YARIX: Scalable YARA-based Malware Intelligence

Michael Brengel
michael.brengel @ cispa.saarland

ARTIFACT
EVALUATED

yusenix
ASSOCIATION

CISPA Helmholtz Center for Information Security

Christian Rossow
rossow @cispa.de
CISPA Helmholtz Center for Information Security

Abstract

YARA is the industry standard to search for patterns in mal-
ware data sets. Malware analysts heavily rely on YARA rules
to identify specific threats, e.g., by scanning unknown mal-
ware samples for patterns that are characteristic for a certain
malware strain. While YARA is tremendously useful to in-
spect individual files, its run time grows linearly with the
number of input files, resulting in prohibitive performance
penalties in large malware corpora.

We present YARIX, a methodology to efficiently reveal
files matching arbitrary YARA rules. In order to scale to large
malware corpora, YARIX uses an inverted n-gram index that
maps fixed-length byte sequences to lists of files in which
they appear. To efficiently query such corpora, YARIX op-
timizes YARA searches by transforming YARA rules into
index lookups to obtain a set of candidate files that potentially
match the rule. Given the storage demands that arise when
indexing binary files, YARIX compresses the disk footprint
with variable byte delta encoding, abstracts from file offsets,
and leverages a novel grouping-based compression methodol-
ogy. This completeness-preserving approximation will then
be scanned using YARA to get the actual set of matching files.

Using 32M malware samples and 1404 YARA rules, we
show that YARIX scales in both disk footprint and search
performance. The index requires just ~74% of the space
required for storing the malware samples. Querying YARIX
with a YARA rule in our test setup is five orders of magnitude
faster than using standard sequential YARA scans.

1 Introduction

As a core part of their threat intelligence, the security industry
closely monitors both known and new malware samples. To
this end, anti-virus and threat intelligence companies heavily
leverage their long-term malware archives to inspect mal-
ware threats. These gigantic malware databases quickly span
hundreds of millions or billions of samples [3]. The security
industry uses these archives to search for patterns of known

malware variants. While not following a strict definition, a
malware family usually groups together malware files that
follow the same semantics, e.g., because they share the same
code basis. By monitoring these variants, we learn when a cer-
tain threat has been active, what it aimed for, and ultimately,
indications that manifest the responsible actors. Obtaining
a complete malware picture is fundamentally important to
create accurate threat intelligence reports, and gives valuable
insights into both consumer malware and Advanced Persistent
Threats (APT) [10, 15,21].

The inherent challenge in this process is to classify mal-
ware samples into variants. To close this gap, YARA [2] has
matured to the community and industry de facto standard to
express patterns that are characteristic for a malware vari-
ant. YARA rules capture structural and semantic patterns of a
malware variant. Such rules determine if a malware sample
matches the known variant, and hence, are a vital driver for
automated malware inspection. YARA signatures help to iden-
tify and classify malware samples based on arbitrary binary
patterns specified in a YARA-specific syntax. Analysts create
YARA rules as part of their exploratory threat intelligence and
apply them to sample archives. YARA signature repositories,
both free [33,40] and commercial, are frequently updated
to keep up with newest threats. To keep up with the rapidly
growing malware ecosystem, analysts also use signature gen-
erators [8, 12] to create these rules. Consequently, a diverse
and ever-changing set of YARA rules has to be (re-)applied
to large and continuously growing sample databases.

Unfortunately, the growing number of new malware sam-
ples (e.g., ~ 10° of new malware samples daily [3]) is a great
challenge to YARA users. While YARA has a reasonable
runtime performance on small data sets, it does not scale to
larger data sets. For example, applying a standard YARA sig-
nature on 32M malware samples takes multiple days, and this
runtime increases linearly with the number of samples. While
parallelism mitigates the problem to a certain extent, it does
not solve the need to scan each and every sample regardless of
the YARA rule. This is stark contrast to the need of malware
analysts, who want to efficiently scan malware samples using

michael.brengel@cispa.de
rossow@cispa.saarland

0. YARA Rule 1. Search Term Extraction
or
"a.exe"” and "exit” and and
or 7\ /N
"\\x10tes[0-9]" and pe.dll and "exit” "\x10tes" pe.dll

U
inverted N n
4-gram /N /N
N | H | T

2. Candidate Files Generation 3. Candidate Validation

&

Figure 1: YARIX queries an inverted malware file index with search terms extracted from a YARA rule.

arbitrary YARA rules. Analysts regularly need to (i) adapt
and re-evaluate YARA signatures on large malware data sets,
(i1) efficiently search for known rules in new malware corpora,
or (iii) apply and fine-tune ad hoc YARA signatures, e.g., to
quickly reveal the existence of emerging threats. They thus
have to scan for patterns that are not known a priori, showing
the need for an efficient yet generic search methodology.

In this paper, we propose YARIX, the first generic YARA
search engine that is both scalable and space efficient. YARIX
finds files that match a YARA rule several orders of magnitude
faster than off-the-shelf YARA scans. This performance opti-
mization is achieved by transforming YARA rules into search
terms that can be efficiently searched for using an inverted
n-gram index. YARIX parses the YARA rule and extracts all
the n-grams (n consecutive bytes in a search string) contained
in the strings of the rule. YARIX then uses the index to enable
for efficient and sub-linear searches for these terms.

The index is independent from the YARA rules. That is, the
index supports arbitrary new YARA rules without requiring
an update. Index updates are only required when adding new
malware files to the corpus—a one-time effort per indexed
file. YARIX is fully compatible to YARA and does not require
modifications to the YARA standard or rules. It significantly
optimizes the YARA search and can handle advanced features
such as regular expressions and library import specifications.

Furthermore, YARIX returns sound and complete results.
Our exact YARA rule transformation guarantees that queries
return complete results, i.e., all files that match the search
criteria. To retain soundness, i.e., to reliably rule out false
positives, as a final step, we scan the set of candidate files
returned by querying the inverted index—a superset of all
actually matching files—with YARA signatures. YARIX thus
reliably replaces traditional YARA scans with an efficient
search strategy, which significantly reduces the set of malware
samples that have to be scanned.

YARIX’s back-end, the inverted file index, extends the gen-
eral idea of an inverted n-gram index [4]. The index consists
of 287 posting lists, i.e., sets of malware sample IDs that
contain a given n-gram. To reduce the disk footprint of the
index, we employ (i) variable-length encoding, (ii) compress

posting lists using delta encoding, and (iii) propose an over-
approximating grouping-based compression methodology.

We evaluate YARIX by building an index with 4-grams over
32M malware samples. Our compression methods reduce the
index disk footprint effectively. While a naive inverted index
would have a high overhead (e.g., 400% for 232 indexed files,
due to 4B-wide file IDs) compared to the sample size, variable
length and delta encoding shrink this overhead to 149.5%.
Grouping reduces this even further to about 74% overhead,
showing a significant gain over standard compression. At the
same time, YARIX reduces the runtime to search for YARA
signatures significantly. To assess the search performance,
we process 1404 publicly available YARA rules [33] with
YARIX. On average, YARIXis five orders of magnitude faster
than full sequential YARA search.

To summarize, our contributions are as follows:

We present YARIX, a fully YARA compatible search
engine that uses an inverted file index to efficiently reveal
all samples matching a given YARA rule.

We provide a fully-automated methodology that trans-
forms off-the-shelf YARA signatures into search terms
that can be used to efficiently query the index, resulting
in sound and complete results.

We evaluate the effectiveness of space compression algo-
rithms and are able to shrink the index’s disk footprint to
less than the size of the malware samples being indexed.

We evaluate our prototype based on 32M malware sam-
ples and 1404 YARA rules.'. YARIX reduces the search
time by five orders of magnitude.

2 Extracting YARA Search Terms

YARIX receives a YARA rule as input and utilizes a prepro-
cessed inverted (malware) file index to efficiently search for
all indexed files matching this rule. At the same time, YARIX

IThe YARIX reference implementation can be obtained at https://
github.com/mbrengel/yarix

https://github.com/mbrengel/yarix
https://github.com/mbrengel/yarix

rule foo{
strings:
$str_a = "calc.exe”
$str_b = "IsDebuggerPresent”

$str2_a = /[\/a-zA-Z0-9\.]{0,64}\.png/

$str2_b = /\xC7\x45\xC3\x41[A-Za-z-_\/\\ 1/

{01 01 @1 o1 ?? 52 [2-81 C1 (E?|F?) 02}
{F3 AB 88 12 83 (E?|F?) 03 F3 AA}

$op_a
$op_b

condition:
$op_b
or(2 of $str_x and 1 of $str2_*x and 1 of $op_*)

Figure 2: YARA Rule Example.

retains the strong capabilities of the feature-rich YARA lan-
guage. To this end, we automatically extract n-grams from
the strings provided by the YARA rule and use the index
according to the logic provided by the rule to find a set of
candidate files that will then be scanned using YARA. This
optimization is done in a completeness-preserving manner,
i.e., we do not miss files that would be found by standard
YARA. At the same time, we want to extract as much prefilter
information as possible to minimize the set of candidate files
that will be scanned with YARA to improve performance.
This optimization leads to large speedup factor, as the number
of files that need to be scanned by YARA can be reduced by
multiple orders of magnitude.

Figure | shows the general system overview of YARIX
using an exemplary YARA rule. In the first step, YARIX parses
the rule to extract the condition expression and its 4-grams
(substrings of size four) of all strings. In the second step,
these 4-grams are searched for in the inverted 4-gram index of
YARIX. For instance, "a.exe” and "exit" is processed by
feeding the 4-grams "a.ex" (found in file M and E), " . exe"”
(found in M and E) and "exit” (found in M) to the index.
The regular expression "\x10tes[0-9]" is—without losing
completeness—simplified to "\x10tes" (found in M and H).
Some YARA features, such as the expression pe.dll, are
not indexed and thus cannot be further optimized (T, i.e.,
found in all files)—again, without loosing completeness. The
resulting sets of files are intersected according to the logic
dictated by the rule (U for or and N for and), which yields the
candidate files ll,land M. In the third and final step, these
candidate files are validated with the standard YARA tool
which eliminates file land returns files Bl and B as the final
results.

