
Cali: Compiler-Assisted Library Isolation
Markus Bauer

CISPA Helmholtz Center for Information Security
Saarbrücken, Saarland, Germany
markus.bauer@cispa.saarland

Christian Rossow
CISPA Helmholtz Center for Information Security

Saarbrücken, Saarland, Germany
rossow@cispa.saarland

ABSTRACT

Software libraries can freely access the program’s entire address
space, and also inherit its system-level privileges. This lack of sepa-
ration regularly leads to security-critical incidents once libraries
contain vulnerabilities or turn rogue. We present Cali, a compiler-
assisted library isolation system that fully automatically shields a
program from a given library. Cali is fully compatible with main-
line Linux and does not require supervisor privileges to execute. We
compartmentalize libraries into their own process with well-defined
security policies. To preserve the functionality of the interactions
between program and library, Cali uses a Program Dependence
Graph to track data flow between the program and the library dur-
ing link time. We evaluate our open-source prototype against three
popular libraries: Ghostscript, OpenSSL, and SQLite. Cali success-
fully reduced the amount of memory that is shared between the
program and library to 0.08% (ImageMagick) – 0.4% (Socat), while
retaining an acceptable program performance.

CCS CONCEPTS

• Security and privacy→ Software and application security;
Systems security; • Software and its engineering→ Automated
static analysis.

KEYWORDS

Library Isolation, Memory Isolation, Privilege Separation, Program
Dependence Graph, Compiler, LLVM, Cali

ACM Reference Format:

Markus Bauer and Christian Rossow. 2021. Cali: Compiler-Assisted Library
Isolation. In Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security (ASIA CCS ’21), June 7–11, 2021, Hong Kong, Hong
Kong. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3433210.
3453111

1 INTRODUCTION

Programs extend their own logic with external libraries, which ease
the life of developers by offering APIs that abstract from common
tasks. Whereas convenient and common practice, linking third-
party libraries imposes a significant security risk. Libraries execute
in the context of the main program, and thereby can freely ac-
cess the program’s entire address space and inherit the program’s
system-level privileges. At the same time, libraries often contain
risky functionality, such as parsers, that do not really need to use

ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2021 ACM Asia Conference on Computer and Communications Security (ASIA CCS ’21),
June 7–11, 2021, Hong Kong, Hong Kong, https://doi.org/10.1145/3433210.3453111.

the full program’s privileges and address space. This lack of privi-
lege separation and memory isolation has led to numerous critical
security incidents.

We can significantly reduce this threat surface by isolating the
library from the main program. In most cases, a library (i) neither
requires access to the entire program’s address space, (ii) nor needs
the full program’s privileges to function properly. In fact, even
complex libraries such as parsers require only limited interaction
with the program and/or system. Conceptually, there is thus little
need to grant an untrusted library access to the program or to
critical system privileges. Basic compartmentalization principles
thus help to secure a program from misuse by untrusted code. First,
memory isolation shields the program’s sensitive memory from
untrusted code parts (e.g., libraries). Second, privilege separation
reduces the set of privileges of untrusted code parts.

Two recent attempts have proven that library isolation fosters
memory isolation and privilege separation. Sandboxed API [15]
assists developers in isolating the library into its own process (mem-
ory isolation) by providing isolation primitives that can be adapted
to program-to-library interfaces. To enforce privilege separation,
Sandboxed API allows the developer to configure seccomp-BPF [11]
filter rules. Similarly, RLBox [30] lets developers split Firefox’s li-
braries into different processes and again uses seccomp-BPF for
confinement. Both systems provide primitives to ease library isola-
tion for developers, but still require significant manual code changes
(“Migrating a library into RLBox typically takes a few days [...]” [30]).
Given the plenitude of programs and libraries, even such reduced
manual effort will severely hinder the wide deployment of library
isolation.

The core challenge of automated library isolation is the inherent
historic assumption that programs and libraries share the same
address space. Any attempt to split this address space (e.g., into
different processes) breaks the underlying semantics, if not dealt
with accordingly. Passing data across contexts is trivial with primi-
tive data types, but quickly becomes challenging for complex ob-
jects. PtrSplit [24] is a first general attempt to tackle this issue by
marshalling complex data types whenever they cross boundaries.
Methodologically, PtrSplit tracks bounds of complex objects to learn
necessary size information that is required to copy complex ob-
jects. While such an analysis allows for automation, (i) deep copies
create significant memory and performance overhead (essentially
duplicating objects passing to/from libraries), (ii) parallel computa-
tion on copies will lead to data inconsistencies, and (iii) PtrSplit’s
analysis cannot handle type casts. Especially the latter restriction
is problematic in practice, as libraries commonly make use of type
casts which undermine PtrSplit’s analyses. For example, LLVM’s
memcpy cannot be tackled because operands are casted to void*,
the same holds for generic callback arguments found in various
common libraries.

https://doi.org/10.1145/3433210.3453111
https://doi.org/10.1145/3433210.3453111
https://doi.org/10.1145/3433210.3453111

In this paper, we present Cali, a compiler-assisted library isola-
tion system that uses shared memory to allow a secure and efficient
interaction between a program and its libraries. Using shared mem-
ory makes the use of pointer marshaling obsolete, dropping all its
associated disadvantages. The core challenge of Cali is preserving
the full functionality of the library invocations, while minimizing
the program parts that are exposed to the library. A naïve solution
could place the entire program memory in shared memory that
is accessible to the program and the library, which gained little
security as the library had full write access to the main program’s
data (including pointers). Instead, Cali leverages a Program Depen-
dence Graph (PDG) [12] to infer which memory allocations will
(potentially) be passed from the program to the library. To this end,
during link time, the PDG observes and propagates data flows cross-
ing the security contexts. Cali then places the according memory
regions in shared memory, and isolates the remaining memory in
the application and library processes, respectively.

Cali is the first system that fully automatically shields a pro-
gram from libraries. Cali is compatible with mainline Linux, does
not require supervisor privileges, and has an acceptable space and
performance overhead. Cali compartmentalizes untrusted libraries
into their own contexts with well-defined security policies. We
provide both privilege and memory isolation by placing libraries in
their own process that operates in per-compartment kernel names-
paces. We apply seccomp filters to minimize the system interface
of the library.

We implemented Cali based on LLVM and published its source
code.1 We evaluate the functionality, space and performance over-
head of our prototype against three popular libraries: Ghostscript
(tested with ImageMagick), OpenSSL (tested with Socat), and SQLite
(tested with Filezilla). Cali reduced the amount of memory that is
shared between the program and library to 0.08% (ImageMagick)
to 0.4% (Socat). Not a single function pointer is shared, such that
the threat surface is greatly reduced. Cali’s compartmentalization
has an acceptable performance overhead when limiting libraries to
their least privilege in both memory and system access.
To summarize, our contributions are as follows:
• We present a fully-automated compiler-based separation
between trusted and untrusted program logic using compart-
mentalization and data flow tracking.
• Cali transforms any program to a protected version that can
be deployed on mainline Linux, without additional require-
ments about the hypervisor, OS or hardware.
• The strict security boundaries of the resulting programs
greatly reduce the threat surface, while our three examples
show that the performance overhead is acceptable.

2 BACKGROUND / RELATEDWORK

Program compartmentalization is the foundation of two related
research directions with orthogonal goals. Memory isolation hides
certain secrets (e.g., keys) in program memory from other parts/-
compartments. Typically built on top of memory isolation, privilege
separation [34] also limits system access of certain code parts (com-
partments) to the least privilege. In either way, compartmentalizing
an application is a two-step process: First, an application needs to
1https://github.com/cali-library-isolation/Cali-library-isolation

be separated into two or more distinct code parts (cf. Section 2.1,
“Compartmentalization”). These code parts must be able to commu-
nicate with each other and keep the functionality of the original
application. Second, the now distinct code parts need to be isolated
from each other and execute in different contexts (cf. Section 2.2,
“Isolation Primitives”). Isolation must guarantee the integrity of the
trusted context even if the untrusted context acts maliciously.

We will provide background information and discuss related
work in the following. To assist in this discussion, Figure 1 pro-
vides an overview of key related works, categorized into the two
dimensions of degree of automation (y-axis) and their provided
security guarantees (x-axis). Cali aims to fill a gap by providing
strong security guarantees (both memory isolation and privilege
separation), and at the same time offering an unprecedented level
of automation.

2.1 Compartmentalization

The few past manual efforts to split program into compartments
(e.g., Google Chrome, OpenSSH) have shown that splitting a pro-
gram into isolated parts is a tedious and error-prone task. This
motivated research on several compartmentalization libraries that
aid developers in this process. For example, Privman [21] can be
used to split applications in a privileged server and an unprivileged
client, requiring changes to the source code: Any library interac-
tion needs to be rewritten manually, any memory transfer needs to
be performed by hand. Privman is merely a library providing the
isolation primitives. In addition, Google recently published their
framework “Sandboxed API” [15], that can be used in C++ programs
to isolate C libraries in a compartment process that has only lim-
ited capabilities. To apply Sandboxed API, each and every usage of
the library needs to be rewritten manually, which is neither trivial
nor convenient. A similar framework is RLBox[30], with a much
stronger type system enforcing additional security properties. Thus,
summarizing, while all these libraries aid developers significantly,
they still do not entirely eliminate the manual analyses and efforts.

In order to lower the manual effort of compartmentalization,
researchers proposed various assistance tools that give additional
information where and how to separate the application. These tools
are based on annotation-guided program analysis [3, 18, 25, 48]
or dynamic analysis [2, 26]. Unfortunately, the strict dependence
on source code changes (or annotations) implies that software can
only be compartmentalized by experienced developers with deep
knowledge of the source code and library interactions. This lack
of automation does not scale for the wide variety of open-source
off-the-shelf software.

Researchers have already identified this urgent need for automa-
tion. For example, Codejail [47] can separate program privileges
without forcing developers to rewrite or know the program code
in the program. However, to separate a program, Codejail requires
that every library function needs to be “described” by a developer.
To this end, wrapper functions need to be written by hand, and
they must specify every single memory transfer between program
and library. Furthermore, Codejail’s memory isolation is much
weaker than related systems. In particular, the untrusted library
can read arbitrary memory from the trusted program (hence bugs
like Heartbleed cannot be contained). While these wrappers can

https://github.com/cali-library-isolation/Cali-library-isolation

be written once for a library and then be used in many different
projects without hassle, Codejail still leaves open the hard work
for developers.

