHZ + e1Z
−1
0 Z + e′1 = (sH + e1Z

−1
0 )Z + e′1.

Thus, since y can be computed from sH + e1Z
−1
0 and e′1 it follows that

H̃∞(s|sHZ + e0) = H̃∞(s|sH + e1Z
−1
0 , e′1) = H̃∞(s|sH + e1Z

−1
0 ),

where the second equality follows as e′1 is independent from s and e1.
Now let σ2 = σ1/

√
2 ≥ 2σ and let e2 ∼ DΛ(Z0),σ2B be a discrete gaussian.

By Lemma 5.5 it holds that

H̃4ε
∞(s|s + e1Z

−1
0 ) ≥ H̃∞(s|s + e2Z

−1
0 ).

Now, since H is the Zq-inverse of Z0 mod q, multiplying sH + e2Z
−1
0 by Z0

yields
H̃∞(s|sH + e2Z

−1
0 ) = H̃∞(s|s + e2).

Now let σ3 = σ2/
√

2 ≥
√

2σ, e3 ∼ DZn,σ3B and e′3 ∼ DΛ(Z0)−e3,σ3B. Setting
Λ2 = Zn and Λ1 = Λ(Z0) in Theorem 5.3 and noting that σ3 > σ > ηε(Λ(B−1))
we obtain that the statistical distance between e2 and e3 + e′3 is at most 8ε.

It follows that

H̃8ε
∞(s|s + e2) ≥ H̃∞(s|s + e3 + e′3) ≥ H̃∞(s|s + e3, e

′
3).

Since e′3 is distributed according toDΛ(Z0)−e3,σ3
, it only depends on e3 mod Λ(Z0).

Thus

H̃∞(s|s + e3, e
′
3) ≥ H̃∞(s|s + e3)−H0(e′3)

≥ H̃∞(s|s + e3)− log(det(Z0))

≥ H̃∞(s|s + e3)− n · log(τ2),
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as |Zn/Λ(Z0)| = det(Z0) = det(Z′0) ≤ n · log(τ) (as the largest singular value of
Z′0 is τ2).

Finally as σ3/
√

2 = σ > ηε(B
−1), by Lemma 5.5 we can bound

H̃8ε
∞(s|s + e3) ≥ H̃∞(s|s + e),

where e←$ DσB. Putting everything together, we obtain that

H̃20ε
∞ (s|sHZ + e0) ≥ H̃∞(s|s + e)− n · log(τ2).

We can now summarize the results of this section in the following theorem.

Theorem 5.8. Let τ1, τ2 > 0. Let Ψ be a distribution on (Zn×n)××Zn×nk and
assume the Decisional Small Ratio assumption holds for Ψ . Assume further that
if (Z0,Z)←$ Ψ then

– σmax(BZ−10 ZB−1) ≤ τ1 where Z−10 is the rational inverse of Z0.
– σmax(BZ0B

−1) ≤ τ2

with probability at least δ over the choice of (Z0,Z). Define the distribution X
on Zn×mq by HZ, where (Z0,Z) ←$ Ψ and H ∈ Zn×n is the Zq-inverse of Z0.

Let σ > τ2ηε(Λ(B−1)) and σ0 > 23/2τ1σ. Now let χ = Dσ0B. Further assume
that νσB(S) ≥ n log(τ2) + ω(log(λ)).

Then X is a sometimes lossy pseudorandom distribution for S and error
distribution χ.

By combining Theorems 5.8 and 4.2 we obtain the following corollary.

Corollary 5.9. Assume that the conditions of Theorem 5.8 are satisfied. Then
entSLWE(q, k,M, Dσ0B,S) is mildly hard.

6 Instantiation for RLWE over Power-of-Two
Cyclotomics

In this Section, we will instantiate the results of Section 5 for Ring LWE over
power-of-two cyclotomics. That is, we will construct a sometimes lossy pseudo-
random distribution in this setting.

Throughout this section let B ∈ Rn×n be a basis-change matrix as described
in Section 3.2.

First recall the Decisional Small Polynomial Ratio (DSPR) problem, as de-
fined by Lopez-Alt et al. [16]. The DSPR problem is in fact a generalization of
the NTRU problem.