In the following, we will describe the details of this opti-
mization process and outline how YARIX supports all YARA
features. We will start with a short introduction into YARA
rules.

2.1 YARA Rules Overview

The YARA framework [2] features complex and feature-rich
file searches. To this end, YARA defines its own pattern match-
ing language that relies on common constructs such as strings,
regular expressions and context-sensitive grammars. In addi-
tion, YARA features semantic capabilities, such as checking
the list of exported functions of a Portable Executable file. Op-
timizing all these features is an impossible endeavor, as they
partially require heavy file parsing (e.g., imported/exported
functions) or ad hoc computations (e.g., checksums over parts
of the file). Having said this, YARIX optimizes the most com-
mon YARA language constructs, and supports the remaining
features by considering the full set of indexed files without
filtering. For a detailed list of the individual YARA language
features and module extensions that YARIX leverages for
its optimizations, we refer to the technical documentation of
YARIX’.

Figure 2 shows an example of a YARA rule named foo.
YARA rules consist of strings and a condition that dictates
the searching logic. The three basic types of strings in YARA
are normal plain strings ($str_a and $str_b), regular expres-
sions ($str2_a and $str2_b) and hex strings ($op_a and
$op_b). Hex strings support wildcard and grouping mecha-
nisms. For example, ?? matches any byte, whereas 5? matches
any byte where the upper nibble is 5. The wildcard expression
[2-8] matches an arbitrary sequence of at least 2 and at most
8 bytes. The group expression (E?|F?) matches any byte
where the upper nibble is either 14 or 15.

The condition of the rule governs the matching logic. Con-
ditions are expressions of boolean type and support standard
logic operators such as and, or and not. The most simple
boolean expression is a string identifier. For example, $op_b
in Figure 2 evaluates to true if the string pointed to by the
identifier matches. As seen in the example, conditions also
support x of strs expressions, where x is a number and
strsis a set of strings. The notion x of y means that at least
x of the strings contained in y should match. The set of strings
inside such an expression can also be expressed using a wild-
card expression such as $str2_x. Our example rule triggers
if $op_b matches, or if both plain strings, at least one regular
expression and at least one hex string match.

2.2 Processing Strings

In order for YARIX to work with an arbitrary YARA rule, we
must be able to automatically process all types of strings and
all types of condition expressions. That is, given a string of a
YARA rule, we have to feed it in some form to the index to
find all files for which that string would be a potential match.
As previously stated there are three types of strings, each of
which we handle separately.

Zhttps://github.com/mbrengel/yarix

https://github.com/mbrengel/yarix

Plain Strings This is the easiest type of string, as it can
be broken up into its n-grams which can then be used to
query the index. Formally, let s be a plain string of length /
consisting of the bytes by, ...,b;. Then we use each n-gram
xi € {bjbji1...bjin1|1<j<I—n+1} and query the
index to get a set of file IDs F; in which x; is contained. Finally,
the intersection C =), F; is returned as a set of candidates
that potentially match the plain string s.

Regular Expressions To handle a regular expression, we
identify the plain strings that will be contained in every string
that will be matched by the regular expression and then pro-
ceed as with plain strings. In detail, given a regular expression
r, we first construct a DFA from it. Then, we compute the
dominators of the final state of the DFA, i.e., all states that
any accepting word will visit when the DFA is executed. For
each of these dominator states we then proceed as follows:
We check if the state has only one outgoing edge. If this is
the case, we collect the label (the character) of the edge and
continue with the target state of that edge. This is repeated
until we reach the final state or a state with more than one
outgoing edge is discovered. The concatenation of the col-
lected characters along the path form a plain string that will
be contained in every string that matches r. This process will
give us a set of plain strings S that we can proceed with as
before to get a set of file IDs F; for each s; € S. Given that all
of these plain strings must be contained in every match of r
we can return C = () F; as the final set of candidates. In Fig-
ure 2, the plain strings of $str2_a and $str2_b are ".png"
and "\xC7\x45\xC3A", respectively.

Hex Strings Similar to before, we handle hex strings by
identifying plain strings. In detail, we start at the beginning
of the hex string and scan byte by byte to collect a plain
string. We stop collecting the current plain string whenever
we encounter a wildcard or a grouping expression and start
collecting a new plain string when we encounter the next
fixed byte. In Figure 2, the sets of plain strings of $op_a and
$op_bare "\x01\x01\x01\x01", "\xF3\xAB\x88\x12" and
"\xAB\x88\x12\x83".

We may fail to extract any n-gram. For example, the regular
expression "[0-9]+" does not contain any plain strings that
will be contained in every match. Similarly, a hex string might
consist only of wildcards and/or grouping expressions such
as { (A?|B?) (C?|D?) 3. Because of performance reasons,
we also neglect strings smaller than n bytes, where n is the size
of the n-grams. In principle, we could query the index for all n-
grams where the search string is a prefix or a suffix. However,
this quickly imposes a significant overhead even if we are just
a single byte short. For example, if we have n = 4 and we want
to create the posting list of the 3-gram "abc"” we would need
to create the union of all posting lists of "xabc" and "abcx”
where x is an arbitrary byte, which would be a slowdown
factor of 2-256 = 512 and involve more costly set operations.

$op_b or (2 of $str_x and 1 of $str2_x and 1 of $op_x)

N\

2 of $str_x and 1 of $str2_* and 1 of $op_*

~
1 of $str2_x and 1 of $op_*

’1 of $str2_*‘ ’1 of $op_*

Figure 3: Abstract Syntax Tree (AST) of the condition of the
YARA rule in Figure 2.

This also applies to the plain strings yielded by processing
regular expressions and hex strings, i.e., a regular expression
is not optimizable if all of its plain strings are smaller than
n bytes. YARA also supports the nocase modifier for case-
insensitive searches, which we optimize by numerating all
2" different options for each n-gram. If we cannot find any
long enough plain strings, we consider the whole string not
optimizable and return C = T, i.e., the whole universe of files.

2.3 Processing the Condition

We need to parse the condition of a rule to understand how
we should combine the search results of the individual strings.
Figure 3 shows how we create the abstract syntax tree (AST)
of the condition of our example rule in Figure 2. The leaf
nodes are expressions of boolean type that do not contain any
of the standard logical operations (and/or/not). For each of
these expressions, we define an index search operation that
captures the semantics of the expression. After that, we com-
bine the search results according to the logic operation in the
tree, i.e., set union (U) for or and set intersection (M) for and”.
In case of a logical negation (not), we check if the expression
only contains plain strings which are exactly n bytes long.
In this case, we compute the file IDs, apply a set minus and
proceed upwards in the tree. Otherwise, the expression is con-
sidered unoptimizable and T is returned. For example, con-
sider the expression not $s where $s = "abcde”. Using an
index for n = 4, we can identify posting lists for "abcd” and
"bcde”. However, any combination of these posting lists only
gives us a set of candidate files that might contain "abcde”.
A negation of such a set is not the set of files that do defini-
tively not contain "abcde"”. For example, it is perfectly valid
for all files in the intersection of both posting lists to contain
"abcde”.

2.4 Processing Individual Expressions

We need to handle the individual expressions, i.e., the leaf
nodes of the AST. Handling a simple string expression such
as $op_b is obvious as we just use the index as described in

3We apply the standard set operation simplifications in case we have to
deal with T,ie, TUA=Tand TNA=A

Section 2.2. The x of strs expression can be captured with
the index as follows: for each string contained in strs we
query the index to find all file IDs that match the string. For
each file ID we count how many strings match, which we use
to return all file IDs that match at least n strings. In the case
that searching some of the strings of str is not optimizable for
reasons described in Section 2.2, we first create the expression
x’ of strs’ where strs’ is the optimizable subset of str
and x’ is x minus the number of unoptimizable strings. If x’
is smaller or equal to 0, then we consider the expression not
optimizable and return T. Otherwise, we proceed as before,
i.e., index search and keeping track of the number of matches.
For any other type of expression e, we simplify the expression
to a x of strs expression. In detail, if s1, ..., sl are the
string identifiers that an expression e contains, we create the
simplified expression ¢’ = 1 of (s1, ., sl) and pro-
ceed as before, i.e., we want to match all strings contained in
e.

2.5 Optimization Limitations

The simplification we apply to expressions to ensure that we
can optimize them, comes with a loss of precision. For exam-
ple, an expression of the form str at o requires positional
information that we cannot capture. By simplifying this ex-
pression to 1 of str we do not lose completeness, as any
file where str appears at o must fulfill the precondition that
str appears at all. However, we accept a loss in semantic in-
formation that could potentially blow up the set of candidate
files. While this is not a problem in terms of soundness of
the search as we will use YARA as a post-tool to filter out
non-matching files, it could still lead to performance issues.
Another problem that could occur is optimizability. We
consider a rule not optimizable if evaluating it returns T,
which happens if there are too many unoptimizable expres-
sions and this problem propagates through the set logic dic-
tated by the condition. In this case, YARIX is equivalent to a
sequential YARA scan. We have seen that expressions can-
not be optimized if they contain too many unoptimizable
strings. Apart from the examples we discussed, i.e., strings
being too short, there are also expressions that we consider
unoptimizable because they do not use any strings at all. For
example, YARA contains the PE module which allows for
complex expressions such as pe.imphash() == "..." or
pe.rva_to_offset(0x40000) == Such expressions
reflect strong semantic constraints that we cannot optimize
with YARIX. We thus have to ignore such expressions and
consider them unoptimizable. In case a rule contains too
many of such expressions, the whole rule becomes unop-
timizable and a full sequential traditional YARA scans is
required. However, the PE module also contains features
that YARIX can cope with. For example, the expression
pe.checksum == "\xDE\xXAD\XBE\XEF" puts constrains on
the checksum field of the PE header. We can abstract from this

by simplifying this to 1 of "\xDE\XAD\XBE\XEF", i.e., we
only require the string "\xDE\XAD\xBE\XEF" to be present at
all, which preserves completeness.

It is worth noting that a rule can be optimizable even if
it contains unoptimizable strings. Consider, for example, a
rule el and e2. Even if e1 cannot be optimized, the whole
rule can still be optimized if e2 is optimizable. In this case
the logical and operator translates to a set intersection and
remedies the fact that e1 translates to the set of all file IDs.