Two existing approaches come close to the degree of automa-
tion we envision, PtrSplit [24] and SOAAP [18]. Yet there is one
fundamentally hard challenge for automating compartments: data
flows of non-primitive objects (e.g., pointers, structs) between the
compartments. “PtrSplit” [24] uses static analysis to separate anno-
tated variables and related code. In contrast to prior work, PtrSplit
can—assuming code annotations by a skilled developer—infer a
separation boundary automatically. Furthermore, as PtrSplit tracks
data flows, it marshals complex objects for IPC communication
between the compartments. While this boosts automation signif-
icantly, it still requires code annotations, which in turn require
program knowledge. And while PtrSplit provides memory isolation,
it cannot limit privileges of compartments. Facing these challenges,
SOAAP even completely left open isolation (and the required au-
tomation) open for future work.

Cali automates compartmentalization to the highest degree pos-
sible. Given a program and its libraries, Cali fully automatically
splits the program from (a developer-specified subset) of libraries.
Developers do not have to care about library interfaces, nor have
to know at which parts of their program a library has been in-
tegrated. The resulting compartments provide memory isolation
and privilege separation. Cali only assumes a policy that guides
privileges of each program part, which could be derived automati-
cally [10, 13, 14, 42].

2.2 Isolation Primitives

Once a program has been compartmentalized, we have to use cer-
tain isolation primitives to protect the program parts from each
other. That is, assuming well-defined compartment boundaries and
interfaces, how can we efficiently enforce isolation between the
compartments? To this end, multiple isolation principles can be
used, most of which focus only on memory isolation. The conceptu-
ally simplest approach is Software Fault Isolation (SFI) methods like
NaCl (“upro” [32]) or WebAssembly (RLBox [30]), which compile
untrusted program parts into sandboxes. SFI requires source code
of the program and all libraries, and it comes with major restric-
tions in functionality—not all programs can be compiled to SFI
schemes (e.g., JIT compilers). To solve this problem, other systems
used existing OS functionality like executing compartments using
different Unix users [21]. To further enhance capabilities, the OS
kernel can be modified [2, 19, 23, 38, 43], however sacrificing com-
patibility with unmodified kernels. In the same spirit, researchers
leveraged virtualization extensions of modern CPUs and introduce
hypervisors for memory isolation (e.g., “SeCage” [26], “TrustVi-
sor” [27], and “Libsec” [35]) Recently, researchers further boosted
isolation primitives with hardware-specific features (CPU exten-
sions, etc) [4, 17, 22, 36, 41], which again reduce wider applicability.
All these works demonstrate that special OS or hardware features
can be elegantly use to further boost memory isolation, which is
important when aiming to protect certain regions of sensitive data.
Yet very few of these approaches are compatible to (e.g., process-
based) privilege separation. Even if, they require certain features

isolation

none
pure

memory

partial memory

simple privilege

full memory

and privilege

automation

fully automated

given a policy

code

annotations

lib. wrapper

(once per lib)

code changes

(once per prog.)

tedious source

code changes

Cali

SOAAP

PtrSplit

Sandboxed API

RLBox
ERIM

Donky

CodeJail

Figure 1: Overview of recent program isolation schemes

and/or adoptions, which hinders a wider isolation deployment in
the wide world of resource-constrained devices (think of IoT).

3 GENERAL OVERVIEW

3.1 Compiler-Assisted Library Isolation

We now describe Cali, a compiler-assisted compartmentalization
privilege separation solution. Our main use case are developers
or package maintainers who link common libraries into a (Linux-
based) application, written in a native language like C or C++. The
library is given in binary form only, source code is only available
from the main program—a quite common scenario if a third-party
library is proprietary, or closed-source drivers.

We envision that one of these libraries contains a severe vulner-
ability, giving attackers full control over the entire program. The
developer wants to limit the damage that can occur from such a
vulnerability. In particular, we want to protect private information
(from application memory or files, like stored passwords) and sys-
tem integrity (no system modifications like backdoors etc). We do
not want to protect from Denial-of-Service (DoS) attacks that crash
the application—fault recovery is out of scope. We aim, however, to
mitigate resource exhaustion attacks that block the whole system
(e.g., memory exhaustion, fork bombs) by limiting the compart-
ment’s computation and memory resources.

The application should not lose portability, it must continue
working on any system where it worked before modification. No
system modification is desired, and super-user permissions are
neither available at installation time nor at runtime.

Threat model:We envision that a library contains a severe vul-
nerability that gives attackers full control over the entire process
running library code, including arbitrary code execution. We do
not consider attacks against the kernel, the hardware or micro-
architectural attacks. We also assume a sound permission config-
uration ([10, 13, 14, 42]). We will discuss our assumptions on and
mitigation of cross-compartment vulnerabilities in Section 6.4.

3.2 Overview

Cali performs privilege separation by isolating less-privileged code
parts into their own context. While this concept is generic, in the
following, we will stick to our main use case of library isolation.
Cali automatically handles the interaction between the application
and library, which now requires inter-context communication. Cali
then reduces the permissions of the library context to the minimally
required privileges and memory.

Our protection is applied at application build-time. We build
the application using the LLVM toolchain with link-time optimiza-
tion (LTO). When linking the application, all source code files are
available as LLVM bitcode. In a first step, we perform a static,
inter-procedural analysis over the whole application. We determine
where and how the library is used and what resources like memory
regions it needs from the main application. In a second step, we
rewrite the main application. We replace all library calls with calls
to stub functions that take care of the transition between application
and library context. To this end, we make the minimal necessary
program memory regions accessible for the library context.

After linking, the result is a normal Linux binary that runs on
any Linux systemwithout additional dependencies. The required in-
teraction of the developer is minimal: Switch the compiler toolchain
to Clang/LLVM with LTO, add a compiler flag to enable our system,
and specify the permissions applied to the library context in a sim-
ple format (see Appendix A for a concrete example of a permission
configuration). Furthermore, our design guarantees compatibility.
Our context implementation uses primitives (processes, namespac-
ing, seccomp and semaphores) that are readily available in mainline
Linux.

4 SHIELDING COMPARTMENTS

Cali creates a compartment for all libraries that should be isolated.
A compartment must fulfill three criteria: First, it must provide
privilege isolation. To this end, we must be able to constrain the
access on files, network and other resources (including computation
power, memory, etc.) to successfully contain vulnerable libraries.
Second, a compartment must provide memory isolation to protect
the privileged main application (e.g., its pointers) from an attacker
in the library compartment. Third, a compartment must preserve
the functionality of a program, without requiring modifications
to the library. Memory chunks that are passed from the program
to the library must be accessible from the compartment and vice
versa.

4.1 Basic Compartment Structure

For each library compartment, we fork a new library process from
themain process just before the libraries are initialized. This process
is restricted in its permissions and only shares selected memory
regions with the main program. Communication between compart-
ments happens over shared memory, semaphores and an anony-
mous socket. Library compartment processes sleep until a library
function is invoked. Once woken up, they execute the called library
function on behalf of the main process and return the result. They
terminate when the main process terminates.

Such library compartments do not undermine memory dedupli-
cation, the isolated library is still a shared library mapped copy-on-
write. Multiple processes sharing the library will require one copy
in memory, only. Also nested libraries are not negatively affected
by this scheme. If a library loads further libraries, these will be
executed in the context of the loading library, inheriting its reduced
privileges.

In principle, we can create compartments for any library. Having
said this, we do not isolate standard libraries (e.g., libc). They are the
usual interface to access the underlying system. Therefore, standard
libraries would need all privileges the main program needs. In our
design, each context has its own standard library. It does not matter
if a library uses raw syscalls or libc—both execute from the library
context with identical privileges.

4.2 Shared Memory

We create a segment of shared memory for each compartment and
map it in both the main and library process. This memory is mainly
used to allocate memory chunks that are accessed by both processes.
To organize this memory, we build drop-in replacement versions
for mmap, mremap and munmap handling memory from this shared
memory pool page-wise. These functions, called shm_mmap etc., also
synchronize memory mapping between both processes.

We support dynamic memory allocation (e.g., malloc) by using
a modified version of glibc’s heap implementation working with
shared memory. In this modified version, we remove the main arena
(which cannot be shared) and replace all calls to the mmap family
with calls to the shm_mmap family. Next, we utilize glibc’s per-thread
heaps to build per-process heaps, preventing concurrency issues
between main and library process. Following this principle, we have
drop-in replacements for all basic memory-allocating functions. If a
chunk of memory needs to be shared with the library, we only need
to replace its allocation with the appropriate shared allocation. This
way, no memory needs to be copied between processes, improving
the efficiency of memory transfers. Any memory outside of this
shared memory pool is not accessible by the library.

4.3 Library Calls

For each library function called by the main program, we create
a replacement function in the main program and a handler in the
library compartment. All calls to library functions are passed to the
library process using a custom IPC-based protocol. We rewrite all
calls to the library with calls to this replacement function. This func-
tion stores all call-by-value arguments (numbers, pointer values,
but not the memory pointed to) in shared memory and signals the
library process using a semaphore. The library process invokes the
handler which loads arguments from shared memory and invokes
the original function. Once the function returns, the result is stored
back to shared memory and the main process receives a signal
using a second semaphore. Finally, the replacement function in the
main process loads the return value from memory and returns. This
design is completely transparent to program and library, as long
as all pointer arguments point to shared memory (which we will
ensure in Section 5).

4.4 Callbacks, Signals and File Descriptors

Sometimes libraries expect a callback that they will execute once an
event occurs, or programs receive function pointers from a library
that they will call later on. In our context, this is dangerous. Call-
backs allow one process (e.g., the library) to trigger the execution
of code in another process (e.g., the main program), inheriting the
program’s privileges. To keep up the isolation between processes,
we employ a strict policy: Callbacks are executed in the process
they come from (where they have been defined).