Definition 6.1 (Decisional Small Polynomial Ratio problem (DSPR)).
Let R be a ring of integers of a number field K and let q be a modulus. Let
γ > 0. Let g ←$ DR,γ and f ←$ DR,γ conditioned on f mod q ∈ R×q . Let h be
the Rq-inverse of f . The DSPR problem for distribution DR,γ asks to distinguish
hg ∈ Rq from a uniformly random a←$ Rq.
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We will make use of the following Lemmas and Theorems of Stehlé and
Steinfeld [30].

Theorem 6.2 shows that if the a gaussian χ is sufficiently wide, then ring
elements hg are actually statistically close to a uniform a←$ Rq.

Theorem 6.2 ( [30, Theorem 3.2 restated]). Let n ≥ 8 be a power of 2
such that Φ = Xn + 1 splits into n linear factors modulo a prime q ≥ 5. Let
0 < α < 1/3 and assume that γ ≥ n ·

√
ln(8nq) · q1/2+α and that f ,g←$ DR×q ,γ

.

Let h be the Rq-inverse of f . Then it holds that hg is within statistical distance
210n · q−αn of the uniform distribution on R×q .

Lemma 6.3 ( [30, Lemma 3.5 restated]). Let n ≥ 8 be a power of 2
such that Φ = Xn + 1 splits into n linear factors modulo q ≥ 5. Let γ ≥√
n · ln(2n(1 + n2))/π · q1/n. Then it holds that

Pr
f←$DR,γ

[f /∈ R×q ] ≤ n(1/q + 2/n2).

Lemma 6.4 ( [30, Lemma 2.8 restated]). Let R be a ring of integers. Then
it holds for any γ ≥ ηε(R) that

Pr
f←$DR,γ

[‖f‖ ≥ γ log(n)
√
n] ≤ negl(λ)

Lemma 6.5 ( [30, Lemma 4.1 restated]). Let n ≥ 8 be a power of 2, Φ =
Xn + 1 and R = Z[X]/(Φ). For any γ ≥ 8nηε(R) it holds that

Pr
f←$DR,γ

[
‖f−1‖ ≥ 24

√
n

γ

]
≤ 1/2

We will now establish the hardness of an instance of the DSR problem, as-
suming RLWE and either the DSPR problem or Theorem 6.2. Let χ be a B-
bounded error distribution on R and let γ > 0 be a gaussian parameter. Define
the distribution Ψ as follows:

– Choose f ,g←$ DR,γ such that f mod q ∈ R×q .
– Choose e1, . . . , ek ←$ χ and e′1, . . . , e

′
k ←$ χ

– For all i ∈ [k] set zi = g · ei + f · e′i.
– Let Z0 be the multiplication matrix of f and for all i ∈ [k] let Zi be the

multiplication matrix of zi
– Set Z = (Z1, . . . ,Zk)
– Output (Z0,Z)

We will now show that the distribution Ψ is a sometimes lossy pseudorandom
distribution. Recall that by Theorem 5.8 it is sufficient to bound the maximal
singular values of BZ0B

−1, BZ−10 ZB−1 and establish that the DSR assumption
for Ψ holds. We will start by showing that if the Ring LWE assumption for error
distribution χ and the DSPR assumptions hold, then the DSR assumption holds
for Ψ .
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Lemma 6.6. Assuming both DSPR for distribution DR,γ and RLWE for error-
distribution χ, it follows that DSR for distribution Ψ is hard. Moreover, if χ =
DR×q ,γ

and the conditions of Theorem 6.2 are met, then the DSPR assumption
is not necessary.

Proof. Let h be the Rq-inverse of f . Observe that yi = hzi = hg · ei + e′i.
Under the DSPR assumption we can replace hg by a uniformly random a ∈ Rq.
It then follows by a simple hybrid argument that for all i yi = aei + e′i is
indistinguishable from a uniformly random ui under Hermite RLWE for error
distribution χ′.

Likewise, if the conditions of Theorem 6.2 are met, hg is statistically close to
a uniformly random a ∈ R×q . It follows again via a hybrid argument that for all
i yi = aei + e′i is indistinguishable from a uniformly random ui under Hermite
RLWE for error distribution χ′. Note that RLWE also holds if we condition on
a ∈ R×q , as this event happens with significant probability.

The following technical lemma lets us bound the maximal singular value of
a matrix Z′ by bounding the singular values of blocks of Z′.

Lemma 6.7. Let Z′ = (Z′1| . . . |Z′m) ∈ Rn×n·k be a block matrix where each
Z′i ∈ Rn×n. Assume that it holds for all i that σmax(Z′i) ≤ γ. Then it holds that
σmax(Z′) ≤

√
k · γ.