3 File Index Design

We now describe the design and implementation of the binary
file index used by YARIX. We start our discussion by showing
the commonalities and differences between traditional indexes
used for full-text search and our setting. After that, we discuss
the decisions we take to compress the index to reduce its disk
space footprint.

3.1 Background

YARIX requires a generic index design, i.e., supports arbitrary
YARA rules without requiring updates upon rule changes
and/or additions. The underlying data structure of YARIX is
thus an inverted n-gram index [4]. We borrow this idea from
the domain of full-text search. There, an inverted index maps
n-grams of tokens, i.e., n consecutive words or characters
in a document, to sets of IDs of documents containing these
tokens — so called posting lists. This mapping allows to find all
documents that contain a given n-gram. Moreover, a posting
list of an n-gram usually stores the position(s) at which the
n-gram occurs for each document ID of the list. This allows
to find the exact position of the n-gram within the file.

To search for a sentence in all documents, one would break
down the sentence into its n-grams and look up the document
identifiers in the posting lists of those n-grams. For example,
assume we search for the phrase The five boxing wizards
with n = 3. Here, we first use a sliding window to split the
phrase into the two possible 3-grams, namely (The, five,
boxing) and (five, boxing, wizards). We then look up
the posting lists for each of the four n-grams. These lists are
then intersected to get a list of candidate documents that po-
tentially contain the desired phrase. To verify if the candidate
documents actually contain the entire phrase, we can verify
the positional information stored in the posting lists. If the
n-grams’ offsets of a candidate document are in sequential or-
der, we can be certain that the document contains the word or
sentence; if they are not, the phrase is not contained. With ref-
erence to our example, assume a file that contains the sentence
The five boxing frogs are similar to five boxing
wizards. While this candidate document indeed contains all
searched n-grams, their positions within the document (1, 8)
are not consecutive, and hence, the search results excludes it.

3.2 Inverted n-Gram Malware Index

The general idea of an inverted index seems to translate nicely
to this use case. Here, the documents are malware samples,
and an n-gram represents a sequence of n consecutive bytes
within a file. There are, however, a few notable challenges
that we have to tackle to apply the idea of an inverted n-gram
index to malware samples.

First, the number of possible byte sequences in a binary file
quickly explodes for larger n. For example, choosing n = 4
already yields a set of 248 potential posting lists that need to
be maintained. The number of words or characters in the case
of full-text document search is orders of magnitudes smaller
than in our case. We have found that this space is quickly
saturated by approximately 10° malware samples, i.e., every
possible 4-gram occurs in at least one of those samples. This is
different in a text setting, where the case-insensitive character
set is tightly constrained. Moreover, the language grammar
dictates strong relationships between particular words (e.g.,
(1) article, (2) adjective, (3) noun), resulting in an overall
smaller number of actual combinations.

Second, malware executables lack a natural word delimiter.
While texts contain whitespaces that can be used to infer
tokens, we cannot infer any meaningful boundary in malware
samples that contain a mostly unstructured blob of arbitrary
code and data. Due to the lack of reliable tokenization of
malware samples, we thus have to fall back to fixed-size byte
sequences within the document.

Both observations impose interesting challenges for a
space-efficient malware index. We aim to index large col-
lections of potentially billions of files, which quickly leads
to formidable space requirements. It becomes particularly
challenging as we aim for a complete search, i.e., search re-
sults must not dismiss any documents that match the search
criteria in favor of efficiency. In the following, we will thus
present and discuss methodologies that compensate the lack
of space-efficiency, while preserving completeness.

3.3 Space Optimization Strategies

The size of an inverted index is largely determined by two
factors: (a) the number of n-grams in the index, and (b) the
size of the posting lists of each n-gram. Both represent suitable
angles to heavily reduce the space required to store an index.
In the following, we will survey the general options to reduce
storage costs for either angle.

3.3.1 Optimizing the Set of Considered n-Grams

An obvious first optimization point is to set n to a small
value. For n = 1, there are at most 28 = 256 n-grams, and for
each increment, the number of n-grams multiplies by eight.
Choosing an efficient n that is still characteristic enough for
searches is a trade-off. While smaller n clearly reduce the
number of posting lists, shorter n-grams are less characteristic

and have a higher chance to be present in a large fraction
of indexed files. We defer this discussion to Section 4.5, in
which we evaluate and choose an appropriate 7.

If we knew the search criteria when building the index,
n-grams that are never searched for could be ignored. This
would represent a significant reduction of index space. How-
ever, for this optimization to work, we need a priori knowl-
edge of the search criteria, and the criteria must be static over
time. One can quickly see that this is not a fair assumption in
most settings. Malware analysts regularly define new search
criteria ad hoc to explore malware files as part of their threat
analysis. Any new n-gram not covered by the index yet re-
quires a costly rebuild of the index. Consequently, in this
work, we do not assume such a priori knowledge of search
criteria, which allows to apply arbitrary searches.

Another optimization strategy would be to ignore n-grams
that do not serve as discriminative part of any search criteria.
In the setting of text files, one could ignore words that fre-
quently occur (like articles), and likewise ignore them during
search. In our setting, lacking knowledge of the search crite-
ria, we could stop maintaining posting lists of those n-grams
that are shared by “too many” files in the index. This follows
the intuition that such n-grams would not help to distinguish
between malware families, each of which makes up only a
smaller portion of the overall index. However, a general risk
of this strategy is that the index can no longer used as filter
for large classes of files in the index. For example, in princi-
ple, the n-gram of the Windows PE header allows to search
for all Windows executables. Yet, given that it is shared by
“too many” files, it will not be part of the index. Furthermore,
particular malware families may be overrepresented in mal-
ware collections [34], e.g., due to polymorphism. Neglecting
popular n-grams would thus render it infeasible to search for
those families. Given that we want YARIX to be generic, com-
plete, and compatible to large search results, we do not further
follow this strategy.

3.3.2 Optimizing the Posting Lists

A completely orthogonal approach to shrinking the set of
n-grams is to reduce the size of the posting lists. For the rea-
sons mentioned before, for YARIX, we follow only optimiza-
tion strategies of this kind. In particular, YARIX (i) operates
without storing offset, (ii) deploys optimal delta encoding to
represent posting lists, and (iii) groups files to shorten the
identifier space that has to be stored. All of these methods do
not break our completeness guarantees, i.e., they retain that
all files matching a certain criteria will be returned.

3.4 Offset-Free Index

As a first measure to shrink the posting lists, we remove any
positional information from them so that they only contain the
file IDs. Typically, posting lists contain the file ID where an

n-gram was found, plus its offset within the file. Neglecting
offsets saves a large amount of data. Apart from not storing
the offsets themselves, we also save space as we do not count
n-grams occurring multiple times. For instance, if a malware
sample f contains the 4-gram 00 00 00 00 1000 times, a
traditional inverted n-gram index would store 1000 (f,o0;)
pairs in the posting list of 20 00 00 00 where the o; values
are the offsets at which the 4-gram occurs in f. In contrast,
YARIX will only store f once in the posting list. The negative
aspect of ignoring offsets is that it complicates the search
process. After intersecting the posting lists, a position-aware
index ensures that the offsets contained in the posting lists are
in sequential order to eliminate any wrong candidates among
the set of all possible candidates. Given that this is not possi-
ble anymore if we remove offsets from the posting lists, we
solve this is by performing a normal sequential search on the
candidates. However, this is not a problem in our context as
the YARA expression optimizations that we described in Sec-
tion 2 require us to do a sequential YARA scan anyway. We
will show in Section 4 that acceptable real-world performance
is maintained with this solution.

3.5 Variable Delta Encoding

We aim to create an index for up to 232 malware files. Such
a bound nicely sets an upper limit for the size of one ID. In
particular, we have the guarantee that a file ID always fit into
32 bits. Note this restriction is not a limitation. In fact, if the
index is saturated, we can create further indexes and search
through all indexes combined.

Despite the upper bound for file IDs, storing 32 bits per
entry is wasteful. In particular, when using sorted posting lists,
we can store ID differences instead of their absolute values. In
well-populated lists, such deltas would be significantly smaller
than 32 bits. That is, in a sorted posting list, we compute
d; = fir1 — f; and we store the list fy,8¢,01,...,0¢_2, fr. We
store the smallest file ID in the beginning to ensure that we can
reconstruct the original posting list. Similarly, we store the
last file ID f in an absolute representation to ease incremental
index updates (see Section 3.7 for details).

To leverage the space gain of delta encoding, we store
the deltas using a variable-length s-bit encoding instead of
fixed-size deltas. s-bit encoding uses chunks of s+ 1 bits,
where the most significant bit of a chunk indicates that an-
other chunk follows. For example, consider the number 6743,
which is 01010111 in binary. In an uncompressed
form, we would naively require 32 bits to store this num-
ber. With 7-bit encoding, the number would be encoded as
1 01 Q0010111, i.e., 16 bits only. Similarly, with 5-bit
encoding it would be 1 101010 000111, i.e., 18 bits.
For s = 3, the encoding would be 1 1100 1101 1011
0001, i.e., 20 bits.

Given that the optimal value for s depends on the size of the
posting list, YARIX uses a hybrid s-bit encoding that chooses

the optimal s. During the initial index build, the optimal value
of s is determined per posting list by comparing different
choices. Header bits encode this optimal choice.

3.6 Grouping

We previously removed offsets from our index to save space.
Doing so made pure index searches unsound as the returned
file IDs were an overapproximation and soundness could only
be gained back by using the index as an optimizer for sequen-
tial search. In a situation where even more compression is
required, we can apply a more aggressive overapproximation
to the posting lists, which we call grouping.

General idea. The basic idea is as follows: we randomly
assign each file ID in a posting list to a group and store a group
ID instead of the file ID. Storing group IDs instead of file
IDs brings two optimization benefits. First, by choosing the
possible number of groups small enough it further decreases
the footprint given that storing a group ID requires fewer bits
than a file ID even in an uncompressed form. Second, the
random mapping from file IDs to group IDs creates collisions,
as multiple file IDs in a posting list may belong to the same
group and thus also saves space.