Whenever a function pointer is transfered by a library call, we
create a replacement function on the fly, and store the original
pointer in a lookup table. When invoked, the replacement function
invokes the call in the other process.

This design complies with the usual structure of code containing
callbacks. Functions passed from the program to the library were
typically written in the program’s code base and require access to
the program’s internal data. Executing them in program context
thus preserves compatibility. Functions returned and defined by the
library might depend on library-internal data and should stay in the
library compartment, for compatibility and security reasons. The
library can not invoke arbitrary code, function pointers it passes
execute in the library process.

Signals are handled using this callback mechanism: When a
signal handler is registered in one compartment, the handler is
synchronized with all other compartments. When a signal is caught,
the handler executes in the compartment that registered it. If an
uncaught signal terminates one process, the others also terminate.

File descriptors are handled in a different way. We detect them
using static analysis (Section 5.7), not by type. When passed as
a function call argument or return value, the other side gets full
access on the descriptor. A duplicate is handed over on a shared
socket, FD numbers are adjusted between the processes. When the
descriptor gets closed in one process, the descriptor is also closed
in the other one. In Linux most system resources are represented
by file descriptors, correct synchronization ensures a synchronized
view of the system.

4.5 Isolation

Isolation between processes is provided by OS primitives present on
any up-to-date Linux system. The exact isolation can be specified by
an isolation policy andmight depend on runtime data (environment,
arguments, etc.). The policy is given by the developer at compile-
time, Appendix A shows an example policy. In the following, we
describe several isolations mechanisms that we deploy using a
modified version of nsjail [16].

We put each compartment process in a new mount namespace,
mount all accessible directories to an empty folder and finally use
chroot to jail the compartment into this directory. We utilize a user
namespace to execute chroot without requiring higher privileges or
capabilities. As a result, the library compartment process sees a file
structure similar to the real system, but it contains only folders if
access has been allowed by the policy. If only read access is desired,
we mount the folder with the read-only attribute.

We use a network namespace to prevent a library compartment
from communicating with other machines, if not allowed by the
isolation policy. Next, we use a PID namespace to protect other

processes running on the system. After forking the compartment
process, we drop Linux capabilities or superuser rights the main
program might have, according to the isolation policy.

The isolation policy can specify constraints on the computing
resources used by the library compartment, enforced using rlimit.
These constraints prevent DoS attacks on the system, like con-
suming all available memory, blocking all CPU cores, or “fork-
bombs”. They are not meant to prevent application DoS (e.g., pro-
gram crashes).

Finally, we apply a seccomp policy to restrict the set of system
calls the library compartment can call.

4.6 Threading, Forks and Concurrency

Our prototype has limited support for concurrency: While it does
not break the semantics of threading and forking processes, and in
fact, also works for multi-threaded or multi-processing programs,
our lockingmechanisms serializes all threads at the library interface.
Therefore, concurrency is not an issue, as only one thread can
call a library at a time. To get the full performance of concurrent
execution, the library compartment process must be enabled to
spawn its own threads, mirroring the threads in the main program
process. For new threads, the communication structure needs to
be cloned as well. Forking programs can be handled by the same
structure. In contrast to other work (that uses thread-like primitives
for isolation), this extension does not impact security. However, we
refrained from extending our prototype to multiple threads because
this is not required to show the general feasibility of our approach.

Concurrently running code from multiple compartments opens
up another problem: An attacker in one compartment could mod-
ify shared memory while another compartment uses this memory,
possibly leading to memory corruption in other compartments,
effectively weakening the introduced isolation. These issues are
called double-fetch bugs [37, 44]. Other systems like PtrSplit or Sand-
boxed API avoid this problem, they copy memory instead of sharing
it. But this approach breaks existing software with legitimate use
cases of shared memory: for example, most implementations of
synchronized collections or spinlocks rely on shared memory.

Cali solves this issue by providing three modes of operation: In
the default mode, concurrent access is allowed (to not break existing
software). We consider the security impact of concurrent access
rather low, manual inspection of the shared memory usages in our
three example programs did not show vulnerable memory usage.
Related work [37] can be used to counter potential double-fetch
bugs.

If the program is clearly not concurrently accessing memory,
Cali can be used in mprotect mode. After a library function has
finished executing, the sharedmemory is set read-only in the library
process. Before the next library function call, the shared memory is
set writable again. A custom seccomp filter is installed to prevent
attackers from changing the protection of shared memory manually.
With this extension, an attacker in the library process can only
modify shared memory while a library function is being executed.
Even if the attacker has started additional threads, the security level
is equal to memory-copying solutions. The downside of this mode
is that only one thread can execute a library function at a time.

If the library is not concurrent itself (e.g. does not spawn threads
or processes), Cali can be used in non-concurrent mode. The library
process uses a seccomp filter to prevent forks, clones or thread-
spawning syscalls. Without these privileges an attacker can not run
code outside of library calls: After a library call returned and the
main compartment continued execution, the single library thread
is blocked until the next library call is requested. This mode does
not have additional overhead but prevents libraries from using
concurrency.

5 COMPILER-ASSISTED SEPARATION

To automatically split an application into two parts, we have to
know which memory chunk is used both by the program and the
library, and which memory is used exclusively by the main pro-
gram. We call chunks common memory if they are used by both
compartments. Ideally, all other program memory should not be
taken from the shared memory pool, as it otherwise might leak
data to the library compartment. Having said this, sharing “too
much” memory only weakens security guarantees and does not
break functionality.

One core challenge is that we need to know at allocation time
if a memory chunk is common memory. After memory has been
allocated, moving the chunk might interfere with legacy code, e.g.,
pointers to the chunk scattered over the program would need to be
updated. Similarly, we also have to identify all (potentially indirect)
calls to library functions. They determine which memory is going
to be accessible by the library.

To gather all this information, Cali uses inter-procedural static
analysis on the compiled LLVM bytecode of the main program.
In the first step, we use a program dependence graph (PDG) with
similarities to the one proposed by Liu et al. [24], tracking data
flow of memory chunks. We detect all calls to library functions
and tag all memory allocations that might reach library functions.
In a second step, we rewrite all these memory allocations to use
shared memory, we generate replacement functions for used library
functions, and finally, rewrite all calls to library functions with calls
to these replacements.

5.1 Background: Call Graphs and SCCs

To schedule our analysis operations on the program, we use the
strongly connected components (SCC’s) of the call graph. A strongly
connected component of a graph 𝐺 = (𝑉 , 𝐸) is a maximal subset
of vertices 𝑉 ′ where a path between all vertices exists (∀𝑣1, 𝑣2 ∈
𝑉 ′. 𝑣1 →∗ 𝑣2). The graph formed by all strongly connected com-
ponents in a call graph has nice properties: First, functions that
can call each other in a recursive way (nested recursion) are con-
tained in the same SCC. Every other function is in its own SCC
of size 1. Second, because all recursive functions are contained in
joined SCCs (one per recursive function group), the call graph of
all SCCs is acyclic (circles in a call graph indicate recursion, which
only happens inside SCCs). Third, traversing the SCC callgraph
bottom up traverses all functions in a callee-before-caller order.
Traversing the SCC callgraph top down traverses all functions in
a caller-before-callee order. To reduce the average SCC size, we
only consider calls that are able to transfer memory by reference
(not only by value). We ignore calls if all parameters and the return

value are constant or of primitive type (int, char, etc.), because
they are not relevant for our following analysis.

Our analysis traverses a SCC callgraph of the whole program in
a bottom-up fashion and analyzes all functions in a SCC at once. If
we encounter a function call, it either targets a function we already
analyzed or a recursive function in the same SCC which we are
just analyzing. At a later stage, we will traverse the SCC callgraph
top-down, to propagate information from calls to called functions.

5.2 Analysis Phase: Overview

In the analysis phase, we mainly need to determine which memory
allocations generate commonmemory (that later needs to be shared).
The analysis consists of three phases:

(1) Creation Phase: We construct a PDG containing informa-
tion about intra-procedural data flow. We mark memory
allocations and locations of common memory.

(2) Reachability Phase: For each function group (callgraph SCC),
we determine the reachability between memory allocations,
common memory expectations, the function’s arguments
and return value. We store the result in a function summary
in the PDG, which is used when calls to this function are
analyzed (inter-procedural data flow).

(3) Specialization Phase: We check for functions that should
return pointers to common memory depending on their us-
age. For example, wrappers around malloc like calloc or
new should only generate common memory if their result is
passed to the library later on. However, these functions are
called from many other functions. To keep a precise result,
we thus clone these functions (including their containing
SCC). The cloned functions will return common memory,
while the original functions will not. Call sites are adjusted
and reachability analysis is repeated.

Figure 2 shows an example program that we will use to illustrate
the analysis. It consists of two struct instances, where one of these
structs is used in a library, and the other is not. The reference
to that struct passes multiple functions before being used as a
library function argument. Figure 8 in Appendix C shows the LLVM
translation of the program. The full PDG with all analysis results
is given in Appendix C, an excerpt illustrating the most important
aspects is shown in Figure 3.

5.3 PDG Construction

In contrast to other PDGs [12, 24], we do not need control depen-
dence in our graph. The construction of our graph is based on
the LLVM bytecode of the program. This bytecode is in static sin-
gle assignment (SSA) form, meaning that every LLVM value gets
assigned only once (at definition time, typically as result of an in-
struction) [33]. Our PDG is based on LLVM values, every value is
represented by a PDG node. Nodes are additionally tagged with the
type of the value and the function where it is contained, so every
node is a three-tuple: (𝑣𝑎𝑙𝑢𝑒, 𝑡𝑦𝑝𝑒, 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛). We add similar nodes
for all global variables and function arguments.