Proof. Fix any vector x = (x1, . . . ,xk) ∈ Rnk, where the xi ∈ Rn. Then it holds
that

‖Z′x‖ = ‖
k∑
i=1

Z′ixi‖ ≤
k∑
i=1

‖Z′ixi‖ ≤
k∑
i=1

γ‖xi‖ ≤ γ
√
k ·

√√√√ k∑
i=1

‖xi‖2 = γ
√
k · ‖x‖,

where the last inequality follows from the relationship between the L1 and L2

norms. It follows that σmax(Z′) ≤
√
k · γ

Lemma 6.8 bounds the maximal singular values of BZ0B
−1 and BZ−10 ZB−1

Lemma 6.8. Let γ > max{
√
n · ln(2n(1 + n2))/π · q1/n, 8nηε(R)} and assume

that χ is B-bounded. Let (Z0,Z)←$ Ψ . It holds that

– Z0 is invertible in Zn×nq

– σmax(BZ0B
−1) ≤ O(γ log(n)

√
n)

– σmax(BZ−10 ZB−1) ≤ O(n log(n)
√
kB)

except with probability 1/2 + o(1) over the choice of (Z0,Z).

Proof. We will bound the maximal singular value of BZ0B
−1 by ‖σ(f)‖∞.

Likewise, we will bound the maximal singular values of the BZ−10 ZiB
−1 via

‖σ(f−1zi)‖∞. The bound on the maximal singular value of BZB−1 will follow
by Lemma 6.7.

Note that
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– It holds by Lemma 6.3 that f in invertible in R×q , except with probability
n/q + 2/n = O(1/n).

– It holds by Lemma 6.4 and a union bound that ‖σ(f)‖ ≤ γ log(n)
√
n and

‖σ(zi)‖ ≤ γ log(n)
√
n for all i ∈ [k], except with negligible probability.

– By Lemma 6.5 we have that ‖σ(f−1)‖ ≤ 24
√
n/γ, except with probability

≤ 1/2.

Consequently, all 3 items hold, except with probability 1/2 +o(1). Moreover,
since the ei and e′i are distributed according to χ and χ is B-bounded, it holds
that for all i ∈ [k] that ‖σ(ei)‖ ≤ B and ‖σ(e′i)‖ ≤ B.

Thus, we have that

σmax(BZ0B
−1) ≤ ‖σ(f)‖∞ ≤ ‖σ(f)‖ ≤ γ log(n)

√
n = O(γ log(n)

√
n).

Moreover, it holds for all i that

σmax(BZ−10 ZiB
−1) ≤ ‖σ(f−1zi)‖∞

= ‖σ(f−1gei + e′i)‖∞
≤ ‖σ(f−1)‖∞ · ‖σ(g)‖∞ · ‖σ(ei)‖∞ + ‖σ(e′i)‖∞
≤ ‖σ(f−1)‖ · ‖σ(g)‖ · ‖σ(ei)‖+ ‖σ(e′i)‖
≤ 24n log(n) ·B = O(n log(n)B)

By Lemma 6.7 we conclude that σmax(BZB−1) ≤ O(n log(n)
√
kB).

We can now summarize the results of this section in our main theorem by
combining Lemma 6.8 with Corollary 5.9.

Theorem 6.9. Assume that DSPR with parameter γ and Ring LWE with a
B-bounded noise distribution χ holds. Let S be a distribution s.t. for some σ
it holds that νσ(S) ≥ n log(γ · log(n)

√
n) + ω(log λ). Then Entropic Ring LWE

for power-of-two cyclotomics with k samples, secret distribution S and Gaussian
noise parameter σ0 ≥ O(σn log(n)B

√
k) is mildly hard.

By Theorem 6.2 we know that we can drop the DSPR assumption provided
that γ ≥ poly(n)q1/2+α for an arbitrarily small constant α. This translates to
the stronger requirement that νσ(S) ≥ (1/2 + α)n log(q) + O(n log(n)). Thus,
the distribution S must have at more than (1/2 +α)n log(q) +O(n log(n)) min-
entropy to begin with. However, note that if S is an r-bounded distribution,
where r ≥ poly(n)q1/2+α, then Lemma 2.5 tells us if σ is a poly(n) factor larger
than r, we have essentially νσ(S) ≈ H̃∞(S) and the requirements can be met.
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