Formally, given a posting list mapping an n-gram x to a list
of file IDs f1, ..., fz, we compute a group ID g; for each f; as
follows:

g = fi modgn,)]

where gn is the number of groups. We could have g; = g; for
i # j, i.e., collisions can occur as previously discussed. This
means that the index search for a single n-gram x will now
yield a of set of group IDs G, = {g1,...,g¢} instead of a set
of file IDs. It will be necessary to revert G, to a set of file IDs
F., which can be done by inverting Equation (1). Formally, let
Jfmax be the largest file ID currently indexed by YARIX, then
F is the union of a finite subset of the congruence class of g;
modulo gn for each g; € Gy, i.e.,:

FX: U {gi+kgn‘kzo;gi+kgn§fmax}- (2)
gier

When searching for a string there will be one such set for each
distinct n-gram of the string, i.e., sets ..., F,. To get the
final set of file IDs F, that will then be searched sequentially,
we perform a set intersection, i.e.:

F=) & 3)

X €{x1, 0}

Varying moduli reduce over-approximation. Note that
the immense overapproximation created by Equation (2) (be-
cause of the set union) is compensated by the set intersection
in Equation (3). As previously mentioned, the choice of gn
influences the disk footprint as smaller group IDs require less
space and trigger more collisions. For example, by ensuring

that gn < 2!6 we can guarantee that a group ID will never
occupy more than 2 bytes. However, to minimize the overlap
between different posting lists in Equation (3) we want gn to
be prime and most importantly to differ per n-gram x; # x;.
That is, instead of a fixed gn, we want a variable gn,. This
is obviously not possible in most situations, e.g., consider
the case n = 4 where 23? prime numbers would be required,
which does not work if gn, < 2'®. However, by inspecting
Equation (3) it becomes evident that a problem only occurs
if all gn \; are the same, because then the intersection will be
all the true file IDs plus all their congruence classes modulo
gn,,. As soon as one gn,, is different this is not the case as
the congruence classes do not all overlap anymore. Therefore,
we simply define gn, as a uniform hash function that maps
n-grams to the list of the largest m prime numbers smaller
than gn. By choosing the m largest prime numbers we ensure
that the groups stay close to our desired number of groups
gn in order to not overapproximate too much. For a search
string consisting of ¢ different n-grams, the probability of
all n-grams sharing the same modulus is therefore given by
m~!. In our evaluation in Section 4, we will use m = 256,
which will make that probability sufficiently small even for
short search strings. For example, for a search string consist-
ing of 2 distinct n-grams, we have m~‘ = 0.0015%. From
a computational point of view it is also worth noting that
Equation (2) and Equation (3) can be computed and at the
same time most of the costly set operations can be avoided.
For instance, let G; be the smallest set of group IDs. We then
iterate over each f € F; and check for each n-gram x; # x; if
Gij>g=f mod gny;- Only if this is the case for all n-grams
x; we know that f € F. This avoids the set union in Equa-
tion (2) by generating F; element by element and also avoids
the set intersection in Equation (3) by performing a cheap set
element check g € G; of an already constructed set.

Selective Grouping: It is advisable to not apply grouping
to every posting list. For example, consider 16-bit group IDs
and a posting list consisting of 300000 file IDs. In this case
almost all group IDs would be occupied after grouping and
using these posting lists during search would reduce the com-
pensatory effects of the intersection. To account for this, we
can determine a threshold 1 for the size of posting lists up
until which they will be considered for grouping. We will
evaluate different choices for the grouping threshold < as well
as the general overall effectiveness of grouping in Section 4.

Example. In the following, we will give a brief example for
our grouping methodology. Consider a case where N = 100
malware samples need to be indexed, i.e., we can assume 7
bits per file ID for simplicity. Assume we use gn = 8 groups,
i.e., we can use 4 btis per group ID and we use the primes
11,13,17,19,.... Furthermore, for the sake of simplicity as-
sume we use 1-grams instead of 4-grams. We want to search
for all files containing the bytes A, B and C, which we assume
are matched by the file IDs 30 and 98.

Let the corresponding posting lists look as follows:

A — {18,30,33,39,40,49,98,99}
B {10,30,31,53,98}
C — {25,30,33,52,83,98}

If no grouping is used, the intersection of those posting lists
yields the optimal result, i.e., {30,98}.

If we use the simple grouping mechanism with the fixed
modulus gn as described in Section 3.6, the posting lists look
as follows:

A {18 mod 8,30 mod 8,...} ={0,1,2,3,6,7}
B+ {10 mod 8,30 mod 8,...} = {2,5,6,7}
C+— {25mod 8,30 mod 8,...} = {1,2,3,4,6}

A set intersection of those posting lists yields the group IDs 2
and 6 which can be restored to the following 25 file IDs, i.e.,
all file IDs that are congruent to 2 or 6 (mod 8):

{2,6,10,14,18,22,26,30,34,38,42, 46,50,
54,58,62,66,70,74,78,82,86,90,94,98}

If we instead use different moduli per posting list, we get
the following groups:

A {18 mod 11,30 mod 11,...} = {0,5,6,7,8, 10}
B+ {10 mod 13,30 mod 13,...} ={1,4,5,7,10}
C '+ {25 mod 17,30 mod 17,...} = {1,8,13,15,16}

To intersect the lists, we first need to revert the grouping
process as previously described and intersect the resulting
lists of file IDs. This yields the following set of 7 candidate
files:

{18,30,33,49,66,83,98}

As we can see, the optimized version with different moduli
allowed us to eliminate 18 candidate files.

3.7 Incremental Index Updates

Our file index is sufficiently generic and does therefore not
require updates for new YARA rules. However, if new files
have to be indexed, our design allows adding further samples
to the index in a non-costly manner. Ignoring grouping for
the moment, adding a sample to the index can be trivially
done by computing its n-grams and updating the necessary
posting lists. Even with delta-encoding, updating the posting
list is cheap, because we store the last file ID of the posting
list in an absolute representation (additionally to the relative
representation). This means we do not need to reconstruct the
whole posting list before adding the new file ID.

When considering grouping, special care has to be taken
during incremental index updates. Adding new files to the

index involves extending posting lists. If the size of a grouped
posting list surpasses the threshold T after adding new files,
we would need to revert the grouping which would potentially
involve scanning billions of files in the worst case. This is
not a viable option. Instead, we can group every posting list,
and if a list surpasses the threshold, we can store file IDs
instead of group IDs. Such a posting list will then consist of
file IDs and group IDs. As we will show in Section 4.7, the
distribution of posting list sizes of a set of indexed samples
can be extrapolated to learn the distribution of posting list
sizes for the desired number of samples. This means that
a reasonable value for T can be chosen a priori to ensure
predictable grouping behavior and to minimize the number of
posting lists surpassing the threshold 7.

4 Evaluation

We evaluate YARIX and benchmark the performance of
YARIX regarding index build time, disk footprint and search
performance.

4.1 Dataset

We build an inverted 4-gram index over N = 32M malware
samples with a total uncompressed size of 13.79 TiB. We
will discuss the choice of n = 4 in Section 4.5. The samples
stem from VirusShare.com, non-public repositories and AV
vendor feeds, and include well-known malware families for
all popular operating systems. We retrieved anti-virus labels
for 900k samples and found more than 19k Microsoft labels
and more than 21k Kaspersky labels, indicating high diversity.
The feeds are updated on a daily basis and thus represent
a real-world excerpt of the malware ecosystem. In order to
evaluate the YARA search, we use all 1404 YARA rules from
the Malpedia project [33] repository*. About 286k of the 32M
samples matched at least one of the 1404 YARA rules.

4.2 Index Build Time

We developed a prototype in C++ and Python 3 that imple-
ments YARIX as described in Section 3 and Section 2 for
n = 4. The prototype ran on a system using 2 Intel® Xeon®
Processor E5-2667 v4 CPUS utilizing 24 threads. We addi-
tionally used an NVME drive as an intermediate fast storage
for storing parts of the index that were merged and moved to
a traditional HDD setup (7.2K RPM SAS-12Gb/s). This setup
was capable of indexing 10° samples in 15 hours, showing
that YARIX can process over 1M samples per day on just a
single system. If we wrote the index directly on the HDD,
the operation took 39 hours. Writing directly to the HDD is
slower than using the NVME as intermediate storage, because

4Revision: 0b7d57251cdofecf149d47d9c5564617c9fa7978 (Tue Nov
26 09:19:08 2019 UTC)

|:| index |:| yara |:| total

10t

R
10

g

Q

& 102

8

g 10!

g = =]

-

[

A 10t I:I |:|
10-2 = -
103

10° 5.10% 108 32.10°

Number of indexed samples (N)

Figure 4: Search performance breakdown for all YARA rules
and different numbers of indexed samples. Whiskers denote
+1.5-1IQR, dashed line denotes mean. Lower is better.

the index creation requires many IO operations. Note that all
subsequent experiments do not use parallelism to foster com-
parability to standard (non-parallel) YARA.

4.3 Correctness

To empirically validate the correctness of our approach, we
compared the results of YARIX with sequential YARA scans.
We scanned all 32M samples with every YARA rule and
checked if the candidates yielded by the YARA optimization
of YARIX for that rule is a superset. This was the case for all
the rules, which confirms the completeness of YARIX. Given
that YARIX leverages standard YARA to refine the candidate
files in the final step, YARIX also guarantees soundness. In
total, 37 out of the 1404 (2.64%) rules can not be optimized
by YARIX for reasons described in Section 2.2. That is, these
rules contain too many expressions that we cannot handle or
they contain too many unoptimizable strings.

4.4 YARA Search Performance

For evaluating the search performance of YARIX, we first cre-
ated an index for N € {10°,5-10°,10°%,32M} samples each.
Then we queried all 1404 YARA rules with each of these
indexes with YARIX as described in Section 2 and measured
the elapsed time. By choosing different numbers of indexed
samples, we can see how YARIX scales. The result of this
experiment is depicted in Figure 4. We also break down the
search time into the time spent using the index for narrowing
down the set of candidate files and the time spent sequen-
tially scanning this optimized set with YARA. The execution
time largely depends on the number of indexed samples and
grows sub-linearly due to the fast index lookups. In the case

o 10° 1
g
E 104
S‘ —
3 3
2 10
=%
¢}
102
10!
100 - - -
105 5.10° 106 32.108

Number of indexed samples (IV)

Figure 5: Search performance speedup of YARIX compared
to sequential YARA scanning. Higher is better.