To trace actual memory chunks, we inspect the values further.
We disassemble every complex data type (e.g., pointers, structs) into
its basic data types. These so-called “subnodes” represent single
members of structs or memory referenced by a pointer type in

struct X { long one; long two; };

// Library function we need to compart
void libfunc(int *err , char *input , long *output);

// Main program
void main() {

struct X *x1 = new_struct (13L);
struct X *x2 = new_struct (37L);
struct X *x3 = update(x2);
char *buffer = malloc (1024);
lib_wrapper(buffer , x3);

}

struct X *new_struct(long init) {
struct X *s = malloc(sizeof(struct X));
s->one = init;
return s;

}

struct X *update(struct X *x) {
x.one = 18;
return x;

}

int lib_wrapper(char *buffer , struct X *x) {
int err;
libfunc (&err , buffer , &x->two);
return err != 0;

}

Figure 2: Example program passing memory to a library

the graph. The rules to create subnodes are given in Figure 4: For
every pointer type, we create a subnode representing the memory
pointed to, and connect it with a “pointer Deref−−−−−−→ memory” edge.
For every field in a struct or union type, we create a subnode and
connect it with a “struct Part𝑖−−−−−→ field” edge (where 𝑖 is the index
of the field). We repeat this algorithm on all new subnodes up to a
configurable recursion depth of 5. Limiting the depth avoids that
the analysis is trapped in endless recursion induced by recursive
structs. In theory, this limitation might lead to a loss of precision
(when dataflow is hidden deep in the subnodes). However, in all
our example programs, a recursion depth of 3 was sufficient to
cover all necessary information. We also limit the number of struct
members to 32 for performance reasons. In our examples, we did
not see any impact on the analysis precision by this restriction.
Figure 3 shows an example subgraph for the second argument
of lib_wrapper (the struct pointer x: struct X*). The subnodes
represent the dereferenced struct of that pointer (:struct X), further
dissected into its fields (X.one, X.two).

5.4 Data Flow in PDGs

We next extend the PDG with edges representing intra-procedural
data flow. If the LLVM value of a node or subnode 𝑛 might carry
over to another node 𝑛′ in any possible execution of the program,
we assume a data flow from 𝑛 to 𝑛′ and add an edge 𝑛 data−−−−−→𝑛′.
A typical example is a load from memory: Reading err for the
return statement in lib_wrapper is %6 = load i32* %3 in LLVM,
we summarize the load as a data edge from the subnode err of %3
(representing the referenced memory) to the output value %6.

As a major difference to previous PDGs [24], we use is data
equality to capture pointer aliases. If two (sub)nodes represent the
same value storage (i.e., the same memory location is referenced by
two pointers), we consider them to be data-equal. If one node’s as-
sociated value gets updated, the other node’s value will also change.

PDG Subgraph of lib_wrapper Legend

function @lib_wrapper

x: struct X*

arg 2

: struct X ★

deref

X.one: long

part 1

X.two: long ★

part 2

&x->two: long*

deref

call @libfunc

arg 3

★ Shared Memory

Subnode : <type>

Instruction : <type>

Function

Figure 3: Excerpt of the PDG from the example program.

The full graph is given in Appendix C / Figure 9.

We could handle this situation with bi-directional data−−−−−→ edges, but
merging significantly reduces the size of the graph and improves
the runtime of all further operations. Merging nodes might intro-
duce cycles into the subnode graph if subnodes connected to each
other are merged (e.g., linked list structure). The subnodes of a
value no longer form a tree, which is vital for handling recursive
data structures. Merging nodes also eliminates nodes introduced
by type casts.

We use six rules for LLVM instructions that describe data flow
between inputs and output of an instruction (Figure 5). To be on the
safe side regarding functionality, our rules might over-approximate
data flow, but should not under-approximate it.

Data flow between nodes 𝑥 and 𝑦 (𝑥 data−−−−−→𝑦) is propagated re-
cursively to its subnodes, by two simple rules:

(1) If there is data flow between two structs 𝑥 and 𝑦, then there
is also data flow between their members:
𝑥

data−−−→ 𝑦 ∧ 𝑥 Part𝑖−−−−→ 𝑥 ′ ∧ 𝑦 Part𝑖−−−−→ 𝑦′ =⇒ 𝑥 ′
data−−−→ 𝑦′

(2) If there is data flow between two pointers 𝑥 and 𝑦 (pointers
might alias), then we consider the referenced memory data-

equal: 𝑥
data−−−→ 𝑦 ∧ 𝑥 Deref−−−−→ 𝑥 ′ ∧ 𝑦 Deref−−−−→ 𝑦′ =⇒ 𝑥 ′ = 𝑦′

Rule 1 expresses that copying a struct from one location to an-
other implies that all struct members are copied, too. Rule 2 can
best be explained with the running example. In function main, data
flows from %2 to %3. Therefore, the referenced memory is the same

5.5 Reachability Analysis

After these inferences, the PDG contains all values in a program
and their intra-procedural relations. Equipped with this PDG, we
can determine if a memory allocation must produce common mem-
ory for a library call in the same function. If there is a data flow
path from the memory allocation output (source) to a library call’s
arguments (sink), then the memory must be shared. Such data flow
problems can be modeled as reachability over data−−−−−→ edges in the
PDG.

𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠 (𝑛, 𝑡) ↦→



∅ for primitive 𝑡 like int etc.

{𝑛𝑜𝑑𝑒 (𝑡 ′) } ∪ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠 (𝑛𝑜𝑑𝑒 (𝑡 ′) , 𝑡 ′) ; 𝑛 Deref−−−−→ 𝑛𝑜𝑑𝑒 (𝑡 ′) for 𝑡 = 𝑡 ′*

⋃
𝑘≤𝑛
({𝑛𝑜𝑑𝑒 (𝑡𝑘) } ∪ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠 (𝑛𝑜𝑑𝑒 (𝑡𝑘) , 𝑡𝑘)) ; 𝑛

Part𝑘−−−−→ 𝑛𝑜𝑑𝑒 (𝑡𝑘) for 𝑡 = struct{𝑡1, 𝑡2, ..., 𝑡𝑛}

𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠 (𝑛, 𝑡 ′) for 𝑡 = 𝑡 ′[k], 𝑘 ∈ N

Figure 4: Recursive algorithm to generate subnodes of a value node 𝑛 with type 𝑡 . 𝑛𝑜𝑑𝑒 (𝑡) creates a new subnode with type 𝑡 .

(1) 𝑥 = Load 𝑦: The memory referenced by 𝑦 is loaded into 𝑥 .

∀𝑦′ : 𝑦 Deref−−−−→ 𝑦′ =⇒ 𝑦′
data−−−→ 𝑥 .

(2) Store 𝑥, 𝑦: The value 𝑥 is stored to memory location *𝑦.

∀𝑦′ : 𝑦 Deref−−−−→ 𝑦′ =⇒ 𝑥
data−−−→ 𝑦′.

(3) 𝑥 = GetElementPtr 𝑦 𝑐1 𝑐2 ...: Compute address &𝑦[𝑐1].𝑐2
• If instruction computes the pointer to a valid field of *𝑦:

∀𝑧, 𝑥′ : 𝑦
Deref−−−−→ 𝑦′

Part𝑐2−−−−−→ 𝑧 , 𝑥
Deref−−−−→ 𝑥′ =⇒ 𝑥′ = 𝑧

(𝑧 is the struct field in memory, 𝑥′ is the memory pointed to by
the output pointer).
• Otherwise: 𝑥 = 𝑦 (output pointer is equal to the input pointer,
handles dynamic array access etc.).

(4) 𝑥 = BitCast 𝑦 and other casts: 𝑥 = 𝑦.
(5) Call is ignored, inter-procedural analysis will happen later.
(6) All other instructions which output a value are handled similar:

All operands data-flow to the output value of the instruction.

Figure 5: Rules to determine data flow for LLVM instruc-

tions

First, we use data flow to determine which indirect calls might
call a library function (find sinks). Then, we determine which nodes
are common memory (reach a sink) within a function. Finally, we
extend this to an inter-procedural analysis.

Determine indirect library calls: To decide if a call needs
common memory, we need to decide if it could potentially call a
library function. While this is trivial for direct calls, it is not obvious
for indirect calls. Some programs, for example, build a struct of
library function pointers as an exchangeable “interface” against a
library. We search for paths backward in the PDG from the called
function address (sink) to a library function (source). The backward
path from sink to source must only consist of data←−−−−−, Part𝑖←−−−−− and
Deref−−−−−−→ edges. From the indirect call address (sink), we follow data←−−−−−
edges backwards that lead us towards the origin of the address
value. We also follow Deref−−−−−−→ edges in forward direction (pointer
to memory) to get from function addresses to actual functions
(sources). Part𝑖←−−−−− is used to cope with compiler optimizations.

This analysis might over-approximate which call might invoke
a library function to preserve program functionality. Having said
this, we did not observe such an over-approximation in the three
real-world programs in our evaluation.

Intra-proceduralReachabilityAnalysis:At this level we know
which function calls invoke library functions. All their call argu-
ments must point to shared memory later, so we first mark every-
thing referenced by an argument of these calls as common memory.

More formally, we mark everything that can be reached from a call
argument using only (and at least one) Deref−−−−−−→ edge. We will use
this mark as taint and propagate it backwards, marking all nodes
that might reach a library call. If that mark reaches the memory
produced by a memory allocation, this allocation needs to be rewrit-
ten. Formally, an allocation instruction 𝑥 needs to return shared
memory iff ∃𝑥 ′ : 𝑥 Deref−−−−−−→𝑥 ′ ∧marked(𝑥 ′).

In our example in Figure 2 (and Figure 8), we first mark the
dereferenced arguments of the call to libfunc in lib_wrapperwith a
star, which includes err: int, the memory referenced by parameter
buffer and x->two. The struct behind pointer x must be shared, but
detecting this requires further analysis:

To propagate the common memory mark, we follow all data←−−−−−
and Part𝑖←−−−−− backward edges and mark every node we can reach.
Formally, if 𝑥 data−−−−−→𝑦 and 𝑦 is marked, then 𝑥 needs to be marked,
because there is a path from 𝑥 to a library call. Marks are also
propagated to and from global variable nodes. We do not need to
follow Deref−−−−−−→ edges here, as all possible dereferences have already
been marked by the initial marking step. In our example, we need
to mark the struct X node, given that struct member two needs
to be shared and the struct members resides together in memory
(Figure 3).

Inter-procedural Reachability Analysis: The analysis so far
handles all cases where allocation and library call are in the same
function. We extend the analysis first to a group of functions, then
to the whole program. To cover recursion, we analyze all functions
in a SCC (see Section 5.1) together at once. We resolve all Call
instructions targeting functions within the same SCC. We connect
the function’s argument nodes with the parameter values from
all actual calls (with a data−−−−−→ edge), and we connect the value of
the Ret instruction in the callee with the result value of all Call
instructions in the callers. Once we rerun the data flow analysis, it
covers data flow between all functions in this SCC, possibly over-
approximating (because no call context sensitivity is given).

Analyzing functions SCC-wise is a good trade-off between full
program analysis and function-wise analysis. Analyzing all func-
tions at once is usually not feasible in acceptable time, and we
cannot afford losing context sensitivity on all functions. Function-
wise analysis is much faster, but cannot handle nested recursive
functions. SCC-wise analysis picks the best of both worlds: For
non-recursive functions, it boils down to function-wise analysis,
only in case of nested recursive functions SCC-wise analysis is
slower (but much more precise).

To extend SCC-wise analysis to full inter-procedural analysis,
we traverse the SCC call graph bottom-up and run the SCC-wise

analysis on each SCC. Due to the properties of a SCC call graph
we visit callees before callers and recursion only occurs within a
SCC. That is, if we encounter a Call instruction, it points either
to a function within the same SCC or it points to a function in an
already analyzed SCC.

When analyzing a SCC, we create a summary for each contained
function, similar to parameter trees from [24]. A summary captures
all possible data flow and indirect function invocations between
arguments, return value and global variables used in a function,
including shared memory markers. When we later see a call to that
function, we insert the precomputed summary, ignoring the full
graph for the function itself.

In our example graph (Appendix C), we have built a summary
edge for update. In main’s call to update, we copy the summary edge
between x2/%2 and x3/%3 (and unify the dereferenced structs). We
also copy the three memory markers from the lib_wrapper to the
arguments of its call. With this information we can reason that
the malloc call in main must be shared because its memory will be
passed to a compartment (buffer).

5.6 Function Specialization

At this point our analysis cannot handle functions allocating (po-
tentially shared) memory and return its reference. Examples are
calloc and the new operator from C++. Both internally use malloc
to allocate memory and return a reference to initialized memory.
In our example, new_struct allocated memory that must (x2) or
shouldn’t (x1) be shared. The naïve solution (propagating the marks
in both directions) would mean that all calls to new_struct would
return shared memory. If that happens to calloc, the majority of
memory used in the program might be affected—a prohibitive over-
approximation.

We tackle this problem using function specialization, which is
executed after the reachability analysis. We first determine if a
function could potentially create and output memory chunks. Next,
we check if any calls to this function requires these chunks to be
common memory (i.e., if the function must return shared memory
for some calls). If so, we clone the function. The original function is
unmodified, the clone (the specialized function) will create shared
memory. To this end, we traverse the SCC call graph top-down:
For each SCC, we identify the memory output nodes. A memory
output node is a subnode of the return value that is reachable over
at least one Deref−−−−−−→ (function returns a pointer), or a subnode of
an argument node reachable over multiple Deref−−−−−−→ edges (function
stores a pointer in a reference-passed variable). For each call to a
function in this SCC, we relate the actual call argument subnodes
with the function argument subnodes and relate the call result
subnodes with the function return subnodes, based on the subnode
graph structure. If any of the related nodes is marked as common
memory, we specialize (clone) the whole SCC. We copy all marks
from all calls to the argument nodes of the specialized version
and re-run the reachability analysis, forcing the function to output
common memory. All calls that contributed markers are pointed to
the respective specialized function.

In our example, the function new_struct is called once with
tagged memory output (x2 from the second call in main). We cre-
ate a copy specialized__new_struct and copy two markers to the

specialized function. We see that malloc in the specialized version
must return shared memory. We thus update the second call in main

to call specialized__new_struct. As the end result, just one struct
in main is in shared memory (x2 / %2).

Updating calls inside a specialized function might require further
callees to be specialized. To this end, we iterate the SCC call graph
in caller before callee order, including cloned SCCs.

Function specialization potentially increases the program size.
To reduce the space overhead, we schedule two LLVM passes after
specialization: “Dead Global Elimination” removes the old func-
tion if all calls get specialized, “Merge Functions” unifies cloned
functions that have not been changed.

5.7 Tracing File Descriptors

We trace file descriptors along with memory chunks, but with much
simpler rules. We use a list of known functions that return new
file descriptors (open, socket, etc.). Calls to these functions are the
sources of our data flow analysis and tagged with Fd. Fd tags prop-
agate forward along data−−−−−→ edges only. During the reachability
analysis phase, they are copied from callees to callers. During the
specialization phase, they are copied from callers to callees. Func-
tion arguments of library functions are the sinks of this analysis,
if a library function argument is marked with Fd, it denotes a file
descriptor that needs to be handled separate. This algorithm detects
all file descriptors passed from the program to the library. A similar
algorithm can be used to detect file descriptors that are passed from
a library function to the program.

5.8 Rewriting Memory Allocations

In LLVM programs, we have three types of memory allocation:
global variables, stack variables (Alloca instruction), and calls to
memory-allocating functions. For each of these allocations we can
easily check if it must be shared: If the return value node of the
instruction (a pointer) has a Deref−−−−−−→ edge to a subnode marked as
common memory, then the allocation must be shared. We share
calls to memory-allocating functions by replacing them with their
shared counterpart (shm_malloc, see Section 4.2). We provide these
replacements for all primitive memory-allocating functions. Higher
ones will be resolved using function specialization. We share global
variables by moving them to a special page-aligned section in the
ELF binary which will be mapped shared at runtime. We move
shared stack variables to our shared heap. They are initialized and
freed in the function prologue and epilogue, respectively.

6 EVALUATION

We implemented our Cali prototype in C++ and evaluated it on
three sample applications. We chose these applications to cover
many different aspects: Different languages (C and C++), user inter-
faces or console, local and networking applications, and different
code sizes. Furthermore, these programs link all libraries during the
compilation phase (i.e., no dynamic linking), and thus perfectly suit
the link-time passes of Cali. All applications use different, widely
used libraries that contained severe vulnerabilities in the past:
ImageMagick is a large (453,000 LoC) image processing tool suite
written in C. ImageMagick uses Ghostscript to read/write postscript
and PDF files, which had some serious bugs in the past [5, 40]. We

protect ImageMagick’s convert utility, which is used to convert
between file formats by isolating Ghostscript.
socat is an all-round utility for networking. Its C code base is rather
small (29,000 LoC). Socat can establish encrypted TLS connections
using the OpenSSL library, which had several severe vulnerabilities
in the past [7].
Filezilla is a popular FTP client with an wxWidgets GUI. Its large
codebase (190,500 LoC) is written in C++ and scattered over differ-
ent projects. Filezilla uses SQLite (with critical vulnerabilities in the
past [6, 8]) to manage download queues and store known servers.

We have chosen these example programs because they are widely
known, use libraries with vulnerabilites in the past and cover dif-
ferent areas (computation, networking and user interfaces). We
evaluate the functionality of Cali on more programs taken from
the most popular Debian packages [1].

6.1 Correctness Evaluation

We apply Cali on each of these applications and check if the result-
ing binary is still fully functional. We additionally instrumented
each library interface to catch more subtle bugs.

ImageMagick’s functionality can be verified using the provided
integration tests (that call the protected convert binary). After
the protection with Cali, we repeated all provided tests 50 times
and found no difference in behavior. Next, we added additional
tests: We chose 8 popular image formats (including all formats
handled by Ghostscript), prepared sample files for each format and
converted each format into each other one. All converted images
were identical to the ones produced by an unmodified convert
program.

socat does not provide integration tests. We therefore combined
several socat instances using different types of connections, trans-
ferred large amounts of data between them (1000 connections, up
to 1GB per connection), and verified the transfer was working and
no data got changed. In detail, the socat “client” configuration reads
data from a file, sends it over a TLS connection to a “server”. This
server is another socat configuration listening for TLS connections
and using echo to send incoming data back. A third socat, our
“proxy” configuration, was sitting in the middle, using a TLS server
to read connections from the client and using a TLS connection
to proxy incoming data to the real server. No socat configuration
showed a different behavior after being protected by Cali.

Testing Filezilla is tricky because no official tests are provided
and its GUI is hard to automate. We resorted to manual testing,
using a protected Filezilla to connect to various servers and testing
all the functions. We specially focused on the parts that used SQLite:
the download queue and the server configurations. Again, we could
not see any behavioral differences.

To evaluate Cali on an unbiased selection of binaries, we an-
alyzed the most popular binaries taken from Debian Popularity
Contest [1] (top 300 packages). We select every binary that (1) links
dynamic libraries beside the standard libraries that can run with
reduced privileges, (2) can be compiled with Clang/LLVM 7, (3)
comes with a working set of integration tests. We rebuild these
binaries with Cali enabled and use their integration tests to verify
that Cali did not break anything. We additionally instrumented
the library interface to reliably detect errors in memory sharing, no

errors occured. We confirm that Cali works on all tested binaries,
which are: dpkg-deb, dbus-daemon, man, mandb, accessdb, whatis,
gpg, gpgv, gpgsm, scdaemon, xz, xzdec, fc-cache, fc-list. We isolated
the most important libraries, namely libbz2, liblzma, libz, libexpat,
libgdbm, libksba, libsqlite3 and libfontconfig. Each binary used up
to 4 of these libraries. Depending on the quality of the provided
integration tests, 35%-80% of all library call locations have been
covered during these tests. Manual inspection revealed that the
uncovered library callsides were mostly error handling or dead
code. Additionally, some binaries had tests that did not require any
library calls: sudo, gpg-agent, dirmngr, file, shared-mime-info and
pstree. Cali did not break any binary.

6.2 Usability Evaluation

Cali is designed to be easily deployable in real-world systems. To
apply Cali, we just need to enable link-time optimization (-flto)
and add our linker. In most build systems, it is sufficient to add Cali
using a common environment variable: LDFLAGS="-fuse-ld=cali
-Wl,--cali-config=permissions.yaml". Next, we specify which li-
braries should be separated and which privileges they should have,
in a simple text-based config file (see Appendix A).