#groups T 1200 | 400 | 5000 | 10000 o
214 1 1 18.49 | 32.03 | ~5.72-10°
215 1 1 7.8 1156 | ~2.77-10°
216 1 1 4 513 | ~9.77-107

Table 1: Average number of search candidates relative to
non-grouping for different number of groups and grouping
thresholds 7.

of N = 32M samples, querying the index with a rule takes
12.47 seconds in total, 9.38 seconds for querying the index
and 0.42 seconds for sequential YARA scanning in the me-
dian. The high mean values for the total time and the YARA
scan time are the result of a few outliers where the rule con-
sisted of expressions that yielded large overapproximations.
In these cases, we had to perform a sequential YARA scan
on nearly all samples. The index operation takes longer for
larger indexes, as the posting lists become larger. As a result,
the decoding of those lists takes longer. Also, as the resulting
sets become larger, the set intersections and unions become
more costly.

These experiments were carried out in a single threaded
workload in order to minimize caching and scheduling ef-
fects and ensure reproducibility. In a real-world deployment
it would be trivial to distribute the workload among different
threads and/or machines to significantly improve the perfor-
mance.

To get a better understanding of how much faster YARIX is
compared to sequential scanning, Figure 5 depicts the speedup
factor. In the case of 32M samples, YARIX is five orders of
magnitude faster than sequential YARA scanning on average.
The speedup factor gradually increases with the number of
indexed files.

Finally, we use the search performance to evaluate differ-
ent values for the grouping threshold T and the influence of
the number of groups. To do so, we compute the number of
candidates, i.e., the file IDs that are yielded by the YARA
optimization of YARIX and used by the sequential YARA
scan. We compare the number of candidates in the case of
grouping to the number of candidates in the case where no
grouping takes place to understand how much accuracy is lost.
The results of this analysis are depicted in Table 1. A first in-
tuitive observation here is that T = o is not a viable option as
it blows up the number of candidates. For example, if we have
214 groups, using T = oo yields approximately 5.72 - 103 more
candidates on average than the non-grouping version. Note
that this means that the sequential YARA scan that would
follow will be 5 orders of magnitude slower, which is not a
viable option. However, if we use a grouping threshold, this
slowdown is drastically reduced. Consider, for example, the
case of 2! groups and a grouping threshold of T = 10000,
which leads to only 5.13 times more candidates than the
non-grouping case on average. Even in the worst case of 24
groups this threshold would only slow down the YARA search
by a factor of 32.03. We will see in Section 4.6 that such a
threshold would group more than 98% of all posting lists.
If the n-grams of the strings of YARA rules were randomly
distributed, this would mean that almost all resulting posting
lists would be subject to grouping. As a result the overapprox-
imation would become too large and the actual slowdown
factor would be closer to that of T = o, i.e., in the order of
10°. However, as this result shows the n-grams of strings in-
side YARA rules do now follow a normal distribution and
there are enough non-grouped posting lists in practice to en-
sure good performance. We can use this to our advantage if
we later discuss the disk footprint in Section 4.6. For example,
choosing 2! number of groups with a threshold of T = 10000
would decrease the relative disk footprint from 149.5% to
65.48% while only slowing down the search by a factor of
11.56 on average.

4.5 Choosing n

When choosing a suitable value for n we wanted to pick the
smallest n that has a reasonable search performance. We em-
pirically validated that n = 3 is an unsuitable choice by com-
paring it against n = 4, because it delivered 1421.83 times
more candidate files during YARA search. Given that smaller
n would only make this worse, we identified n = 4 as a lower
bound. Regarding larger values for n, we verified that choos-
ing n =5 would almost double the number of unoptimizable
rules from 37 to 73. Additionally, the disk footprint would suf-
fer from such a choice. First, there are more unique 5-grams
than 4-grams per file that need to be indexed. Second, the
posting lists would become more sparse and as a result the
delta encoding would not be as efficient. Given that all of this

G —H— G+46

0]
Q
m
&>

200% G
270%
250%
230%
210%
190%
170%
150% O
130%
110%

90%
70%
50% W’/’{b

30%

(0]
(0]
(0]

1]
1]
m
O

Size (relative to size of indexed samples)

=

Ry
R)
J) kS

=
P
o
-
o”

Number of groups

Figure 6: Disk footprint for different number of groups for
N = 32M indexed samples (& = uncompressed, G = grouping
was used, 8 = delta encoding was used, G + & = grouping and
delta encoding was used). Lower is better.

would be further amplified by choosing even larger values,
we chose n = 4.

4.6 Disk Footprint

To evaluate the disk footprint of YARIX, compare the size
of the index for all N samples in different configurations
regarding the number of groups and grouping thresholds T as
discussed in Section 3.

We define the size of the index as the accumulated number
of bytes it takes to encode all posting lists. In particular, this
does not include overhead introduced by the file system or
the file format that is used to organize the posting lists. For
example, in our test setup we used the ext4 file system and
a folder structure a/b/c to organize posting lists. Here, a, b
and c each represent a byte of a 4-gram and the file c uses a
custom file format to store the 256 postings lists of all n-grams
that share the abc prefix. The overhead introduced by this
approach is both environment- and implementation specific,

but certainly constant and almost negligible for larger indexes.

For example, the overhead introduced by the file system is
asymptotically constant as we never expect more than 232
posting lists, which was already saturated in the case of the
N samples. Moreover, if we used a different file system that
supports more files than ext4 we could store each posting list
in an individual file and thus would not have the overhead
of the custom file format. By not including this overhead
we thus make the analysis implementation- and environment
independent.

Figure 6 and Figure 7 show the result of this analysis. The
former depicts the cases where no grouping threshold was
used and the latter includes cases where grouping with delta

& 140% co—6—6——° —O—r=10
[=1
g —5— 7=3000
@ 120%
2 —— 7=14000
M
é 100% —&F— 7=15000
e = 10000
'059 80% oo
w
L
© 60%
2
3
R
:’3', 40%
Q
=
o 20%

TR n r 2

Number of groups

Figure 7: Disk footprint for varying number of groups and
grouping thresholds for N = 32M indexed samples, using
G+ 8+ 7. Lower is better.

encoding and a grouping threshold was used. When grouping
was applied, we use the 256 largest prime numbers that fit
into a certain number of bits to optimize the disk footprint.
This means that we have slightly fewer than 2* groups, which
is why we use the “~” notation in both figures. The choices
for both the number of groups and the grouping thresholds
present a reasonable range of options depending on the trade-
off between disk footprint and search performance, which
will be discussed later.

In an uncompressed form, the index requires 281.46% of
the space required for all samples. Note that this is already a
large improvement over offset-sensitive indexes. This is be-
cause assuming 4 byte file IDs without offsets, a file consisting
of m bytes has m — 3 n-grams, which will add 4m — 12 ~ 4m
bytes to the index, because the file ID will be added once for
each n-gram. This would yield an overhead of ~ 400% not
accounting for additional overhead required for storing file
IDs several times including their positional information. Since
YARIX is offset-free, we can abstract from n-grams occurring
multiple times, which yields the depicted improvement.

Applying delta encoding reduces the relative size signifi-
cantly to 149.5%. Grouping further shrinks the required disk
space. The smaller the number of groups, the smaller the disk
footprint. This can be explained by the fact that the improve-
ment in disk footprint with grouping has two reasons: colli-
sions by chance and less bits required to store group IDs than
file IDs. The smallest footprint is 23%, which is achieved by
212 groups with delta encoding. Without delta encoding, 2'2
groups have a relative size of 49.46%. The largest footprint
for grouping with delta encoding and without delta encoding
is 92.8% and 56.76% respectively.

However, none of these grouping variants are useful in prac-
tice because of their poor search performance (cf. Section 4.4).

Instead, a reasonable choice of the grouping threshold T (maxi-
mum posting list length to apply grouping on) will be required
in practice. Choosing a threshold is a trade-off between disk
footprint and search performance. The larger the threshold,
the more posting lists will be grouped, the better the disk
footprint improvement. However, the more posting lists are
subject to grouping, the larger the overapproximation, which
degrades search performance as we have seen in Section 4.4.
The disk footprint of different choices of T on top of grouping
with delta encoding is depicted in Figure 7. We can see that
a small threshold like T = 1500 has little effect on the disk
footprint as too many posting lists are not subject to group-
ing. With 216 groups, for example, the footprint is 136.21%,
which is only a small improvement over the 149.5% of delta
encoding alone. However, we see that the disk footprint is
sensitive in the beginning for changes in t and slows down
as T becomes larger. For example, doubling T from 1500 to
3000 decreases the disk footprint from 136.21% to 90.48%,
while doubling it from 5000 to 10000 decreases the footprint
from 80.91% to 74%. Grouping all posting lists, i.e., T = oo
(equivalent to G + § cf. Figure 6), would decrease the foot-
print to 56.76%. By choosing a threshold of T = 5000 we
already group 96.31% of all posting lists and by choosing
T = 10000 this percentage increases to 98.71% (cf. Figure 10
in the appendix).

4.7 Scalability

One of the core goals of YARIX is scaling to large malware
sample databases. Until now, we have evaluated YARIX on
a real-world dataset consisting of N = 32M samples, but we
want to understand how YARIX scales for 232 samples by
extrapolating our results. One particular challenge for such
an extrapolation is to estimate the distribution of n-grams on
a larger sample set. Only the uncompressed index size can
be trivially extrapolated, as having kN samples will require
roughly k times the space of storing/indexing N samples.
However, to extrapolate the compressed disk footprint, we
have to study the posting list distributions, as they influence
grouping and delta encoding.