Only in exceptional cases, Cali needs additional information to
handle corner cases. In our examples, ImageMagick uses a custom
memory allocator instead of malloc. Here we need to configure
which function allocates and deallocates the memory (2 lines in
the configuration file, no source code changes required, see Appen-
dix A). Socat and Filezilla did not require any annotation. Overall,
integrators thus do not need to know application internals, Cali
inferred all other information automatically.

This high degree of automation is a major benefit of Cali, which
addresses an important aspects left open by others. To evaluate
if this promised automation also holds in practice, we gave our
prototype and documentation to two students: an undergraduate
and a grad student, both in Computer Science. They were tasked to
isolate four programs (dpkg, xz, socat, Filezilla) without further as-
sistance. We made sure that the students did not know the program
internals (source code, etc.) before handing out the tasks. They
correctly isolated previously unknown programs in ≤ 45 min per
program, and in about 32 min on average. That is, after obtaining
the source code, they obtained a well-isolated compiled program
in about half an hour. The vast majority of this time was spent
on developing and testing a sound permission set, which can be
completely automated [10, 13, 14, 42].

6.3 Compilation and Size Overhead

Next, we evaluate the compilation overhead induced by the graph
analyses of Cali, as shown in Appendix B / Figure 7 for our three
sample applications. We compiled every application 10 times from
a clean source directory and measure the median compilation time
of a pure LLVM-based build and a Cali-protected build. Cali adds
12–36% compilation time, usually just a few seconds, up to a few
minutes even for large projects such as Filezilla. In times where
build servers are common, this overhead does not impede wide
deployment.

The size of the protected binaries increases compared to the
original version. After stripping, the protected binaries are around

Table 1: Remaining shared memory allocations and the

number of specialized functions in the main program

Program Shared
Mem.

Mem. Chunks
(shared/all)

Specialized
functions

Increased
code size

ImageMagick 0.078% 28 / 36101 67 / 5395 225 KB (+ 4.7%)
Socat 0.396% 15 / 3787 3 / 748 187 KB (+ 56.2%)
Filezilla 0.255% 48 / 18798 15 / 12348 186 KB (+ 2.8%)

186KB to 225KB larger (see Table 1), which is mainly because of
our statically linked IPC library (up to 212KB). For typical x86
architectures, a few hundred KB are no issue, in theory we could
also use a shared library.

6.4 Security Evaluation

To assess the degree of security Cali provides, we have to answer
two questions: (1) Is the compartmentalization and its compartment
privilege system strong enough? (2) Under which circumstances
can an attacker escape from a compartment?

The compartment privilege system is strong enough to prevent
any influences of an attacker beyond the runtime of the program.
The PID namespace ensures all processes spawned by the library
compartment are killed on program termination. Containment poli-
cies can usually either revoke file system access of libraries, or
confine access to subparts only. Hence, neither sensitive data can
be accessed, nor persistent backdoors can be installed. Furthermore,
attackers can only leak data if network operations are allowed. We
enforce strict security policies on the isolated libraries:

Ghostscript inside ImageMagick gets write access only to the
folder with the input/output files (as named in the command line
parameters) and the temporary directory /tmp (see Appendix A).
Additional read-only access is granted on its installation directory
and /dev/urandom. No network communication is permitted. This
isolation is quite close to the minimal required privileges: an at-
tacker exploiting a library vulnerability can only tamper with files
in the same folder as the output file. Our permission configuration
file is shown in Appendix A.

OpenSSL inside socat can only read files given in command line
parameters (certificate, private key, etc.) and the randomness de-
vices. Nothing is writeable, an attacker exploiting OpenSSL cannot
trigger any permanent changes on the system. We can even block
general network access for this library, because the program passes
the file descriptor of an open socket to the library. The provided
socket is the only network communication possibility of OpenSSL.
Attackers can still access the certificate’s private key (which the
library must know in order to work), but have only very limited
possibilities to leak it.

SQLite inside Filezilla can only access files in Filezilla’s configu-
ration folder. Network access can even be fully forbidden.

Attackers are further tightly bounded when they aim to leak
information from shared memory or modify critical data structures
in shared memory. Table 1 shows that Cali greatly reduces the
number of memory allocations in the program that actually produce
memory shared between the program and the library. Only a small
fraction (< 0.4%) of all memory allocations produce chunks that

are accessible to the library. Most of these memory allocations are
essential to keep the functionality of the program, and thus, the
information would have been passed to the library anyways.

A limitation of our fully-automatic approach is the remaining
risk of cross-compartment exploits: The exposed interface between
privileged and unprivileged context might be vulnerable, e.g., if
an attacker could store invalid values in shared memory or trig-
ger callbacks with unexpected parameters or in an unexpected
order. RLBox [30] approached this risk by proposing a restrictive
C++ type system and requiring the developer to rewrite his source
code to adjust to this type system. While protecting from cross-
compartment exploits, this tedious work (multiple days) impedes
usability, especially if users (e.g., repository maintainers) are largely
unfamiliar with the source code. In contrast, Cali provides fewer
security guarantees against cross-compartment exploits. Having
said this, Cali already handles code pointers like callbacks as func-
tion arguments or return value (see Section 4.4), such that they
cannot be abused to invoke arbitrary code execution in the privi-
leged process. Furthermore, Cali detects and warns about function
pointers in shared memory. All evaluated programs (including pro-
grams from popularity contest) have either no function pointers
in shared memory, or these pointers are only called from within
the unprivileged context—which is uncritical. In general, CFI can
be used to harden against cross-compartment exploits, including a
viable protection for C++ objects [45, 46]. Cali also provides two
optional protections against double-fetch bugs (see Section 4.6).
Other work [20, 37, 44, 45] already suggests protections against
different other similar bugs, which are compatible to our approach.
We thus see Cali on the sweet spot between usability/automation
and security guarantees. Cali already minimizes the risked inter-
face (< 0.4% of memory is shared) and detects critical function
pointers in the shared area—other improvements are left open to
future work.

6.5 Performance Evaluation

Wider adoptions of a protection can only happen when its runtime
overhead is negligible (typically below 5%-10% [28, 39]).We evaluate
if Cali is fast enough for wider deployment.

All experiments were performed on an Intel Core i7-9700K CPU
(8×3.6 GHz, no hyperthreading) with 64GB of RAM.We use Ubuntu
version 18.04 LTS with an unmodified Linux 5.4 kernel. Our com-
piler toolchain is clang/LLVM version 7. To avoid any influences
on the benchmark, we set the CPU governor to “performance” and
disable “turbo” CPU power states as well as ASLR. We force each
program to use only one CPU core, to prevent any unfair advan-
tage our protected version might get, we use cpuset ot ensure this
CPU core is reserved exclusively for the program. If not stated, the
standard deviation of the results was below 1% of the median.

Microbenchmarks: We attribute the runtime overhead that
Cali introducesmainly to two factors. First, at startup, the protected
program needs to set up additional data structures and start the
library compartment process. Second, every call to the library forces
the kernel to switch between the two processes twice (call and
return). We measured these two overheads in a minimal program as
microbenchmark. Initialization at startup takes 2.2ms on average. In
these micro benchmarks, our compartment handles around 323,000

PNG
from JPG to

PS
 |
 PDF | JPG

from PNG to
PS

 |
 PDF | JPG

from PS to
PNG

 |
 PDF | JPG

from PDF to
PNG PS

0 s

1 s

2 s

3 s

4 s

5 s

6 s ImageMagick (ref)
ImageMagick (Cali)

-0.48% 2.07% -0.34% 0.12% 0.82% -0.24% 1.83% 2.20% 1.19% 0.08% 0.42% 0.19%

(a) Runtime of ImageMagick convert. The isolated libraries are called to read
or write PS/PDF files.

1 MB 5 MB 10 50 100 500 1000
0

20

40

60

80

100

120

Ba
nd

wi
dt

h
in

 M
B/

s

Socat (ref)
Socat (Cali)

(-6.5%) (-2.7%) (-1.9%) (0.0%) (0.2%) (0.1%) (0.1%)

(b) socat file transfer bandwidth over TLS (note:
higher is better in this case)

0 entries 1 10 100 1000
0.0 s

0.2 s

0.4 s

0.6 s

0.8 s

1.0 s Filezilla (ref)
Filezilla (Cali)

(+ 2.5%) (+ 2.1%) (+ 2.7%) (+ 5.5%)(+ 29.6%)

(c) Filezilla startup time, depending on
transfer queue size.

Figure 6: Performance impact of Cali. Lines in graph c): noticeable delay (100ms) and interrupting delay (1000ms).

calls / second (3.1 µs overhead per library call). With the mprotect-
based concurrency protection enabled, our overhead is 8 µs per
library call.

Application benchmarks:We now evaluate the runtime over-
head of Cali on our real-world applications. We measure the run-
time of ImageMagick convert while converting four different im-
age formats into each other.We chose JPG, PNG, PDF and PostScript.
As input files, we picked a camera picture (JPG), a website back-
ground (PNG), a test pattern (PostScript) and a sample PDF from
W3C. When converting to pixel-based formats, we use a density of
300 dpi, a default value for printing. We run each conversion 100
times. Figure 6(a) shows the median conversion time. The runtime
overhead is between 0% and 2.2% (geometric mean: 0.65%).

Next, we measure the network throughput of an encrypted TLS
connection using socat, where OpenSSL is put in a compartment.
Every packet is encrypted or decrypted in the isolated library, while
the data is processed by the main program (resulting in ∼42,000
library calls per second). We transmit files with varying sizes over
a common 1 Gbps local network. The TLS server answers with the
content it receives (echo), so we test with symmetric up- and down-
stream. We run each experiment 100 times and take the median
throughput, i.e., file size divided by transmission time. Our network
throughput showed a higher standard deviation (around 3%) for
short connections (files up to 10MB). To avoid imprecise values, we
repeated the affected experiments 1000 times. Figure 6(b) shows the
achieved throughput. For files up to 10MB, the connection cannot
be fully saturated, neither with protected nor unprotected socat.
Reasons are the TLS handshake, the TCP slow start algorithm and
application startup time. Cali adds ∼2ms to the application startup,
resulting in a throughput degradation of 1.9% to 6.5%. For large files
or long-lived connections that face the initialization overhead just
once, Cali’s impact on network throughput is almost negligible
(less than 0.1%).

Finally, we benchmark the impact of Cali on Filezilla, the only
GUI program in our test setting. The runtime performance overhead
at startup is highest, since every single entry in the database is read.
This leads tomany library invocations, as SQLite induces one library
call per table row, and for each row, one call per cell. We enqueue
0-1000 downloads in Filezilla and measure the startup time until

the main window is fully displayed (CMainFrame::OnActivate).
We repeat each experiment 500 times, as Filezilla’s startup time
shows a higher standard deviation (up to 20ms). Figure 6(c) shows
the median start times. Filezilla takes around 256ms to start, and
Cali adds 5ms–80ms depending on the queue size. With typical
queue sizes up to 100 entries, the overhead is ≈3.2%. For an empty
queue, the overhead is slightly higher, mainly due to the fact that
there is less file I/O, and thus the initialization overhead becomes
more prominent.

The user experience does not change, as the Filezilla startup
response delay is already above 100ms (lower dotted horizontal line)
and thus noticeable, and even the protected case is way below the
time that interrupts workflows (1000ms, upper dotted horizontal
line) according to literature [29, 31].

While it is common to choose a standardized benchmark like
SPEC CPU [9] to allow for comparative evaluations, we cannot do
so in our case. No program in the CPU benchmark uses third-party
libraries.

7 CONCLUSION

Cali protects applications from vulnerabilities and backdoors in
third-party libraries. Cali does not assume a priori expert knowl-
edge of the program’s source code and does not require source
code changes. Its compartmentalization can be easily integrated
into common build processes. Programs compiled with Cali are
fully portable and do not require additional CPU features, OS mod-
ifications or superuser privileges. Isolated libraries can only access
small, non-sensitive portions of the main program’s memory (up to
0.4% in our examples), and only selective system access permissions
remain.

Next to its main use-case, Cali can also separate different com-
ponents within a program. Developers can use this feature to split
their application into least-privileged components—fully transpar-
ently by recompiling their program with Cali. In fact, we support
more source code languages than just C and C++. The underlying
LLVM bytecode is independent of the source code language, and
programs in other languages with LLVM frontend (Delphi, Rust,
Go, Swift and many more) could be separated by Cali with minimal
adaptations.

AVAILABILITY

Our prototype has been released as Open-Source Software, it is
avaliable on Github:
https://github.com/cali-library-isolation/Cali-library-isolation

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their valuable feedback.
Also we thank Benedikt Birtel and Leon Trampert for their help
to evaluate the prototype, and Fabian Schwarz for his paper draft
review.

REFERENCES

[1] Bill Allombert. 2020. Debian Popularity Contest. https://popcon.debian.org/
stable/by_vote

[2] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting Applications into Reduced-privilege Compartments. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation
(San Francisco, California) (NSDI’08). USENIX Association, Berkeley, CA, USA,
309–322.

[3] David Brumley and Dawn Song. 2004. Privtrans: Automatically Partitioning
Programs for Privilege Separation. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13 (San Diego, CA) (SSYM’04). USENIX Association,
Berkeley, CA, USA, 5–5.

[4] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. 2016. Shreds: Fine-Grained
Execution Units with Private Memory. In 2016 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, San Jose, CA, USA, 56–71. https:
//doi.org/10.1109/SP.2016.12

[5] MITRE Corporation. 2019. Artifex Ghostscript : Security Vulnerabili-
ties. https://www.cvedetails.com/vulnerability-list/vendor_id-10846/product_id-
36469/Artifex-Ghostscript.html

[6] MITRE Corporation. 2019. CVE-2019-5018. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-5018

[7] MITRE Corporation. 2019. Openssl : Security Vulnerabilities.
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-
383/Openssl-Openssl.html

[8] MITRE Corporation. 2019. Sqlite : Security Vulnerabilities. https://www.
cvedetails.com/vulnerability-list/vendor_id-9237/Sqlite.html

[9] Standard Performance Evaluation Corporation. 2017. SPEC CPU® 2017. https:
//www.spec.org/cpu2017/

[10] Nicholas DeMarinis, KentWilliams-King, Di Jin, Rodrigo Fonseca, and Vasileios P.
Kemerlis. 2020. sysfilter: Automated System Call Filtering for Commodity Soft-
ware. In 23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020). USENIX Association, San Sebastian, 459–474.

[11] The Linux Kernel documentation. 2019. Seccomp BPF (SECure COMPuting with
filters). https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.
html

[12] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (July 1987), 319–349. https://doi.org/10.1145/24039.24041

[13] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated SystemCall Policy Generation for Container
Attack Surface Reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020). USENIX Association, San Sebastian, 443–458.
https://www.usenix.org/conference/raid2020/presentation/ghavanmnia

[14] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.
2020. Temporal System Call Specialization for Attack Surface Reduction. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 1749–
1766.

[15] Google. 2019. google/sandboxed-api. https://github.com/google/sandboxed-api
[16] Google. 2021. nsjail. https://nsjail.dev/
[17] Le Guan, Jingqiang Lin, Bo Luo, Jiwu Jing, and Jing Wang. 2015. Protecting

Private Keys Against Memory Disclosure Attacks Using Hardware Transactional
Memory. In Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP
’15). IEEE Computer Society, Washington, DC, USA, 3–19. https://doi.org/10.
1109/SP.2015.8

[18] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and Alex Richardson. 2015.
Clean Application Compartmentalization with SOAAP. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security (Denver,
Colorado, USA) (CCS ’15). ACM, New York, NY, USA, 1016–1031. https://doi.
org/10.1145/2810103.2813611

[19] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer.
2016. Enforcing Least Privilege Memory Views for Multithreaded Applications. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). ACM, New York, NY, USA, 393–405. https:
//doi.org/10.1145/2976749.2978327

[20] Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena. 2015. Identi-
fying Arbitrary Memory Access Vulnerabilities in Privilege-Separated Software.
In Computer Security – ESORICS 2015. Springer International Publishing, Cham,
312–331.

[21] Douglas Kilpatrick. 2003. Privman: A Library for Partitioning Applications. In
2003 USENIX Annual Technical Conference (USENIX ATC 03). USENIX Association,
San Antonio, TX, 273–284.

[22] Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the
x86 Rings: A Portable User Mode Privilege Separation Architecture on x86. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1441–1454.
https://doi.org/10.1145/3243734.3243748

[23] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-weight Contexts: An OS Abstrac-
tion for Safety and Performance. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).
USENIX Association, Berkeley, CA, USA, 49–64.

[24] Shen Liu, Gang Tan, and Trent Jaeger. 2017. PtrSplit: Supporting General Pointers
in Automatic Program Partitioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). ACM, New York, NY, USA, 2359–2371. https://doi.org/10.1145/3133956.
3134066

[25] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCamant,
Trent Jaeger, and Gang Tan. 2019. Program-Mandering: Quantitative Privilege
Separation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, United Kingdom) (CCS ’19). Association for
Computing Machinery, New York, NY, USA, 1023–1040. https://doi.org/10.1145/
3319535.3354218

[26] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
Memory Disclosure with Efficient Hypervisor-enforced Intra-domain Isolation.
In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communi-
cations Security (Denver, Colorado, USA) (CCS ’15). ACM, New York, NY, USA,
1607–1619. https://doi.org/10.1145/2810103.2813690

[27] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil
Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB Reduction and Attes-
tation. In Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP ’10).
IEEE Computer Society, Washington, DC, USA, 143–158.

[28] Microsoft. 2012. The BlueHat prize contest official rules. http://www.microsoft.
com/security/bluehatprize/rules.aspx

[29] Robert B. Miller. 1968. Response Time in Man-computer Conversational Trans-
actions. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference,
Part I (San Francisco, California) (AFIPS ’68 (Fall, part I)). ACM, New York, NY,
USA, 267–277. https://doi.org/10.1145/1476589.1476628

[30] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,
Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, 699–716.

[31] Jakob Nielsen. 1993. Usability Engineering. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[32] Ben Niu and Gang Tan. 2012. Enforcing User-space Privilege Separation with
Declarative Architectures. In Proceedings of the Seventh ACMWorkshop on Scalable
Trusted Computing (Raleigh, North Carolina, USA) (STC ’12). ACM, New York,
NY, USA, 9–20. https://doi.org/10.1145/2382536.2382541

[33] LLVM Project. 2020. LLVM Language Reference Manual. https://llvm.org/docs/
LangRef.html

[34] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Privilege
Escalation. In Proceedings of the 12th Conference on USENIX Security Symposium -
Volume 12 (Washington, DC) (SSYM’03). USENIX Association, Berkeley, CA, USA,
16–16.

[35] Weizhong Qiang, Yong Cao, Weiqi Dai, Deqing Zou, Hai Jin, and Benxi Liu. 2017.
Libsec: AHardware Virtualization-Based Isolation for Shared Library. In 19th IEEE
International Conference on High Performance Computing and Communications;
15th IEEE International Conference on Smart City; 3rd IEEE International Conference
on Data Science and Systems, HPCC/SmartCity/DSS 2017. IEEE Computer Society,
Bangkok, Thailand, 34–41. https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.5

[36] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys – Effi-
cient In-Process Isolation for RISC-V and x86. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 1677–1694.