To this end, we use combinatorics to estimate the expected
number of groups the file IDs of a posting list will belong
to. A detailed description of this method and extrapolated
figures are given in Appendix A. Overall, this extrapolation
confirms that the disk footprint scales linearly also if grouping
and delta encoding is applied. Following the intuition that the
distribution of n-grams among samples can be extrapolated
as described in Appendix A, we have reason to believe that
the sub-linear trend of the search performance will continue
for larger datasets as well. We already empirically confirmed
this assumption in Figure 4 where we indexed differently
sized subsets and observed a sub-linear progression in search
performance.

5 Case Studies & Future Work

For a small subset of YARA rules, the YARA optimizer of
YARIX has not eliminated enough candidates and has left too
many files for a sequential YARA scan. While most rules
perform well and the filtering by the index does most of the
work, applying YARIX to some rules excluded almost no
files from the sequential YARA scan. In the following, we
study one rule that performed well and the three rules that
performed the worst and had no empty result, and discuss the
reasons and mitigations for their poor performance.

Case Studies. First, an example that performed well is a
YARA rule for the Retefe [16] banking trojan that matches 16
indexed samples. This rule consists of a single all of them
expression which requires 7 plain strings to be present
in the sample. All plain strings are of adequate length
and can thus be captured by YARIX. The longest of those
is "security add-trusted-cert -d -r trustRoot -k
/Library/Keychains/System.keychain %@".

Using YARIX with this string already yields the 16 actual
matches.

Next, an example that performed poorly is a rule for the
PlugX malware [29]. In this case YARIX filtered a set of
12M candidates and a sequential YARA scan yielded merely
84 actual matches. The condition of the rule is of the form
xo Vx1 Vxp and xg is {E8 00 00 00 00 58} at @, which
requires the x86 instructions call @x5 ; pop eax (“get pro-
gram counter” gadget) to be present at offset 0 of the sample.
Given that YARIX is offset-free and thus has to abstract from
the at constraint, any file that contains
E8 00 00 00,00 00 00 @0 or 00 00 00 58 will be a can-
didate for sequential YARA scanning. This is the case for
almost all 12M files and is thus the culprit of the problem.
After reverse-engineering the malware, we found that x; and
x are used to capture the custom API importing scheme
of the malware. Both x; and x; are characteristic enough to
identify the malware, and hence, we removed xo from the
condition. As a result, the index now yielded the 84 actual
matches, which is a perfect optimization.

Another bad performing example is a rule for the
Smokeloader malware [26] that delivered roughly 10M
candidate files, of which only 2 remained after sequen-
tial scanning. The root cause of this is the hex string
53 56 57 8B 77 oC B? [4] E8 [4] 68 [4] 5?, which
checks for a sequence of x86 instructions. The problem here
is that YARIX can only handle the first 4 bytes because of the
wildcards. This sequence 53 56 57 8B is the encoding of
push ebx ; push esi ; push edi; mov ??,i.e., aseries
of pushes and moves. This is a common pattern found in
binaries and is responsible for almost all 10M candidates.
We reverse-engineered the Smokeloader samples of our
dataset and additionally acquired more samples and found
that the wildcards introduced by the authors do not seem to
be necessary. We thus hard-coded some of the offsets and

String Type| # Optimizable W(/;(l))tlillllllizl?;::s
Plain 3635 [99.48% (3616) |99.09% (3602)

Hex 11753199.83% (11380)|95.20% (11189)
Regex 91 93.41% (85) 92.31% (84)

Table 2: A breakdown of how removing null bytes affects
string optimizability. 31.13% of the rules contain plain strings,
30.13% hex strings, and 1.28% regular expressions.

constants, which reduced the set of candidates to 2. While
such hard-coding makes the rule less generic as it now can
be evaded by changing an offset, this is merely a theoretical
limitation as YARA rules are in general not resistant to
this kind of instruction-level obfuscation. In general, any
obfuscation or packing attempt to evade YARIX boils down
to evading YARA, as YARIX is both sound and complete.

Last, a rule for a dropper of the SnatchLoader [28] malware
has 3 matches, but YARIX only manages to narrow down the
search to roughly 7M samples. The rule consist of a single
3 of them expression where them refers to 4 hex strings.
Two of those strings have no streak of 4 consecutive bytes,
which is why YARIX simplifies the expression to 1 of them.
One of the strings has only one streak which is the hex string
00 00 ff 24, which is responsible for all the 7M candidates.
After analyzing the malware, we found that all hex strings
by themselves are good and characteristic indications of the
custom self-written loader of the malware. We thus decided
to remove one of the hex strings that has no streak of 4 con-
secutive bytes, which simplified the expression to 2 of them.
This caused the number of candidates to drop to the 3 actual
matches.

Future Work. Another more general problem are UTF-
16 encoded (wide) strings, which are common in Windows
applications. YARIX faces the problem that wide strings are
mostly used in practice with code points that fit into 8-bits,
which makes every second byte a null byte. Consider, for
example, the string nice which is 6E 69 63 65 in ASCII and
6E 00 69 00 63 00 65 00 in UTF-16LE. The 4-grams of
these strings suffer from entropy, as every second byte will
be a null byte and is thus more likely to be present in many
files as it can be compared to searching for the 2-grams of
an ASCII string. This could be solved by not indexing null
bytes completely. That is, during indexing and before query-
ing a posting list, all null bytes are removed. This would solve
the problem with UTF-16 strings and could potentially also
improve disk space as null bytes occur often in binary files.
However, stripping null bytes could also lead to cases where
not enough consecutive bytes are found in a hex string, for ex-
ample. We experimented with this idea on a subset of 100000
samples. Disk footprint was reduced by 46.84% compared
to ordinary indexing. Regarding the string optimizability, Ta-
ble 2 breaks down the types of the strings that are contained
in all rules and how the feasibility is affected. As expected,

hex strings are affected the most, while the other cases remain
rather unchanged by this optimization. We leave a thorough
evaluation of this idea as future work.

Overall, these findings make us believe that in practice
most YARA rules can be used with YARIX and it is feasible
in practice to convert YARA rules to practically equivalent
ones in case searches with YARIX require optimization. In
particular, if YARIX gets incorporated into an existing work-
flow, the malware analysts can optimize a rule a priori as
opposed to modifications by a third person a posteriori. In
the future we plan to investigate to what extent rules can be
optimized in an automated fashion. For example, if we have
enough samples that match a rule, we could systematically
reason about whether or not all wildcards in a string are re-
quired if all the matched samples have the same byte at the
wildcard position. Similarly, YARIX could be used to auto-
matically generate YARA signatures for a malware family.
Given enough samples of the family, shared sequences of
bytes could be extracted and YARIX could quickly check if
these sequences do not appear in other samples.

6 Related Work

While there are other approaches tackling the problem of
searching content in large malware collections [30, 31] us-
ing file index technologies, none of these solutions support
YARA scanning. Additionally, these approaches show worse
performance in both disk space and index build time than
YARIX. Related efforts for improving YARA scalability such
as KLara [22] parallelize the YARA scans with distributed
computing techniques. Apart from being more resource de-
manding by nature, such efforts also do not offer the same
magnitude of speedup in practice (multiple TiB in 30 minutes
with KLara vs seconds with YARIX).

So far, academic efforts mainly aimed to improve the scal-
ability of malware analysis and malware detection. For ex-
ample, several sandboxes [7, 14, 38] provide a framework
that allows observing the dynamic behavior of malware in a
scalable fashion. Based on these efforts, various refinements
focus on the scalability of analyzing special dynamic behav-
iors, such as evasive behavior [5,25] or understanding the
obfuscation techniques of malware [9, 36]. Similarly, to ob-
tain a better picture of the malware landscape, related work
proposed scalable clustering [6,32] or malware triage [19,35]
approaches. Closer to our goal, scalable approaches to detect
special types of malware [23,41, 42] have been proposed.
While there are a few scalable methodologies proposed that
operate statically [18,24], the majority of these efforts operate
in a dynamic analysis setting. Dynamic analysis has, however,
an inherent cost associated with it that cannot be compared
to our case, as we do not perform any execution or emulation
of the malware. Finally, also related are malware signature
generators [1,8, 12] that automatically try to create (YARA)
rules for malware analysis. Our approach is orthogonal to

these solutions and tackles a different problem, i.e., scaling
complex static malware signatures to large malware data sets.

One of our main contributions is a scalable and efficient
search methodology that can be used with arbitrary rules spec-
ified in YARA, a widely-used industry standard. We therefore
present the first malware search methodology that retains full
compatibility to off-the-shelf YARA rules. Earlier attempts
to efficiently index malware have taken different directions
and lack such support. Hu et al. [17] propose a system called
Symantec Malware Indexing Tree (SMIT) that indexes mal-
ware using their function-call graphs. Function-call graphs
are a high-level abstraction of malware and thus creating and
processing them is relatively costly. Jin et al. [20] propose
BIGGREP, a file index for malware. The authors also use an
offset-free inverted n-gram index and a similar delta encod-
ing scheme. However, BIGGREP is restricted to plain n-gram
string search only and does not support any sort of rule lan-
guage (such as YARA) or more complex constructs (such as
regular expressions). That is, our contribution goes beyond
providing just an index. When looking at the index itself,
there are further differences between YARIX and BIGGREP.
First, we introduce file ID grouping, an effective compres-
sion methodology that reduces the disk footprint by over 45%
while maintaining search performance. Second, our optimal
variable length encoding is superior to the static 7-bit encod-
ing used by Jin et al.. The disk footprint reported by Jin et al.
is thus significantly higher than ours. In BIGGREP, storing the
posting lists requires up to 700% of the disk space of the in-
dexed samples. With YARIX, we have shown that the expected
relative disk space for 232 samples is much smaller: 149.5%
without grouping and 74% with grouping. Third, the index
query time of YARIX outperforms the related work. Jin et
al. mention that querying the string \drivers\mrxcls.sys
requires 17.38 seconds, which only takes 0.8 seconds with
YARIX. When accounting for the fact that Jin ez al. have in-
dexed 6 million fewer samples than we did, YARIX is over 26
times faster and thus poses a major improvement.