[37] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice, Thomas Schus-
ter, Anders Fogh, and Stefan Mangard. 2018. Automated Detection, Exploitation,
and Elimination of Double-Fetch Bugs Using Modern CPU Features. In Proceed-
ings of the 2018 on Asia Conference on Computer and Communications Security
(Incheon, Republic of Korea) (ASIACCS ’18). Association for Computing Machin-
ery, New York, NY, USA, 587–600. https://doi.org/10.1145/3196494.3196508

https://github.com/cali-library-isolation/Cali-library-isolation
https://popcon.debian.org/stable/by_vote
https://popcon.debian.org/stable/by_vote
https://doi.org/10.1109/SP.2016.12
https://doi.org/10.1109/SP.2016.12
https://www.cvedetails.com/vulnerability-list/vendor_id-10846/product_id-36469/Artifex-Ghostscript.html
https://www.cvedetails.com/vulnerability-list/vendor_id-10846/product_id-36469/Artifex-Ghostscript.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5018
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5018
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/Openssl-Openssl.html
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/Openssl-Openssl.html
https://www.cvedetails.com/vulnerability-list/vendor_id-9237/Sqlite.html
https://www.cvedetails.com/vulnerability-list/vendor_id-9237/Sqlite.html
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://doi.org/10.1145/24039.24041
https://www.usenix.org/conference/raid2020/presentation/ghavanmnia
https://github.com/google/sandboxed-api
https://nsjail.dev/
https://doi.org/10.1109/SP.2015.8
https://doi.org/10.1109/SP.2015.8
https://doi.org/10.1145/2810103.2813611
https://doi.org/10.1145/2810103.2813611
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/3243734.3243748
https://doi.org/10.1145/3133956.3134066
https://doi.org/10.1145/3133956.3134066
https://doi.org/10.1145/3319535.3354218
https://doi.org/10.1145/3319535.3354218
https://doi.org/10.1145/2810103.2813690
http://www.microsoft.com/security/bluehatprize/rules.aspx
http://www.microsoft.com/security/bluehatprize/rules.aspx
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/2382536.2382541
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.5
https://doi.org/10.1145/3196494.3196508

[38] Raoul Strackx, Pieter Agten, Niels Avonds, and Frank Piessens. 2015. Salus:
Kernel Support for Secure Process Compartments. ICST Trans. Security Safety 2
(2015), e1.

[39] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War
in Memory. In Proceedings of the 2013 IEEE Symposium on Security and Privacy
(SP ’13). IEEE Computer Society, Washington, DC, USA, 48–62.

[40] Carnegie Mellon University. 2018. Ghostscript contains multiple -dSAFER sand-
box bypass vulnerabilities. https://www.kb.cert.org/vuls/id/332928/

[41] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-
tion with Protection Keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA, 1221–1238.

[42] Z. Wan, D. Lo, X. Xia, L. Cai, and S. Li. 2017. Mining Sandboxes for Linux
Containers. In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST). IEEE Computer Society, Tokyo, Japan, 92–102.

[43] Jun Wang, Xi Xiong, and Peng Liu. 2015. Between Mutual Trust and Mutual
Distrust: Practical Fine-grained Privilege Separation in Multithreaded Applica-
tions. In Proceedings of the 2015 USENIX Conference on Usenix Annual Technical
Conference (Santa Clara, CA) (USENIX ATC ’15). USENIX Association, Berkeley,
CA, USA, 361–373.

[44] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. 2017. How
Double-Fetch Situations turn into Double-Fetch Vulnerabilities: A Study of Dou-
ble Fetches in the Linux Kernel. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, 1–16.

[45] Wenhao Wang, Xiaoyang Xu, and Kevin W. Hamlen. 2017. Object Flow Integrity.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machin-
ery, New York, NY, USA, 1909–1924. https://doi.org/10.1145/3133956.3133986

[46] Yu-Ping Wang, Xu-Qiang Hu, Zi-Xin Zou, Wende Tan, and Gang Tan. 2019.
IVT: An Efficient Method for Sharing Subtype Polymorphic Objects. Proc. ACM
Program. Lang. 3, OOPSLA, Article 130 (Oct 2019), 22 pages. https://doi.org/10.
1145/3360556

[47] Yongzheng Wu, Sai Sathyanarayan, Roland H. C. Yap, and Zhenkai Liang. 2012.
Codejail: Application-Transparent Isolation of Libraries with Tight Program
Interactions. In Computer Security – ESORICS 2012. Springer Berlin Heidelberg,
Berlin, Heidelberg, 859–876.

[48] Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. 2013. Automatically
Partition Software into Least Privilege Components Using Dynamic Data Depen-
dency Analysis. In Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering (Silicon Valley, CA, USA) (ASE’13). IEEE Press,
Piscataway, NJ, USA, 323–333. https://doi.org/10.1109/ASE.2013.6693091

A PERMISSION CONFIGURATION

This is our configuration file for ImageMagick convert. The file
contains all configuration we applied to the build process next to
the parameters from Section 6.2.

contexts:
main:

selectors:
- "*.o"
- "libMagick*.a"

function_behavior:
AcquireMagickMemory: malloc
RelinquishMagickMemory: free

library:
selectors: # a list of libraries
- "libgs.so"

permissions:
readonly:
- /var/lib/ghostscript
- /dev/urandom

readwrite:
folder containing input/output files in argv

- "$ARGV_FOLDERS"
- /tmp

network: none

Ghostscript is limited to access only the folder where the input
and output files reside, /tmp (where ImageMagick might but addi-
tional files) and its installation directory (where color profiles etc
are located). Network is not available in this compartment. User
and PID namespacing is enabled by default. The selectors describe

which code belongs into which context: At link time, ImageMagick
consists of all .o files (and some static libraries). Not in a specific
context (not named in any selector) is the standard library (libc), it
can be called from both contexts and executes always in the calling
context. As stated in Section 6.2, we need to mark ImageMagick’s
custom heap implementation (line 5-7).

Our prototype is able to auto-generate most parts of the neces-
sary configuration file, for example the selectors.

B COMPILATION TIME

Figure 7 shows the time necessary to compile different programs,
with and without Cali.

socat convert Filezilla
0 s

200 s

400 s

600 s Compile Time (ref)
Compile Time (Cali)

(+ 12.9%) (+ 23.2%) (+ 35.7%)

Figure 7: Compile time without and with Cali.

C PROGRAM DEPENDENCE GRAPH

Figure 8 shows the LLVM instructions of our example code in
Figure 2, Figure 9 shows its full program dependence graph, after
all analyses of Section 5 have been applied.

%struct.X = type { i64 , i64 }

define void @main() {
%1 = call %struct.X* @new_struct(i64 13) ; x1
%2 = call %struct.X* @new_struct(i64 37) ; x2
%3 = call %struct.X* @update(%struct.X* %2) ; x3
%4 = call i8* @malloc(i64 1024) ; buffer
%5 = call i32 @lib_wrapper(i8* %4, %struct.X* %3)
ret void

}

define %struct.X* @new_struct(i64) {
%2 = call i8* @malloc(i64 16)
%3 = bitcast i8* %2 to %struct.X* ; s
%4 = getelementptr %struct.X* %3, i64 0, i32 0
store i64 %0, i64* %4, align 8
ret %struct.X* %3

}

define %struct.X* @update(%struct.X*) {
%2 = getelementptr %struct.X* %0, i64 0, i32 0
store i64 18, i64* %2, align 8 ; one=18
ret %struct.X* %0

}

define i32 @lib_wrapper(i8*, %struct.X*) {
%3 = alloca i32 , align 4 ; err
%5 = getelementptr %struct.X* %1, i64 0, i32 1
call void @libfunc(i32* %3, i8* %0, i64* %5)
%6 = load i32 , i32* %3, align 4
%7 = icmp ne i32 %6, 0 ; err!=0
%8 = zext i1 %7 to i32
ret i32 %8

}

Figure 8: Simplified LLVM code of the example in Figure 2.

https://www.kb.cert.org/vuls/id/332928/
https://doi.org/10.1145/3133956.3133986
https://doi.org/10.1145/3360556
https://doi.org/10.1145/3360556
https://doi.org/10.1109/ASE.2013.6693091

Legend

function @lib_wrapper

buffer: char*

arg 1

x: struct X*

arg 2

%8: int

return: char ★

deref

: struct X ★

deref

X.one: long

part 1

X.two: long ★

part 2

%3: int*

err: int ★

deref

%6: int

data

%5: long*

deref

call @libfunc

arg 2arg 1 arg 3

%7: bool

data

data

%2 = call @new_struct: struct X*

function @new_struct

init: long

arg 1

%3: struct X*

return

X.one: long

data

%2 = call @malloc: char*

==

: struct X

deref

deref

part 1

X.two: long

part 2

%4: long*

deref

function @update

x: struct X*

arg 1return

summary

: struct X

deref

X.one: long

part 1

X.two: long

part 2

%2

deref

function @main

%3: struct X*

%1 = call @new_struct: struct X*

: struct X

deref

X.one: long

part 1

X.two: long

part 2

: struct X ★

deref%3 = call @update: struct X*

data
(summary)

X.one: long

part 1

X.two: long ★

part 2

arg 1

deref

%4 = call @malloc: char*

: char ★

deref

call @lib_wrapper

arg 2arg 1

function @specialized__new_struct

init: long

arg 1return

X.one: long

data

%2 = call @malloc: char*

==

: struct X ★

deref

deref

part 1

X.two: long ★

part 2

%4: long*

deref

★ Shared MemorySubnode : <type>Instruction : <type>Function
Structural Edge Function Edge Data Flow

Figure 9: The full Program Dependence Graph from the example program.

	Abstract
	1 Introduction
	2 Background / Related Work
	2.1 Compartmentalization
	2.2 Isolation Primitives

	3 General Overview
	3.1 Compiler-Assisted Library Isolation
	3.2 Overview

	4 Shielding Compartments
	4.1 Basic Compartment Structure
	4.2 Shared Memory
	4.3 Library Calls
	4.4 Callbacks, Signals and File Descriptors
	4.5 Isolation
	4.6 Threading, Forks and Concurrency

	5 Compiler-Assisted Separation
	5.1 Background: Call Graphs and SCCs
	5.2 Analysis Phase: Overview
	5.3 PDG Construction
	5.4 Data Flow in PDGs
	5.5 Reachability Analysis
	5.6 Function Specialization
	5.7 Tracing File Descriptors
	5.8 Rewriting Memory Allocations

	6 Evaluation
	6.1 Correctness Evaluation
	6.2 Usability Evaluation
	6.3 Compilation and Size Overhead
	6.4 Security Evaluation
	6.5 Performance Evaluation

	7 Conclusion
	Acknowledgments
	References
	A Permission configuration
	B Compilation Time
	C Program Dependence Graph