The challenge to efficiently compress indexes has been
explored in depth outside of the security community. Wang et
al. [37] give a complete overview of the different techniques
that have been developed in the past decades. Most of the
presented techniques are based on a simple variable delta
encoding [11] similar to our version, although we use the op-
timal bit encoding. The objective of these different methods
is, however, usually more targeted towards micro optimizing
the encoding and decoding. For example GroupVB [13] is
an optimized version of variable delta encoding that aims at
microarchitectural improvements to reduce branches taken
by the CPU. Another example is PForDelta [43] that works
by collecting blocks of deltas by choosing the smallest b in
the block such that a majority of the deltas can be encoded
in b bits. The optimized versions of PForDelta, i.e., NewP-
ForDelta [39], OptPforDelta [39], and SIMDPforDelta [27]
are based on the same compression principle and only aim at

encoding and decoding performance. This is different to our
file ID grouping method that is more targeted towards improv-
ing the disk footprint using a justifiable over-approximation.
Existing lossy index compression approaches mainly rely
on bloom filters, which however cannot be used to intersect
and thus reduce the set of search candidates across multiple
combined searches—a vital aspect of our novel grouping.

7 Conclusion

We presented YARIX, a novel YARA search engine that sig-
nificantly optimizes searches for malware files with arbitrary
off-the-shelf YARA rules. We introduced a methodology to
convert YARA rules into search terms that can be fed to the
inverted n-gram index of YARIX to optimize YARA searches.
Our evaluation of YARIX demonstrates that its inverted n-
gram index can drastically reduce the files that have to be
scanned sequentially. At the same time, the index footprint is
reasonably small due to several compression techniques used
including a novel grouping-based compression scheme. That
is, while optimizing YARA searches by five orders of magni-
tude, only 74% of the accumulated disk space of all samples
is required to store the inverted n-gram index of YARIX.

Availability

The YARIX reference implementation can be obtained at
https://github.com/mbrengel/yarix.

Acknowledgments

We would like to thank the anonymous USENIX reviewers of
this paper as well as Giuliano Schneider, Benedikt Birtel and
the anonymous AEC reviewers for testing YARIX. We would
also like to thank VirusShare and our anonymous partners
from the AV industry who supplied us with malware samples.
Apart from that we are also thankful for the YARA rules
provided by Daniel Plohmann and his Malpedia project. Our
thanks also goes to Veelasha Moonsamy for shepherding this
paper. Finally, we would like to thank Tillmann Werner for
initial brainstorming about the general problem in summer
2018. We apologize for neglecting your idea to use prefix
trees to solve this problem.

https://github.com/mbrengel/yarix

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Mohannad Alhanahnah, Qicheng Lin, Qiben Yan, Ning
Zhang, and Zhenxiang Chen. Efficient Signature Gener-
ation for Classifying Cross-Architecture IoT Malware.
In Conference on Communications and Network Secu-
rity (CNS), 2018. doi:10.1109/cns.2018.8433203.

Victor Manuel Alvarez. YARA — The pattern matching
swiss knife for malware researchers, 2020. URL: https:
//virustotal.github.io/yara/.

AV-TEST. Malware Statistics & Trends Report, 2020.
Last accessed at: June 19, 2020. URL: https://www.
av-test.org/en/statistics/malware/.

Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto.
Modern Information Retrieval. Addison-Wesley Long-
man Publishing Co., Inc., 1999.

Davide Balzarotti, Marco Cova, Christoph Karlberger,
Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
Efficient Detection of Split Personalities in Malware.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2010.

Ulrich Bayer, Paolo Milani Comparetti, and Engin Kirda.
Scalable, Behavior-Based Malware Clustering. In Pro-
ceedings of the Network and Distributed System Security
Symposium (NDSS), 2009.

Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin
Kirda, and Christopher Kruegel. A View on Current Mal-
ware Behaviors. In Proceedings of the USENIX Work-
shop on Large-Scale Exploits and Emergent Threats
(USENIX LEET), 20009.

Felix Bilstein and Daniel Plohman. YARA-Signator:
Automated Generation of Code-based YARA Rules. The
Journal on Cybercrime & Digital Investigations, 2019.
doi:10.18464/CYBIN.V5I1.24.

Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng,
Ting Chen, Xiaosong Zhang, and Jean-Yves Marion.
Towards Paving the Way for Large-Scale Windows Mal-
ware Analysis: Generic Binary Unpacking with Orders-
of-Magnitude Performance Boost. In Proceedings of the
Conference on Computer and Communications Security
(CCS),2018. doi:10.1145/3243734.3243771.

CrowdStrike. Meet The Threat Actors: List of APTs
and Adversary Groups, 2019. Last accessed at: June 19,
2020. URL: https://www.crowdstrike.com/blog/
meet-the-adversaries/.

Doug Cutting and Jan Pedersen. Optimization for Dy-
namic Inverted Index Maintenance. In Proceedings of
the Annual International Conference on Research and

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

Development in Information Retrieval (SIGIR), 1990.
doi:10.1145/96749.98245.

Omid E. David and Nathan S. Netanyahu. Deep-
Sign: Deep learning for automatic malware signature
generation and classification. In International Joint
Conference on Neural Networks (IJCNN), 2015. doi:
10.1109/1ijcnn.2015.7280815.

Jeffrey Dean. Challenges in Building Large-scale In-
formation Retrieval Systems: Invited Talk. In Proceed-
ings of the International Conference on Web Search and
Data Mining (WDSM), 2009. doi:10.1145/1498759.
1498761.

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke
Lee. Ether: Malware Analysis via Hardware Virtualiza-
tion Extensions. In Proceedings of the Conference on
Computer and Communications Security (CCS), 2008.
doi:10.1145/1455770@.1455779.

FireEye. Advanced Persistent Threat Groups, 2020.
Last accessed at: June 19, 2020. URL: https://www.
fireeye.com/current-threats/apt-groups.html.

Jaromir Hortejsi. The evolution of the Retefe
banking Trojan, 2016. Last accessed at: June
19, 2020. URL: https://blog.avast.com/
the-evolution-of-the-retefe-banking-trojan.

Xin Hu, Tzi cker Chiueh, and Kang G. Shin. Large-
Scale Malware Indexing Using Function-Call Graphs.
In Proceedings of the Conference on Computer and
Communications Security (CCS), 2009. doi:10.1145/
1653662.1653736.

Xin Hu, Kang G. Shin, Sandeep Bhatkar, and Kent Grif-
fin. MutantX-S: Scalable Malware Clustering Based on
Static Features. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), 2013.

Jiyong Jang, David Brumley, and Shobha Venkataraman.
BitShred: Feature Hashing Malware for Scalable Triage
and Semantic Analysis. In Proceedings of the Confer-
ence on Computer and Communications Security (CCS),
2011. doi:10.1145/2046707.2046742.

Wesley Jin, Charles Hines, Cory Cohen, and Priya
Narasimhan. A Scalable Search Index for Binary Files.
In Proceedings of the International Conference on Ma-
licious and Unwanted Software (MALWARE), 2012.
doi:10.1109/malware.2012.6461014.

Kaspersky. Targeted cyberattacks logbook, 2018. Last
accessed at: June 19, 2020. URL: https://apt.
securelist.com/#!/threats/.

https://doi.org/10.1109/cns.2018.8433203
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://doi.org/10.18464/CYBIN.V5I1.24
https://doi.org/10.1145/3243734.3243771
https://www.crowdstrike.com/blog/meet-the-adversaries/
https://www.crowdstrike.com/blog/meet-the-adversaries/
https://doi.org/10.1145/96749.98245
https://doi.org/10.1109/ijcnn.2015.7280815
https://doi.org/10.1109/ijcnn.2015.7280815
https://doi.org/10.1145/1498759.1498761
https://doi.org/10.1145/1498759.1498761
https://doi.org/10.1145/1455770.1455779
https://www.fireeye.com/current-threats/apt-groups.html
https://www.fireeye.com/current-threats/apt-groups.html
https://blog.avast.com/the-evolution-of-the-retefe-banking-trojan
https://blog.avast.com/the-evolution-of-the-retefe-banking-trojan
https://doi.org/10.1145/1653662.1653736
https://doi.org/10.1145/1653662.1653736
https://doi.org/10.1145/2046707.2046742
https://doi.org/10.1109/malware.2012.6461014
https://apt.securelist.com/#!/threats/
https://apt.securelist.com/#!/threats/

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Kaspersky. Klara, 2020. URL: https://github.com/
KasperskyLab/klara.

Amin Kharaz, Sajjad Arshad, Collin Mulliner, William
Robertson, and Engin Kirda. UNVEIL: A Large-
Scale, Automated Approach to Detecting Ransomware.
In Proceedings of the USENIX Security Symposium
(USENIX Security), 2016.

Dhilung Kirat, Lakshmanan Nataraj, Giovanni Vigna,
and B. S. Manjunath. SigMal: A Static Signal Process-
ing Based Malware Triage. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC),
2013. doi:10.1145/2523649.2523682.

Dhilung Kirat and Giovanni Vigna. MalGene: Auto-
matic Extraction of Malware Analysis Evasion Sig-
nature. In Proceedings of the Conference on Com-
puter and Communications Security (CCS), 2015. doi:
10.1145/2810103.2813642.

Lastline. An Analysis of PlugX Malware,
2013. Last accessed at: June 19, 2020.
URL: https://www.lastline.com/labsblog/

an-analysis-of-plugx-malware/.

D. Lemire and L. Boytsov. Decoding billions of integers
per second through vectorization. Software: Practice
and Experience, 45(1):1-29, may 2013. doi:10.1002/
spe.2203.

Malpedia. SnatchLoader, 2019. Last accessed at:
June 19, 2020. URL: https://malpedia.caad. fkie.
fraunhofer.de/details/win.snatch_loader.

Malpedia. SmokeLoader, 2020. Last accessed at:
June 19, 2020. URL: https://malpedia.caad. fkie.
fraunhofer.de/details/win.smokeloader.

Andrei Mihalca and Ciprian Oprisa. Full Content Search
in Malware Collections. In IOSec 2018, 2019. doi:
10.1007/978-3-030-12085-6_12.

Andrei Mihalca, Ciprian Oprisa, and Rodica Potolea.
Hunting for Malware Code in Massive Collections.
In International Conference on Automation, Quality
and Testing, Robotics (AQTR), 2020. doi:10.1109/
aqtr49680.2020.9129948.

Roberto Perdisci, Davide Ariu, and Giorgio Giacinto.
Scalable fine-grained behavioral clustering of HTTP-
based malware. Computer Networks, 2013. doi:10.
1016/j.comnet.2012.06.022.

Daniel Plohmann, Martin Clauf3, Steffen Enders, and
Elmar Padilla. Malpedia: A Collaborative Effort to
Inventorize the Malware Landscape. The Journal on
Cybercrime & Digital Investigations, 2017. doi:10.
18464/CYBIN.V3I1.17.

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

Christian Rossow, Christian J. Dietrich, Chris Grier,
Christian Kreibich, Vern Paxson, Norbert Pohlmann,
Herbert Bos, and Maarten van Steen. Prudent Practices
for Designing Malware Experiments: Status Quo and
Outlook. In Proceedings of the Symposium on Security
and Privacy (S&P), 2012. doi:10.1109/sp.2012.14.

Shanhu Shang, Ning Zheng, Jian Xu, Ming Xu, and
Haiping Zhang. Detecting Malware Variants via
Function-call Graph Similarity. In Proceedings of the
International Conference on Malicious and Unwanted
Software (MALWARE), 2010. doi:10.1109/malware.
2010.5665787.

Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos,
and Pablo G. Bringas. SoK: Deep Packer Inspection:
A Longitudinal Study of the Complexity of Run-Time
Packers. In Proceedings of the Symposium on Security
and Privacy (S&P), 2015. doi:10.1109/sp.2015.46.

Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou,
and Steven Swanson. An Experimental Study of Bitmap
Compression vs. Inverted List Compression. In Proceed-
ings of the International Conference on Management
of Data (SIGMOD), 2017. doi:10.1145/3035918.
3064007.

Carsten Willems, Thorsten Holz, and Felix Freiling. To-
ward Automated Dynamic Malware Analysis Using
CWSandbox. [EEE Security and Privacy Magazine,
2007. doi:10.1109/msp. 2007 .45.

Hao Yan, Shuai Ding, and Torsten Suel. Inverted In-
dex Compression and Query Processing with Optimized
Document Ordering. In Proceedings of the Interna-
tional Conference on World Wide Web (WWW), 2009.
doi:10.1145/1526709.1526764.

YaraRules. YaraRules Project, 2018. Last accessed at:
June 19, 2020. URL: https://yararules.com.

Lun-Pin Yuan, Wenjun Hu, Ting Yu, Peng Liu, and Sen-
cun Zhu. Towards Large-Scale Hunting for Android
Negative-Day Malware. In Proceedings of the Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses (RAID), 2019.

Ziyun Zhu and Tudor Dumitras. FeatureSmith: Auto-
matically Engineering Features for Malware Detection
by Mining the Security Literature. In Proceedings of the
Conference on Computer and Communications Security
(CCS),2016. doi:10.1145/2976749.2978304.

Marcin Zukowski, Sandor Heman, Niels Nes, and Pe-
ter Boncz. Super-Scalar RAM-CPU Cache Compres-
sion. In International Conference on Data Engineering
(ICDE), 2006. doi:10.1109/icde.2006.150.

https://github.com/KasperskyLab/klara
https://github.com/KasperskyLab/klara
https://doi.org/10.1145/2523649.2523682
https://doi.org/10.1145/2810103.2813642
https://doi.org/10.1145/2810103.2813642
https://www.lastline.com/labsblog/an-analysis-of-plugx-malware/
https://www.lastline.com/labsblog/an-analysis-of-plugx-malware/
https://doi.org/10.1002/spe.2203
https://doi.org/10.1002/spe.2203
https://malpedia.caad.fkie.fraunhofer.de/details/win.snatch_loader
https://malpedia.caad.fkie.fraunhofer.de/details/win.snatch_loader
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader
https://doi.org/10.1007/978-3-030-12085-6_12
https://doi.org/10.1007/978-3-030-12085-6_12
https://doi.org/10.1109/aqtr49680.2020.9129948
https://doi.org/10.1109/aqtr49680.2020.9129948
https://doi.org/10.1016/j.comnet.2012.06.022
https://doi.org/10.1016/j.comnet.2012.06.022
https://doi.org/10.18464/CYBIN.V3I1.17
https://doi.org/10.18464/CYBIN.V3I1.17
https://doi.org/10.1109/sp.2012.14
https://doi.org/10.1109/malware.2010.5665787
https://doi.org/10.1109/malware.2010.5665787
https://doi.org/10.1109/sp.2015.46
https://doi.org/10.1145/3035918.3064007
https://doi.org/10.1145/3035918.3064007
https://doi.org/10.1109/msp.2007.45
https://doi.org/10.1145/1526709.1526764
https://yararules.com
https://doi.org/10.1145/2976749.2978304
https://doi.org/10.1109/icde.2006.150

A Extrapolation to Larger Datasets

Given a posting list of k out of N file IDs and P number of
groups, the expected number of occupied groups within that
posting list is given by:

k
—P<1—;) @)

Note that Equation (4) is slightly inaccurate as it does not
account for the different prime numbers P that are actually
used during grouping. This problem is minor, however, as the
difference between the smallest and the largest group modulus
becomes negligibly small relative to P.

Then, to account for delta encoding, we estimate the distri-
bution of the pairwise differences to approximate the expected
encoding costs. For example, if we use 7-bit encoding, we
can encode the differences between 1 and 27 — 1 = 127 (in-
clusive) with 8 bits, the differences between 27 and 227 — 1
with 16 bits, and so on. We only need to know how many
differences we expect in these ranges. Formally, this can be
tackled as follows: Let a (sorted) posting list of an index
over N samples consist of ¢ file IDs between 0 and N, i.e.:
0< fo<fi <...< fir_1 <N.Furthermore, let 6; = fi 11 — f;
for 0 <i <[—1 be the pairwise differences that will be en-
coded. The distribution of those pairwise differences, i.e.,
the probability that some &; equals some fixed difference
d € [1,N — 1] is given by:

N-&
(1)
-
(¥)
Given that Equation (5) is independent of i and that there are
£ — 1 pairwise differences, the expected number of d; such that
8; =9dis (I —1)Pr(§; = §). This can be used to compute the
expected number of deltas between 1 and some upper limit k:

Pr(8; = 8) = (5)

k

R(£,k) =Y (¢—1)Pr(8; =) (6)
6=1
_ (=W =kN-0)!
N!(N—k—10)! el ™

EN—(a+b—i)
=(l-)|1-|| " 8

()(1} N (a1 >, ®)
where a = min(k, ¢) and b = max(k,¢). Now, R(¢,k) can be
used to estimate the costs. For example, there will be R(¢,27 —
1) pairwise differences that can be encoded with 8 bits and
R(£,2%7 —1) — R(¢,27 — 1) that can be encoded with 16 bits
using 7-bit encoding.

I} B— 4 G —— G+6
E)
a2, 300%
g c = 3}
8 270%
=]
g 240%
[
g 210
%
S 180%
g S ——%
a3 150% EH =)
Q
*q; 120%
3 90%
R
£ 60%
SR
n T n i i i
Number of groups

Fi gure 8: Disk footprint for different number of groups for

=232 indexed samples (& = uncompressed, G = with group-
ing, & = with delta encoding, G + & = with grouping + delta
encoding). Lower is better.

Finally, we apply Equation (8) and Equation (4) on the
expected distribution of posting list sizes. To do so, we extrap-
olate the distribution shown in the CDF in Figure 10. That is,
if we have y posting lists of size x for N samples, then we will
have y posting lists of size kx for kN samples. We verified that

this extrapolation is reasonable by applying it to 10° samples
to estimate 32M samples.

The results of this extrapolation are depicted in Figure 8 and
Figure 9, which are the counterparts of Figure 6 and Figure 7,
respectively, extrapolated to N = 232 samples. The number
of groups and the grouping thresholds are also extrapolated
accordingly. As previously stated, the relative overhead of the
uncompressed footprint does not change. The delta encoding
footprint also does not change. The footprint of grouping
alone is much larger, e.g., 158.36% for 22° groups compared
to the 92.8% for 2! groups in Figure 6. This is because of
the fact that larger number of groups implies wider group IDs,
i.e., storing 2* groups requires x bit per group. Interestingly,
this is overcompensated by applying delta encoding, as it
decreases the disk footprint by about 9% compared to the
case of N = 32M samples. Regarding grouping plus delta
encoding, the relative disk footprint of choosing 2% groups
yields a relative disk footprint of 87.65%. The same trend
can be witnessed in Figure 9 which plots the footprint for
different values of 7. Choosing T = 107 yields a footprint of
93.71% for 22° groups.

m
< 100% —O— r=15.10°
g —H— r=3.106
o 90%
"% —— r=4.100
= —HF— r=5.108
g 80%
“ =107
[
A 7=

& 0% T=o0
Q
8
[
>
-% 60%
)
&
o 50%
N
v

T i n n

Number of groups

Figure 9: Disk footprint for different number of groups and
different grouping thresholds for N = 232 indexed samples.
In all experiments G + 8+ T was used. Lower is better.

100%
99%
98%
97%
96%
95%
94%
93%
92%
91%
90%
89%
88%
87%
86%
85%
84%
83%
82%
81%
80%

CDF

5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of posting list entries

Figure 10: Excerpt from the CDF for the number of posting
list entries for N = 32M indexed samples.

	Introduction
	Extracting YARA Search Terms
	YARA Rules Overview
	Processing Strings
	Processing the Condition
	Processing Individual Expressions
	Optimization Limitations

	File Index Design
	Background
	Inverted n-Gram Malware Index
	Space Optimization Strategies
	Optimizing the Set of Considered n-Grams
	Optimizing the Posting Lists

	Offset-Free Index
	Variable Delta Encoding
	Grouping
	Incremental Index Updates

	Evaluation
	Dataset
	Index Build Time
	Correctness
	YARA Search Performance
	Choosing n
	Disk Footprint
	Scalability

	Case Studies & Future Work
	Related Work
	Conclusion
	Extrapolation to Larger Datasets

